media: i2c: ds90ub953: Handle V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK
[linux-2.6-microblaze.git] / mm / compaction.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * linux/mm/compaction.c
4  *
5  * Memory compaction for the reduction of external fragmentation. Note that
6  * this heavily depends upon page migration to do all the real heavy
7  * lifting
8  *
9  * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10  */
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
26 #include "internal.h"
27
28 #ifdef CONFIG_COMPACTION
29 /*
30  * Fragmentation score check interval for proactive compaction purposes.
31  */
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC  (500)
33
34 static inline void count_compact_event(enum vm_event_item item)
35 {
36         count_vm_event(item);
37 }
38
39 static inline void count_compact_events(enum vm_event_item item, long delta)
40 {
41         count_vm_events(item, delta);
42 }
43 #else
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
46 #endif
47
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 #define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
55
56 /*
57  * Page order with-respect-to which proactive compaction
58  * calculates external fragmentation, which is used as
59  * the "fragmentation score" of a node/zone.
60  */
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER  HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER  HUGETLB_PAGE_ORDER
65 #else
66 #define COMPACTION_HPAGE_ORDER  (PMD_SHIFT - PAGE_SHIFT)
67 #endif
68
69 static unsigned long release_freepages(struct list_head *freelist)
70 {
71         struct page *page, *next;
72         unsigned long high_pfn = 0;
73
74         list_for_each_entry_safe(page, next, freelist, lru) {
75                 unsigned long pfn = page_to_pfn(page);
76                 list_del(&page->lru);
77                 __free_page(page);
78                 if (pfn > high_pfn)
79                         high_pfn = pfn;
80         }
81
82         return high_pfn;
83 }
84
85 static void split_map_pages(struct list_head *list)
86 {
87         unsigned int i, order, nr_pages;
88         struct page *page, *next;
89         LIST_HEAD(tmp_list);
90
91         list_for_each_entry_safe(page, next, list, lru) {
92                 list_del(&page->lru);
93
94                 order = page_private(page);
95                 nr_pages = 1 << order;
96
97                 post_alloc_hook(page, order, __GFP_MOVABLE);
98                 if (order)
99                         split_page(page, order);
100
101                 for (i = 0; i < nr_pages; i++) {
102                         list_add(&page->lru, &tmp_list);
103                         page++;
104                 }
105         }
106
107         list_splice(&tmp_list, list);
108 }
109
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
112 {
113         const struct movable_operations *mops;
114
115         VM_BUG_ON_PAGE(!PageLocked(page), page);
116         if (!__PageMovable(page))
117                 return false;
118
119         mops = page_movable_ops(page);
120         if (mops)
121                 return true;
122
123         return false;
124 }
125
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
127 {
128         VM_BUG_ON_PAGE(!PageLocked(page), page);
129         VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130         page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
131 }
132 EXPORT_SYMBOL(__SetPageMovable);
133
134 void __ClearPageMovable(struct page *page)
135 {
136         VM_BUG_ON_PAGE(!PageMovable(page), page);
137         /*
138          * This page still has the type of a movable page, but it's
139          * actually not movable any more.
140          */
141         page->mapping = (void *)PAGE_MAPPING_MOVABLE;
142 }
143 EXPORT_SYMBOL(__ClearPageMovable);
144
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
147
148 /*
149  * Compaction is deferred when compaction fails to result in a page
150  * allocation success. 1 << compact_defer_shift, compactions are skipped up
151  * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
152  */
153 static void defer_compaction(struct zone *zone, int order)
154 {
155         zone->compact_considered = 0;
156         zone->compact_defer_shift++;
157
158         if (order < zone->compact_order_failed)
159                 zone->compact_order_failed = order;
160
161         if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162                 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
163
164         trace_mm_compaction_defer_compaction(zone, order);
165 }
166
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
169 {
170         unsigned long defer_limit = 1UL << zone->compact_defer_shift;
171
172         if (order < zone->compact_order_failed)
173                 return false;
174
175         /* Avoid possible overflow */
176         if (++zone->compact_considered >= defer_limit) {
177                 zone->compact_considered = defer_limit;
178                 return false;
179         }
180
181         trace_mm_compaction_deferred(zone, order);
182
183         return true;
184 }
185
186 /*
187  * Update defer tracking counters after successful compaction of given order,
188  * which means an allocation either succeeded (alloc_success == true) or is
189  * expected to succeed.
190  */
191 void compaction_defer_reset(struct zone *zone, int order,
192                 bool alloc_success)
193 {
194         if (alloc_success) {
195                 zone->compact_considered = 0;
196                 zone->compact_defer_shift = 0;
197         }
198         if (order >= zone->compact_order_failed)
199                 zone->compact_order_failed = order + 1;
200
201         trace_mm_compaction_defer_reset(zone, order);
202 }
203
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
206 {
207         if (order < zone->compact_order_failed)
208                 return false;
209
210         return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211                 zone->compact_considered >= 1UL << zone->compact_defer_shift;
212 }
213
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
216                                         struct page *page)
217 {
218         if (cc->ignore_skip_hint)
219                 return true;
220
221         return !get_pageblock_skip(page);
222 }
223
224 static void reset_cached_positions(struct zone *zone)
225 {
226         zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227         zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228         zone->compact_cached_free_pfn =
229                                 pageblock_start_pfn(zone_end_pfn(zone) - 1);
230 }
231
232 #ifdef CONFIG_SPARSEMEM
233 /*
234  * If the PFN falls into an offline section, return the start PFN of the
235  * next online section. If the PFN falls into an online section or if
236  * there is no next online section, return 0.
237  */
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
239 {
240         unsigned long start_nr = pfn_to_section_nr(start_pfn);
241
242         if (online_section_nr(start_nr))
243                 return 0;
244
245         while (++start_nr <= __highest_present_section_nr) {
246                 if (online_section_nr(start_nr))
247                         return section_nr_to_pfn(start_nr);
248         }
249
250         return 0;
251 }
252 #else
253 static unsigned long skip_offline_sections(unsigned long start_pfn)
254 {
255         return 0;
256 }
257 #endif
258
259 /*
260  * Compound pages of >= pageblock_order should consistently be skipped until
261  * released. It is always pointless to compact pages of such order (if they are
262  * migratable), and the pageblocks they occupy cannot contain any free pages.
263  */
264 static bool pageblock_skip_persistent(struct page *page)
265 {
266         if (!PageCompound(page))
267                 return false;
268
269         page = compound_head(page);
270
271         if (compound_order(page) >= pageblock_order)
272                 return true;
273
274         return false;
275 }
276
277 static bool
278 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
279                                                         bool check_target)
280 {
281         struct page *page = pfn_to_online_page(pfn);
282         struct page *block_page;
283         struct page *end_page;
284         unsigned long block_pfn;
285
286         if (!page)
287                 return false;
288         if (zone != page_zone(page))
289                 return false;
290         if (pageblock_skip_persistent(page))
291                 return false;
292
293         /*
294          * If skip is already cleared do no further checking once the
295          * restart points have been set.
296          */
297         if (check_source && check_target && !get_pageblock_skip(page))
298                 return true;
299
300         /*
301          * If clearing skip for the target scanner, do not select a
302          * non-movable pageblock as the starting point.
303          */
304         if (!check_source && check_target &&
305             get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
306                 return false;
307
308         /* Ensure the start of the pageblock or zone is online and valid */
309         block_pfn = pageblock_start_pfn(pfn);
310         block_pfn = max(block_pfn, zone->zone_start_pfn);
311         block_page = pfn_to_online_page(block_pfn);
312         if (block_page) {
313                 page = block_page;
314                 pfn = block_pfn;
315         }
316
317         /* Ensure the end of the pageblock or zone is online and valid */
318         block_pfn = pageblock_end_pfn(pfn) - 1;
319         block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
320         end_page = pfn_to_online_page(block_pfn);
321         if (!end_page)
322                 return false;
323
324         /*
325          * Only clear the hint if a sample indicates there is either a
326          * free page or an LRU page in the block. One or other condition
327          * is necessary for the block to be a migration source/target.
328          */
329         do {
330                 if (check_source && PageLRU(page)) {
331                         clear_pageblock_skip(page);
332                         return true;
333                 }
334
335                 if (check_target && PageBuddy(page)) {
336                         clear_pageblock_skip(page);
337                         return true;
338                 }
339
340                 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
341         } while (page <= end_page);
342
343         return false;
344 }
345
346 /*
347  * This function is called to clear all cached information on pageblocks that
348  * should be skipped for page isolation when the migrate and free page scanner
349  * meet.
350  */
351 static void __reset_isolation_suitable(struct zone *zone)
352 {
353         unsigned long migrate_pfn = zone->zone_start_pfn;
354         unsigned long free_pfn = zone_end_pfn(zone) - 1;
355         unsigned long reset_migrate = free_pfn;
356         unsigned long reset_free = migrate_pfn;
357         bool source_set = false;
358         bool free_set = false;
359
360         if (!zone->compact_blockskip_flush)
361                 return;
362
363         zone->compact_blockskip_flush = false;
364
365         /*
366          * Walk the zone and update pageblock skip information. Source looks
367          * for PageLRU while target looks for PageBuddy. When the scanner
368          * is found, both PageBuddy and PageLRU are checked as the pageblock
369          * is suitable as both source and target.
370          */
371         for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
372                                         free_pfn -= pageblock_nr_pages) {
373                 cond_resched();
374
375                 /* Update the migrate PFN */
376                 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
377                     migrate_pfn < reset_migrate) {
378                         source_set = true;
379                         reset_migrate = migrate_pfn;
380                         zone->compact_init_migrate_pfn = reset_migrate;
381                         zone->compact_cached_migrate_pfn[0] = reset_migrate;
382                         zone->compact_cached_migrate_pfn[1] = reset_migrate;
383                 }
384
385                 /* Update the free PFN */
386                 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
387                     free_pfn > reset_free) {
388                         free_set = true;
389                         reset_free = free_pfn;
390                         zone->compact_init_free_pfn = reset_free;
391                         zone->compact_cached_free_pfn = reset_free;
392                 }
393         }
394
395         /* Leave no distance if no suitable block was reset */
396         if (reset_migrate >= reset_free) {
397                 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
398                 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
399                 zone->compact_cached_free_pfn = free_pfn;
400         }
401 }
402
403 void reset_isolation_suitable(pg_data_t *pgdat)
404 {
405         int zoneid;
406
407         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
408                 struct zone *zone = &pgdat->node_zones[zoneid];
409                 if (!populated_zone(zone))
410                         continue;
411
412                 /* Only flush if a full compaction finished recently */
413                 if (zone->compact_blockskip_flush)
414                         __reset_isolation_suitable(zone);
415         }
416 }
417
418 /*
419  * Sets the pageblock skip bit if it was clear. Note that this is a hint as
420  * locks are not required for read/writers. Returns true if it was already set.
421  */
422 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
423 {
424         bool skip;
425
426         /* Do not update if skip hint is being ignored */
427         if (cc->ignore_skip_hint)
428                 return false;
429
430         skip = get_pageblock_skip(page);
431         if (!skip && !cc->no_set_skip_hint)
432                 set_pageblock_skip(page);
433
434         return skip;
435 }
436
437 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
438 {
439         struct zone *zone = cc->zone;
440
441         pfn = pageblock_end_pfn(pfn);
442
443         /* Set for isolation rather than compaction */
444         if (cc->no_set_skip_hint)
445                 return;
446
447         if (pfn > zone->compact_cached_migrate_pfn[0])
448                 zone->compact_cached_migrate_pfn[0] = pfn;
449         if (cc->mode != MIGRATE_ASYNC &&
450             pfn > zone->compact_cached_migrate_pfn[1])
451                 zone->compact_cached_migrate_pfn[1] = pfn;
452 }
453
454 /*
455  * If no pages were isolated then mark this pageblock to be skipped in the
456  * future. The information is later cleared by __reset_isolation_suitable().
457  */
458 static void update_pageblock_skip(struct compact_control *cc,
459                         struct page *page, unsigned long pfn)
460 {
461         struct zone *zone = cc->zone;
462
463         if (cc->no_set_skip_hint)
464                 return;
465
466         set_pageblock_skip(page);
467
468         /* Update where async and sync compaction should restart */
469         if (pfn < zone->compact_cached_free_pfn)
470                 zone->compact_cached_free_pfn = pfn;
471 }
472 #else
473 static inline bool isolation_suitable(struct compact_control *cc,
474                                         struct page *page)
475 {
476         return true;
477 }
478
479 static inline bool pageblock_skip_persistent(struct page *page)
480 {
481         return false;
482 }
483
484 static inline void update_pageblock_skip(struct compact_control *cc,
485                         struct page *page, unsigned long pfn)
486 {
487 }
488
489 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
490 {
491 }
492
493 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
494 {
495         return false;
496 }
497 #endif /* CONFIG_COMPACTION */
498
499 /*
500  * Compaction requires the taking of some coarse locks that are potentially
501  * very heavily contended. For async compaction, trylock and record if the
502  * lock is contended. The lock will still be acquired but compaction will
503  * abort when the current block is finished regardless of success rate.
