1 // SPDX-License-Identifier: GPL-2.0+
3 * XArray implementation
4 * Copyright (c) 2017 Microsoft Corporation
5 * Author: Matthew Wilcox <willy@infradead.org>
8 #include <linux/bitmap.h>
9 #include <linux/export.h>
10 #include <linux/list.h>
11 #include <linux/slab.h>
12 #include <linux/xarray.h>
15 * Coding conventions in this file:
17 * @xa is used to refer to the entire xarray.
18 * @xas is the 'xarray operation state'. It may be either a pointer to
19 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
21 * @index is the index of the entry being operated on
22 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
23 * @node refers to an xa_node; usually the primary one being operated on by
25 * @offset is the index into the slots array inside an xa_node.
26 * @parent refers to the @xa_node closer to the head than @node.
27 * @entry refers to something stored in a slot in the xarray
30 static inline unsigned int xa_lock_type(const struct xarray *xa)
32 return (__force unsigned int)xa->xa_flags & 3;
35 static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
37 if (lock_type == XA_LOCK_IRQ)
39 else if (lock_type == XA_LOCK_BH)
45 static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
47 if (lock_type == XA_LOCK_IRQ)
49 else if (lock_type == XA_LOCK_BH)
55 static inline bool xa_track_free(const struct xarray *xa)
57 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
60 static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
62 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
63 xa->xa_flags |= XA_FLAGS_MARK(mark);
66 static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
68 if (xa->xa_flags & XA_FLAGS_MARK(mark))
69 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
72 static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
74 return node->marks[(__force unsigned)mark];
77 static inline bool node_get_mark(struct xa_node *node,
78 unsigned int offset, xa_mark_t mark)
80 return test_bit(offset, node_marks(node, mark));
83 /* returns true if the bit was set */
84 static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
87 return __test_and_set_bit(offset, node_marks(node, mark));
90 /* returns true if the bit was set */
91 static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
94 return __test_and_clear_bit(offset, node_marks(node, mark));
97 static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
99 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
102 static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
104 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
107 #define mark_inc(mark) do { \
108 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
112 * xas_squash_marks() - Merge all marks to the first entry
113 * @xas: Array operation state.
115 * Set a mark on the first entry if any entry has it set. Clear marks on
116 * all sibling entries.
118 static void xas_squash_marks(const struct xa_state *xas)
120 unsigned int mark = 0;
121 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
127 unsigned long *marks = xas->xa_node->marks[mark];
128 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
130 __set_bit(xas->xa_offset, marks);
131 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
132 } while (mark++ != (__force unsigned)XA_MARK_MAX);
135 /* extracts the offset within this node from the index */
136 static unsigned int get_offset(unsigned long index, struct xa_node *node)
138 return (index >> node->shift) & XA_CHUNK_MASK;
141 static void xas_set_offset(struct xa_state *xas)
143 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
146 /* move the index either forwards (find) or backwards (sibling slot) */
147 static void xas_move_index(struct xa_state *xas, unsigned long offset)
149 unsigned int shift = xas->xa_node->shift;
150 xas->xa_index &= ~XA_CHUNK_MASK << shift;
151 xas->xa_index += offset << shift;
154 static void xas_advance(struct xa_state *xas)
157 xas_move_index(xas, xas->xa_offset);
160 static void *set_bounds(struct xa_state *xas)
162 xas->xa_node = XAS_BOUNDS;
167 * Starts a walk. If the @xas is already valid, we assume that it's on
168 * the right path and just return where we've got to. If we're in an
169 * error state, return NULL. If the index is outside the current scope
170 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
171 * set @xas->xa_node to NULL and return the current head of the array.
173 static void *xas_start(struct xa_state *xas)
178 return xas_reload(xas);
182 entry = xa_head(xas->xa);
183 if (!xa_is_node(entry)) {
185 return set_bounds(xas);
187 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
188 return set_bounds(xas);
195 static void *xas_descend(struct xa_state *xas, struct xa_node *node)
197 unsigned int offset = get_offset(xas->xa_index, node);
198 void *entry = xa_entry(xas->xa, node, offset);
201 if (xa_is_sibling(entry)) {
202 offset = xa_to_sibling(entry);
203 entry = xa_entry(xas->xa, node, offset);
206 xas->xa_offset = offset;
211 * xas_load() - Load an entry from the XArray (advanced).
