Merge tag 'sh-for-v6.4-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git/glaubit...
[linux-2.6-microblaze.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71         struct page *page, *next;
72         unsigned long high_pfn = 0;
73
74         list_for_each_entry_safe(page, next, freelist, lru) {
75                 unsigned long pfn = page_to_pfn(page);
76                 list_del(&page->lru);
77                 __free_page(page);
78                 if (pfn > high_pfn)
79                         high_pfn = pfn;
80         }
81
82         return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87         unsigned int i, order, nr_pages;
88         struct page *page, *next;
89         LIST_HEAD(tmp_list);
90
91         list_for_each_entry_safe(page, next, list, lru) {
92                 list_del(&page->lru);
93
94                 order = page_private(page);
95                 nr_pages = 1 << order;
96
97                 post_alloc_hook(page, order, __GFP_MOVABLE);
98                 if (order)
99                         split_page(page, order);
100
101                 for (i = 0; i < nr_pages; i++) {
102                         list_add(&page->lru, &tmp_list);
103                         page++;
104                 }
105         }
106
107         list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113         const struct movable_operations *mops;
114
115         VM_BUG_ON_PAGE(!PageLocked(page), page);
116         if (!__PageMovable(page))
117                 return false;
118
119         mops = page_movable_ops(page);
120         if (mops)
121                 return true;
122
123         return false;
124 }
125
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128         VM_BUG_ON_PAGE(!PageLocked(page), page);
129         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
134 void __ClearPageMovable(struct page *page)
135 {
136         VM_BUG_ON_PAGE(!PageMovable(page), page);
137         /*
138          * This page still has the type of a movable page, but it's
139          * actually not movable any more.
140          */
141         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155         zone->compact_considered = 0;
156         zone->compact_defer_shift++;
157
158         if (order < zone->compact_order_failed)
159                 zone->compact_order_failed = order;
160
161         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164         trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172         if (order < zone->compact_order_failed)
173                 return false;
174
175         /* Avoid possible overflow */
176         if (++zone->compact_considered >= defer_limit) {
177                 zone->compact_considered = defer_limit;
178                 return false;
179         }
180
181         trace_mm_compaction_deferred(zone, order);
182
183         return true;
184 }
185
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192                 bool alloc_success)
193 {
194         if (alloc_success) {
195                 zone->compact_considered = 0;
196                 zone->compact_defer_shift = 0;
197         }
198         if (order >= zone->compact_order_failed)
199                 zone->compact_order_failed = order + 1;
200
201         trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207         if (order < zone->compact_order_failed)
208                 return false;
209
210         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216                                         struct page *page)
217 {
218         if (cc->ignore_skip_hint)
219                 return true;
220
221         return !get_pageblock_skip(page);
222 }
223
224 static void reset_cached_positions(struct zone *zone)
225 {
226         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228         zone->compact_cached_free_pfn =
229                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 /*
233  * Compound pages of >= pageblock_order should consistently be skipped until
234  * released. It is always pointless to compact pages of such order (if they are
235  * migratable), and the pageblocks they occupy cannot contain any free pages.
236  */
237 static bool pageblock_skip_persistent(struct page *page)
238 {
239         if (!PageCompound(page))
240                 return false;
241
242         page = compound_head(page);
243
244         if (compound_order(page) >= pageblock_order)
245                 return true;
246
247         return false;
248 }
249
250 static bool
251 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
252                                                         bool check_target)
253 {
254         struct page *page = pfn_to_online_page(pfn);
255         struct page *block_page;
256         struct page *end_page;
257         unsigned long block_pfn;
258
259         if (!page)
260                 return false;
261         if (zone != page_zone(page))
262                 return false;
263         if (pageblock_skip_persistent(page))
264                 return false;
265
266         /*
267          * If skip is already cleared do no further checking once the
268          * restart points have been set.
269          */
270         if (check_source && check_target && !get_pageblock_skip(page))
271                 return true;
272
273         /*
274          * If clearing skip for the target scanner, do not select a
275          * non-movable pageblock as the starting point.
276          */
277         if (!check_source && check_target &&
278             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
279                 return false;
280
281         /* Ensure the start of the pageblock or zone is online and valid */
282         block_pfn = pageblock_start_pfn(pfn);
283         block_pfn = max(block_pfn, zone->zone_start_pfn);
284         block_page = pfn_to_online_page(block_pfn);
285         if (block_page) {
286                 page = block_page;
287                 pfn = block_pfn;
288         }
289
290         /* Ensure the end of the pageblock or zone is online and valid */
291         block_pfn = pageblock_end_pfn(pfn) - 1;
292         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
293         end_page = pfn_to_online_page(block_pfn);
294         if (!end_page)
295                 return false;
296
297         /*
298          * Only clear the hint if a sample indicates there is either a
299          * free page or an LRU page in the block. One or other condition
300          * is necessary for the block to be a migration source/target.
301          */
302         do {
303                 if (check_source && PageLRU(page)) {
304                         clear_pageblock_skip(page);
305                         return true;
306                 }
307
308                 if (check_target && PageBuddy(page)) {
309                         clear_pageblock_skip(page);
310                         return true;
311                 }
312
313                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
314         } while (page <= end_page);
315
316         return false;
317 }
318
319 /*
320  * This function is called to clear all cached information on pageblocks that
321  * should be skipped for page isolation when the migrate and free page scanner
322  * meet.
323  */
324 static void __reset_isolation_suitable(struct zone *zone)
325 {
326         unsigned long migrate_pfn = zone->zone_start_pfn;
327         unsigned long free_pfn = zone_end_pfn(zone) - 1;
328         unsigned long reset_migrate = free_pfn;
329         unsigned long reset_free = migrate_pfn;
330         bool source_set = false;
331         bool free_set = false;
332
333         if (!zone->compact_blockskip_flush)
334                 return;
335
336         zone->compact_blockskip_flush = false;
337
338         /*
339          * Walk the zone and update pageblock skip information. Source looks
340          * for PageLRU while target looks for PageBuddy. When the scanner
341          * is found, both PageBuddy and PageLRU are checked as the pageblock
342          * is suitable as both source and target.
343          */
344         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
345                                         free_pfn -= pageblock_nr_pages) {
346                 cond_resched();
347
348                 /* Update the migrate PFN */
349                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
350                     migrate_pfn < reset_migrate) {
351                         source_set = true;
352                         reset_migrate = migrate_pfn;
353                         zone->compact_init_migrate_pfn = reset_migrate;
354                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
355                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
356                 }
357
358                 /* Update the free PFN */
359                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
360                     free_pfn > reset_free) {
361                         free_set = true;
362                         reset_free = free_pfn;
363                         zone->compact_init_free_pfn = reset_free;
364                         zone->compact_cached_free_pfn = reset_free;
365                 }
366         }
367
368         /* Leave no distance if no suitable block was reset */
369         if (reset_migrate >= reset_free) {
370                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
371                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
372                 zone->compact_cached_free_pfn = free_pfn;
373         }
374 }
375
376 void reset_isolation_suitable(pg_data_t *pgdat)
377 {
378         int zoneid;
379
380         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
381                 struct zone *zone = &pgdat->node_zones[zoneid];
382                 if (!populated_zone(zone))
383                         continue;
384
385                 /* Only flush if a full compaction finished recently */
386                 if (zone->compact_blockskip_flush)
387                         __reset_isolation_suitable(zone);
388         }
389 }
390
391 /*
392  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
393  * locks are not required for read/writers. Returns true if it was already set.
394  */
395 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
396                                                         unsigned long pfn)
397 {
398         bool skip;
399
400         /* Do no update if skip hint is being ignored */
401         if (cc->ignore_skip_hint)
402                 return false;
403
404         if (!pageblock_aligned(pfn))
405                 return false;
406
407         skip = get_pageblock_skip(page);
408         if (!skip && !cc->no_set_skip_hint)
409                 set_pageblock_skip(page);
410
411         return skip;
412 }
413
414 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
415 {
416         struct zone *zone = cc->zone;
417
418         pfn = pageblock_end_pfn(pfn);
419
420         /* Set for isolation rather than compaction */
421         if (cc->no_set_skip_hint)
422                 return;
423
424         if (pfn > zone->compact_cached_migrate_pfn[0])
425                 zone->compact_cached_migrate_pfn[0] = pfn;
426         if (cc->mode != MIGRATE_ASYNC &&
427             pfn > zone->compact_cached_migrate_pfn[1])
428                 zone->compact_cached_migrate_pfn[1] = pfn;
429 }
430
431 /*
432  * If no pages were isolated then mark this pageblock to be skipped in the
433  * future. The information is later cleared by __reset_isolation_suitable().
434  */
435 static void update_pageblock_skip(struct compact_control *cc,
436                         struct page *page, unsigned long pfn)
437 {
438         struct zone *zone = cc->zone;
439
440         if (cc->no_set_skip_hint)
441                 return;
442
443         if (!page)
444                 return;
445
446         set_pageblock_skip(page);
447
448         /* Update where async and sync compaction should restart */
449         if (pfn < zone->compact_cached_free_pfn)
450                 zone->compact_cached_free_pfn = pfn;
451 }
452 #else
453 static inline bool isolation_suitable(struct compact_control *cc,
454                                         struct page *page)
455 {
456         return true;
457 }
458
459 static inline bool pageblock_skip_persistent(struct page *page)
460 {
461         return false;
462 }
463
464 static inline void update_pageblock_skip(struct compact_control *cc,
465                         struct page *page, unsigned long pfn)
466 {
467 }
468
469 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
470 {
471 }
472
473 static bool test_and_set_skip(struct compact_control *cc, struct page *page,
474                                                         unsigned long pfn)
475 {
476         return false;
477 }
478 #endif /* CONFIG_COMPACTION */
479
480 /*
481  * Compaction requires the taking of some coarse locks that are potentially
482  * very heavily contended. For async compaction, trylock and record if the
483  * lock is contended. The lock will still be acquired but compaction will
484  * abort when the current block is finished regardless of success rate.
485  * Sync compaction acquires the lock.
486  *
487  * Always returns true which makes it easier to track lock state in callers.
488  */
489 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
490                                                 struct compact_control *cc)
491         __acquires(lock)
492 {
493         /* Track if the lock is contended in async mode */
494         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
495                 if (spin_trylock_irqsave(lock, *flags))
496                         return true;
497
498                 cc->contended = true;
499         }
500
501         spin_lock_irqsave(lock, *flags);
502         return true;
503 }
504
505 /*
506  * Compaction requires the taking of some coarse locks that are potentially
507  * very heavily contended. The lock should be periodically unlocked to avoid
508  * having disabled IRQs for a long time, even when there is nobody waiting on
509  * the lock. It might also be that allowing the IRQs will result in
510  * need_resched() becoming true. If scheduling is needed, compaction schedules.
511  * Either compaction type will also abort if a fatal signal is pending.
512  * In either case if the lock was locked, it is dropped and not regained.
513  *
514  * Returns true if compaction should abort due to fatal signal pending.
515  * Returns false when compaction can continue.
516  */
517 static bool compact_unlock_should_abort(spinlock_t *lock,
518                 unsigned long flags, bool *locked, struct compact_control *cc)
519 {
520         if (*locked) {
521                 spin_unlock_irqrestore(lock, flags);
522                 *locked = false;
523         }
524
525         if (fatal_signal_pending(current)) {
526                 cc->contended = true;
527                 return true;
528         }
529
530         cond_resched();
531
532         return false;
533 }
534
535 /*
536  * Isolate free pages onto a private freelist. If @strict is true, will abort
537  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
538  * (even though it may still end up isolating some pages).