504  * Sync compaction acquires the lock.
505  *
506  * Always returns true which makes it easier to track lock state in callers.
507  */
508 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
509                                                 struct compact_control *cc)
510         __acquires(lock)
511 {
512         /* Track if the lock is contended in async mode */
513         if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
514                 if (spin_trylock_irqsave(lock, *flags))
515                         return true;
516
517                 cc->contended = true;
518         }
519
520         spin_lock_irqsave(lock, *flags);
521         return true;
522 }
523
524 /*
525  * Compaction requires the taking of some coarse locks that are potentially
526  * very heavily contended. The lock should be periodically unlocked to avoid
527  * having disabled IRQs for a long time, even when there is nobody waiting on
528  * the lock. It might also be that allowing the IRQs will result in
529  * need_resched() becoming true. If scheduling is needed, compaction schedules.
530  * Either compaction type will also abort if a fatal signal is pending.
531  * In either case if the lock was locked, it is dropped and not regained.
532  *
533  * Returns true if compaction should abort due to fatal signal pending.
534  * Returns false when compaction can continue.
535  */
536 static bool compact_unlock_should_abort(spinlock_t *lock,
537                 unsigned long flags, bool *locked, struct compact_control *cc)
538 {
539         if (*locked) {
540                 spin_unlock_irqrestore(lock, flags);
541                 *locked = false;
542         }
543
544         if (fatal_signal_pending(current)) {
545                 cc->contended = true;
546                 return true;
547         }
548
549         cond_resched();
550
551         return false;
552 }
553
554 /*
555  * Isolate free pages onto a private freelist. If @strict is true, will abort
556  * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
557  * (even though it may still end up isolating some pages).
558  */
559 static unsigned long isolate_freepages_block(struct compact_control *cc,
560                                 unsigned long *start_pfn,
561                                 unsigned long end_pfn,
562                                 struct list_head *freelist,
563                                 unsigned int stride,
564                                 bool strict)
565 {
566         int nr_scanned = 0, total_isolated = 0;
567         struct page *cursor;
568         unsigned long flags = 0;
569         bool locked = false;
570         unsigned long blockpfn = *start_pfn;
571         unsigned int order;
572
573         /* Strict mode is for isolation, speed is secondary */
574         if (strict)
575                 stride = 1;
576
577         cursor = pfn_to_page(blockpfn);
578
579         /* Isolate free pages. */
580         for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
581                 int isolated;
582                 struct page *page = cursor;
583
584                 /*
585                  * Periodically drop the lock (if held) regardless of its
586                  * contention, to give chance to IRQs. Abort if fatal signal
587                  * pending.
588                  */
589                 if (!(blockpfn % COMPACT_CLUSTER_MAX)
590                     && compact_unlock_should_abort(&cc->zone->lock, flags,
591                                                                 &locked, cc))
592                         break;
593
594                 nr_scanned++;
595
596                 /*
597                  * For compound pages such as THP and hugetlbfs, we can save
598                  * potentially a lot of iterations if we skip them at once.
599                  * The check is racy, but we can consider only valid values
600                  * and the only danger is skipping too much.
601                  */
602                 if (PageCompound(page)) {
603                         const unsigned int order = compound_order(page);
604
605                         if (likely(order <= MAX_ORDER)) {
606                                 blockpfn += (1UL << order) - 1;
607                                 cursor += (1UL << order) - 1;
608                                 nr_scanned += (1UL << order) - 1;
609                         }
610                         goto isolate_fail;
611                 }
612
613                 if (!PageBuddy(page))
614                         goto isolate_fail;
615
616                 /* If we already hold the lock, we can skip some rechecking. */
617                 if (!locked) {
618                         locked = compact_lock_irqsave(&cc->zone->lock,
619                                                                 &flags, cc);
620
621                         /* Recheck this is a buddy page under lock */
622                         if (!PageBuddy(page))
623                                 goto isolate_fail;
624                 }
625
626                 /* Found a free page, will break it into order-0 pages */
627                 order = buddy_order(page);
628                 isolated = __isolate_free_page(page, order);
629                 if (!isolated)
630                         break;
631                 set_page_private(page, order);
632
633                 nr_scanned += isolated - 1;
634                 total_isolated += isolated;
635                 cc->nr_freepages += isolated;
636                 list_add_tail(&page->lru, freelist);
637
638                 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
639                         blockpfn += isolated;
640                         break;
641                 }
642                 /* Advance to the end of split page */
643                 blockpfn += isolated - 1;
644                 cursor += isolated - 1;
645                 continue;
646
647 isolate_fail:
648                 if (strict)
649                         break;
650                 else
651                         continue;
652
653         }
654
655         if (locked)
656                 spin_unlock_irqrestore(&cc->zone->lock, flags);
657
658         /*
659          * There is a tiny chance that we have read bogus compound_order(),
660          * so be careful to not go outside of the pageblock.
661          */
662         if (unlikely(blockpfn > end_pfn))
663                 blockpfn = end_pfn;
664
665         trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
666                                         nr_scanned, total_isolated);
667
668         /* Record how far we have got within the block */
669         *start_pfn = blockpfn;
670
671         /*
672          * If strict isolation is requested by CMA then check that all the
673          * pages requested were isolated. If there were any failures, 0 is
674          * returned and CMA will fail.
675          */
676         if (strict && blockpfn < end_pfn)
677                 total_isolated = 0;
678
679         cc->total_free_scanned += nr_scanned;
680         if (total_isolated)
681                 count_compact_events(COMPACTISOLATED, total_isolated);
682         return total_isolated;
683 }
684
685 /**
686  * isolate_freepages_range() - isolate free pages.
687  * @cc:        Compaction control structure.
688  * @start_pfn: The first PFN to start isolating.
689  * @end_pfn:   The one-past-last PFN.
690  *
691  * Non-free pages, invalid PFNs, or zone boundaries within the
692  * [start_pfn, end_pfn) range are considered errors, cause function to
693  * undo its actions and return zero.
694  *
695  * Otherwise, function returns one-past-the-last PFN of isolated page
696  * (which may be greater then end_pfn if end fell in a middle of
697  * a free page).
698  */
699 unsigned long
700 isolate_freepages_range(struct compact_control *cc,
701                         unsigned long start_pfn, unsigned long end_pfn)
702 {
703         unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
704         LIST_HEAD(freelist);
705
706         pfn = start_pfn;
707         block_start_pfn = pageblock_start_pfn(pfn);
708         if (block_start_pfn < cc->zone->zone_start_pfn)
709                 block_start_pfn = cc->zone->zone_start_pfn;
710         block_end_pfn = pageblock_end_pfn(pfn);
711
712         for (; pfn < end_pfn; pfn += isolated,
713                                 block_start_pfn = block_end_pfn,
714                                 block_end_pfn += pageblock_nr_pages) {
715                 /* Protect pfn from changing by isolate_freepages_block */
716                 unsigned long isolate_start_pfn = pfn;
717
718                 block_end_pfn = min(block_end_pfn, end_pfn);
719
720                 /*
721                  * pfn could pass the block_end_pfn if isolated freepage
722                  * is more than pageblock order. In this case, we adjust
723                  * scanning range to right one.
724                  */
725                 if (pfn >= block_end_pfn) {
726                         block_start_pfn = pageblock_start_pfn(pfn);
727                         block_end_pfn = pageblock_end_pfn(pfn);
728                         block_end_pfn = min(block_end_pfn, end_pfn);
729                 }
730
731                 if (!pageblock_pfn_to_page(block_start_pfn,
732                                         block_end_pfn, cc->zone))
733                         break;
734
735                 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
736                                         block_end_pfn, &freelist, 0, true);
737
738                 /*
739                  * In strict mode, isolate_freepages_block() returns 0 if
740                  * there are any holes in the block (ie. invalid PFNs or
741                  * non-free pages).
742                  */
743                 if (!isolated)
744                         break;
745
746                 /*
747                  * If we managed to isolate pages, it is always (1 << n) *
748                  * pageblock_nr_pages for some non-negative n.  (Max order
749                  * page may span two pageblocks).
750                  */
751         }
752
753         /* __isolate_free_page() does not map the pages */
754         split_map_pages(&freelist);
755
756         if (pfn < end_pfn) {
757                 /* Loop terminated early, cleanup. */
758                 release_freepages(&freelist);
759                 return 0;
760         }
761
762         /* We don't use freelists for anything. */
763         return pfn;
764 }
765
766 /* Similar to reclaim, but different enough that they don't share logic */
767 static bool too_many_isolated(struct compact_control *cc)
768 {
769         pg_data_t *pgdat = cc->zone->zone_pgdat;
770         bool too_many;
771
772         unsigned long active, inactive, isolated;
773
774         inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
775                         node_page_state(pgdat, NR_INACTIVE_ANON);
776         active = node_page_state(pgdat, NR_ACTIVE_FILE) +
777                         node_page_state(pgdat, NR_ACTIVE_ANON);
778         isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
779                         node_page_state(pgdat, NR_ISOLATED_ANON);
780
781         /*
782          * Allow GFP_NOFS to isolate past the limit set for regular
783          * compaction runs. This prevents an ABBA deadlock when other
784          * compactors have already isolated to the limit, but are
785          * blocked on filesystem locks held by the GFP_NOFS thread.
786          */
787         if (cc->gfp_mask & __GFP_FS) {
788                 inactive >>= 3;
789                 active >>= 3;
790         }
791
792         too_many = isolated > (inactive + active) / 2;
793         if (!too_many)
794                 wake_throttle_isolated(pgdat);
795
796         return too_many;
797 }
798
799 /**
800  * isolate_migratepages_block() - isolate all migrate-able pages within
801  *                                a single pageblock
802  * @cc:         Compaction control structure.
803  * @low_pfn:    The first PFN to isolate
804  * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
805  * @mode:       Isolation mode to be used.
806  *
807  * Isolate all pages that can be migrated from the range specified by
808  * [low_pfn, end_pfn). The range is expected to be within same pageblock.
809  * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
810  * -ENOMEM in case we could not allocate a page, or 0.
811  * cc->migrate_pfn will contain the next pfn to scan.
812  *
813  * The pages are isolated on cc->migratepages list (not required to be empty),
814  * and cc->nr_migratepages is updated accordingly.
815  */
816 static int
817 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
818                         unsigned long end_pfn, isolate_mode_t mode)
819 {
820         pg_data_t *pgdat = cc->zone->zone_pgdat;
821         unsigned long nr_scanned = 0, nr_isolated = 0;
822         struct lruvec *lruvec;
823         unsigned long flags = 0;
824         struct lruvec *locked = NULL;
825         struct folio *folio = NULL;
826         struct page *page = NULL, *valid_page = NULL;
827         struct address_space *mapping;
828         unsigned long start_pfn = low_pfn;
829         bool skip_on_failure = false;
830         unsigned long next_skip_pfn = 0;
831         bool skip_updated = false;
832         int ret = 0;
833
834         cc->migrate_pfn = low_pfn;
835
836         /*
837          * Ensure that there are not too many pages isolated from the LRU
838          * list by either parallel reclaimers or compaction. If there are,
839          * delay for some time until fewer pages are isolated
840          */
841         while (unlikely(too_many_isolated(cc))) {
842                 /* stop isolation if there are still pages not migrated */
843                 if (cc->nr_migratepages)
844                         return -EAGAIN;
845
846                 /* async migration should just abort */
847                 if (cc->mode == MIGRATE_ASYNC)
848                         return -EAGAIN;
849
850                 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
851
852                 if (fatal_signal_pending(current))
853                         return -EINTR;
854         }
855
856         cond_resched();
857
858         if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
859                 skip_on_failure = true;
860                 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
861         }
862
863         /* Time to isolate some pages for migration */
864         for (; low_pfn < end_pfn; low_pfn++) {
865
866                 if (skip_on_failure && low_pfn >= next_skip_pfn) {
867                         /*
868                          * We have isolated all migration candidates in the
869                          * previous order-aligned block, and did not skip it due
870                          * to failure. We should migrate the pages now and
871                          * hopefully succeed compaction.
872                          */
873                         if (nr_isolated)
874                                 break;
875
876                         /*
877                          * We failed to isolate in the previous order-aligned
878                          * block. Set the new boundary to the end of the
879                          * current block. Note we can't simply increase
880                          * next_skip_pfn by 1 << order, as low_pfn might have
881                          * been incremented by a higher number due to skipping
882                          * a compound or a high-order buddy page in the
883                          * previous loop iteration.