212 * @xas: XArray operation state.
214 * Usually walks the @xas to the appropriate state to load the entry
215 * stored at xa_index. However, it will do nothing and return %NULL if
216 * @xas is in an error state. xas_load() will never expand the tree.
218 * If the xa_state is set up to operate on a multi-index entry, xas_load()
219 * may return %NULL or an internal entry, even if there are entries
220 * present within the range specified by @xas.
222 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
223 * Return: Usually an entry in the XArray, but see description for exceptions.
225 void *xas_load(struct xa_state *xas)
227 void *entry = xas_start(xas);
229 while (xa_is_node(entry)) {
230 struct xa_node *node = xa_to_node(entry);
232 if (xas->xa_shift > node->shift)
234 entry = xas_descend(xas, node);
238 EXPORT_SYMBOL_GPL(xas_load);
240 /* Move the radix tree node cache here */
241 extern struct kmem_cache *radix_tree_node_cachep;
242 extern void radix_tree_node_rcu_free(struct rcu_head *head);
244 #define XA_RCU_FREE ((struct xarray *)1)
246 static void xa_node_free(struct xa_node *node)
248 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
249 node->array = XA_RCU_FREE;
250 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
254 * xas_destroy() - Free any resources allocated during the XArray operation.
255 * @xas: XArray operation state.
257 * This function is now internal-only.
259 static void xas_destroy(struct xa_state *xas)
261 struct xa_node *node = xas->xa_alloc;
265 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
266 kmem_cache_free(radix_tree_node_cachep, node);
267 xas->xa_alloc = NULL;
271 * xas_nomem() - Allocate memory if needed.
272 * @xas: XArray operation state.
273 * @gfp: Memory allocation flags.
275 * If we need to add new nodes to the XArray, we try to allocate memory
276 * with GFP_NOWAIT while holding the lock, which will usually succeed.
277 * If it fails, @xas is flagged as needing memory to continue. The caller
278 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
279 * the caller should retry the operation.
281 * Forward progress is guaranteed as one node is allocated here and
282 * stored in the xa_state where it will be found by xas_alloc(). More
283 * nodes will likely be found in the slab allocator, but we do not tie
286 * Return: true if memory was needed, and was successfully allocated.
288 bool xas_nomem(struct xa_state *xas, gfp_t gfp)
290 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
294 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
297 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
298 xas->xa_node = XAS_RESTART;
301 EXPORT_SYMBOL_GPL(xas_nomem);
304 * __xas_nomem() - Drop locks and allocate memory if needed.
305 * @xas: XArray operation state.
306 * @gfp: Memory allocation flags.
308 * Internal variant of xas_nomem().
310 * Return: true if memory was needed, and was successfully allocated.
312 static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
313 __must_hold(xas->xa->xa_lock)
315 unsigned int lock_type = xa_lock_type(xas->xa);
317 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
321 if (gfpflags_allow_blocking(gfp)) {
322 xas_unlock_type(xas, lock_type);
323 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
324 xas_lock_type(xas, lock_type);
326 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
330 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
331 xas->xa_node = XAS_RESTART;
335 static void xas_update(struct xa_state *xas, struct xa_node *node)
338 xas->xa_update(node);
340 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
343 static void *xas_alloc(struct xa_state *xas, unsigned int shift)
345 struct xa_node *parent = xas->xa_node;
346 struct xa_node *node = xas->xa_alloc;
348 if (xas_invalid(xas))
352 xas->xa_alloc = NULL;
354 node = kmem_cache_alloc(radix_tree_node_cachep,
355 GFP_NOWAIT | __GFP_NOWARN);
357 xas_set_err(xas, -ENOMEM);
363 node->offset = xas->xa_offset;
365 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
366 xas_update(xas, parent);
368 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
369 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
373 RCU_INIT_POINTER(node->parent, xas->xa_node);
374 node->array = xas->xa;
379 #ifdef CONFIG_XARRAY_MULTI
380 /* Returns the number of indices covered by a given xa_state */
381 static unsigned long xas_size(const struct xa_state *xas)
383 return (xas->xa_sibs + 1UL) << xas->xa_shift;
388 * Use this to calculate the maximum index that will need to be created
389 * in order to add the entry described by @xas. Because we cannot store a
390 * multiple-index entry at index 0, the calculation is a little more complex
391 * than you might expect.