539  */
540 static unsigned long isolate_freepages_block(struct compact_control *cc,
541                                 unsigned long *start_pfn,
542                                 unsigned long end_pfn,
543                                 struct list_head *freelist,
544                                 unsigned int stride,
545                                 bool strict)
546 {
547         int nr_scanned = 0, total_isolated = 0;
548         struct page *cursor;
549         unsigned long flags = 0;
550         bool locked = false;
551         unsigned long blockpfn = *start_pfn;
552         unsigned int order;
553
554         /* Strict mode is for isolation, speed is secondary */
555         if (strict)
556                 stride = 1;
557
558         cursor = pfn_to_page(blockpfn);
559
560         /* Isolate free pages. */
561         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
562                 int isolated;
563                 struct page *page = cursor;
564
565                 /*
566                  * Periodically drop the lock (if held) regardless of its
567                  * contention, to give chance to IRQs. Abort if fatal signal
568                  * pending.
569                  */
570                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
571                     && compact_unlock_should_abort(&cc->zone->lock, flags,
572                                                                 &locked, cc))
573                         break;
574
575                 nr_scanned++;
576
577                 /*
578                  * For compound pages such as THP and hugetlbfs, we can save
579                  * potentially a lot of iterations if we skip them at once.
580                  * The check is racy, but we can consider only valid values
581                  * and the only danger is skipping too much.
582                  */
583                 if (PageCompound(page)) {
584                         const unsigned int order = compound_order(page);
585
586                         if (likely(order < MAX_ORDER)) {
587                                 blockpfn += (1UL << order) - 1;
588                                 cursor += (1UL << order) - 1;
589                         }
590                         goto isolate_fail;
591                 }
592
593                 if (!PageBuddy(page))
594                         goto isolate_fail;
595
596                 /* If we already hold the lock, we can skip some rechecking. */
597                 if (!locked) {
598                         locked = compact_lock_irqsave(&cc->zone->lock,
599                                                                 &flags, cc);
600
601                         /* Recheck this is a buddy page under lock */
602                         if (!PageBuddy(page))
603                                 goto isolate_fail;
604                 }
605
606                 /* Found a free page, will break it into order-0 pages */
607                 order = buddy_order(page);
608                 isolated = __isolate_free_page(page, order);
609                 if (!isolated)
610                         break;
611                 set_page_private(page, order);
612
613                 nr_scanned += isolated - 1;
614                 total_isolated += isolated;
615                 cc->nr_freepages += isolated;
616                 list_add_tail(&page->lru, freelist);
617
618                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
619                         blockpfn += isolated;
620                         break;
621                 }
622                 /* Advance to the end of split page */
623                 blockpfn += isolated - 1;
624                 cursor += isolated - 1;
625                 continue;
626
627 isolate_fail:
628                 if (strict)
629                         break;
630                 else
631                         continue;
632
633         }
634
635         if (locked)
636                 spin_unlock_irqrestore(&cc->zone->lock, flags);
637
638         /*
639          * There is a tiny chance that we have read bogus compound_order(),
640          * so be careful to not go outside of the pageblock.
641          */
642         if (unlikely(blockpfn > end_pfn))
643                 blockpfn = end_pfn;
644
645         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
646                                         nr_scanned, total_isolated);
647
648         /* Record how far we have got within the block */
649         *start_pfn = blockpfn;
650
651         /*
652          * If strict isolation is requested by CMA then check that all the
653          * pages requested were isolated. If there were any failures, 0 is
654          * returned and CMA will fail.
655          */
656         if (strict && blockpfn < end_pfn)
657                 total_isolated = 0;
658
659         cc->total_free_scanned += nr_scanned;
660         if (total_isolated)
661                 count_compact_events(COMPACTISOLATED, total_isolated);
662         return total_isolated;
663 }
664
665 /**
666  * isolate_freepages_range() - isolate free pages.
667  * @cc:        Compaction control structure.
668  * @start_pfn: The first PFN to start isolating.
669  * @end_pfn:   The one-past-last PFN.
670  *
671  * Non-free pages, invalid PFNs, or zone boundaries within the
672  * [start_pfn, end_pfn) range are considered errors, cause function to
673  * undo its actions and return zero.
674  *
675  * Otherwise, function returns one-past-the-last PFN of isolated page
676  * (which may be greater then end_pfn if end fell in a middle of
677  * a free page).
678  */
679 unsigned long
680 isolate_freepages_range(struct compact_control *cc,
681                         unsigned long start_pfn, unsigned long end_pfn)
682 {
683         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
684         LIST_HEAD(freelist);
685
686         pfn = start_pfn;
687         block_start_pfn = pageblock_start_pfn(pfn);
688         if (block_start_pfn < cc->zone->zone_start_pfn)
689                 block_start_pfn = cc->zone->zone_start_pfn;
690         block_end_pfn = pageblock_end_pfn(pfn);
691
692         for (; pfn < end_pfn; pfn += isolated,
693                                 block_start_pfn = block_end_pfn,
694                                 block_end_pfn += pageblock_nr_pages) {
695                 /* Protect pfn from changing by isolate_freepages_block */
696                 unsigned long isolate_start_pfn = pfn;
697
698                 block_end_pfn = min(block_end_pfn, end_pfn);
699
700                 /*
701                  * pfn could pass the block_end_pfn if isolated freepage
702                  * is more than pageblock order. In this case, we adjust
703                  * scanning range to right one.
704                  */
705                 if (pfn >= block_end_pfn) {
706                         block_start_pfn = pageblock_start_pfn(pfn);
707                         block_end_pfn = pageblock_end_pfn(pfn);
708                         block_end_pfn = min(block_end_pfn, end_pfn);
709                 }
710
711                 if (!pageblock_pfn_to_page(block_start_pfn,
712                                         block_end_pfn, cc->zone))
713                         break;
714
715                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
716                                         block_end_pfn, &freelist, 0, true);
717
718                 /*
719                  * In strict mode, isolate_freepages_block() returns 0 if
720                  * there are any holes in the block (ie. invalid PFNs or
721                  * non-free pages).
722                  */
723                 if (!isolated)
724                         break;
725
726                 /*
727                  * If we managed to isolate pages, it is always (1 << n) *
728                  * pageblock_nr_pages for some non-negative n.  (Max order
729                  * page may span two pageblocks).
730                  */
731         }
732
733         /* __isolate_free_page() does not map the pages */
734         split_map_pages(&freelist);
735
736         if (pfn < end_pfn) {
737                 /* Loop terminated early, cleanup. */
738                 release_freepages(&freelist);
739                 return 0;
740         }
741
742         /* We don't use freelists for anything. */
743         return pfn;
744 }
745
746 /* Similar to reclaim, but different enough that they don't share logic */
747 static bool too_many_isolated(pg_data_t *pgdat)
748 {
749         bool too_many;
750
751         unsigned long active, inactive, isolated;
752
753         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
754                         node_page_state(pgdat, NR_INACTIVE_ANON);
755         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
756                         node_page_state(pgdat, NR_ACTIVE_ANON);
757         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
758                         node_page_state(pgdat, NR_ISOLATED_ANON);
759
760         too_many = isolated > (inactive + active) / 2;
761         if (!too_many)
762                 wake_throttle_isolated(pgdat);
763
764         return too_many;
765 }
766
767 /**
768  * isolate_migratepages_block() - isolate all migrate-able pages within
769  *                                a single pageblock
770  * @cc:         Compaction control structure.
771  * @low_pfn:    The first PFN to isolate
772  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
773  * @mode:       Isolation mode to be used.
774  *
775  * Isolate all pages that can be migrated from the range specified by
776  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
777  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
778  * -ENOMEM in case we could not allocate a page, or 0.
779  * cc->migrate_pfn will contain the next pfn to scan.
780  *
781  * The pages are isolated on cc->migratepages list (not required to be empty),
782  * and cc->nr_migratepages is updated accordingly.
783  */
784 static int
785 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
786                         unsigned long end_pfn, isolate_mode_t mode)
787 {
788         pg_data_t *pgdat = cc->zone->zone_pgdat;
789         unsigned long nr_scanned = 0, nr_isolated = 0;
790         struct lruvec *lruvec;
791         unsigned long flags = 0;
792         struct lruvec *locked = NULL;
793         struct page *page = NULL, *valid_page = NULL;
794         struct address_space *mapping;
795         unsigned long start_pfn = low_pfn;
796         bool skip_on_failure = false;
797         unsigned long next_skip_pfn = 0;
798         bool skip_updated = false;
799         int ret = 0;
800
801         cc->migrate_pfn = low_pfn;
802
803         /*
804          * Ensure that there are not too many pages isolated from the LRU
805          * list by either parallel reclaimers or compaction. If there are,
806          * delay for some time until fewer pages are isolated
807          */
808         while (unlikely(too_many_isolated(pgdat))) {
809                 /* stop isolation if there are still pages not migrated */
810                 if (cc->nr_migratepages)
811                         return -EAGAIN;
812
813                 /* async migration should just abort */
814                 if (cc->mode == MIGRATE_ASYNC)
815                         return -EAGAIN;
816
817                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
818
819                 if (fatal_signal_pending(current))
820                         return -EINTR;
821         }
822
823         cond_resched();
824
825         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
826                 skip_on_failure = true;
827                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
828         }
829
830         /* Time to isolate some pages for migration */
831         for (; low_pfn < end_pfn; low_pfn++) {
832
833                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
834                         /*
835                          * We have isolated all migration candidates in the
836                          * previous order-aligned block, and did not skip it due
837                          * to failure. We should migrate the pages now and
838                          * hopefully succeed compaction.
839                          */
840                         if (nr_isolated)
841                                 break;
842
843                         /*
844                          * We failed to isolate in the previous order-aligned
845                          * block. Set the new boundary to the end of the
846                          * current block. Note we can't simply increase
847                          * next_skip_pfn by 1 << order, as low_pfn might have
848                          * been incremented by a higher number due to skipping
849                          * a compound or a high-order buddy page in the
850                          * previous loop iteration.
851                          */
852                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
853                 }
854
855                 /*
856                  * Periodically drop the lock (if held) regardless of its
857                  * contention, to give chance to IRQs. Abort completely if
858                  * a fatal signal is pending.
859                  */
860                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
861                         if (locked) {
862                                 unlock_page_lruvec_irqrestore(locked, flags);
863                                 locked = NULL;
864                         }
865
866                         if (fatal_signal_pending(current)) {
867                                 cc->contended = true;
868                                 ret = -EINTR;
869
870                                 goto fatal_pending;
871                         }
872
873                         cond_resched();
874                 }
875
876                 nr_scanned++;
877
878                 page = pfn_to_page(low_pfn);
879
880                 /*
881                  * Check if the pageblock has already been marked skipped.
882                  * Only the aligned PFN is checked as the caller isolates
883                  * COMPACT_CLUSTER_MAX at a time so the second call must
884                  * not falsely conclude that the block should be skipped.
885                  */
886                 if (!valid_page && pageblock_aligned(low_pfn)) {
887                         if (!isolation_suitable(cc, page)) {
888                                 low_pfn = end_pfn;
889                                 page = NULL;
890                                 goto isolate_abort;
891                         }
892                         valid_page = page;
893                 }
894
895                 if (PageHuge(page) && cc->alloc_contig) {
896                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
897
898                         /*
899                          * Fail isolation in case isolate_or_dissolve_huge_page()
900                          * reports an error. In case of -ENOMEM, abort right away.
901                          */
902                         if (ret < 0) {
903                                  /* Do not report -EBUSY down the chain */
904                                 if (ret == -EBUSY)
905                                         ret = 0;
906                                 low_pfn += compound_nr(page) - 1;
907                                 goto isolate_fail;
908                         }
909
910                         if (PageHuge(page)) {
911                                 /*
912                                  * Hugepage was successfully isolated and placed
913                                  * on the cc->migratepages list.