884                          */
885                         next_skip_pfn = block_end_pfn(low_pfn, cc->order);
886                 }
887
888                 /*
889                  * Periodically drop the lock (if held) regardless of its
890                  * contention, to give chance to IRQs. Abort completely if
891                  * a fatal signal is pending.
892                  */
893                 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
894                         if (locked) {
895                                 unlock_page_lruvec_irqrestore(locked, flags);
896                                 locked = NULL;
897                         }
898
899                         if (fatal_signal_pending(current)) {
900                                 cc->contended = true;
901                                 ret = -EINTR;
902
903                                 goto fatal_pending;
904                         }
905
906                         cond_resched();
907                 }
908
909                 nr_scanned++;
910
911                 page = pfn_to_page(low_pfn);
912
913                 /*
914                  * Check if the pageblock has already been marked skipped.
915                  * Only the aligned PFN is checked as the caller isolates
916                  * COMPACT_CLUSTER_MAX at a time so the second call must
917                  * not falsely conclude that the block should be skipped.
918                  */
919                 if (!valid_page && pageblock_aligned(low_pfn)) {
920                         if (!isolation_suitable(cc, page)) {
921                                 low_pfn = end_pfn;
922                                 folio = NULL;
923                                 goto isolate_abort;
924                         }
925                         valid_page = page;
926                 }
927
928                 if (PageHuge(page) && cc->alloc_contig) {
929                         if (locked) {
930                                 unlock_page_lruvec_irqrestore(locked, flags);
931                                 locked = NULL;
932                         }
933
934                         ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
935
936                         /*
937                          * Fail isolation in case isolate_or_dissolve_huge_page()
938                          * reports an error. In case of -ENOMEM, abort right away.
939                          */
940                         if (ret < 0) {
941                                  /* Do not report -EBUSY down the chain */
942                                 if (ret == -EBUSY)
943                                         ret = 0;
944                                 low_pfn += compound_nr(page) - 1;
945                                 nr_scanned += compound_nr(page) - 1;
946                                 goto isolate_fail;
947                         }
948
949                         if (PageHuge(page)) {
950                                 /*
951                                  * Hugepage was successfully isolated and placed
952                                  * on the cc->migratepages list.
953                                  */
954                                 folio = page_folio(page);
955                                 low_pfn += folio_nr_pages(folio) - 1;
956                                 goto isolate_success_no_list;
957                         }
958
959                         /*
960                          * Ok, the hugepage was dissolved. Now these pages are
961                          * Buddy and cannot be re-allocated because they are
962                          * isolated. Fall-through as the check below handles
963                          * Buddy pages.
964                          */
965                 }
966
967                 /*
968                  * Skip if free. We read page order here without zone lock
969                  * which is generally unsafe, but the race window is small and
970                  * the worst thing that can happen is that we skip some
971                  * potential isolation targets.
972                  */
973                 if (PageBuddy(page)) {
974                         unsigned long freepage_order = buddy_order_unsafe(page);
975
976                         /*
977                          * Without lock, we cannot be sure that what we got is
978                          * a valid page order. Consider only values in the
979                          * valid order range to prevent low_pfn overflow.
980                          */
981                         if (freepage_order > 0 && freepage_order <= MAX_ORDER) {
982                                 low_pfn += (1UL << freepage_order) - 1;
983                                 nr_scanned += (1UL << freepage_order) - 1;
984                         }
985                         continue;
986                 }
987
988                 /*
989                  * Regardless of being on LRU, compound pages such as THP and
990                  * hugetlbfs are not to be compacted unless we are attempting
991                  * an allocation much larger than the huge page size (eg CMA).
992                  * We can potentially save a lot of iterations if we skip them
993                  * at once. The check is racy, but we can consider only valid
994                  * values and the only danger is skipping too much.
995                  */
996                 if (PageCompound(page) && !cc->alloc_contig) {
997                         const unsigned int order = compound_order(page);
998
999                         if (likely(order <= MAX_ORDER)) {
1000                                 low_pfn += (1UL << order) - 1;
1001                                 nr_scanned += (1UL << order) - 1;
1002                         }
1003                         goto isolate_fail;
1004                 }
1005
1006                 /*
1007                  * Check may be lockless but that's ok as we recheck later.
1008                  * It's possible to migrate LRU and non-lru movable pages.
1009                  * Skip any other type of page
1010                  */
1011                 if (!PageLRU(page)) {
1012                         /*
1013                          * __PageMovable can return false positive so we need
1014                          * to verify it under page_lock.
1015                          */
1016                         if (unlikely(__PageMovable(page)) &&
1017                                         !PageIsolated(page)) {
1018                                 if (locked) {
1019                                         unlock_page_lruvec_irqrestore(locked, flags);
1020                                         locked = NULL;
1021                                 }
1022
1023                                 if (isolate_movable_page(page, mode)) {
1024                                         folio = page_folio(page);
1025                                         goto isolate_success;
1026                                 }
1027                         }
1028
1029                         goto isolate_fail;
1030                 }
1031
1032                 /*
1033                  * Be careful not to clear PageLRU until after we're
1034                  * sure the page is not being freed elsewhere -- the
1035                  * page release code relies on it.
1036                  */
1037                 folio = folio_get_nontail_page(page);
1038                 if (unlikely(!folio))
1039                         goto isolate_fail;
1040
1041                 /*
1042                  * Migration will fail if an anonymous page is pinned in memory,
1043                  * so avoid taking lru_lock and isolating it unnecessarily in an
1044                  * admittedly racy check.
1045                  */
1046                 mapping = folio_mapping(folio);
1047                 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1048                         goto isolate_fail_put;
1049
1050                 /*
1051                  * Only allow to migrate anonymous pages in GFP_NOFS context
1052                  * because those do not depend on fs locks.
1053                  */
1054                 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1055                         goto isolate_fail_put;
1056
1057                 /* Only take pages on LRU: a check now makes later tests safe */
1058                 if (!folio_test_lru(folio))
1059                         goto isolate_fail_put;
1060
1061                 /* Compaction might skip unevictable pages but CMA takes them */
1062                 if (!(mode & ISOLATE_UNEVICTABLE) && folio_test_unevictable(folio))
1063                         goto isolate_fail_put;
1064
1065                 /*
1066                  * To minimise LRU disruption, the caller can indicate with
1067                  * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1068                  * it will be able to migrate without blocking - clean pages
1069                  * for the most part.  PageWriteback would require blocking.
1070                  */
1071                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1072                         goto isolate_fail_put;
1073
1074                 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_dirty(folio)) {
1075                         bool migrate_dirty;
1076
1077                         /*
1078                          * Only pages without mappings or that have a
1079                          * ->migrate_folio callback are possible to migrate
1080                          * without blocking. However, we can be racing with
1081                          * truncation so it's necessary to lock the page
1082                          * to stabilise the mapping as truncation holds
1083                          * the page lock until after the page is removed
1084                          * from the page cache.
1085                          */
1086                         if (!folio_trylock(folio))
1087                                 goto isolate_fail_put;
1088
1089                         mapping = folio_mapping(folio);
1090                         migrate_dirty = !mapping ||
1091                                         mapping->a_ops->migrate_folio;
1092                         folio_unlock(folio);
1093                         if (!migrate_dirty)
1094                                 goto isolate_fail_put;
1095                 }
1096
1097                 /* Try isolate the folio */
1098                 if (!folio_test_clear_lru(folio))
1099                         goto isolate_fail_put;
1100
1101                 lruvec = folio_lruvec(folio);
1102
1103                 /* If we already hold the lock, we can skip some rechecking */
1104                 if (lruvec != locked) {
1105                         if (locked)
1106                                 unlock_page_lruvec_irqrestore(locked, flags);
1107
1108                         compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1109                         locked = lruvec;
1110
1111                         lruvec_memcg_debug(lruvec, folio);
1112
1113                         /*
1114                          * Try get exclusive access under lock. If marked for
1115                          * skip, the scan is aborted unless the current context
1116                          * is a rescan to reach the end of the pageblock.
1117                          */
1118                         if (!skip_updated && valid_page) {
1119                                 skip_updated = true;
1120                                 if (test_and_set_skip(cc, valid_page) &&
1121                                     !cc->finish_pageblock) {
1122                                         goto isolate_abort;
1123                                 }
1124                         }
1125
1126                         /*
1127                          * folio become large since the non-locked check,
1128                          * and it's on LRU.
1129                          */
1130                         if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1131                                 low_pfn += folio_nr_pages(folio) - 1;
1132                                 nr_scanned += folio_nr_pages(folio) - 1;
1133                                 folio_set_lru(folio);
1134                                 goto isolate_fail_put;
1135                         }
1136                 }
1137
1138                 /* The folio is taken off the LRU */
1139                 if (folio_test_large(folio))
1140                         low_pfn += folio_nr_pages(folio) - 1;
1141
1142                 /* Successfully isolated */
1143                 lruvec_del_folio(lruvec, folio);
1144                 node_stat_mod_folio(folio,
1145                                 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1146                                 folio_nr_pages(folio));
1147
1148 isolate_success:
1149                 list_add(&folio->lru, &cc->migratepages);
1150 isolate_success_no_list:
1151                 cc->nr_migratepages += folio_nr_pages(folio);
1152                 nr_isolated += folio_nr_pages(folio);
1153                 nr_scanned += folio_nr_pages(folio) - 1;
1154
1155                 /*
1156                  * Avoid isolating too much unless this block is being
1157                  * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1158                  * or a lock is contended. For contention, isolate quickly to
1159                  * potentially remove one source of contention.
1160                  */
1161                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1162                     !cc->finish_pageblock && !cc->contended) {
1163                         ++low_pfn;
1164                         break;
1165                 }
1166
1167                 continue;
1168
1169 isolate_fail_put:
1170                 /* Avoid potential deadlock in freeing page under lru_lock */
1171                 if (locked) {
1172                         unlock_page_lruvec_irqrestore(locked, flags);
1173                         locked = NULL;
1174                 }
1175                 folio_put(folio);
1176
1177 isolate_fail:
1178                 if (!skip_on_failure && ret != -ENOMEM)
1179                         continue;
1180
1181                 /*
1182                  * We have isolated some pages, but then failed. Release them
1183                  * instead of migrating, as we cannot form the cc->order buddy
1184                  * page anyway.
1185                  */
1186                 if (nr_isolated) {
1187                         if (locked) {
1188                                 unlock_page_lruvec_irqrestore(locked, flags);
1189                                 locked = NULL;
1190                         }
1191                         putback_movable_pages(&cc->migratepages);
1192                         cc->nr_migratepages = 0;
1193                         nr_isolated = 0;
1194                 }
1195
1196                 if (low_pfn < next_skip_pfn) {
1197                         low_pfn = next_skip_pfn - 1;
1198                         /*
1199                          * The check near the loop beginning would have updated
1200                          * next_skip_pfn too, but this is a bit simpler.
1201                          */
1202                         next_skip_pfn += 1UL << cc->order;
1203                 }
1204
1205                 if (ret == -ENOMEM)
1206                         break;
1207         }
1208
1209         /*
1210          * The PageBuddy() check could have potentially brought us outside
1211          * the range to be scanned.
1212          */
1213         if (unlikely(low_pfn > end_pfn))
1214                 low_pfn = end_pfn;
1215
1216         folio = NULL;
1217
1218 isolate_abort:
1219         if (locked)
1220                 unlock_page_lruvec_irqrestore(locked, flags);
1221         if (folio) {
1222                 folio_set_lru(folio);
1223                 folio_put(folio);
1224         }
1225
1226         /*
1227          * Update the cached scanner pfn once the pageblock has been scanned.
1228          * Pages will either be migrated in which case there is no point
1229          * scanning in the near future or migration failed in which case the
1230          * failure reason may persist. The block is marked for skipping if
1231          * there were no pages isolated in the block or if the block is
1232          * rescanned twice in a row.
1233          */
1234         if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1235                 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1236                         set_pageblock_skip(valid_page);
1237                 update_cached_migrate(cc, low_pfn);
1238         }
1239
1240         trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1241                                                 nr_scanned, nr_isolated);
1242
1243 fatal_pending:
1244         cc->total_migrate_scanned += nr_scanned;
1245         if (nr_isolated)
1246                 count_compact_events(COMPACTISOLATED, nr_isolated);
1247
1248         cc->migrate_pfn = low_pfn;
1249
1250         return ret;
1251 }
1252
1253 /**
1254  * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1255  * @cc:        Compaction control structure.
1256  * @start_pfn: The first PFN to start isolating.
1257  * @end_pfn:   The one-past-last PFN.
1258  *
1259  * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1260  * in case we could not allocate a page, or 0.