393 static unsigned long xas_max(struct xa_state *xas)
395 unsigned long max = xas->xa_index;
397 #ifdef CONFIG_XARRAY_MULTI
398 if (xas->xa_shift || xas->xa_sibs) {
399 unsigned long mask = xas_size(xas) - 1;
409 /* The maximum index that can be contained in the array without expanding it */
410 static unsigned long max_index(void *entry)
412 if (!xa_is_node(entry))
414 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
417 static void xas_shrink(struct xa_state *xas)
419 struct xarray *xa = xas->xa;
420 struct xa_node *node = xas->xa_node;
425 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
426 if (node->count != 1)
428 entry = xa_entry_locked(xa, node, 0);
431 if (!xa_is_node(entry) && node->shift)
433 xas->xa_node = XAS_BOUNDS;
435 RCU_INIT_POINTER(xa->xa_head, entry);
436 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
437 xa_mark_clear(xa, XA_FREE_MARK);
441 if (!xa_is_node(entry))
442 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
443 xas_update(xas, node);
445 if (!xa_is_node(entry))
447 node = xa_to_node(entry);
453 * xas_delete_node() - Attempt to delete an xa_node
454 * @xas: Array operation state.
456 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
457 * a non-zero reference count.
459 static void xas_delete_node(struct xa_state *xas)
461 struct xa_node *node = xas->xa_node;
464 struct xa_node *parent;
466 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
470 parent = xa_parent_locked(xas->xa, node);
471 xas->xa_node = parent;
472 xas->xa_offset = node->offset;
476 xas->xa->xa_head = NULL;
477 xas->xa_node = XAS_BOUNDS;
481 parent->slots[xas->xa_offset] = NULL;
483 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
485 xas_update(xas, node);
493 * xas_free_nodes() - Free this node and all nodes that it references
494 * @xas: Array operation state.
497 * This node has been removed from the tree. We must now free it and all
498 * of its subnodes. There may be RCU walkers with references into the tree,
499 * so we must replace all entries with retry markers.
501 static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
503 unsigned int offset = 0;
504 struct xa_node *node = top;
507 void *entry = xa_entry_locked(xas->xa, node, offset);
509 if (xa_is_node(entry)) {
510 node = xa_to_node(entry);
515 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
517 while (offset == XA_CHUNK_SIZE) {
518 struct xa_node *parent;
520 parent = xa_parent_locked(xas->xa, node);
521 offset = node->offset + 1;
524 xas_update(xas, node);
534 * xas_expand adds nodes to the head of the tree until it has reached
535 * sufficient height to be able to contain @xas->xa_index
537 static int xas_expand(struct xa_state *xas, void *head)
539 struct xarray *xa = xas->xa;
540 struct xa_node *node = NULL;
541 unsigned int shift = 0;
542 unsigned long max = xas_max(xas);
547 while ((max >> shift) >= XA_CHUNK_SIZE)
548 shift += XA_CHUNK_SHIFT;
549 return shift + XA_CHUNK_SHIFT;
550 } else if (xa_is_node(head)) {
551 node = xa_to_node(head);
552 shift = node->shift + XA_CHUNK_SHIFT;
556 while (max > max_index(head)) {
559 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
560 node = xas_alloc(xas, shift);
565 if (xa_is_value(head))
567 RCU_INIT_POINTER(node->slots[0], head);
569 /* Propagate the aggregated mark info to the new child */
571 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
572 node_mark_all(node, XA_FREE_MARK);
573 if (!xa_marked(xa, XA_FREE_MARK)) {
574 node_clear_mark(node, 0, XA_FREE_MARK);
575 xa_mark_set(xa, XA_FREE_MARK);
577 } else if (xa_marked(xa, mark)) {
578 node_set_mark(node, 0, mark);
580 if (mark == XA_MARK_MAX)
586 * Now that the new node is fully initialised, we can add
589 if (xa_is_node(head)) {
590 xa_to_node(head)->offset = 0;
591 rcu_assign_pointer(xa_to_node(head)->parent, node);
593 head = xa_mk_node(node);
594 rcu_assign_pointer(xa->xa_head, head);
595 xas_update(xas, node);
597 shift += XA_CHUNK_SHIFT;
605 * xas_create() - Create a slot to store an entry in.