914                                  */
915                                 low_pfn += compound_nr(page) - 1;
916                                 goto isolate_success_no_list;
917                         }
918
919                         /*
920                          * Ok, the hugepage was dissolved. Now these pages are
921                          * Buddy and cannot be re-allocated because they are
922                          * isolated. Fall-through as the check below handles
923                          * Buddy pages.
924                          */
925                 }
926
927                 /*
928                  * Skip if free. We read page order here without zone lock
929                  * which is generally unsafe, but the race window is small and
930                  * the worst thing that can happen is that we skip some
931                  * potential isolation targets.
932                  */
933                 if (PageBuddy(page)) {
934                         unsigned long freepage_order = buddy_order_unsafe(page);
935
936                         /*
937                          * Without lock, we cannot be sure that what we got is
938                          * a valid page order. Consider only values in the
939                          * valid order range to prevent low_pfn overflow.
940                          */
941                         if (freepage_order > 0 && freepage_order < MAX_ORDER)
942                                 low_pfn += (1UL << freepage_order) - 1;
943                         continue;
944                 }
945
946                 /*
947                  * Regardless of being on LRU, compound pages such as THP and
948                  * hugetlbfs are not to be compacted unless we are attempting
949                  * an allocation much larger than the huge page size (eg CMA).
950                  * We can potentially save a lot of iterations if we skip them
951                  * at once. The check is racy, but we can consider only valid
952                  * values and the only danger is skipping too much.
953                  */
954                 if (PageCompound(page) && !cc->alloc_contig) {
955                         const unsigned int order = compound_order(page);
956
957                         if (likely(order < MAX_ORDER))
958                                 low_pfn += (1UL << order) - 1;
959                         goto isolate_fail;
960                 }
961
962                 /*
963                  * Check may be lockless but that's ok as we recheck later.
964                  * It's possible to migrate LRU and non-lru movable pages.
965                  * Skip any other type of page
966                  */
967                 if (!PageLRU(page)) {
968                         /*
969                          * __PageMovable can return false positive so we need
970                          * to verify it under page_lock.
971                          */
972                         if (unlikely(__PageMovable(page)) &&
973                                         !PageIsolated(page)) {
974                                 if (locked) {
975                                         unlock_page_lruvec_irqrestore(locked, flags);
976                                         locked = NULL;
977                                 }
978
979                                 if (isolate_movable_page(page, mode))
980                                         goto isolate_success;
981                         }
982
983                         goto isolate_fail;
984                 }
985
986                 /*
987                  * Be careful not to clear PageLRU until after we're
988                  * sure the page is not being freed elsewhere -- the
989                  * page release code relies on it.
990                  */
991                 if (unlikely(!get_page_unless_zero(page)))
992                         goto isolate_fail;
993
994                 /*
995                  * Migration will fail if an anonymous page is pinned in memory,
996                  * so avoid taking lru_lock and isolating it unnecessarily in an
997                  * admittedly racy check.
998                  */
999                 mapping = page_mapping(page);
1000                 if (!mapping && (page_count(page) - 1) > total_mapcount(page))
1001                         goto isolate_fail_put;
1002
1003                 /*
1004                  * Only allow to migrate anonymous pages in GFP_NOFS context
1005                  * because those do not depend on fs locks.
1006                  */
1007                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1008                         goto isolate_fail_put;
1009
1010                 /* Only take pages on LRU: a check now makes later tests safe */
1011                 if (!PageLRU(page))
1012                         goto isolate_fail_put;
1013
1014                 /* Compaction might skip unevictable pages but CMA takes them */
1015                 if (!(mode & ISOLATE_UNEVICTABLE) && PageUnevictable(page))
1016                         goto isolate_fail_put;
1017
1018                 /*
1019                  * To minimise LRU disruption, the caller can indicate with
1020                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1021                  * it will be able to migrate without blocking - clean pages
1022                  * for the most part.  PageWriteback would require blocking.
1023                  */
1024                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageWriteback(page))
1025                         goto isolate_fail_put;
1026
1027                 if ((mode & ISOLATE_ASYNC_MIGRATE) && PageDirty(page)) {
1028                         bool migrate_dirty;
1029
1030                         /*
1031                          * Only pages without mappings or that have a
1032                          * ->migrate_folio callback are possible to migrate
1033                          * without blocking. However, we can be racing with
1034                          * truncation so it's necessary to lock the page
1035                          * to stabilise the mapping as truncation holds
1036                          * the page lock until after the page is removed
1037                          * from the page cache.
1038                          */
1039                         if (!trylock_page(page))
1040                                 goto isolate_fail_put;
1041
1042                         mapping = page_mapping(page);
1043                         migrate_dirty = !mapping ||
1044                                         mapping->a_ops->migrate_folio;
1045                         unlock_page(page);
1046                         if (!migrate_dirty)
1047                                 goto isolate_fail_put;
1048                 }
1049
1050                 /* Try isolate the page */
1051                 if (!TestClearPageLRU(page))
1052                         goto isolate_fail_put;
1053
1054                 lruvec = folio_lruvec(page_folio(page));
1055
1056                 /* If we already hold the lock, we can skip some rechecking */
1057                 if (lruvec != locked) {
1058                         if (locked)
1059                                 unlock_page_lruvec_irqrestore(locked, flags);
1060
1061                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1062                         locked = lruvec;
1063
1064                         lruvec_memcg_debug(lruvec, page_folio(page));
1065
1066                         /* Try get exclusive access under lock */
1067                         if (!skip_updated) {
1068                                 skip_updated = true;
1069                                 if (test_and_set_skip(cc, page, low_pfn))
1070                                         goto isolate_abort;
1071                         }
1072
1073                         /*
1074                          * Page become compound since the non-locked check,
1075                          * and it's on LRU. It can only be a THP so the order
1076                          * is safe to read and it's 0 for tail pages.
1077                          */
1078                         if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
1079                                 low_pfn += compound_nr(page) - 1;
1080                                 SetPageLRU(page);
1081                                 goto isolate_fail_put;
1082                         }
1083                 }
1084
1085                 /* The whole page is taken off the LRU; skip the tail pages. */
1086                 if (PageCompound(page))
1087                         low_pfn += compound_nr(page) - 1;
1088
1089                 /* Successfully isolated */
1090                 del_page_from_lru_list(page, lruvec);
1091                 mod_node_page_state(page_pgdat(page),
1092                                 NR_ISOLATED_ANON + page_is_file_lru(page),
1093                                 thp_nr_pages(page));
1094
1095 isolate_success:
1096                 list_add(&page->lru, &cc->migratepages);
1097 isolate_success_no_list:
1098                 cc->nr_migratepages += compound_nr(page);
1099                 nr_isolated += compound_nr(page);
1100                 nr_scanned += compound_nr(page) - 1;
1101
1102                 /*
1103                  * Avoid isolating too much unless this block is being
1104                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1105                  * or a lock is contended. For contention, isolate quickly to
1106                  * potentially remove one source of contention.
1107                  */
1108                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1109                     !cc->finish_pageblock && !cc->contended) {
1110                         ++low_pfn;
1111                         break;
1112                 }
1113
1114                 continue;
1115
1116 isolate_fail_put:
1117                 /* Avoid potential deadlock in freeing page under lru_lock */
1118                 if (locked) {
1119                         unlock_page_lruvec_irqrestore(locked, flags);
1120                         locked = NULL;
1121                 }
1122                 put_page(page);
1123
1124 isolate_fail:
1125                 if (!skip_on_failure && ret != -ENOMEM)
1126                         continue;
1127
1128                 /*
1129                  * We have isolated some pages, but then failed. Release them
1130                  * instead of migrating, as we cannot form the cc->order buddy
1131                  * page anyway.
1132                  */
1133                 if (nr_isolated) {
1134                         if (locked) {
1135                                 unlock_page_lruvec_irqrestore(locked, flags);
1136                                 locked = NULL;
1137                         }
1138                         putback_movable_pages(&cc->migratepages);
1139                         cc->nr_migratepages = 0;
1140                         nr_isolated = 0;
1141                 }
1142
1143                 if (low_pfn < next_skip_pfn) {
1144                         low_pfn = next_skip_pfn - 1;
1145                         /*
1146                          * The check near the loop beginning would have updated
1147                          * next_skip_pfn too, but this is a bit simpler.
1148                          */
1149                         next_skip_pfn += 1UL << cc->order;
1150                 }
1151
1152                 if (ret == -ENOMEM)
1153                         break;
1154         }
1155
1156         /*
1157          * The PageBuddy() check could have potentially brought us outside
1158          * the range to be scanned.
1159          */
1160         if (unlikely(low_pfn > end_pfn))
1161                 low_pfn = end_pfn;
1162
1163         page = NULL;
1164
1165 isolate_abort:
1166         if (locked)
1167                 unlock_page_lruvec_irqrestore(locked, flags);
1168         if (page) {
1169                 SetPageLRU(page);
1170                 put_page(page);
1171         }
1172
1173         /*
1174          * Update the cached scanner pfn once the pageblock has been scanned.
1175          * Pages will either be migrated in which case there is no point
1176          * scanning in the near future or migration failed in which case the
1177          * failure reason may persist. The block is marked for skipping if
1178          * there were no pages isolated in the block or if the block is
1179          * rescanned twice in a row.
1180          */
1181         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1182                 if (valid_page && !skip_updated)
1183                         set_pageblock_skip(valid_page);
1184                 update_cached_migrate(cc, low_pfn);
1185         }
1186
1187         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1188                                                 nr_scanned, nr_isolated);
1189
1190 fatal_pending:
1191         cc->total_migrate_scanned += nr_scanned;
1192         if (nr_isolated)
1193                 count_compact_events(COMPACTISOLATED, nr_isolated);
1194
1195         cc->migrate_pfn = low_pfn;
1196
1197         return ret;
1198 }
1199
1200 /**
1201  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1202  * @cc:        Compaction control structure.
1203  * @start_pfn: The first PFN to start isolating.
1204  * @end_pfn:   The one-past-last PFN.
1205  *
1206  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1207  * in case we could not allocate a page, or 0.
1208  */
1209 int
1210 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1211                                                         unsigned long end_pfn)
1212 {
1213         unsigned long pfn, block_start_pfn, block_end_pfn;
1214         int ret = 0;
1215
1216         /* Scan block by block. First and last block may be incomplete */
1217         pfn = start_pfn;
1218         block_start_pfn = pageblock_start_pfn(pfn);
1219         if (block_start_pfn < cc->zone->zone_start_pfn)
1220                 block_start_pfn = cc->zone->zone_start_pfn;
1221         block_end_pfn = pageblock_end_pfn(pfn);
1222
1223         for (; pfn < end_pfn; pfn = block_end_pfn,
1224                                 block_start_pfn = block_end_pfn,
1225                                 block_end_pfn += pageblock_nr_pages) {
1226
1227                 block_end_pfn = min(block_end_pfn, end_pfn);
1228
1229                 if (!pageblock_pfn_to_page(block_start_pfn,
1230                                         block_end_pfn, cc->zone))
1231                         continue;
1232
1233                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1234                                                  ISOLATE_UNEVICTABLE);
1235
1236                 if (ret)
1237                         break;
1238
1239                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1240                         break;
1241         }
1242
1243         return ret;
1244 }
1245
1246 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1247 #ifdef CONFIG_COMPACTION
1248
1249 static bool suitable_migration_source(struct compact_control *cc,
1250                                                         struct page *page)
1251 {
1252         int block_mt;
1253
1254         if (pageblock_skip_persistent(page))
1255                 return false;
1256
1257         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1258                 return true;
1259
1260         block_mt = get_pageblock_migratetype(page);
1261
1262         if (cc->migratetype == MIGRATE_MOVABLE)
1263                 return is_migrate_movable(block_mt);
1264         else
1265                 return block_mt == cc->migratetype;
1266 }
1267
1268 /* Returns true if the page is within a block suitable for migration to */
1269 static bool suitable_migration_target(struct compact_control *cc,
1270                                                         struct page *page)
1271 {
1272         /* If the page is a large free page, then disallow migration */
1273         if (PageBuddy(page)) {
1274                 /*
1275                  * We are checking page_order without zone->lock taken. But
1276                  * the only small danger is that we skip a potentially suitable
1277                  * pageblock, so it's not worth to check order for valid range.