1261  */
1262 int
1263 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1264                                                         unsigned long end_pfn)
1265 {
1266         unsigned long pfn, block_start_pfn, block_end_pfn;
1267         int ret = 0;
1268
1269         /* Scan block by block. First and last block may be incomplete */
1270         pfn = start_pfn;
1271         block_start_pfn = pageblock_start_pfn(pfn);
1272         if (block_start_pfn < cc->zone->zone_start_pfn)
1273                 block_start_pfn = cc->zone->zone_start_pfn;
1274         block_end_pfn = pageblock_end_pfn(pfn);
1275
1276         for (; pfn < end_pfn; pfn = block_end_pfn,
1277                                 block_start_pfn = block_end_pfn,
1278                                 block_end_pfn += pageblock_nr_pages) {
1279
1280                 block_end_pfn = min(block_end_pfn, end_pfn);
1281
1282                 if (!pageblock_pfn_to_page(block_start_pfn,
1283                                         block_end_pfn, cc->zone))
1284                         continue;
1285
1286                 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1287                                                  ISOLATE_UNEVICTABLE);
1288
1289                 if (ret)
1290                         break;
1291
1292                 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1293                         break;
1294         }
1295
1296         return ret;
1297 }
1298
1299 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1300 #ifdef CONFIG_COMPACTION
1301
1302 static bool suitable_migration_source(struct compact_control *cc,
1303                                                         struct page *page)
1304 {
1305         int block_mt;
1306
1307         if (pageblock_skip_persistent(page))
1308                 return false;
1309
1310         if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1311                 return true;
1312
1313         block_mt = get_pageblock_migratetype(page);
1314
1315         if (cc->migratetype == MIGRATE_MOVABLE)
1316                 return is_migrate_movable(block_mt);
1317         else
1318                 return block_mt == cc->migratetype;
1319 }
1320
1321 /* Returns true if the page is within a block suitable for migration to */
1322 static bool suitable_migration_target(struct compact_control *cc,
1323                                                         struct page *page)
1324 {
1325         /* If the page is a large free page, then disallow migration */
1326         if (PageBuddy(page)) {
1327                 /*
1328                  * We are checking page_order without zone->lock taken. But
1329                  * the only small danger is that we skip a potentially suitable
1330                  * pageblock, so it's not worth to check order for valid range.
1331                  */
1332                 if (buddy_order_unsafe(page) >= pageblock_order)
1333                         return false;
1334         }
1335
1336         if (cc->ignore_block_suitable)
1337                 return true;
1338
1339         /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1340         if (is_migrate_movable(get_pageblock_migratetype(page)))
1341                 return true;
1342
1343         /* Otherwise skip the block */
1344         return false;
1345 }
1346
1347 static inline unsigned int
1348 freelist_scan_limit(struct compact_control *cc)
1349 {
1350         unsigned short shift = BITS_PER_LONG - 1;
1351
1352         return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1353 }
1354
1355 /*
1356  * Test whether the free scanner has reached the same or lower pageblock than
1357  * the migration scanner, and compaction should thus terminate.
1358  */
1359 static inline bool compact_scanners_met(struct compact_control *cc)
1360 {
1361         return (cc->free_pfn >> pageblock_order)
1362                 <= (cc->migrate_pfn >> pageblock_order);
1363 }
1364
1365 /*
1366  * Used when scanning for a suitable migration target which scans freelists
1367  * in reverse. Reorders the list such as the unscanned pages are scanned
1368  * first on the next iteration of the free scanner
1369  */
1370 static void
1371 move_freelist_head(struct list_head *freelist, struct page *freepage)
1372 {
1373         LIST_HEAD(sublist);
1374
1375         if (!list_is_last(freelist, &freepage->lru)) {
1376                 list_cut_before(&sublist, freelist, &freepage->lru);
1377                 list_splice_tail(&sublist, freelist);
1378         }
1379 }
1380
1381 /*
1382  * Similar to move_freelist_head except used by the migration scanner
1383  * when scanning forward. It's possible for these list operations to
1384  * move against each other if they search the free list exactly in
1385  * lockstep.
1386  */
1387 static void
1388 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1389 {
1390         LIST_HEAD(sublist);
1391
1392         if (!list_is_first(freelist, &freepage->lru)) {
1393                 list_cut_position(&sublist, freelist, &freepage->lru);
1394                 list_splice_tail(&sublist, freelist);
1395         }
1396 }
1397
1398 static void
1399 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1400 {
1401         unsigned long start_pfn, end_pfn;
1402         struct page *page;
1403
1404         /* Do not search around if there are enough pages already */
1405         if (cc->nr_freepages >= cc->nr_migratepages)
1406                 return;
1407
1408         /* Minimise scanning during async compaction */
1409         if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1410                 return;
1411
1412         /* Pageblock boundaries */
1413         start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1414         end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1415
1416         page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1417         if (!page)
1418                 return;
1419
1420         isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1421
1422         /* Skip this pageblock in the future as it's full or nearly full */
1423         if (start_pfn == end_pfn)
1424                 set_pageblock_skip(page);
1425
1426         return;
1427 }
1428
1429 /* Search orders in round-robin fashion */
1430 static int next_search_order(struct compact_control *cc, int order)
1431 {
1432         order--;
1433         if (order < 0)
1434                 order = cc->order - 1;
1435
1436         /* Search wrapped around? */
1437         if (order == cc->search_order) {
1438                 cc->search_order--;
1439                 if (cc->search_order < 0)
1440                         cc->search_order = cc->order - 1;
1441                 return -1;
1442         }
1443
1444         return order;
1445 }
1446
1447 static void fast_isolate_freepages(struct compact_control *cc)
1448 {
1449         unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1450         unsigned int nr_scanned = 0, total_isolated = 0;
1451         unsigned long low_pfn, min_pfn, highest = 0;
1452         unsigned long nr_isolated = 0;
1453         unsigned long distance;
1454         struct page *page = NULL;
1455         bool scan_start = false;
1456         int order;
1457
1458         /* Full compaction passes in a negative order */
1459         if (cc->order <= 0)
1460                 return;
1461
1462         /*
1463          * If starting the scan, use a deeper search and use the highest
1464          * PFN found if a suitable one is not found.
1465          */
1466         if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1467                 limit = pageblock_nr_pages >> 1;
1468                 scan_start = true;
1469         }
1470
1471         /*
1472          * Preferred point is in the top quarter of the scan space but take
1473          * a pfn from the top half if the search is problematic.
1474          */
1475         distance = (cc->free_pfn - cc->migrate_pfn);
1476         low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1477         min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1478
1479         if (WARN_ON_ONCE(min_pfn > low_pfn))
1480                 low_pfn = min_pfn;
1481
1482         /*
1483          * Search starts from the last successful isolation order or the next
1484          * order to search after a previous failure
1485          */
1486         cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1487
1488         for (order = cc->search_order;
1489              !page && order >= 0;
1490              order = next_search_order(cc, order)) {
1491                 struct free_area *area = &cc->zone->free_area[order];
1492                 struct list_head *freelist;
1493                 struct page *freepage;
1494                 unsigned long flags;
1495                 unsigned int order_scanned = 0;
1496                 unsigned long high_pfn = 0;
1497
1498                 if (!area->nr_free)
1499                         continue;
1500
1501                 spin_lock_irqsave(&cc->zone->lock, flags);
1502                 freelist = &area->free_list[MIGRATE_MOVABLE];
1503                 list_for_each_entry_reverse(freepage, freelist, lru) {
1504                         unsigned long pfn;
1505
1506                         order_scanned++;
1507                         nr_scanned++;
1508                         pfn = page_to_pfn(freepage);
1509
1510                         if (pfn >= highest)
1511                                 highest = max(pageblock_start_pfn(pfn),
1512                                               cc->zone->zone_start_pfn);
1513
1514                         if (pfn >= low_pfn) {
1515                                 cc->fast_search_fail = 0;
1516                                 cc->search_order = order;
1517                                 page = freepage;
1518                                 break;
1519                         }
1520
1521                         if (pfn >= min_pfn && pfn > high_pfn) {
1522                                 high_pfn = pfn;
1523
1524                                 /* Shorten the scan if a candidate is found */
1525                                 limit >>= 1;
1526                         }
1527
1528                         if (order_scanned >= limit)
1529                                 break;
1530                 }
1531
1532                 /* Use a minimum pfn if a preferred one was not found */
1533                 if (!page && high_pfn) {
1534                         page = pfn_to_page(high_pfn);
1535
1536                         /* Update freepage for the list reorder below */
1537                         freepage = page;
1538                 }
1539
1540                 /* Reorder to so a future search skips recent pages */
1541                 move_freelist_head(freelist, freepage);
1542
1543                 /* Isolate the page if available */
1544                 if (page) {
1545                         if (__isolate_free_page(page, order)) {
1546                                 set_page_private(page, order);
1547                                 nr_isolated = 1 << order;
1548                                 nr_scanned += nr_isolated - 1;
1549                                 total_isolated += nr_isolated;
1550                                 cc->nr_freepages += nr_isolated;
1551                                 list_add_tail(&page->lru, &cc->freepages);
1552                                 count_compact_events(COMPACTISOLATED, nr_isolated);
1553                         } else {
1554                                 /* If isolation fails, abort the search */
1555                                 order = cc->search_order + 1;
1556                                 page = NULL;
1557                         }
1558                 }
1559
1560                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1561
1562                 /* Skip fast search if enough freepages isolated */
1563                 if (cc->nr_freepages >= cc->nr_migratepages)
1564                         break;
1565
1566                 /*
1567                  * Smaller scan on next order so the total scan is related
1568                  * to freelist_scan_limit.
1569                  */
1570                 if (order_scanned >= limit)
1571                         limit = max(1U, limit >> 1);
1572         }
1573
1574         trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1575                                                    nr_scanned, total_isolated);
1576
1577         if (!page) {
1578                 cc->fast_search_fail++;
1579                 if (scan_start) {
1580                         /*
1581                          * Use the highest PFN found above min. If one was
1582                          * not found, be pessimistic for direct compaction
1583                          * and use the min mark.
1584                          */
1585                         if (highest >= min_pfn) {
1586                                 page = pfn_to_page(highest);
1587                                 cc->free_pfn = highest;
1588                         } else {
1589                                 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1590                                         page = pageblock_pfn_to_page(min_pfn,
1591                                                 min(pageblock_end_pfn(min_pfn),
1592                                                     zone_end_pfn(cc->zone)),
1593                                                 cc->zone);
1594                                         cc->free_pfn = min_pfn;
1595                                 }
1596                         }
1597                 }
1598         }
1599
1600         if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1601                 highest -= pageblock_nr_pages;
1602                 cc->zone->compact_cached_free_pfn = highest;
1603         }
1604
1605         cc->total_free_scanned += nr_scanned;
1606         if (!page)
1607                 return;
1608
1609         low_pfn = page_to_pfn(page);
1610         fast_isolate_around(cc, low_pfn);
1611 }
1612
1613 /*
1614  * Based on information in the current compact_control, find blocks
1615  * suitable for isolating free pages from and then isolate them.
1616  */
1617 static void isolate_freepages(struct compact_control *cc)
1618 {
1619         struct zone *zone = cc->zone;
1620         struct page *page;
1621         unsigned long block_start_pfn;  /* start of current pageblock */
1622         unsigned long isolate_start_pfn; /* exact pfn we start at */
1623         unsigned long block_end_pfn;    /* end of current pageblock */
1624         unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1625         struct list_head *freelist = &cc->freepages;
1626         unsigned int stride;
1627
1628         /* Try a small search of the free lists for a candidate */
1629         fast_isolate_freepages(cc);
1630         if (cc->nr_freepages)
1631                 goto splitmap;
1632
1633         /*
1634          * Initialise the free scanner. The starting point is where we last
1635          * successfully isolated from, zone-cached value, or the end of the
1636          * zone when isolating for the first time. For looping we also need
1637          * this pfn aligned down to the pageblock boundary, because we do
1638          * block_start_pfn -= pageblock_nr_pages in the for loop.
1639          * For ending point, take care when isolating in last pageblock of a
1640          * zone which ends in the middle of a pageblock.
1641          * The low boundary is the end of the pageblock the migration scanner
1642          * is using.
1643          */
1644         isolate_start_pfn = cc->free_pfn;
1645         block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1646         block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1647                                                 zone_end_pfn(zone));
1648         low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1649         stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1650
1651         /*
1652          * Isolate free pages until enough are available to migrate the
1653          * pages on cc->migratepages. We stop searching if the migrate
1654          * and free page scanners meet or enough free pages are isolated.