606 * @xas: XArray operation state.
608 * Most users will not need to call this function directly, as it is called
609 * by xas_store(). It is useful for doing conditional store operations
610 * (see the xa_cmpxchg() implementation for an example).
612 * Return: If the slot already existed, returns the contents of this slot.
613 * If the slot was newly created, returns %NULL. If it failed to create the
614 * slot, returns %NULL and indicates the error in @xas.
616 static void *xas_create(struct xa_state *xas)
618 struct xarray *xa = xas->xa;
621 struct xa_node *node = xas->xa_node;
623 unsigned int order = xas->xa_shift;
626 entry = xa_head_locked(xa);
628 shift = xas_expand(xas, entry);
631 entry = xa_head_locked(xa);
633 } else if (xas_error(xas)) {
636 unsigned int offset = xas->xa_offset;
639 entry = xa_entry_locked(xa, node, offset);
640 slot = &node->slots[offset];
643 entry = xa_head_locked(xa);
647 while (shift > order) {
648 shift -= XA_CHUNK_SHIFT;
650 node = xas_alloc(xas, shift);
653 if (xa_track_free(xa))
654 node_mark_all(node, XA_FREE_MARK);
655 rcu_assign_pointer(*slot, xa_mk_node(node));
656 } else if (xa_is_node(entry)) {
657 node = xa_to_node(entry);
661 entry = xas_descend(xas, node);
662 slot = &node->slots[xas->xa_offset];
669 * xas_create_range() - Ensure that stores to this range will succeed
670 * @xas: XArray operation state.
672 * Creates all of the slots in the range covered by @xas. Sets @xas to
673 * create single-index entries and positions it at the beginning of the
674 * range. This is for the benefit of users which have not yet been
675 * converted to use multi-index entries.
677 void xas_create_range(struct xa_state *xas)
679 unsigned long index = xas->xa_index;
680 unsigned char shift = xas->xa_shift;
681 unsigned char sibs = xas->xa_sibs;
683 xas->xa_index |= ((sibs + 1) << shift) - 1;
684 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
685 xas->xa_offset |= sibs;
693 if (xas->xa_index <= (index | XA_CHUNK_MASK))
695 xas->xa_index -= XA_CHUNK_SIZE;
698 struct xa_node *node = xas->xa_node;
699 xas->xa_node = xa_parent_locked(xas->xa, node);
700 xas->xa_offset = node->offset - 1;
701 if (node->offset != 0)
707 xas->xa_shift = shift;
709 xas->xa_index = index;
712 xas->xa_index = index;
716 EXPORT_SYMBOL_GPL(xas_create_range);
718 static void update_node(struct xa_state *xas, struct xa_node *node,
719 int count, int values)
721 if (!node || (!count && !values))
724 node->count += count;
725 node->nr_values += values;
726 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
727 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
728 xas_update(xas, node);
730 xas_delete_node(xas);
734 * xas_store() - Store this entry in the XArray.
735 * @xas: XArray operation state.
738 * If @xas is operating on a multi-index entry, the entry returned by this
739 * function is essentially meaningless (it may be an internal entry or it
740 * may be %NULL, even if there are non-NULL entries at some of the indices
741 * covered by the range). This is not a problem for any current users,
742 * and can be changed if needed.
744 * Return: The old entry at this index.