1278                  */
1279                 if (buddy_order_unsafe(page) >= pageblock_order)
1280                         return false;
1281         }
1282
1283         if (cc->ignore_block_suitable)
1284                 return true;
1285
1286         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1287         if (is_migrate_movable(get_pageblock_migratetype(page)))
1288                 return true;
1289
1290         /* Otherwise skip the block */
1291         return false;
1292 }
1293
1294 static inline unsigned int
1295 freelist_scan_limit(struct compact_control *cc)
1296 {
1297         unsigned short shift = BITS_PER_LONG - 1;
1298
1299         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1300 }
1301
1302 /*
1303  * Test whether the free scanner has reached the same or lower pageblock than
1304  * the migration scanner, and compaction should thus terminate.
1305  */
1306 static inline bool compact_scanners_met(struct compact_control *cc)
1307 {
1308         return (cc->free_pfn >> pageblock_order)
1309                 <= (cc->migrate_pfn >> pageblock_order);
1310 }
1311
1312 /*
1313  * Used when scanning for a suitable migration target which scans freelists
1314  * in reverse. Reorders the list such as the unscanned pages are scanned
1315  * first on the next iteration of the free scanner
1316  */
1317 static void
1318 move_freelist_head(struct list_head *freelist, struct page *freepage)
1319 {
1320         LIST_HEAD(sublist);
1321
1322         if (!list_is_last(freelist, &freepage->lru)) {
1323                 list_cut_before(&sublist, freelist, &freepage->lru);
1324                 list_splice_tail(&sublist, freelist);
1325         }
1326 }
1327
1328 /*
1329  * Similar to move_freelist_head except used by the migration scanner
1330  * when scanning forward. It's possible for these list operations to
1331  * move against each other if they search the free list exactly in
1332  * lockstep.
1333  */
1334 static void
1335 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1336 {
1337         LIST_HEAD(sublist);
1338
1339         if (!list_is_first(freelist, &freepage->lru)) {
1340                 list_cut_position(&sublist, freelist, &freepage->lru);
1341                 list_splice_tail(&sublist, freelist);
1342         }
1343 }
1344
1345 static void
1346 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1347 {
1348         unsigned long start_pfn, end_pfn;
1349         struct page *page;
1350
1351         /* Do not search around if there are enough pages already */
1352         if (cc->nr_freepages >= cc->nr_migratepages)
1353                 return;
1354
1355         /* Minimise scanning during async compaction */
1356         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1357                 return;
1358
1359         /* Pageblock boundaries */
1360         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1361         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1362
1363         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1364         if (!page)
1365                 return;
1366
1367         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1368
1369         /* Skip this pageblock in the future as it's full or nearly full */
1370         if (cc->nr_freepages < cc->nr_migratepages)
1371                 set_pageblock_skip(page);
1372
1373         return;
1374 }
1375
1376 /* Search orders in round-robin fashion */
1377 static int next_search_order(struct compact_control *cc, int order)
1378 {
1379         order--;
1380         if (order < 0)
1381                 order = cc->order - 1;
1382
1383         /* Search wrapped around? */
1384         if (order == cc->search_order) {
1385                 cc->search_order--;
1386                 if (cc->search_order < 0)
1387                         cc->search_order = cc->order - 1;
1388                 return -1;
1389         }
1390
1391         return order;
1392 }
1393
1394 static unsigned long
1395 fast_isolate_freepages(struct compact_control *cc)
1396 {
1397         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1398         unsigned int nr_scanned = 0;
1399         unsigned long low_pfn, min_pfn, highest = 0;
1400         unsigned long nr_isolated = 0;
1401         unsigned long distance;
1402         struct page *page = NULL;
1403         bool scan_start = false;
1404         int order;
1405
1406         /* Full compaction passes in a negative order */
1407         if (cc->order <= 0)
1408                 return cc->free_pfn;
1409
1410         /*
1411          * If starting the scan, use a deeper search and use the highest
1412          * PFN found if a suitable one is not found.
1413          */
1414         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1415                 limit = pageblock_nr_pages >> 1;
1416                 scan_start = true;
1417         }
1418
1419         /*
1420          * Preferred point is in the top quarter of the scan space but take
1421          * a pfn from the top half if the search is problematic.
1422          */
1423         distance = (cc->free_pfn - cc->migrate_pfn);
1424         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1425         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1426
1427         if (WARN_ON_ONCE(min_pfn > low_pfn))
1428                 low_pfn = min_pfn;
1429
1430         /*
1431          * Search starts from the last successful isolation order or the next
1432          * order to search after a previous failure
1433          */
1434         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1435
1436         for (order = cc->search_order;
1437              !page && order >= 0;
1438              order = next_search_order(cc, order)) {
1439                 struct free_area *area = &cc->zone->free_area[order];
1440                 struct list_head *freelist;
1441                 struct page *freepage;
1442                 unsigned long flags;
1443                 unsigned int order_scanned = 0;
1444                 unsigned long high_pfn = 0;
1445
1446                 if (!area->nr_free)
1447                         continue;
1448
1449                 spin_lock_irqsave(&cc->zone->lock, flags);
1450                 freelist = &area->free_list[MIGRATE_MOVABLE];
1451                 list_for_each_entry_reverse(freepage, freelist, lru) {
1452                         unsigned long pfn;
1453
1454                         order_scanned++;
1455                         nr_scanned++;
1456                         pfn = page_to_pfn(freepage);
1457
1458                         if (pfn >= highest)
1459                                 highest = max(pageblock_start_pfn(pfn),
1460                                               cc->zone->zone_start_pfn);
1461
1462                         if (pfn >= low_pfn) {
1463                                 cc->fast_search_fail = 0;
1464                                 cc->search_order = order;
1465                                 page = freepage;
1466                                 break;
1467                         }
1468
1469                         if (pfn >= min_pfn && pfn > high_pfn) {
1470                                 high_pfn = pfn;
1471
1472                                 /* Shorten the scan if a candidate is found */
1473                                 limit >>= 1;
1474                         }
1475
1476                         if (order_scanned >= limit)
1477                                 break;
1478                 }
1479
1480                 /* Use a minimum pfn if a preferred one was not found */
1481                 if (!page && high_pfn) {
1482                         page = pfn_to_page(high_pfn);
1483
1484                         /* Update freepage for the list reorder below */
1485                         freepage = page;
1486                 }
1487
1488                 /* Reorder to so a future search skips recent pages */
1489                 move_freelist_head(freelist, freepage);
1490
1491                 /* Isolate the page if available */
1492                 if (page) {
1493                         if (__isolate_free_page(page, order)) {
1494                                 set_page_private(page, order);
1495                                 nr_isolated = 1 << order;
1496                                 nr_scanned += nr_isolated - 1;
1497                                 cc->nr_freepages += nr_isolated;
1498                                 list_add_tail(&page->lru, &cc->freepages);
1499                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1500                         } else {
1501                                 /* If isolation fails, abort the search */
1502                                 order = cc->search_order + 1;
1503                                 page = NULL;
1504                         }
1505                 }
1506
1507                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1508
1509                 /*
1510                  * Smaller scan on next order so the total scan is related
1511                  * to freelist_scan_limit.
1512                  */
1513                 if (order_scanned >= limit)
1514                         limit = max(1U, limit >> 1);
1515         }
1516
1517         if (!page) {
1518                 cc->fast_search_fail++;
1519                 if (scan_start) {
1520                         /*
1521                          * Use the highest PFN found above min. If one was
1522                          * not found, be pessimistic for direct compaction
1523                          * and use the min mark.
1524                          */
1525                         if (highest >= min_pfn) {
1526                                 page = pfn_to_page(highest);
1527                                 cc->free_pfn = highest;
1528                         } else {
1529                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1530                                         page = pageblock_pfn_to_page(min_pfn,
1531                                                 min(pageblock_end_pfn(min_pfn),
1532                                                     zone_end_pfn(cc->zone)),
1533                                                 cc->zone);
1534                                         cc->free_pfn = min_pfn;
1535                                 }
1536                         }
1537                 }
1538         }
1539
1540         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1541                 highest -= pageblock_nr_pages;
1542                 cc->zone->compact_cached_free_pfn = highest;
1543         }
1544
1545         cc->total_free_scanned += nr_scanned;
1546         if (!page)
1547                 return cc->free_pfn;
1548
1549         low_pfn = page_to_pfn(page);
1550         fast_isolate_around(cc, low_pfn);
1551         return low_pfn;
1552 }
1553
1554 /*
1555  * Based on information in the current compact_control, find blocks
1556  * suitable for isolating free pages from and then isolate them.
1557  */
1558 static void isolate_freepages(struct compact_control *cc)
1559 {
1560         struct zone *zone = cc->zone;
1561         struct page *page;
1562         unsigned long block_start_pfn;  /* start of current pageblock */
1563         unsigned long isolate_start_pfn; /* exact pfn we start at */
1564         unsigned long block_end_pfn;    /* end of current pageblock */
1565         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1566         struct list_head *freelist = &cc->freepages;
1567         unsigned int stride;
1568
1569         /* Try a small search of the free lists for a candidate */
1570         fast_isolate_freepages(cc);
1571         if (cc->nr_freepages)
1572                 goto splitmap;
1573
1574         /*
1575          * Initialise the free scanner. The starting point is where we last
1576          * successfully isolated from, zone-cached value, or the end of the
1577          * zone when isolating for the first time. For looping we also need
1578          * this pfn aligned down to the pageblock boundary, because we do
1579          * block_start_pfn -= pageblock_nr_pages in the for loop.
1580          * For ending point, take care when isolating in last pageblock of a
1581          * zone which ends in the middle of a pageblock.
1582          * The low boundary is the end of the pageblock the migration scanner
1583          * is using.
1584          */
1585         isolate_start_pfn = cc->free_pfn;
1586         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1587         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1588                                                 zone_end_pfn(zone));
1589         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1590         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1591
1592         /*
1593          * Isolate free pages until enough are available to migrate the
1594          * pages on cc->migratepages. We stop searching if the migrate
1595          * and free page scanners meet or enough free pages are isolated.
1596          */
1597         for (; block_start_pfn >= low_pfn;
1598                                 block_end_pfn = block_start_pfn,
1599                                 block_start_pfn -= pageblock_nr_pages,
1600                                 isolate_start_pfn = block_start_pfn) {
1601                 unsigned long nr_isolated;
1602
1603                 /*
1604                  * This can iterate a massively long zone without finding any
1605                  * suitable migration targets, so periodically check resched.
1606                  */
1607                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1608                         cond_resched();
1609
1610                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1611                                                                         zone);
1612                 if (!page)
1613                         continue;
1614
1615                 /* Check the block is suitable for migration */
1616                 if (!suitable_migration_target(cc, page))
1617                         continue;
1618
1619                 /* If isolation recently failed, do not retry */
1620                 if (!isolation_suitable(cc, page))
1621                         continue;
1622
1623                 /* Found a block suitable for isolating free pages from. */
1624                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1625                                         block_end_pfn, freelist, stride, false);
1626
1627                 /* Update the skip hint if the full pageblock was scanned */
1628                 if (isolate_start_pfn == block_end_pfn)
1629                         update_pageblock_skip(cc, page, block_start_pfn);
1630
1631                 /* Are enough freepages isolated? */
1632                 if (cc->nr_freepages >= cc->nr_migratepages) {
1633                         if (isolate_start_pfn >= block_end_pfn) {
1634                                 /*
1635                                  * Restart at previous pageblock if more
1636                                  * freepages can be isolated next time.