1655          */
1656         for (; block_start_pfn >= low_pfn;
1657                                 block_end_pfn = block_start_pfn,
1658                                 block_start_pfn -= pageblock_nr_pages,
1659                                 isolate_start_pfn = block_start_pfn) {
1660                 unsigned long nr_isolated;
1661
1662                 /*
1663                  * This can iterate a massively long zone without finding any
1664                  * suitable migration targets, so periodically check resched.
1665                  */
1666                 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1667                         cond_resched();
1668
1669                 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1670                                                                         zone);
1671                 if (!page)
1672                         continue;
1673
1674                 /* Check the block is suitable for migration */
1675                 if (!suitable_migration_target(cc, page))
1676                         continue;
1677
1678                 /* If isolation recently failed, do not retry */
1679                 if (!isolation_suitable(cc, page))
1680                         continue;
1681
1682                 /* Found a block suitable for isolating free pages from. */
1683                 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1684                                         block_end_pfn, freelist, stride, false);
1685
1686                 /* Update the skip hint if the full pageblock was scanned */
1687                 if (isolate_start_pfn == block_end_pfn)
1688                         update_pageblock_skip(cc, page, block_start_pfn);
1689
1690                 /* Are enough freepages isolated? */
1691                 if (cc->nr_freepages >= cc->nr_migratepages) {
1692                         if (isolate_start_pfn >= block_end_pfn) {
1693                                 /*
1694                                  * Restart at previous pageblock if more
1695                                  * freepages can be isolated next time.
1696                                  */
1697                                 isolate_start_pfn =
1698                                         block_start_pfn - pageblock_nr_pages;
1699                         }
1700                         break;
1701                 } else if (isolate_start_pfn < block_end_pfn) {
1702                         /*
1703                          * If isolation failed early, do not continue
1704                          * needlessly.
1705                          */
1706                         break;
1707                 }
1708
1709                 /* Adjust stride depending on isolation */
1710                 if (nr_isolated) {
1711                         stride = 1;
1712                         continue;
1713                 }
1714                 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1715         }
1716
1717         /*
1718          * Record where the free scanner will restart next time. Either we
1719          * broke from the loop and set isolate_start_pfn based on the last
1720          * call to isolate_freepages_block(), or we met the migration scanner
1721          * and the loop terminated due to isolate_start_pfn < low_pfn
1722          */
1723         cc->free_pfn = isolate_start_pfn;
1724
1725 splitmap:
1726         /* __isolate_free_page() does not map the pages */
1727         split_map_pages(freelist);
1728 }
1729
1730 /*
1731  * This is a migrate-callback that "allocates" freepages by taking pages
1732  * from the isolated freelists in the block we are migrating to.
1733  */
1734 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1735 {
1736         struct compact_control *cc = (struct compact_control *)data;
1737         struct folio *dst;
1738
1739         if (list_empty(&cc->freepages)) {
1740                 isolate_freepages(cc);
1741
1742                 if (list_empty(&cc->freepages))
1743                         return NULL;
1744         }
1745
1746         dst = list_entry(cc->freepages.next, struct folio, lru);
1747         list_del(&dst->lru);
1748         cc->nr_freepages--;
1749
1750         return dst;
1751 }
1752
1753 /*
1754  * This is a migrate-callback that "frees" freepages back to the isolated
1755  * freelist.  All pages on the freelist are from the same zone, so there is no
1756  * special handling needed for NUMA.
1757  */
1758 static void compaction_free(struct folio *dst, unsigned long data)
1759 {
1760         struct compact_control *cc = (struct compact_control *)data;
1761
1762         list_add(&dst->lru, &cc->freepages);
1763         cc->nr_freepages++;
1764 }
1765
1766 /* possible outcome of isolate_migratepages */
1767 typedef enum {
1768         ISOLATE_ABORT,          /* Abort compaction now */
1769         ISOLATE_NONE,           /* No pages isolated, continue scanning */
1770         ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1771 } isolate_migrate_t;
1772
1773 /*
1774  * Allow userspace to control policy on scanning the unevictable LRU for
1775  * compactable pages.
1776  */
1777 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1778 /*
1779  * Tunable for proactive compaction. It determines how
1780  * aggressively the kernel should compact memory in the
1781  * background. It takes values in the range [0, 100].
1782  */
1783 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1784 static int sysctl_extfrag_threshold = 500;
1785 static int __read_mostly sysctl_compact_memory;
1786
1787 static inline void
1788 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1789 {
1790         if (cc->fast_start_pfn == ULONG_MAX)
1791                 return;
1792
1793         if (!cc->fast_start_pfn)
1794                 cc->fast_start_pfn = pfn;
1795
1796         cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1797 }
1798
1799 static inline unsigned long
1800 reinit_migrate_pfn(struct compact_control *cc)
1801 {
1802         if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1803                 return cc->migrate_pfn;
1804
1805         cc->migrate_pfn = cc->fast_start_pfn;
1806         cc->fast_start_pfn = ULONG_MAX;
1807
1808         return cc->migrate_pfn;
1809 }
1810
1811 /*
1812  * Briefly search the free lists for a migration source that already has
1813  * some free pages to reduce the number of pages that need migration
1814  * before a pageblock is free.
1815  */
1816 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1817 {
1818         unsigned int limit = freelist_scan_limit(cc);
1819         unsigned int nr_scanned = 0;
1820         unsigned long distance;
1821         unsigned long pfn = cc->migrate_pfn;
1822         unsigned long high_pfn;
1823         int order;
1824         bool found_block = false;
1825
1826         /* Skip hints are relied on to avoid repeats on the fast search */
1827         if (cc->ignore_skip_hint)
1828                 return pfn;
1829
1830         /*
1831          * If the pageblock should be finished then do not select a different
1832          * pageblock.
1833          */
1834         if (cc->finish_pageblock)
1835                 return pfn;
1836
1837         /*
1838          * If the migrate_pfn is not at the start of a zone or the start
1839          * of a pageblock then assume this is a continuation of a previous
1840          * scan restarted due to COMPACT_CLUSTER_MAX.
1841          */
1842         if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1843                 return pfn;
1844
1845         /*
1846          * For smaller orders, just linearly scan as the number of pages
1847          * to migrate should be relatively small and does not necessarily
1848          * justify freeing up a large block for a small allocation.
1849          */
1850         if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1851                 return pfn;
1852
1853         /*
1854          * Only allow kcompactd and direct requests for movable pages to
1855          * quickly clear out a MOVABLE pageblock for allocation. This
1856          * reduces the risk that a large movable pageblock is freed for
1857          * an unmovable/reclaimable small allocation.
1858          */
1859         if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1860                 return pfn;
1861
1862         /*
1863          * When starting the migration scanner, pick any pageblock within the
1864          * first half of the search space. Otherwise try and pick a pageblock
1865          * within the first eighth to reduce the chances that a migration
1866          * target later becomes a source.
1867          */
1868         distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1869         if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1870                 distance >>= 2;
1871         high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1872
1873         for (order = cc->order - 1;
1874              order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1875              order--) {
1876                 struct free_area *area = &cc->zone->free_area[order];
1877                 struct list_head *freelist;
1878                 unsigned long flags;
1879                 struct page *freepage;
1880
1881                 if (!area->nr_free)
1882                         continue;
1883
1884                 spin_lock_irqsave(&cc->zone->lock, flags);
1885                 freelist = &area->free_list[MIGRATE_MOVABLE];
1886                 list_for_each_entry(freepage, freelist, lru) {
1887                         unsigned long free_pfn;
1888
1889                         if (nr_scanned++ >= limit) {
1890                                 move_freelist_tail(freelist, freepage);
1891                                 break;
1892                         }
1893
1894                         free_pfn = page_to_pfn(freepage);
1895                         if (free_pfn < high_pfn) {
1896                                 /*
1897                                  * Avoid if skipped recently. Ideally it would
1898                                  * move to the tail but even safe iteration of
1899                                  * the list assumes an entry is deleted, not
1900                                  * reordered.
1901                                  */
1902                                 if (get_pageblock_skip(freepage))
1903                                         continue;
1904
1905                                 /* Reorder to so a future search skips recent pages */
1906                                 move_freelist_tail(freelist, freepage);
1907
1908                                 update_fast_start_pfn(cc, free_pfn);
1909                                 pfn = pageblock_start_pfn(free_pfn);
1910                                 if (pfn < cc->zone->zone_start_pfn)
1911                                         pfn = cc->zone->zone_start_pfn;
1912                                 cc->fast_search_fail = 0;
1913                                 found_block = true;
1914                                 break;
1915                         }
1916                 }
1917                 spin_unlock_irqrestore(&cc->zone->lock, flags);
1918         }
1919
1920         cc->total_migrate_scanned += nr_scanned;
1921
1922         /*
1923          * If fast scanning failed then use a cached entry for a page block
1924          * that had free pages as the basis for starting a linear scan.
1925          */
1926         if (!found_block) {
1927                 cc->fast_search_fail++;
1928                 pfn = reinit_migrate_pfn(cc);
1929         }
1930         return pfn;
1931 }
1932
1933 /*
1934  * Isolate all pages that can be migrated from the first suitable block,
1935  * starting at the block pointed to by the migrate scanner pfn within
1936  * compact_control.
1937  */
1938 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1939 {
1940         unsigned long block_start_pfn;
1941         unsigned long block_end_pfn;
1942         unsigned long low_pfn;
1943         struct page *page;
1944         const isolate_mode_t isolate_mode =
1945                 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1946                 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1947         bool fast_find_block;
1948
1949         /*
1950          * Start at where we last stopped, or beginning of the zone as
1951          * initialized by compact_zone(). The first failure will use
1952          * the lowest PFN as the starting point for linear scanning.
1953          */
1954         low_pfn = fast_find_migrateblock(cc);
1955         block_start_pfn = pageblock_start_pfn(low_pfn);
1956         if (block_start_pfn < cc->zone->zone_start_pfn)
1957                 block_start_pfn = cc->zone->zone_start_pfn;
1958
1959         /*
1960          * fast_find_migrateblock marks a pageblock skipped so to avoid
1961          * the isolation_suitable check below, check whether the fast
1962          * search was successful.
1963          */
1964         fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1965
1966         /* Only scan within a pageblock boundary */
1967         block_end_pfn = pageblock_end_pfn(low_pfn);
1968
1969         /*
1970          * Iterate over whole pageblocks until we find the first suitable.
1971          * Do not cross the free scanner.
1972          */
1973         for (; block_end_pfn <= cc->free_pfn;
1974                         fast_find_block = false,
1975                         cc->migrate_pfn = low_pfn = block_end_pfn,
1976                         block_start_pfn = block_end_pfn,
1977                         block_end_pfn += pageblock_nr_pages) {
1978
1979                 /*
1980                  * This can potentially iterate a massively long zone with
1981                  * many pageblocks unsuitable, so periodically check if we
1982                  * need to schedule.
1983                  */
1984                 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1985                         cond_resched();
1986
1987                 page = pageblock_pfn_to_page(block_start_pfn,
1988                                                 block_end_pfn, cc->zone);
1989                 if (!page) {
1990                         unsigned long next_pfn;
1991
1992                         next_pfn = skip_offline_sections(block_start_pfn);
1993                         if (next_pfn)
1994                                 block_end_pfn = min(next_pfn, cc->free_pfn);
1995                         continue;
1996                 }
1997
1998                 /*
1999                  * If isolation recently failed, do not retry. Only check the
2000                  * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2001                  * to be visited multiple times. Assume skip was checked
2002                  * before making it "skip" so other compaction instances do
2003                  * not scan the same block.
2004                  */
2005                 if (pageblock_aligned(low_pfn) &&
2006                     !fast_find_block && !isolation_suitable(cc, page))
2007                         continue;
2008
2009                 /*
2010                  * For async direct compaction, only scan the pageblocks of the
2011                  * same migratetype without huge pages. Async direct compaction
2012                  * is optimistic to see if the minimum amount of work satisfies
2013                  * the allocation. The cached PFN is updated as it's possible
2014                  * that all remaining blocks between source and target are
2015                  * unsuitable and the compaction scanners fail to meet.
2016                  */
2017                 if (!suitable_migration_source(cc, page)) {
2018                         update_cached_migrate(cc, block_end_pfn);
2019                         continue;
2020                 }
2021
2022                 /* Perform the isolation */
2023                 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2024                                                 isolate_mode))
2025                         return ISOLATE_ABORT;
2026
2027                 /*
2028                  * Either we isolated something and proceed with migration. Or
2029                  * we failed and compact_zone should decide if we should
2030                  * continue or not.
2031                  */
2032                 break;
2033         }
2034
2035         return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2036 }
2037
2038 /*
2039  * order == -1 is expected when compacting via
2040  * /proc/sys/vm/compact_memory
2041  */
2042 static inline bool is_via_compact_memory(int order)
2043 {
2044         return order == -1;
2045 }
2046
2047 /*
2048  * Determine whether kswapd is (or recently was!) running on this node.