746 void *xas_store(struct xa_state *xas, void *entry)
748 struct xa_node *node;
749 void __rcu **slot = &xas->xa->xa_head;
750 unsigned int offset, max;
754 bool value = xa_is_value(entry);
757 first = xas_create(xas);
759 first = xas_load(xas);
761 if (xas_invalid(xas))
764 if (node && (xas->xa_shift < node->shift))
766 if ((first == entry) && !xas->xa_sibs)
770 offset = xas->xa_offset;
771 max = xas->xa_offset + xas->xa_sibs;
773 slot = &node->slots[offset];
775 xas_squash_marks(xas);
782 * Must clear the marks before setting the entry to NULL,
783 * otherwise xas_for_each_marked may find a NULL entry and
784 * stop early. rcu_assign_pointer contains a release barrier
785 * so the mark clearing will appear to happen before the
786 * entry is set to NULL.
788 rcu_assign_pointer(*slot, entry);
789 if (xa_is_node(next))
790 xas_free_nodes(xas, xa_to_node(next));
793 count += !next - !entry;
794 values += !xa_is_value(first) - !value;
798 if (!xa_is_sibling(entry))
799 entry = xa_mk_sibling(xas->xa_offset);
801 if (offset == XA_CHUNK_MASK)
804 next = xa_entry_locked(xas->xa, node, ++offset);
805 if (!xa_is_sibling(next)) {
806 if (!entry && (offset > max))
813 update_node(xas, node, count, values);
816 EXPORT_SYMBOL_GPL(xas_store);
819 * xas_get_mark() - Returns the state of this mark.
820 * @xas: XArray operation state.
821 * @mark: Mark number.
823 * Return: true if the mark is set, false if the mark is clear or @xas
824 * is in an error state.
826 bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
828 if (xas_invalid(xas))
831 return xa_marked(xas->xa, mark);
832 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
834 EXPORT_SYMBOL_GPL(xas_get_mark);
837 * xas_set_mark() - Sets the mark on this entry and its parents.
838 * @xas: XArray operation state.
839 * @mark: Mark number.
841 * Sets the specified mark on this entry, and walks up the tree setting it
842 * on all the ancestor entries. Does nothing if @xas has not been walked to
843 * an entry, or is in an error state.
845 void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
847 struct xa_node *node = xas->xa_node;
848 unsigned int offset = xas->xa_offset;
850 if (xas_invalid(xas))
854 if (node_set_mark(node, offset, mark))
856 offset = node->offset;
857 node = xa_parent_locked(xas->xa, node);
860 if (!xa_marked(xas->xa, mark))
861 xa_mark_set(xas->xa, mark);
863 EXPORT_SYMBOL_GPL(xas_set_mark);
866 * xas_clear_mark() - Clears the mark on this entry and its parents.
867 * @xas: XArray operation state.
868 * @mark: Mark number.
870 * Clears the specified mark on this entry, and walks back to the head
871 * attempting to clear it on all the ancestor entries. Does nothing if
872 * @xas has not been walked to an entry, or is in an error state.
874 void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
876 struct xa_node *node = xas->xa_node;
877 unsigned int offset = xas->xa_offset;
879 if (xas_invalid(xas))
883 if (!node_clear_mark(node, offset, mark))
885 if (node_any_mark(node, mark))
888 offset = node->offset;
889 node = xa_parent_locked(xas->xa, node);
892 if (xa_marked(xas->xa, mark))
893 xa_mark_clear(xas->xa, mark);
895 EXPORT_SYMBOL_GPL(xas_clear_mark);
898 * xas_init_marks() - Initialise all marks for the entry
899 * @xas: Array operations state.
901 * Initialise all marks for the entry specified by @xas. If we're tracking
902 * free entries with a mark, we need to set it on all entries. All other
905 * This implementation is not as efficient as it could be; we may walk
906 * up the tree multiple times.
908 void xas_init_marks(const struct xa_state *xas)
913 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
914 xas_set_mark(xas, mark);
916 xas_clear_mark(xas, mark);
917 if (mark == XA_MARK_MAX)
922 EXPORT_SYMBOL_GPL(xas_init_marks);
925 * xas_pause() - Pause a walk to drop a lock.