1637                                  */
1638                                 isolate_start_pfn =
1639                                         block_start_pfn - pageblock_nr_pages;
1640                         }
1641                         break;
1642                 } else if (isolate_start_pfn < block_end_pfn) {
1643                         /*
1644                          * If isolation failed early, do not continue
1645                          * needlessly.
1646                          */
1647                         break;
1648                 }
1649
1650                 /* Adjust stride depending on isolation */
1651                 if (nr_isolated) {
1652                         stride = 1;
1653                         continue;
1654                 }
1655                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1656         }
1657
1658         /*
1659          * Record where the free scanner will restart next time. Either we
1660          * broke from the loop and set isolate_start_pfn based on the last
1661          * call to isolate_freepages_block(), or we met the migration scanner
1662          * and the loop terminated due to isolate_start_pfn < low_pfn
1663          */
1664         cc->free_pfn = isolate_start_pfn;
1665
1666 splitmap:
1667         /* __isolate_free_page() does not map the pages */
1668         split_map_pages(freelist);
1669 }
1670
1671 /*
1672  * This is a migrate-callback that "allocates" freepages by taking pages
1673  * from the isolated freelists in the block we are migrating to.
1674  */
1675 static struct page *compaction_alloc(struct page *migratepage,
1676                                         unsigned long data)
1677 {
1678         struct compact_control *cc = (struct compact_control *)data;
1679         struct page *freepage;
1680
1681         if (list_empty(&cc->freepages)) {
1682                 isolate_freepages(cc);
1683
1684                 if (list_empty(&cc->freepages))
1685                         return NULL;
1686         }
1687
1688         freepage = list_entry(cc->freepages.next, struct page, lru);
1689         list_del(&freepage->lru);
1690         cc->nr_freepages--;
1691
1692         return freepage;
1693 }
1694
1695 /*
1696  * This is a migrate-callback that "frees" freepages back to the isolated
1697  * freelist.  All pages on the freelist are from the same zone, so there is no
1698  * special handling needed for NUMA.
1699  */
1700 static void compaction_free(struct page *page, unsigned long data)
1701 {
1702         struct compact_control *cc = (struct compact_control *)data;
1703
1704         list_add(&page->lru, &cc->freepages);
1705         cc->nr_freepages++;
1706 }
1707
1708 /* possible outcome of isolate_migratepages */
1709 typedef enum {
1710         ISOLATE_ABORT,          /* Abort compaction now */
1711         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1712         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1713 } isolate_migrate_t;
1714
1715 /*
1716  * Allow userspace to control policy on scanning the unevictable LRU for
1717  * compactable pages.
1718  */
1719 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1720 /*
1721  * Tunable for proactive compaction. It determines how
1722  * aggressively the kernel should compact memory in the
1723  * background. It takes values in the range [0, 100].
1724  */
1725 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1726 static int sysctl_extfrag_threshold = 500;
1727
1728 static inline void
1729 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1730 {
1731         if (cc->fast_start_pfn == ULONG_MAX)
1732                 return;
1733
1734         if (!cc->fast_start_pfn)
1735                 cc->fast_start_pfn = pfn;
1736
1737         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1738 }
1739
1740 static inline unsigned long
1741 reinit_migrate_pfn(struct compact_control *cc)
1742 {
1743         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1744                 return cc->migrate_pfn;
1745
1746         cc->migrate_pfn = cc->fast_start_pfn;
1747         cc->fast_start_pfn = ULONG_MAX;
1748
1749         return cc->migrate_pfn;
1750 }
1751
1752 /*
1753  * Briefly search the free lists for a migration source that already has
1754  * some free pages to reduce the number of pages that need migration
1755  * before a pageblock is free.
1756  */
1757 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1758 {
1759         unsigned int limit = freelist_scan_limit(cc);
1760         unsigned int nr_scanned = 0;
1761         unsigned long distance;
1762         unsigned long pfn = cc->migrate_pfn;
1763         unsigned long high_pfn;
1764         int order;
1765         bool found_block = false;
1766
1767         /* Skip hints are relied on to avoid repeats on the fast search */
1768         if (cc->ignore_skip_hint)
1769                 return pfn;
1770
1771         /*
1772          * If the pageblock should be finished then do not select a different
1773          * pageblock.
1774          */
1775         if (cc->finish_pageblock)
1776                 return pfn;
1777
1778         /*
1779          * If the migrate_pfn is not at the start of a zone or the start
1780          * of a pageblock then assume this is a continuation of a previous
1781          * scan restarted due to COMPACT_CLUSTER_MAX.
1782          */
1783         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1784                 return pfn;
1785
1786         /*
1787          * For smaller orders, just linearly scan as the number of pages
1788          * to migrate should be relatively small and does not necessarily
1789          * justify freeing up a large block for a small allocation.
1790          */
1791         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1792                 return pfn;
1793
1794         /*
1795          * Only allow kcompactd and direct requests for movable pages to
1796          * quickly clear out a MOVABLE pageblock for allocation. This
1797          * reduces the risk that a large movable pageblock is freed for
1798          * an unmovable/reclaimable small allocation.
1799          */
1800         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1801                 return pfn;
1802
1803         /*
1804          * When starting the migration scanner, pick any pageblock within the
1805          * first half of the search space. Otherwise try and pick a pageblock
1806          * within the first eighth to reduce the chances that a migration
1807          * target later becomes a source.
1808          */
1809         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1810         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1811                 distance >>= 2;
1812         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1813
1814         for (order = cc->order - 1;
1815              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1816              order--) {
1817                 struct free_area *area = &cc->zone->free_area[order];
1818                 struct list_head *freelist;
1819                 unsigned long flags;
1820                 struct page *freepage;
1821
1822                 if (!area->nr_free)
1823                         continue;
1824
1825                 spin_lock_irqsave(&cc->zone->lock, flags);
1826                 freelist = &area->free_list[MIGRATE_MOVABLE];
1827                 list_for_each_entry(freepage, freelist, lru) {
1828                         unsigned long free_pfn;
1829
1830                         if (nr_scanned++ >= limit) {
1831                                 move_freelist_tail(freelist, freepage);
1832                                 break;
1833                         }
1834
1835                         free_pfn = page_to_pfn(freepage);
1836                         if (free_pfn < high_pfn) {
1837                                 /*
1838                                  * Avoid if skipped recently. Ideally it would
1839                                  * move to the tail but even safe iteration of
1840                                  * the list assumes an entry is deleted, not
1841                                  * reordered.
1842                                  */
1843                                 if (get_pageblock_skip(freepage))
1844                                         continue;
1845
1846                                 /* Reorder to so a future search skips recent pages */
1847                                 move_freelist_tail(freelist, freepage);
1848
1849                                 update_fast_start_pfn(cc, free_pfn);
1850                                 pfn = pageblock_start_pfn(free_pfn);
1851                                 if (pfn < cc->zone->zone_start_pfn)
1852                                         pfn = cc->zone->zone_start_pfn;
1853                                 cc->fast_search_fail = 0;
1854                                 found_block = true;
1855                                 set_pageblock_skip(freepage);
1856                                 break;
1857                         }
1858                 }
1859                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1860         }
1861
1862         cc->total_migrate_scanned += nr_scanned;
1863
1864         /*
1865          * If fast scanning failed then use a cached entry for a page block
1866          * that had free pages as the basis for starting a linear scan.
1867          */
1868         if (!found_block) {
1869                 cc->fast_search_fail++;
1870                 pfn = reinit_migrate_pfn(cc);
1871         }
1872         return pfn;
1873 }
1874
1875 /*
1876  * Isolate all pages that can be migrated from the first suitable block,
1877  * starting at the block pointed to by the migrate scanner pfn within
1878  * compact_control.
1879  */
1880 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1881 {
1882         unsigned long block_start_pfn;
1883         unsigned long block_end_pfn;
1884         unsigned long low_pfn;
1885         struct page *page;
1886         const isolate_mode_t isolate_mode =
1887                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1888                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1889         bool fast_find_block;
1890
1891         /*
1892          * Start at where we last stopped, or beginning of the zone as
1893          * initialized by compact_zone(). The first failure will use
1894          * the lowest PFN as the starting point for linear scanning.
1895          */
1896         low_pfn = fast_find_migrateblock(cc);
1897         block_start_pfn = pageblock_start_pfn(low_pfn);
1898         if (block_start_pfn < cc->zone->zone_start_pfn)
1899                 block_start_pfn = cc->zone->zone_start_pfn;
1900
1901         /*
1902          * fast_find_migrateblock marks a pageblock skipped so to avoid
1903          * the isolation_suitable check below, check whether the fast
1904          * search was successful.
1905          */
1906         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1907
1908         /* Only scan within a pageblock boundary */
1909         block_end_pfn = pageblock_end_pfn(low_pfn);
1910
1911         /*
1912          * Iterate over whole pageblocks until we find the first suitable.
1913          * Do not cross the free scanner.
1914          */
1915         for (; block_end_pfn <= cc->free_pfn;
1916                         fast_find_block = false,
1917                         cc->migrate_pfn = low_pfn = block_end_pfn,
1918                         block_start_pfn = block_end_pfn,
1919                         block_end_pfn += pageblock_nr_pages) {
1920
1921                 /*
1922                  * This can potentially iterate a massively long zone with
1923                  * many pageblocks unsuitable, so periodically check if we
1924                  * need to schedule.
1925                  */
1926                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1927                         cond_resched();
1928
1929                 page = pageblock_pfn_to_page(block_start_pfn,
1930                                                 block_end_pfn, cc->zone);
1931                 if (!page)
1932                         continue;
1933
1934                 /*
1935                  * If isolation recently failed, do not retry. Only check the
1936                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1937                  * to be visited multiple times. Assume skip was checked
1938                  * before making it "skip" so other compaction instances do
1939                  * not scan the same block.
1940                  */
1941                 if (pageblock_aligned(low_pfn) &&
1942                     !fast_find_block && !isolation_suitable(cc, page))
1943                         continue;
1944
1945                 /*
1946                  * For async direct compaction, only scan the pageblocks of the
1947                  * same migratetype without huge pages. Async direct compaction
1948                  * is optimistic to see if the minimum amount of work satisfies
1949                  * the allocation. The cached PFN is updated as it's possible
1950                  * that all remaining blocks between source and target are
1951                  * unsuitable and the compaction scanners fail to meet.
1952                  */
1953                 if (!suitable_migration_source(cc, page)) {
1954                         update_cached_migrate(cc, block_end_pfn);
1955                         continue;
1956                 }
1957
1958                 /* Perform the isolation */
1959                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
1960                                                 isolate_mode))
1961                         return ISOLATE_ABORT;
1962
1963                 /*
1964                  * Either we isolated something and proceed with migration. Or
1965                  * we failed and compact_zone should decide if we should
1966                  * continue or not.
1967                  */
1968                 break;
1969         }
1970
1971         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1972 }
1973
1974 /*
1975  * order == -1 is expected when compacting via
1976  * /proc/sys/vm/compact_memory
1977  */
1978 static inline bool is_via_compact_memory(int order)
1979 {
1980         return order == -1;
1981 }
1982
1983 /*
1984  * Determine whether kswapd is (or recently was!) running on this node.
1985  *
1986  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
1987  * zero it.
1988  */
1989 static bool kswapd_is_running(pg_data_t *pgdat)
1990 {
1991         bool running;
1992
1993         pgdat_kswapd_lock(pgdat);
1994         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
1995         pgdat_kswapd_unlock(pgdat);
1996
1997         return running;
1998 }
1999
2000 /*
2001  * A zone's fragmentation score is the external fragmentation wrt to the
2002  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2003  */
2004 static unsigned int fragmentation_score_zone(struct zone *zone)
2005 {
2006         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2007 }
2008
2009 /*
2010  * A weighted zone's fragmentation score is the external fragmentation
2011  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2012  * returns a value in the range [0, 100].