2049  *
2050  * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2051  * zero it.
2052  */
2053 static bool kswapd_is_running(pg_data_t *pgdat)
2054 {
2055         bool running;
2056
2057         pgdat_kswapd_lock(pgdat);
2058         running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2059         pgdat_kswapd_unlock(pgdat);
2060
2061         return running;
2062 }
2063
2064 /*
2065  * A zone's fragmentation score is the external fragmentation wrt to the
2066  * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2067  */
2068 static unsigned int fragmentation_score_zone(struct zone *zone)
2069 {
2070         return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2071 }
2072
2073 /*
2074  * A weighted zone's fragmentation score is the external fragmentation
2075  * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2076  * returns a value in the range [0, 100].
2077  *
2078  * The scaling factor ensures that proactive compaction focuses on larger
2079  * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2080  * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2081  * and thus never exceeds the high threshold for proactive compaction.
2082  */
2083 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2084 {
2085         unsigned long score;
2086
2087         score = zone->present_pages * fragmentation_score_zone(zone);
2088         return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2089 }
2090
2091 /*
2092  * The per-node proactive (background) compaction process is started by its
2093  * corresponding kcompactd thread when the node's fragmentation score
2094  * exceeds the high threshold. The compaction process remains active till
2095  * the node's score falls below the low threshold, or one of the back-off
2096  * conditions is met.
2097  */
2098 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2099 {
2100         unsigned int score = 0;
2101         int zoneid;
2102
2103         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2104                 struct zone *zone;
2105
2106                 zone = &pgdat->node_zones[zoneid];
2107                 if (!populated_zone(zone))
2108                         continue;
2109                 score += fragmentation_score_zone_weighted(zone);
2110         }
2111
2112         return score;
2113 }
2114
2115 static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
2116 {
2117         unsigned int wmark_low;
2118
2119         /*
2120          * Cap the low watermark to avoid excessive compaction
2121          * activity in case a user sets the proactiveness tunable
2122          * close to 100 (maximum).
2123          */
2124         wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2125         return low ? wmark_low : min(wmark_low + 10, 100U);
2126 }
2127
2128 static bool should_proactive_compact_node(pg_data_t *pgdat)
2129 {
2130         int wmark_high;
2131
2132         if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2133                 return false;
2134
2135         wmark_high = fragmentation_score_wmark(pgdat, false);
2136         return fragmentation_score_node(pgdat) > wmark_high;
2137 }
2138
2139 static enum compact_result __compact_finished(struct compact_control *cc)
2140 {
2141         unsigned int order;
2142         const int migratetype = cc->migratetype;
2143         int ret;
2144
2145         /* Compaction run completes if the migrate and free scanner meet */
2146         if (compact_scanners_met(cc)) {
2147                 /* Let the next compaction start anew. */
2148                 reset_cached_positions(cc->zone);
2149
2150                 /*
2151                  * Mark that the PG_migrate_skip information should be cleared
2152                  * by kswapd when it goes to sleep. kcompactd does not set the
2153                  * flag itself as the decision to be clear should be directly
2154                  * based on an allocation request.
2155                  */
2156                 if (cc->direct_compaction)
2157                         cc->zone->compact_blockskip_flush = true;
2158
2159                 if (cc->whole_zone)
2160                         return COMPACT_COMPLETE;
2161                 else
2162                         return COMPACT_PARTIAL_SKIPPED;
2163         }
2164
2165         if (cc->proactive_compaction) {
2166                 int score, wmark_low;
2167                 pg_data_t *pgdat;
2168
2169                 pgdat = cc->zone->zone_pgdat;
2170                 if (kswapd_is_running(pgdat))
2171                         return COMPACT_PARTIAL_SKIPPED;
2172
2173                 score = fragmentation_score_zone(cc->zone);
2174                 wmark_low = fragmentation_score_wmark(pgdat, true);
2175
2176                 if (score > wmark_low)
2177                         ret = COMPACT_CONTINUE;
2178                 else
2179                         ret = COMPACT_SUCCESS;
2180
2181                 goto out;
2182         }
2183
2184         if (is_via_compact_memory(cc->order))
2185                 return COMPACT_CONTINUE;
2186
2187         /*
2188          * Always finish scanning a pageblock to reduce the possibility of
2189          * fallbacks in the future. This is particularly important when
2190          * migration source is unmovable/reclaimable but it's not worth
2191          * special casing.
2192          */
2193         if (!pageblock_aligned(cc->migrate_pfn))
2194                 return COMPACT_CONTINUE;
2195
2196         /* Direct compactor: Is a suitable page free? */
2197         ret = COMPACT_NO_SUITABLE_PAGE;
2198         for (order = cc->order; order <= MAX_ORDER; order++) {
2199                 struct free_area *area = &cc->zone->free_area[order];
2200                 bool can_steal;
2201
2202                 /* Job done if page is free of the right migratetype */
2203                 if (!free_area_empty(area, migratetype))
2204                         return COMPACT_SUCCESS;
2205
2206 #ifdef CONFIG_CMA
2207                 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2208                 if (migratetype == MIGRATE_MOVABLE &&
2209                         !free_area_empty(area, MIGRATE_CMA))
2210                         return COMPACT_SUCCESS;
2211 #endif
2212                 /*
2213                  * Job done if allocation would steal freepages from
2214                  * other migratetype buddy lists.
2215                  */
2216                 if (find_suitable_fallback(area, order, migratetype,
2217                                                 true, &can_steal) != -1)
2218                         /*
2219                          * Movable pages are OK in any pageblock. If we are
2220                          * stealing for a non-movable allocation, make sure
2221                          * we finish compacting the current pageblock first
2222                          * (which is assured by the above migrate_pfn align
2223                          * check) so it is as free as possible and we won't
2224                          * have to steal another one soon.
2225                          */
2226                         return COMPACT_SUCCESS;
2227         }
2228
2229 out:
2230         if (cc->contended || fatal_signal_pending(current))
2231                 ret = COMPACT_CONTENDED;
2232
2233         return ret;
2234 }
2235
2236 static enum compact_result compact_finished(struct compact_control *cc)
2237 {
2238         int ret;
2239
2240         ret = __compact_finished(cc);
2241         trace_mm_compaction_finished(cc->zone, cc->order, ret);
2242         if (ret == COMPACT_NO_SUITABLE_PAGE)
2243                 ret = COMPACT_CONTINUE;
2244
2245         return ret;
2246 }
2247
2248 static bool __compaction_suitable(struct zone *zone, int order,
2249                                   int highest_zoneidx,
2250                                   unsigned long wmark_target)
2251 {
2252         unsigned long watermark;
2253         /*
2254          * Watermarks for order-0 must be met for compaction to be able to
2255          * isolate free pages for migration targets. This means that the
2256          * watermark and alloc_flags have to match, or be more pessimistic than
2257          * the check in __isolate_free_page(). We don't use the direct
2258          * compactor's alloc_flags, as they are not relevant for freepage
2259          * isolation. We however do use the direct compactor's highest_zoneidx
2260          * to skip over zones where lowmem reserves would prevent allocation
2261          * even if compaction succeeds.
2262          * For costly orders, we require low watermark instead of min for
2263          * compaction to proceed to increase its chances.
2264          * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2265          * suitable migration targets
2266          */
2267         watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2268                                 low_wmark_pages(zone) : min_wmark_pages(zone);
2269         watermark += compact_gap(order);
2270         return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2271                                    ALLOC_CMA, wmark_target);
2272 }
2273
2274 /*
2275  * compaction_suitable: Is this suitable to run compaction on this zone now?
2276  */
2277 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2278 {
2279         enum compact_result compact_result;
2280         bool suitable;
2281
2282         suitable = __compaction_suitable(zone, order, highest_zoneidx,
2283                                          zone_page_state(zone, NR_FREE_PAGES));
2284         /*
2285          * fragmentation index determines if allocation failures are due to
2286          * low memory or external fragmentation
2287          *
2288          * index of -1000 would imply allocations might succeed depending on
2289          * watermarks, but we already failed the high-order watermark check
2290          * index towards 0 implies failure is due to lack of memory
2291          * index towards 1000 implies failure is due to fragmentation
2292          *
2293          * Only compact if a failure would be due to fragmentation. Also
2294          * ignore fragindex for non-costly orders where the alternative to
2295          * a successful reclaim/compaction is OOM. Fragindex and the
2296          * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2297          * excessive compaction for costly orders, but it should not be at the
2298          * expense of system stability.
2299          */
2300         if (suitable) {
2301                 compact_result = COMPACT_CONTINUE;
2302                 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2303                         int fragindex = fragmentation_index(zone, order);
2304
2305                         if (fragindex >= 0 &&
2306                             fragindex <= sysctl_extfrag_threshold) {
2307                                 suitable = false;
2308                                 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2309                         }
2310                 }
2311         } else {
2312                 compact_result = COMPACT_SKIPPED;
2313         }
2314
2315         trace_mm_compaction_suitable(zone, order, compact_result);
2316
2317         return suitable;
2318 }
2319
2320 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2321                 int alloc_flags)
2322 {
2323         struct zone *zone;
2324         struct zoneref *z;
2325
2326         /*
2327          * Make sure at least one zone would pass __compaction_suitable if we continue
2328          * retrying the reclaim.
2329          */
2330         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2331                                 ac->highest_zoneidx, ac->nodemask) {
2332                 unsigned long available;
2333
2334                 /*
2335                  * Do not consider all the reclaimable memory because we do not
2336                  * want to trash just for a single high order allocation which
2337                  * is even not guaranteed to appear even if __compaction_suitable
2338                  * is happy about the watermark check.
2339                  */
2340                 available = zone_reclaimable_pages(zone) / order;
2341                 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2342                 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2343                                           available))
2344                         return true;
2345         }
2346
2347         return false;
2348 }
2349
2350 static enum compact_result
2351 compact_zone(struct compact_control *cc, struct capture_control *capc)
2352 {
2353         enum compact_result ret;
2354         unsigned long start_pfn = cc->zone->zone_start_pfn;
2355         unsigned long end_pfn = zone_end_pfn(cc->zone);
2356         unsigned long last_migrated_pfn;
2357         const bool sync = cc->mode != MIGRATE_ASYNC;
2358         bool update_cached;
2359         unsigned int nr_succeeded = 0;
2360
2361         /*
2362          * These counters track activities during zone compaction.  Initialize
2363          * them before compacting a new zone.
2364          */
2365         cc->total_migrate_scanned = 0;
2366         cc->total_free_scanned = 0;
2367         cc->nr_migratepages = 0;
2368         cc->nr_freepages = 0;
2369         INIT_LIST_HEAD(&cc->freepages);
2370         INIT_LIST_HEAD(&cc->migratepages);
2371
2372         cc->migratetype = gfp_migratetype(cc->gfp_mask);
2373
2374         if (!is_via_compact_memory(cc->order)) {
2375                 unsigned long watermark;
2376
2377                 /* Allocation can already succeed, nothing to do */
2378                 watermark = wmark_pages(cc->zone,
2379                                         cc->alloc_flags & ALLOC_WMARK_MASK);
2380                 if (zone_watermark_ok(cc->zone, cc->order, watermark,
2381                                       cc->highest_zoneidx, cc->alloc_flags))
2382                         return COMPACT_SUCCESS;
2383
2384                 /* Compaction is likely to fail */
2385                 if (!compaction_suitable(cc->zone, cc->order,
2386                                          cc->highest_zoneidx))
2387                         return COMPACT_SKIPPED;
2388         }
2389
2390         /*
2391          * Clear pageblock skip if there were failures recently and compaction
2392          * is about to be retried after being deferred.
2393          */
2394         if (compaction_restarting(cc->zone, cc->order))
2395                 __reset_isolation_suitable(cc->zone);
2396
2397         /*
2398          * Setup to move all movable pages to the end of the zone. Used cached
2399          * information on where the scanners should start (unless we explicitly
2400          * want to compact the whole zone), but check that it is initialised
2401          * by ensuring the values are within zone boundaries.
2402          */
2403         cc->fast_start_pfn = 0;
2404         if (cc->whole_zone) {
2405                 cc->migrate_pfn = start_pfn;
2406                 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2407         } else {
2408                 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2409                 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2410                 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2411                         cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2412                         cc->zone->compact_cached_free_pfn = cc->free_pfn;
2413                 }
2414                 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2415                         cc->migrate_pfn = start_pfn;
2416                         cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2417                         cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2418                 }
2419
2420                 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2421                         cc->whole_zone = true;
2422         }
2423
2424         last_migrated_pfn = 0;
2425
2426         /*
2427          * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2428          * the basis that some migrations will fail in ASYNC mode. However,
2429          * if the cached PFNs match and pageblocks are skipped due to having
2430          * no isolation candidates, then the sync state does not matter.