2013  *
2014  * The scaling factor ensures that proactive compaction focuses on larger
2015  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2016  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2017  * and thus never exceeds the high threshold for proactive compaction.
2018  */
2019 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2020 {
2021         unsigned long score;
2022
2023         score = zone->present_pages * fragmentation_score_zone(zone);
2024         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2025 }
2026
2027 /*
2028  * The per-node proactive (background) compaction process is started by its
2029  * corresponding kcompactd thread when the node's fragmentation score
2030  * exceeds the high threshold. The compaction process remains active till
2031  * the node's score falls below the low threshold, or one of the back-off
2032  * conditions is met.
2033  */
2034 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2035 {
2036         unsigned int score = 0;
2037         int zoneid;
2038
2039         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2040                 struct zone *zone;
2041
2042                 zone = &pgdat->node_zones[zoneid];
2043                 if (!populated_zone(zone))
2044                         continue;
2045                 score += fragmentation_score_zone_weighted(zone);
2046         }
2047
2048         return score;
2049 }
2050
2051 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2052 {
2053         unsigned int wmark_low;
2054
2055         /*
2056          * Cap the low watermark to avoid excessive compaction
2057          * activity in case a user sets the proactiveness tunable
2058          * close to 100 (maximum).
2059          */
2060         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2061         return low ? wmark_low : min(wmark_low + 10, 100U);
2062 }
2063
2064 static bool should_proactive_compact_node(pg_data_t *pgdat)
2065 {
2066         int wmark_high;
2067
2068         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2069                 return false;
2070
2071         wmark_high = fragmentation_score_wmark(pgdat, false);
2072         return fragmentation_score_node(pgdat) > wmark_high;
2073 }
2074
2075 static enum compact_result __compact_finished(struct compact_control *cc)
2076 {
2077         unsigned int order;
2078         const int migratetype = cc->migratetype;
2079         int ret;
2080
2081         /* Compaction run completes if the migrate and free scanner meet */
2082         if (compact_scanners_met(cc)) {
2083                 /* Let the next compaction start anew. */
2084                 reset_cached_positions(cc->zone);
2085
2086                 /*
2087                  * Mark that the PG_migrate_skip information should be cleared
2088                  * by kswapd when it goes to sleep. kcompactd does not set the
2089                  * flag itself as the decision to be clear should be directly
2090                  * based on an allocation request.
2091                  */
2092                 if (cc->direct_compaction)
2093                         cc->zone->compact_blockskip_flush = true;
2094
2095                 if (cc->whole_zone)
2096                         return COMPACT_COMPLETE;
2097                 else
2098                         return COMPACT_PARTIAL_SKIPPED;
2099         }
2100
2101         if (cc->proactive_compaction) {
2102                 int score, wmark_low;
2103                 pg_data_t *pgdat;
2104
2105                 pgdat = cc->zone->zone_pgdat;
2106                 if (kswapd_is_running(pgdat))
2107                         return COMPACT_PARTIAL_SKIPPED;
2108
2109                 score = fragmentation_score_zone(cc->zone);
2110                 wmark_low = fragmentation_score_wmark(pgdat, true);
2111
2112                 if (score > wmark_low)
2113                         ret = COMPACT_CONTINUE;
2114                 else
2115                         ret = COMPACT_SUCCESS;
2116
2117                 goto out;
2118         }
2119
2120         if (is_via_compact_memory(cc->order))
2121                 return COMPACT_CONTINUE;
2122
2123         /*
2124          * Always finish scanning a pageblock to reduce the possibility of
2125          * fallbacks in the future. This is particularly important when
2126          * migration source is unmovable/reclaimable but it's not worth
2127          * special casing.
2128          */
2129         if (!pageblock_aligned(cc->migrate_pfn))
2130                 return COMPACT_CONTINUE;
2131
2132         /* Direct compactor: Is a suitable page free? */
2133         ret = COMPACT_NO_SUITABLE_PAGE;
2134         for (order = cc->order; order < MAX_ORDER; order++) {
2135                 struct free_area *area = &cc->zone->free_area[order];
2136                 bool can_steal;
2137
2138                 /* Job done if page is free of the right migratetype */
2139                 if (!free_area_empty(area, migratetype))
2140                         return COMPACT_SUCCESS;
2141
2142 #ifdef CONFIG_CMA
2143                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2144                 if (migratetype == MIGRATE_MOVABLE &&
2145                         !free_area_empty(area, MIGRATE_CMA))
2146                         return COMPACT_SUCCESS;
2147 #endif
2148                 /*
2149                  * Job done if allocation would steal freepages from
2150                  * other migratetype buddy lists.
2151                  */
2152                 if (find_suitable_fallback(area, order, migratetype,
2153                                                 true, &can_steal) != -1)
2154                         /*
2155                          * Movable pages are OK in any pageblock. If we are
2156                          * stealing for a non-movable allocation, make sure
2157                          * we finish compacting the current pageblock first
2158                          * (which is assured by the above migrate_pfn align
2159                          * check) so it is as free as possible and we won't
2160                          * have to steal another one soon.
2161                          */
2162                         return COMPACT_SUCCESS;
2163         }
2164
2165 out:
2166         if (cc->contended || fatal_signal_pending(current))
2167                 ret = COMPACT_CONTENDED;
2168
2169         return ret;
2170 }
2171
2172 static enum compact_result compact_finished(struct compact_control *cc)
2173 {
2174         int ret;
2175
2176         ret = __compact_finished(cc);
2177         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2178         if (ret == COMPACT_NO_SUITABLE_PAGE)
2179                 ret = COMPACT_CONTINUE;
2180
2181         return ret;
2182 }
2183
2184 static enum compact_result __compaction_suitable(struct zone *zone, int order,
2185                                         unsigned int alloc_flags,
2186                                         int highest_zoneidx,
2187                                         unsigned long wmark_target)
2188 {
2189         unsigned long watermark;
2190
2191         if (is_via_compact_memory(order))
2192                 return COMPACT_CONTINUE;
2193
2194         watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2195         /*
2196          * If watermarks for high-order allocation are already met, there
2197          * should be no need for compaction at all.
2198          */
2199         if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2200                                                                 alloc_flags))
2201                 return COMPACT_SUCCESS;
2202
2203         /*
2204          * Watermarks for order-0 must be met for compaction to be able to
2205          * isolate free pages for migration targets. This means that the
2206          * watermark and alloc_flags have to match, or be more pessimistic than
2207          * the check in __isolate_free_page(). We don't use the direct
2208          * compactor's alloc_flags, as they are not relevant for freepage
2209          * isolation. We however do use the direct compactor's highest_zoneidx
2210          * to skip over zones where lowmem reserves would prevent allocation
2211          * even if compaction succeeds.
2212          * For costly orders, we require low watermark instead of min for
2213          * compaction to proceed to increase its chances.
2214          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2215          * suitable migration targets
2216          */
2217         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2218                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2219         watermark += compact_gap(order);
2220         if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2221                                                 ALLOC_CMA, wmark_target))
2222                 return COMPACT_SKIPPED;
2223
2224         return COMPACT_CONTINUE;
2225 }
2226
2227 /*
2228  * compaction_suitable: Is this suitable to run compaction on this zone now?
2229  * Returns
2230  *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2231  *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2232  *   COMPACT_CONTINUE - If compaction should run now
2233  */
2234 enum compact_result compaction_suitable(struct zone *zone, int order,
2235                                         unsigned int alloc_flags,
2236                                         int highest_zoneidx)
2237 {
2238         enum compact_result ret;
2239         int fragindex;
2240
2241         ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2242                                     zone_page_state(zone, NR_FREE_PAGES));
2243         /*
2244          * fragmentation index determines if allocation failures are due to
2245          * low memory or external fragmentation
2246          *
2247          * index of -1000 would imply allocations might succeed depending on
2248          * watermarks, but we already failed the high-order watermark check
2249          * index towards 0 implies failure is due to lack of memory
2250          * index towards 1000 implies failure is due to fragmentation
2251          *
2252          * Only compact if a failure would be due to fragmentation. Also
2253          * ignore fragindex for non-costly orders where the alternative to
2254          * a successful reclaim/compaction is OOM. Fragindex and the
2255          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2256          * excessive compaction for costly orders, but it should not be at the
2257          * expense of system stability.
2258          */
2259         if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2260                 fragindex = fragmentation_index(zone, order);
2261                 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2262                         ret = COMPACT_NOT_SUITABLE_ZONE;
2263         }
2264
2265         trace_mm_compaction_suitable(zone, order, ret);
2266         if (ret == COMPACT_NOT_SUITABLE_ZONE)
2267                 ret = COMPACT_SKIPPED;
2268
2269         return ret;
2270 }
2271
2272 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2273                 int alloc_flags)
2274 {
2275         struct zone *zone;
2276         struct zoneref *z;
2277
2278         /*
2279          * Make sure at least one zone would pass __compaction_suitable if we continue
2280          * retrying the reclaim.
2281          */
2282         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2283                                 ac->highest_zoneidx, ac->nodemask) {
2284                 unsigned long available;
2285                 enum compact_result compact_result;
2286
2287                 /*
2288                  * Do not consider all the reclaimable memory because we do not
2289                  * want to trash just for a single high order allocation which
2290                  * is even not guaranteed to appear even if __compaction_suitable
2291                  * is happy about the watermark check.
2292                  */
2293                 available = zone_reclaimable_pages(zone) / order;
2294                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2295                 compact_result = __compaction_suitable(zone, order, alloc_flags,
2296                                 ac->highest_zoneidx, available);
2297                 if (compact_result == COMPACT_CONTINUE)
2298                         return true;
2299         }
2300
2301         return false;
2302 }
2303
2304 static enum compact_result
2305 compact_zone(struct compact_control *cc, struct capture_control *capc)
2306 {
2307         enum compact_result ret;
2308         unsigned long start_pfn = cc->zone->zone_start_pfn;
2309         unsigned long end_pfn = zone_end_pfn(cc->zone);
2310         unsigned long last_migrated_pfn;
2311         const bool sync = cc->mode != MIGRATE_ASYNC;
2312         bool update_cached;
2313         unsigned int nr_succeeded = 0;
2314
2315         /*
2316          * These counters track activities during zone compaction.  Initialize
2317          * them before compacting a new zone.
2318          */
2319         cc->total_migrate_scanned = 0;
2320         cc->total_free_scanned = 0;
2321         cc->nr_migratepages = 0;
2322         cc->nr_freepages = 0;
2323         INIT_LIST_HEAD(&cc->freepages);
2324         INIT_LIST_HEAD(&cc->migratepages);
2325
2326         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2327         ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2328                                                         cc->highest_zoneidx);
2329         /* Compaction is likely to fail */
2330         if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2331                 return ret;
2332
2333         /*
2334          * Clear pageblock skip if there were failures recently and compaction
2335          * is about to be retried after being deferred.
2336          */
2337         if (compaction_restarting(cc->zone, cc->order))
2338                 __reset_isolation_suitable(cc->zone);
2339
2340         /*
2341          * Setup to move all movable pages to the end of the zone. Used cached
2342          * information on where the scanners should start (unless we explicitly
2343          * want to compact the whole zone), but check that it is initialised
2344          * by ensuring the values are within zone boundaries.
2345          */
2346         cc->fast_start_pfn = 0;
2347         if (cc->whole_zone) {
2348                 cc->migrate_pfn = start_pfn;
2349                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2350         } else {
2351                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2352                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2353                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2354                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2355                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2356                 }
2357                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2358                         cc->migrate_pfn = start_pfn;
2359                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2360                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2361                 }
2362
2363                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2364                         cc->whole_zone = true;
2365         }
2366
2367         last_migrated_pfn = 0;
2368
2369         /*
2370          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2371          * the basis that some migrations will fail in ASYNC mode. However,
2372          * if the cached PFNs match and pageblocks are skipped due to having
2373          * no isolation candidates, then the sync state does not matter.
2374          * Until a pageblock with isolation candidates is found, keep the
2375          * cached PFNs in sync to avoid revisiting the same blocks.
2376          */
2377         update_cached = !sync &&
2378                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2379
2380         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2381
2382         /* lru_add_drain_all could be expensive with involving other CPUs */
2383         lru_add_drain();
2384
2385         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2386                 int err;
2387                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2388
2389                 /*
2390                  * Avoid multiple rescans of the same pageblock which can
2391                  * happen if a page cannot be isolated (dirty/writeback in
2392                  * async mode) or if the migrated pages are being allocated
2393                  * before the pageblock is cleared.  The first rescan will
2394                  * capture the entire pageblock for migration. If it fails,
2395                  * it'll be marked skip and scanning will proceed as normal.
2396                  */
2397                 cc->finish_pageblock = false;
2398                 if (pageblock_start_pfn(last_migrated_pfn) ==
2399                     pageblock_start_pfn(iteration_start_pfn)) {
2400                         cc->finish_pageblock = true;
2401                 }
2402
2403 rescan:
2404                 switch (isolate_migratepages(cc)) {
2405                 case ISOLATE_ABORT:
2406                         ret = COMPACT_CONTENDED;
2407                         putback_movable_pages(&cc->migratepages);
2408                         cc->nr_migratepages = 0;
2409                         goto out;
2410                 case ISOLATE_NONE:
2411                         if (update_cached) {
2412                                 cc->zone->compact_cached_migrate_pfn[1] =
2413                                         cc->zone->compact_cached_migrate_pfn[0];
2414                         }
2415
2416                         /*
2417                          * We haven't isolated and migrated anything, but
2418                          * there might still be unflushed migrations from
2419                          * previous cc->order aligned block.
2420                          */
2421                         goto check_drain;
2422                 case ISOLATE_SUCCESS:
2423                         update_cached = false;
2424                         last_migrated_pfn = iteration_start_pfn;
2425                 }
2426
2427                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2428                                 compaction_free, (unsigned long)cc, cc->mode,
2429                                 MR_COMPACTION, &nr_succeeded);
2430
2431                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2432
2433                 /* All pages were either migrated or will be released */
2434                 cc->nr_migratepages = 0;
2435                 if (err) {
2436                         putback_movable_pages(&cc->migratepages);
2437                         /*
2438                          * migrate_pages() may return -ENOMEM when scanners meet
2439                          * and we want compact_finished() to detect it
2440                          */
2441                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2442                                 ret = COMPACT_CONTENDED;
2443                                 goto out;
2444                         }
2445                         /*
2446                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2447                          * within the current order-aligned block, scan the
2448                          * remainder of the pageblock. This will mark the
2449                          * pageblock "skip" to avoid rescanning in the near
2450                          * future. This will isolate more pages than necessary
2451                          * for the request but avoid loops due to
2452                          * fast_find_migrateblock revisiting blocks that were
2453                          * recently partially scanned.
2454                          */
2455                         if (cc->direct_compaction && !cc->finish_pageblock &&
2456                                                 (cc->mode < MIGRATE_SYNC)) {
2457                                 cc->finish_pageblock = true;
2458
2459                                 /*
2460                                  * Draining pcplists does not help THP if
2461                                  * any page failed to migrate. Even after
2462                                  * drain, the pageblock will not be free.
2463                                  */
2464                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2465                                         last_migrated_pfn = 0;
2466
2467                                 goto rescan;
2468                         }
2469                 }
2470
2471                 /* Stop if a page has been captured */
2472                 if (capc && capc->page) {
2473                         ret = COMPACT_SUCCESS;
2474                         break;
2475                 }
2476
2477 check_drain:
2478                 /*
2479                  * Has the migration scanner moved away from the previous
2480                  * cc->order aligned block where we migrated from? If yes,
2481                  * flush the pages that were freed, so that they can merge and
2482                  * compact_finished() can detect immediately if allocation
2483                  * would succeed.
2484                  */
2485                 if (cc->order > 0 && last_migrated_pfn) {
2486                         unsigned long current_block_start =
2487                                 block_start_pfn(cc->migrate_pfn, cc->order);
2488
2489                         if (last_migrated_pfn < current_block_start) {
2490                                 lru_add_drain_cpu_zone(cc->zone);
2491                                 /* No more flushing until we migrate again */
2492                                 last_migrated_pfn = 0;
2493                         }
2494                 }
2495         }
2496
2497 out:
2498         /*
2499          * Release free pages and update where the free scanner should restart,
2500          * so we don't leave any returned pages behind in the next attempt.
2501          */
2502         if (cc->nr_freepages > 0) {
2503                 unsigned long free_pfn = release_freepages(&cc->freepages);
2504
2505                 cc->nr_freepages = 0;
2506                 VM_BUG_ON(free_pfn == 0);
2507                 /* The cached pfn is always the first in a pageblock */
2508                 free_pfn = pageblock_start_pfn(free_pfn);
2509                 /*
2510                  * Only go back, not forward. The cached pfn might have been
2511                  * already reset to zone end in compact_finished()
2512                  */
2513                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2514                         cc->zone->compact_cached_free_pfn = free_pfn;
2515         }
2516
2517         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2518         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2519
2520         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2521
2522         VM_BUG_ON(!list_empty(&cc->freepages));
2523         VM_BUG_ON(!list_empty(&cc->migratepages));
2524
2525         return ret;
2526 }
2527
2528 static enum compact_result compact_zone_order(struct zone *zone, int order,
2529                 gfp_t gfp_mask, enum compact_priority prio,
2530                 unsigned int alloc_flags, int highest_zoneidx,
2531                 struct page **capture)
2532 {
2533         enum compact_result ret;
2534         struct compact_control cc = {
2535                 .order = order,
2536                 .search_order = order,
2537                 .gfp_mask = gfp_mask,
2538                 .zone = zone,
2539                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2540                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2541                 .alloc_flags = alloc_flags,
2542                 .highest_zoneidx = highest_zoneidx,
2543                 .direct_compaction = true,
2544                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2545                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2546                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2547         };
2548         struct capture_control capc = {
2549                 .cc = &cc,
2550                 .page = NULL,
2551         };
2552
2553         /*
2554          * Make sure the structs are really initialized before we expose the
2555          * capture control, in case we are interrupted and the interrupt handler
2556          * frees a page.
2557          */
2558         barrier();
2559         WRITE_ONCE(current->capture_control, &capc);
2560
2561         ret = compact_zone(&cc, &capc);
2562
2563         /*
2564          * Make sure we hide capture control first before we read the captured
2565          * page pointer, otherwise an interrupt could free and capture a page
2566          * and we would leak it.
2567          */
2568         WRITE_ONCE(current->capture_control, NULL);
2569         *capture = READ_ONCE(capc.page);
2570         /*
2571          * Technically, it is also possible that compaction is skipped but
2572          * the page is still captured out of luck(IRQ came and freed the page).
2573          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2574          * the COMPACT[STALL|FAIL] when compaction is skipped.
2575          */
2576         if (*capture)
2577                 ret = COMPACT_SUCCESS;
2578
2579         return ret;
2580 }
2581
2582 /**
2583  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2584  * @gfp_mask: The GFP mask of the current allocation
2585  * @order: The order of the current allocation
2586  * @alloc_flags: The allocation flags of the current allocation
2587  * @ac: The context of current allocation
2588  * @prio: Determines how hard direct compaction should try to succeed
2589  * @capture: Pointer to free page created by compaction will be stored here
2590  *
2591  * This is the main entry point for direct page compaction.
2592  */
2593 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2594                 unsigned int alloc_flags, const struct alloc_context *ac,
2595                 enum compact_priority prio, struct page **capture)
2596 {
2597         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2598         struct zoneref *z;
2599         struct zone *zone;
2600         enum compact_result rc = COMPACT_SKIPPED;
2601
2602         /*
2603          * Check if the GFP flags allow compaction - GFP_NOIO is really
2604          * tricky context because the migration might require IO
2605          */
2606         if (!may_perform_io)
2607                 return COMPACT_SKIPPED;
2608
2609         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2610
2611         /* Compact each zone in the list */
2612         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2613                                         ac->highest_zoneidx, ac->nodemask) {
2614                 enum compact_result status;
2615
2616                 if (prio > MIN_COMPACT_PRIORITY
2617                                         && compaction_deferred(zone, order)) {
2618                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2619                         continue;
2620                 }
2621
2622                 status = compact_zone_order(zone, order, gfp_mask, prio,
2623                                 alloc_flags, ac->highest_zoneidx, capture);
2624                 rc = max(status, rc);
2625
2626                 /* The allocation should succeed, stop compacting */
2627                 if (status == COMPACT_SUCCESS) {
2628                         /*
2629                          * We think the allocation will succeed in this zone,
2630                          * but it is not certain, hence the false. The caller
2631                          * will repeat this with true if allocation indeed
2632                          * succeeds in this zone.
2633                          */
2634                         compaction_defer_reset(zone, order, false);
2635
2636                         break;
2637                 }
2638
2639                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2640                                         status == COMPACT_PARTIAL_SKIPPED))
2641                         /*
2642                          * We think that allocation won't succeed in this zone
2643                          * so we defer compaction there. If it ends up
2644                          * succeeding after all, it will be reset.
2645                          */
2646                         defer_compaction(zone, order);
2647
2648                 /*
2649                  * We might have stopped compacting due to need_resched() in
2650                  * async compaction, or due to a fatal signal detected. In that
2651                  * case do not try further zones
2652                  */
2653                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2654                                         || fatal_signal_pending(current))
2655                         break;
2656         }
2657
2658         return rc;
2659 }
2660
2661 /*
2662  * Compact all zones within a node till each zone's fragmentation score
2663  * reaches within proactive compaction thresholds (as determined by the
2664  * proactiveness tunable).
2665  *
2666  * It is possible that the function returns before reaching score targets
2667  * due to various back-off conditions, such as, contention on per-node or
2668  * per-zone locks.