2431          * Until a pageblock with isolation candidates is found, keep the
2432          * cached PFNs in sync to avoid revisiting the same blocks.
2433          */
2434         update_cached = !sync &&
2435                 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2436
2437         trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2438
2439         /* lru_add_drain_all could be expensive with involving other CPUs */
2440         lru_add_drain();
2441
2442         while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2443                 int err;
2444                 unsigned long iteration_start_pfn = cc->migrate_pfn;
2445
2446                 /*
2447                  * Avoid multiple rescans of the same pageblock which can
2448                  * happen if a page cannot be isolated (dirty/writeback in
2449                  * async mode) or if the migrated pages are being allocated
2450                  * before the pageblock is cleared.  The first rescan will
2451                  * capture the entire pageblock for migration. If it fails,
2452                  * it'll be marked skip and scanning will proceed as normal.
2453                  */
2454                 cc->finish_pageblock = false;
2455                 if (pageblock_start_pfn(last_migrated_pfn) ==
2456                     pageblock_start_pfn(iteration_start_pfn)) {
2457                         cc->finish_pageblock = true;
2458                 }
2459
2460 rescan:
2461                 switch (isolate_migratepages(cc)) {
2462                 case ISOLATE_ABORT:
2463                         ret = COMPACT_CONTENDED;
2464                         putback_movable_pages(&cc->migratepages);
2465                         cc->nr_migratepages = 0;
2466                         goto out;
2467                 case ISOLATE_NONE:
2468                         if (update_cached) {
2469                                 cc->zone->compact_cached_migrate_pfn[1] =
2470                                         cc->zone->compact_cached_migrate_pfn[0];
2471                         }
2472
2473                         /*
2474                          * We haven't isolated and migrated anything, but
2475                          * there might still be unflushed migrations from
2476                          * previous cc->order aligned block.
2477                          */
2478                         goto check_drain;
2479                 case ISOLATE_SUCCESS:
2480                         update_cached = false;
2481                         last_migrated_pfn = iteration_start_pfn;
2482                 }
2483
2484                 err = migrate_pages(&cc->migratepages, compaction_alloc,
2485                                 compaction_free, (unsigned long)cc, cc->mode,
2486                                 MR_COMPACTION, &nr_succeeded);
2487
2488                 trace_mm_compaction_migratepages(cc, nr_succeeded);
2489
2490                 /* All pages were either migrated or will be released */
2491                 cc->nr_migratepages = 0;
2492                 if (err) {
2493                         putback_movable_pages(&cc->migratepages);
2494                         /*
2495                          * migrate_pages() may return -ENOMEM when scanners meet
2496                          * and we want compact_finished() to detect it
2497                          */
2498                         if (err == -ENOMEM && !compact_scanners_met(cc)) {
2499                                 ret = COMPACT_CONTENDED;
2500                                 goto out;
2501                         }
2502                         /*
2503                          * If an ASYNC or SYNC_LIGHT fails to migrate a page
2504                          * within the current order-aligned block and
2505                          * fast_find_migrateblock may be used then scan the
2506                          * remainder of the pageblock. This will mark the
2507                          * pageblock "skip" to avoid rescanning in the near
2508                          * future. This will isolate more pages than necessary
2509                          * for the request but avoid loops due to
2510                          * fast_find_migrateblock revisiting blocks that were
2511                          * recently partially scanned.
2512                          */
2513                         if (!pageblock_aligned(cc->migrate_pfn) &&
2514                             !cc->ignore_skip_hint && !cc->finish_pageblock &&
2515                             (cc->mode < MIGRATE_SYNC)) {
2516                                 cc->finish_pageblock = true;
2517
2518                                 /*
2519                                  * Draining pcplists does not help THP if
2520                                  * any page failed to migrate. Even after
2521                                  * drain, the pageblock will not be free.
2522                                  */
2523                                 if (cc->order == COMPACTION_HPAGE_ORDER)
2524                                         last_migrated_pfn = 0;
2525
2526                                 goto rescan;
2527                         }
2528                 }
2529
2530                 /* Stop if a page has been captured */
2531                 if (capc && capc->page) {
2532                         ret = COMPACT_SUCCESS;
2533                         break;
2534                 }
2535
2536 check_drain:
2537                 /*
2538                  * Has the migration scanner moved away from the previous
2539                  * cc->order aligned block where we migrated from? If yes,
2540                  * flush the pages that were freed, so that they can merge and
2541                  * compact_finished() can detect immediately if allocation
2542                  * would succeed.
2543                  */
2544                 if (cc->order > 0 && last_migrated_pfn) {
2545                         unsigned long current_block_start =
2546                                 block_start_pfn(cc->migrate_pfn, cc->order);
2547
2548                         if (last_migrated_pfn < current_block_start) {
2549                                 lru_add_drain_cpu_zone(cc->zone);
2550                                 /* No more flushing until we migrate again */
2551                                 last_migrated_pfn = 0;
2552                         }
2553                 }
2554         }
2555
2556 out:
2557         /*
2558          * Release free pages and update where the free scanner should restart,
2559          * so we don't leave any returned pages behind in the next attempt.
2560          */
2561         if (cc->nr_freepages > 0) {
2562                 unsigned long free_pfn = release_freepages(&cc->freepages);
2563
2564                 cc->nr_freepages = 0;
2565                 VM_BUG_ON(free_pfn == 0);
2566                 /* The cached pfn is always the first in a pageblock */
2567                 free_pfn = pageblock_start_pfn(free_pfn);
2568                 /*
2569                  * Only go back, not forward. The cached pfn might have been
2570                  * already reset to zone end in compact_finished()
2571                  */
2572                 if (free_pfn > cc->zone->compact_cached_free_pfn)
2573                         cc->zone->compact_cached_free_pfn = free_pfn;
2574         }
2575
2576         count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2577         count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2578
2579         trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2580
2581         VM_BUG_ON(!list_empty(&cc->freepages));
2582         VM_BUG_ON(!list_empty(&cc->migratepages));
2583
2584         return ret;
2585 }
2586
2587 static enum compact_result compact_zone_order(struct zone *zone, int order,
2588                 gfp_t gfp_mask, enum compact_priority prio,
2589                 unsigned int alloc_flags, int highest_zoneidx,
2590                 struct page **capture)
2591 {
2592         enum compact_result ret;
2593         struct compact_control cc = {
2594                 .order = order,
2595                 .search_order = order,
2596                 .gfp_mask = gfp_mask,
2597                 .zone = zone,
2598                 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2599                                         MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2600                 .alloc_flags = alloc_flags,
2601                 .highest_zoneidx = highest_zoneidx,
2602                 .direct_compaction = true,
2603                 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2604                 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2605                 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2606         };
2607         struct capture_control capc = {
2608                 .cc = &cc,
2609                 .page = NULL,
2610         };
2611
2612         /*
2613          * Make sure the structs are really initialized before we expose the
2614          * capture control, in case we are interrupted and the interrupt handler
2615          * frees a page.
2616          */
2617         barrier();
2618         WRITE_ONCE(current->capture_control, &capc);
2619
2620         ret = compact_zone(&cc, &capc);
2621
2622         /*
2623          * Make sure we hide capture control first before we read the captured
2624          * page pointer, otherwise an interrupt could free and capture a page
2625          * and we would leak it.
2626          */
2627         WRITE_ONCE(current->capture_control, NULL);
2628         *capture = READ_ONCE(capc.page);
2629         /*
2630          * Technically, it is also possible that compaction is skipped but
2631          * the page is still captured out of luck(IRQ came and freed the page).
2632          * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2633          * the COMPACT[STALL|FAIL] when compaction is skipped.
2634          */
2635         if (*capture)
2636                 ret = COMPACT_SUCCESS;
2637
2638         return ret;
2639 }
2640
2641 /**
2642  * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2643  * @gfp_mask: The GFP mask of the current allocation
2644  * @order: The order of the current allocation
2645  * @alloc_flags: The allocation flags of the current allocation
2646  * @ac: The context of current allocation
2647  * @prio: Determines how hard direct compaction should try to succeed
2648  * @capture: Pointer to free page created by compaction will be stored here
2649  *
2650  * This is the main entry point for direct page compaction.
2651  */
2652 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2653                 unsigned int alloc_flags, const struct alloc_context *ac,
2654                 enum compact_priority prio, struct page **capture)
2655 {
2656         int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2657         struct zoneref *z;
2658         struct zone *zone;
2659         enum compact_result rc = COMPACT_SKIPPED;
2660
2661         /*
2662          * Check if the GFP flags allow compaction - GFP_NOIO is really
2663          * tricky context because the migration might require IO
2664          */
2665         if (!may_perform_io)
2666                 return COMPACT_SKIPPED;
2667
2668         trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2669
2670         /* Compact each zone in the list */
2671         for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2672                                         ac->highest_zoneidx, ac->nodemask) {
2673                 enum compact_result status;
2674
2675                 if (prio > MIN_COMPACT_PRIORITY
2676                                         && compaction_deferred(zone, order)) {
2677                         rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2678                         continue;
2679                 }
2680
2681                 status = compact_zone_order(zone, order, gfp_mask, prio,
2682                                 alloc_flags, ac->highest_zoneidx, capture);
2683                 rc = max(status, rc);
2684
2685                 /* The allocation should succeed, stop compacting */
2686                 if (status == COMPACT_SUCCESS) {
2687                         /*
2688                          * We think the allocation will succeed in this zone,
2689                          * but it is not certain, hence the false. The caller
2690                          * will repeat this with true if allocation indeed
2691                          * succeeds in this zone.
2692                          */
2693                         compaction_defer_reset(zone, order, false);
2694
2695                         break;
2696                 }
2697
2698                 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2699                                         status == COMPACT_PARTIAL_SKIPPED))
2700                         /*
2701                          * We think that allocation won't succeed in this zone
2702                          * so we defer compaction there. If it ends up
2703                          * succeeding after all, it will be reset.
2704                          */
2705                         defer_compaction(zone, order);
2706
2707                 /*
2708                  * We might have stopped compacting due to need_resched() in
2709                  * async compaction, or due to a fatal signal detected. In that
2710                  * case do not try further zones
2711                  */
2712                 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2713                                         || fatal_signal_pending(current))
2714                         break;
2715         }
2716
2717         return rc;
2718 }
2719
2720 /*
2721  * Compact all zones within a node till each zone's fragmentation score
2722  * reaches within proactive compaction thresholds (as determined by the
2723  * proactiveness tunable).
2724  *
2725  * It is possible that the function returns before reaching score targets
2726  * due to various back-off conditions, such as, contention on per-node or
2727  * per-zone locks.