2669  */
2670 static void proactive_compact_node(pg_data_t *pgdat)
2671 {
2672         int zoneid;
2673         struct zone *zone;
2674         struct compact_control cc = {
2675                 .order = -1,
2676                 .mode = MIGRATE_SYNC_LIGHT,
2677                 .ignore_skip_hint = true,
2678                 .whole_zone = true,
2679                 .gfp_mask = GFP_KERNEL,
2680                 .proactive_compaction = true,
2681         };
2682
2683         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2684                 zone = &pgdat->node_zones[zoneid];
2685                 if (!populated_zone(zone))
2686                         continue;
2687
2688                 cc.zone = zone;
2689
2690                 compact_zone(&cc, NULL);
2691
2692                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2693                                      cc.total_migrate_scanned);
2694                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2695                                      cc.total_free_scanned);
2696         }
2697 }
2698
2699 /* Compact all zones within a node */
2700 static void compact_node(int nid)
2701 {
2702         pg_data_t *pgdat = NODE_DATA(nid);
2703         int zoneid;
2704         struct zone *zone;
2705         struct compact_control cc = {
2706                 .order = -1,
2707                 .mode = MIGRATE_SYNC,
2708                 .ignore_skip_hint = true,
2709                 .whole_zone = true,
2710                 .gfp_mask = GFP_KERNEL,
2711         };
2712
2713
2714         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2715
2716                 zone = &pgdat->node_zones[zoneid];
2717                 if (!populated_zone(zone))
2718                         continue;
2719
2720                 cc.zone = zone;
2721
2722                 compact_zone(&cc, NULL);
2723         }
2724 }
2725
2726 /* Compact all nodes in the system */
2727 static void compact_nodes(void)
2728 {
2729         int nid;
2730
2731         /* Flush pending updates to the LRU lists */
2732         lru_add_drain_all();
2733
2734         for_each_online_node(nid)
2735                 compact_node(nid);
2736 }
2737
2738 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2739                 void *buffer, size_t *length, loff_t *ppos)
2740 {
2741         int rc, nid;
2742
2743         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2744         if (rc)
2745                 return rc;
2746
2747         if (write && sysctl_compaction_proactiveness) {
2748                 for_each_online_node(nid) {
2749                         pg_data_t *pgdat = NODE_DATA(nid);
2750
2751                         if (pgdat->proactive_compact_trigger)
2752                                 continue;
2753
2754                         pgdat->proactive_compact_trigger = true;
2755                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2756                                                              pgdat->nr_zones - 1);
2757                         wake_up_interruptible(&pgdat->kcompactd_wait);
2758                 }
2759         }
2760
2761         return 0;
2762 }
2763
2764 /*
2765  * This is the entry point for compacting all nodes via
2766  * /proc/sys/vm/compact_memory
2767  */
2768 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2769                         void *buffer, size_t *length, loff_t *ppos)
2770 {
2771         if (write)
2772                 compact_nodes();
2773
2774         return 0;
2775 }
2776
2777 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2778 static ssize_t compact_store(struct device *dev,
2779                              struct device_attribute *attr,
2780                              const char *buf, size_t count)
2781 {
2782         int nid = dev->id;
2783
2784         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2785                 /* Flush pending updates to the LRU lists */
2786                 lru_add_drain_all();
2787
2788                 compact_node(nid);
2789         }
2790
2791         return count;
2792 }
2793 static DEVICE_ATTR_WO(compact);
2794
2795 int compaction_register_node(struct node *node)
2796 {
2797         return device_create_file(&node->dev, &dev_attr_compact);
2798 }
2799
2800 void compaction_unregister_node(struct node *node)
2801 {
2802         return device_remove_file(&node->dev, &dev_attr_compact);
2803 }
2804 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2805
2806 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2807 {
2808         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2809                 pgdat->proactive_compact_trigger;
2810 }
2811
2812 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2813 {
2814         int zoneid;
2815         struct zone *zone;
2816         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2817
2818         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2819                 zone = &pgdat->node_zones[zoneid];
2820
2821                 if (!populated_zone(zone))
2822                         continue;
2823
2824                 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2825                                         highest_zoneidx) == COMPACT_CONTINUE)
2826                         return true;
2827         }
2828
2829         return false;
2830 }
2831
2832 static void kcompactd_do_work(pg_data_t *pgdat)
2833 {
2834         /*
2835          * With no special task, compact all zones so that a page of requested
2836          * order is allocatable.
2837          */
2838         int zoneid;
2839         struct zone *zone;
2840         struct compact_control cc = {
2841                 .order = pgdat->kcompactd_max_order,
2842                 .search_order = pgdat->kcompactd_max_order,
2843                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2844                 .mode = MIGRATE_SYNC_LIGHT,
2845                 .ignore_skip_hint = false,
2846                 .gfp_mask = GFP_KERNEL,
2847         };
2848         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2849                                                         cc.highest_zoneidx);
2850         count_compact_event(KCOMPACTD_WAKE);
2851
2852         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2853                 int status;
2854
2855                 zone = &pgdat->node_zones[zoneid];
2856                 if (!populated_zone(zone))
2857                         continue;
2858
2859                 if (compaction_deferred(zone, cc.order))
2860                         continue;
2861
2862                 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2863                                                         COMPACT_CONTINUE)
2864                         continue;
2865
2866                 if (kthread_should_stop())
2867                         return;
2868
2869                 cc.zone = zone;
2870                 status = compact_zone(&cc, NULL);
2871
2872                 if (status == COMPACT_SUCCESS) {
2873                         compaction_defer_reset(zone, cc.order, false);
2874                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2875                         /*
2876                          * Buddy pages may become stranded on pcps that could
2877                          * otherwise coalesce on the zone's free area for
2878                          * order >= cc.order.  This is ratelimited by the
2879                          * upcoming deferral.
2880                          */
2881                         drain_all_pages(zone);
2882
2883                         /*
2884                          * We use sync migration mode here, so we defer like
2885                          * sync direct compaction does.
2886                          */
2887                         defer_compaction(zone, cc.order);
2888                 }
2889
2890                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2891                                      cc.total_migrate_scanned);
2892                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2893                                      cc.total_free_scanned);
2894         }
2895
2896         /*
2897          * Regardless of success, we are done until woken up next. But remember
2898          * the requested order/highest_zoneidx in case it was higher/tighter
2899          * than our current ones
2900          */
2901         if (pgdat->kcompactd_max_order <= cc.order)
2902                 pgdat->kcompactd_max_order = 0;
2903         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2904                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2905 }
2906
2907 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2908 {
2909         if (!order)
2910                 return;
2911
2912         if (pgdat->kcompactd_max_order < order)
2913                 pgdat->kcompactd_max_order = order;
2914
2915         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2916                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2917
2918         /*
2919          * Pairs with implicit barrier in wait_event_freezable()
2920          * such that wakeups are not missed.
2921          */
2922         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2923                 return;
2924
2925         if (!kcompactd_node_suitable(pgdat))
2926                 return;
2927
2928         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2929                                                         highest_zoneidx);
2930         wake_up_interruptible(&pgdat->kcompactd_wait);
2931 }
2932
2933 /*
2934  * The background compaction daemon, started as a kernel thread
2935  * from the init process.
2936  */
2937 static int kcompactd(void *p)
2938 {
2939         pg_data_t *pgdat = (pg_data_t *)p;
2940         struct task_struct *tsk = current;
2941         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
2942         long timeout = default_timeout;
2943
2944         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2945
2946         if (!cpumask_empty(cpumask))
2947                 set_cpus_allowed_ptr(tsk, cpumask);
2948
2949         set_freezable();
2950
2951         pgdat->kcompactd_max_order = 0;
2952         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2953
2954         while (!kthread_should_stop()) {
2955                 unsigned long pflags;
2956
2957                 /*
2958                  * Avoid the unnecessary wakeup for proactive compaction
2959                  * when it is disabled.
2960                  */
2961                 if (!sysctl_compaction_proactiveness)
2962                         timeout = MAX_SCHEDULE_TIMEOUT;
2963                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2964                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2965                         kcompactd_work_requested(pgdat), timeout) &&
2966                         !pgdat->proactive_compact_trigger) {
2967
2968                         psi_memstall_enter(&pflags);
2969                         kcompactd_do_work(pgdat);
2970                         psi_memstall_leave(&pflags);
2971                         /*
2972                          * Reset the timeout value. The defer timeout from
2973                          * proactive compaction is lost here but that is fine
2974                          * as the condition of the zone changing substantionally
2975                          * then carrying on with the previous defer interval is
2976                          * not useful.
2977                          */
2978                         timeout = default_timeout;
2979                         continue;
2980                 }
2981
2982                 /*
2983                  * Start the proactive work with default timeout. Based
2984                  * on the fragmentation score, this timeout is updated.
2985                  */
2986                 timeout = default_timeout;
2987                 if (should_proactive_compact_node(pgdat)) {
2988                         unsigned int prev_score, score;
2989
2990                         prev_score = fragmentation_score_node(pgdat);
2991                         proactive_compact_node(pgdat);
2992                         score = fragmentation_score_node(pgdat);
2993                         /*
2994                          * Defer proactive compaction if the fragmentation
2995                          * score did not go down i.e. no progress made.
2996                          */
2997                         if (unlikely(score >= prev_score))
2998                                 timeout =
2999                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3000                 }
3001                 if (unlikely(pgdat->proactive_compact_trigger))
3002                         pgdat->proactive_compact_trigger = false;
3003         }
3004
3005         return 0;
3006 }
3007
3008 /*
3009  * This kcompactd start function will be called by init and node-hot-add.
3010  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3011  */
3012 void kcompactd_run(int nid)
3013 {
3014         pg_data_t *pgdat = NODE_DATA(nid);
3015
3016         if (pgdat->kcompactd)
3017                 return;
3018
3019         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3020         if (IS_ERR(pgdat->kcompactd)) {
3021                 pr_err("Failed to start kcompactd on node %d\n", nid);
3022                 pgdat->kcompactd = NULL;
3023         }
3024 }
3025
3026 /*
3027  * Called by memory hotplug when all memory in a node is offlined. Caller must
3028  * be holding mem_hotplug_begin/done().
3029  */
3030 void kcompactd_stop(int nid)
3031 {
3032         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3033
3034         if (kcompactd) {
3035                 kthread_stop(kcompactd);
3036                 NODE_DATA(nid)->kcompactd = NULL;
3037         }
3038 }
3039
3040 /*
3041  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3042  * not required for correctness. So if the last cpu in a node goes
3043  * away, we get changed to run anywhere: as the first one comes back,
3044  * restore their cpu bindings.
3045  */
3046 static int kcompactd_cpu_online(unsigned int cpu)
3047 {
3048         int nid;
3049
3050         for_each_node_state(nid, N_MEMORY) {
3051                 pg_data_t *pgdat = NODE_DATA(nid);
3052                 const struct cpumask *mask;
3053
3054                 mask = cpumask_of_node(pgdat->node_id);
3055
3056                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3057                         /* One of our CPUs online: restore mask */
3058                         if (pgdat->kcompactd)
3059                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3060         }
3061         return 0;
3062 }
3063
3064 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3065                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3066 {
3067         int ret, old;
3068
3069         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3070                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3071
3072         old = *(int *)table->data;
3073         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3074         if (ret)
3075                 return ret;
3076         if (old != *(int *)table->data)
3077                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3078                              table->procname, current->comm,
3079                              task_pid_nr(current));
3080         return ret;
3081 }
3082
3083 static struct ctl_table vm_compaction[] = {
3084         {
3085                 .procname       = "compact_memory",
3086                 .data           = NULL,
3087                 .maxlen         = sizeof(int),
3088                 .mode           = 0200,
3089                 .proc_handler   = sysctl_compaction_handler,
3090         },
3091         {
3092                 .procname       = "compaction_proactiveness",
3093                 .data           = &sysctl_compaction_proactiveness,
3094                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3095                 .mode           = 0644,
3096                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3097                 .extra1         = SYSCTL_ZERO,
3098                 .extra2         = SYSCTL_ONE_HUNDRED,
3099         },
3100         {
3101                 .procname       = "extfrag_threshold",
3102                 .data           = &sysctl_extfrag_threshold,
3103                 .maxlen         = sizeof(int),
3104                 .mode           = 0644,
3105                 .proc_handler   = proc_dointvec_minmax,
3106                 .extra1         = SYSCTL_ZERO,
3107                 .extra2         = SYSCTL_ONE_THOUSAND,
3108         },
3109         {
3110                 .procname       = "compact_unevictable_allowed",
3111                 .data           = &sysctl_compact_unevictable_allowed,
3112                 .maxlen         = sizeof(int),
3113                 .mode           = 0644,
3114                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3115                 .extra1         = SYSCTL_ZERO,
3116                 .extra2         = SYSCTL_ONE,
3117         },
3118         { }
3119 };
3120
3121 static int __init kcompactd_init(void)
3122 {
3123         int nid;
3124         int ret;
3125
3126         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3127                                         "mm/compaction:online",
3128                                         kcompactd_cpu_online, NULL);
3129         if (ret < 0) {
3130                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3131                 return ret;
3132         }
3133
3134         for_each_node_state(nid, N_MEMORY)
3135                 kcompactd_run(nid);
3136         register_sysctl_init("vm", vm_compaction);
3137         return 0;
3138 }
3139 subsys_initcall(kcompactd_init)
3140
3141 #endif /* CONFIG_COMPACTION */