2728  */
2729 static void proactive_compact_node(pg_data_t *pgdat)
2730 {
2731         int zoneid;
2732         struct zone *zone;
2733         struct compact_control cc = {
2734                 .order = -1,
2735                 .mode = MIGRATE_SYNC_LIGHT,
2736                 .ignore_skip_hint = true,
2737                 .whole_zone = true,
2738                 .gfp_mask = GFP_KERNEL,
2739                 .proactive_compaction = true,
2740         };
2741
2742         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2743                 zone = &pgdat->node_zones[zoneid];
2744                 if (!populated_zone(zone))
2745                         continue;
2746
2747                 cc.zone = zone;
2748
2749                 compact_zone(&cc, NULL);
2750
2751                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2752                                      cc.total_migrate_scanned);
2753                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2754                                      cc.total_free_scanned);
2755         }
2756 }
2757
2758 /* Compact all zones within a node */
2759 static void compact_node(int nid)
2760 {
2761         pg_data_t *pgdat = NODE_DATA(nid);
2762         int zoneid;
2763         struct zone *zone;
2764         struct compact_control cc = {
2765                 .order = -1,
2766                 .mode = MIGRATE_SYNC,
2767                 .ignore_skip_hint = true,
2768                 .whole_zone = true,
2769                 .gfp_mask = GFP_KERNEL,
2770         };
2771
2772
2773         for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2774
2775                 zone = &pgdat->node_zones[zoneid];
2776                 if (!populated_zone(zone))
2777                         continue;
2778
2779                 cc.zone = zone;
2780
2781                 compact_zone(&cc, NULL);
2782         }
2783 }
2784
2785 /* Compact all nodes in the system */
2786 static void compact_nodes(void)
2787 {
2788         int nid;
2789
2790         /* Flush pending updates to the LRU lists */
2791         lru_add_drain_all();
2792
2793         for_each_online_node(nid)
2794                 compact_node(nid);
2795 }
2796
2797 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2798                 void *buffer, size_t *length, loff_t *ppos)
2799 {
2800         int rc, nid;
2801
2802         rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2803         if (rc)
2804                 return rc;
2805
2806         if (write && sysctl_compaction_proactiveness) {
2807                 for_each_online_node(nid) {
2808                         pg_data_t *pgdat = NODE_DATA(nid);
2809
2810                         if (pgdat->proactive_compact_trigger)
2811                                 continue;
2812
2813                         pgdat->proactive_compact_trigger = true;
2814                         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2815                                                              pgdat->nr_zones - 1);
2816                         wake_up_interruptible(&pgdat->kcompactd_wait);
2817                 }
2818         }
2819
2820         return 0;
2821 }
2822
2823 /*
2824  * This is the entry point for compacting all nodes via
2825  * /proc/sys/vm/compact_memory
2826  */
2827 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2828                         void *buffer, size_t *length, loff_t *ppos)
2829 {
2830         int ret;
2831
2832         ret = proc_dointvec(table, write, buffer, length, ppos);
2833         if (ret)
2834                 return ret;
2835
2836         if (sysctl_compact_memory != 1)
2837                 return -EINVAL;
2838
2839         if (write)
2840                 compact_nodes();
2841
2842         return 0;
2843 }
2844
2845 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2846 static ssize_t compact_store(struct device *dev,
2847                              struct device_attribute *attr,
2848                              const char *buf, size_t count)
2849 {
2850         int nid = dev->id;
2851
2852         if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2853                 /* Flush pending updates to the LRU lists */
2854                 lru_add_drain_all();
2855
2856                 compact_node(nid);
2857         }
2858
2859         return count;
2860 }
2861 static DEVICE_ATTR_WO(compact);
2862
2863 int compaction_register_node(struct node *node)
2864 {
2865         return device_create_file(&node->dev, &dev_attr_compact);
2866 }
2867
2868 void compaction_unregister_node(struct node *node)
2869 {
2870         return device_remove_file(&node->dev, &dev_attr_compact);
2871 }
2872 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2873
2874 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2875 {
2876         return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2877                 pgdat->proactive_compact_trigger;
2878 }
2879
2880 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2881 {
2882         int zoneid;
2883         struct zone *zone;
2884         enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2885
2886         for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2887                 zone = &pgdat->node_zones[zoneid];
2888
2889                 if (!populated_zone(zone))
2890                         continue;
2891
2892                 /* Allocation can already succeed, check other zones */
2893                 if (zone_watermark_ok(zone, pgdat->kcompactd_max_order,
2894                                       min_wmark_pages(zone),
2895                                       highest_zoneidx, 0))
2896                         continue;
2897
2898                 if (compaction_suitable(zone, pgdat->kcompactd_max_order,
2899                                         highest_zoneidx))
2900                         return true;
2901         }
2902
2903         return false;
2904 }
2905
2906 static void kcompactd_do_work(pg_data_t *pgdat)
2907 {
2908         /*
2909          * With no special task, compact all zones so that a page of requested
2910          * order is allocatable.
2911          */
2912         int zoneid;
2913         struct zone *zone;
2914         struct compact_control cc = {
2915                 .order = pgdat->kcompactd_max_order,
2916                 .search_order = pgdat->kcompactd_max_order,
2917                 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2918                 .mode = MIGRATE_SYNC_LIGHT,
2919                 .ignore_skip_hint = false,
2920                 .gfp_mask = GFP_KERNEL,
2921         };
2922         trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2923                                                         cc.highest_zoneidx);
2924         count_compact_event(KCOMPACTD_WAKE);
2925
2926         for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2927                 int status;
2928
2929                 zone = &pgdat->node_zones[zoneid];
2930                 if (!populated_zone(zone))
2931                         continue;
2932
2933                 if (compaction_deferred(zone, cc.order))
2934                         continue;
2935
2936                 /* Allocation can already succeed, nothing to do */
2937                 if (zone_watermark_ok(zone, cc.order,
2938                                       min_wmark_pages(zone), zoneid, 0))
2939                         continue;
2940
2941                 if (!compaction_suitable(zone, cc.order, zoneid))
2942                         continue;
2943
2944                 if (kthread_should_stop())
2945                         return;
2946
2947                 cc.zone = zone;
2948                 status = compact_zone(&cc, NULL);
2949
2950                 if (status == COMPACT_SUCCESS) {
2951                         compaction_defer_reset(zone, cc.order, false);
2952                 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2953                         /*
2954                          * Buddy pages may become stranded on pcps that could
2955                          * otherwise coalesce on the zone's free area for
2956                          * order >= cc.order.  This is ratelimited by the
2957                          * upcoming deferral.
2958                          */
2959                         drain_all_pages(zone);
2960
2961                         /*
2962                          * We use sync migration mode here, so we defer like
2963                          * sync direct compaction does.
2964                          */
2965                         defer_compaction(zone, cc.order);
2966                 }
2967
2968                 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2969                                      cc.total_migrate_scanned);
2970                 count_compact_events(KCOMPACTD_FREE_SCANNED,
2971                                      cc.total_free_scanned);
2972         }
2973
2974         /*
2975          * Regardless of success, we are done until woken up next. But remember
2976          * the requested order/highest_zoneidx in case it was higher/tighter
2977          * than our current ones
2978          */
2979         if (pgdat->kcompactd_max_order <= cc.order)
2980                 pgdat->kcompactd_max_order = 0;
2981         if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2982                 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2983 }
2984
2985 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2986 {
2987         if (!order)
2988                 return;
2989
2990         if (pgdat->kcompactd_max_order < order)
2991                 pgdat->kcompactd_max_order = order;
2992
2993         if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2994                 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2995
2996         /*
2997          * Pairs with implicit barrier in wait_event_freezable()
2998          * such that wakeups are not missed.
2999          */
3000         if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3001                 return;
3002
3003         if (!kcompactd_node_suitable(pgdat))
3004                 return;
3005
3006         trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3007                                                         highest_zoneidx);
3008         wake_up_interruptible(&pgdat->kcompactd_wait);
3009 }
3010
3011 /*
3012  * The background compaction daemon, started as a kernel thread
3013  * from the init process.
3014  */
3015 static int kcompactd(void *p)
3016 {
3017         pg_data_t *pgdat = (pg_data_t *)p;
3018         struct task_struct *tsk = current;
3019         long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3020         long timeout = default_timeout;
3021
3022         const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3023
3024         if (!cpumask_empty(cpumask))
3025                 set_cpus_allowed_ptr(tsk, cpumask);
3026
3027         set_freezable();
3028
3029         pgdat->kcompactd_max_order = 0;
3030         pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3031
3032         while (!kthread_should_stop()) {
3033                 unsigned long pflags;
3034
3035                 /*
3036                  * Avoid the unnecessary wakeup for proactive compaction
3037                  * when it is disabled.
3038                  */
3039                 if (!sysctl_compaction_proactiveness)
3040                         timeout = MAX_SCHEDULE_TIMEOUT;
3041                 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3042                 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3043                         kcompactd_work_requested(pgdat), timeout) &&
3044                         !pgdat->proactive_compact_trigger) {
3045
3046                         psi_memstall_enter(&pflags);
3047                         kcompactd_do_work(pgdat);
3048                         psi_memstall_leave(&pflags);
3049                         /*
3050                          * Reset the timeout value. The defer timeout from
3051                          * proactive compaction is lost here but that is fine
3052                          * as the condition of the zone changing substantionally
3053                          * then carrying on with the previous defer interval is
3054                          * not useful.
3055                          */
3056                         timeout = default_timeout;
3057                         continue;
3058                 }
3059
3060                 /*
3061                  * Start the proactive work with default timeout. Based
3062                  * on the fragmentation score, this timeout is updated.
3063                  */
3064                 timeout = default_timeout;
3065                 if (should_proactive_compact_node(pgdat)) {
3066                         unsigned int prev_score, score;
3067
3068                         prev_score = fragmentation_score_node(pgdat);
3069                         proactive_compact_node(pgdat);
3070                         score = fragmentation_score_node(pgdat);
3071                         /*
3072                          * Defer proactive compaction if the fragmentation
3073                          * score did not go down i.e. no progress made.
3074                          */
3075                         if (unlikely(score >= prev_score))
3076                                 timeout =
3077                                    default_timeout << COMPACT_MAX_DEFER_SHIFT;
3078                 }
3079                 if (unlikely(pgdat->proactive_compact_trigger))
3080                         pgdat->proactive_compact_trigger = false;
3081         }
3082
3083         return 0;
3084 }
3085
3086 /*
3087  * This kcompactd start function will be called by init and node-hot-add.
3088  * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3089  */
3090 void __meminit kcompactd_run(int nid)
3091 {
3092         pg_data_t *pgdat = NODE_DATA(nid);
3093
3094         if (pgdat->kcompactd)
3095                 return;
3096
3097         pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3098         if (IS_ERR(pgdat->kcompactd)) {
3099                 pr_err("Failed to start kcompactd on node %d\n", nid);
3100                 pgdat->kcompactd = NULL;
3101         }
3102 }
3103
3104 /*
3105  * Called by memory hotplug when all memory in a node is offlined. Caller must
3106  * be holding mem_hotplug_begin/done().
3107  */
3108 void __meminit kcompactd_stop(int nid)
3109 {
3110         struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3111
3112         if (kcompactd) {
3113                 kthread_stop(kcompactd);
3114                 NODE_DATA(nid)->kcompactd = NULL;
3115         }
3116 }
3117
3118 /*
3119  * It's optimal to keep kcompactd on the same CPUs as their memory, but
3120  * not required for correctness. So if the last cpu in a node goes
3121  * away, we get changed to run anywhere: as the first one comes back,
3122  * restore their cpu bindings.
3123  */
3124 static int kcompactd_cpu_online(unsigned int cpu)
3125 {
3126         int nid;
3127
3128         for_each_node_state(nid, N_MEMORY) {
3129                 pg_data_t *pgdat = NODE_DATA(nid);
3130                 const struct cpumask *mask;
3131
3132                 mask = cpumask_of_node(pgdat->node_id);
3133
3134                 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3135                         /* One of our CPUs online: restore mask */
3136                         if (pgdat->kcompactd)
3137                                 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3138         }
3139         return 0;
3140 }
3141
3142 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3143                 int write, void *buffer, size_t *lenp, loff_t *ppos)
3144 {
3145         int ret, old;
3146
3147         if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3148                 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3149
3150         old = *(int *)table->data;
3151         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3152         if (ret)
3153                 return ret;
3154         if (old != *(int *)table->data)
3155                 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3156                              table->procname, current->comm,
3157                              task_pid_nr(current));
3158         return ret;
3159 }
3160
3161 static struct ctl_table vm_compaction[] = {
3162         {
3163                 .procname       = "compact_memory",
3164                 .data           = &sysctl_compact_memory,
3165                 .maxlen         = sizeof(int),
3166                 .mode           = 0200,
3167                 .proc_handler   = sysctl_compaction_handler,
3168         },
3169         {
3170                 .procname       = "compaction_proactiveness",
3171                 .data           = &sysctl_compaction_proactiveness,
3172                 .maxlen         = sizeof(sysctl_compaction_proactiveness),
3173                 .mode           = 0644,
3174                 .proc_handler   = compaction_proactiveness_sysctl_handler,
3175                 .extra1         = SYSCTL_ZERO,
3176                 .extra2         = SYSCTL_ONE_HUNDRED,
3177         },
3178         {
3179                 .procname       = "extfrag_threshold",
3180                 .data           = &sysctl_extfrag_threshold,
3181                 .maxlen         = sizeof(int),
3182                 .mode           = 0644,
3183                 .proc_handler   = proc_dointvec_minmax,
3184                 .extra1         = SYSCTL_ZERO,
3185                 .extra2         = SYSCTL_ONE_THOUSAND,
3186         },
3187         {
3188                 .procname       = "compact_unevictable_allowed",
3189                 .data           = &sysctl_compact_unevictable_allowed,
3190                 .maxlen         = sizeof(int),
3191                 .mode           = 0644,
3192                 .proc_handler   = proc_dointvec_minmax_warn_RT_change,
3193                 .extra1         = SYSCTL_ZERO,
3194                 .extra2         = SYSCTL_ONE,
3195         },
3196         { }
3197 };
3198
3199 static int __init kcompactd_init(void)
3200 {
3201         int nid;
3202         int ret;
3203
3204         ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3205                                         "mm/compaction:online",
3206                                         kcompactd_cpu_online, NULL);
3207         if (ret < 0) {
3208                 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3209                 return ret;
3210         }
3211
3212         for_each_node_state(nid, N_MEMORY)
3213                 kcompactd_run(nid);
3214         register_sysctl_init("vm", vm_compaction);
3215         return 0;
3216 }
3217 subsys_initcall(kcompactd_init)
3218
3219 #endif /* CONFIG_COMPACTION */