926 * @xas: XArray operation state.
928 * Some users need to pause a walk and drop the lock they're holding in
929 * order to yield to a higher priority thread or carry out an operation
930 * on an entry. Those users should call this function before they drop
931 * the lock. It resets the @xas to be suitable for the next iteration
932 * of the loop after the user has reacquired the lock. If most entries
933 * found during a walk require you to call xas_pause(), the xa_for_each()
934 * iterator may be more appropriate.
936 * Note that xas_pause() only works for forward iteration. If a user needs
937 * to pause a reverse iteration, we will need a xas_pause_rev().
939 void xas_pause(struct xa_state *xas)
941 struct xa_node *node = xas->xa_node;
943 if (xas_invalid(xas))
947 unsigned int offset = xas->xa_offset;
948 while (++offset < XA_CHUNK_SIZE) {
949 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
952 xas->xa_index += (offset - xas->xa_offset) << node->shift;
956 xas->xa_node = XAS_RESTART;
958 EXPORT_SYMBOL_GPL(xas_pause);
961 * __xas_prev() - Find the previous entry in the XArray.
962 * @xas: XArray operation state.
964 * Helper function for xas_prev() which handles all the complex cases
967 void *__xas_prev(struct xa_state *xas)
971 if (!xas_frozen(xas->xa_node))
973 if (xas_not_node(xas->xa_node))
974 return xas_load(xas);
976 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
979 while (xas->xa_offset == 255) {
980 xas->xa_offset = xas->xa_node->offset - 1;
981 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
983 return set_bounds(xas);
987 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
988 if (!xa_is_node(entry))
991 xas->xa_node = xa_to_node(entry);
995 EXPORT_SYMBOL_GPL(__xas_prev);
998 * __xas_next() - Find the next entry in the XArray.
999 * @xas: XArray operation state.
1001 * Helper function for xas_next() which handles all the complex cases
1004 void *__xas_next(struct xa_state *xas)
1008 if (!xas_frozen(xas->xa_node))
1010 if (xas_not_node(xas->xa_node))
1011 return xas_load(xas);
1013 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1016 while (xas->xa_offset == XA_CHUNK_SIZE) {
1017 xas->xa_offset = xas->xa_node->offset + 1;
1018 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1020 return set_bounds(xas);
1024 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1025 if (!xa_is_node(entry))
1028 xas->xa_node = xa_to_node(entry);
1029 xas_set_offset(xas);
1032 EXPORT_SYMBOL_GPL(__xas_next);
1035 * xas_find() - Find the next present entry in the XArray.
1036 * @xas: XArray operation state.
1037 * @max: Highest index to return.
1039 * If the @xas has not yet been walked to an entry, return the entry
1040 * which has an index >= xas.xa_index. If it has been walked, the entry
1041 * currently being pointed at has been processed, and so we move to the
1044 * If no entry is found and the array is smaller than @max, the iterator
1045 * is set to the smallest index not yet in the array. This allows @xas
1046 * to be immediately passed to xas_store().
1048 * Return: The entry, if found, otherwise %NULL.
1050 void *xas_find(struct xa_state *xas, unsigned long max)
1057 if (!xas->xa_node) {
1059 return set_bounds(xas);
1060 } else if (xas_top(xas->xa_node)) {
1061 entry = xas_load(xas);
1062 if (entry || xas_not_node(xas->xa_node))
1064 } else if (!xas->xa_node->shift &&
1065 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1066 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1071 while (xas->xa_node && (xas->xa_index <= max)) {
1072 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1073 xas->xa_offset = xas->xa_node->offset + 1;
1074 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1078 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1079 if (xa_is_node(entry)) {
1080 xas->xa_node = xa_to_node(entry);
1084 if (entry && !xa_is_sibling(entry))
1091 xas->xa_node = XAS_BOUNDS;
1094 EXPORT_SYMBOL_GPL(xas_find);
1097 * xas_find_marked() - Find the next marked entry in the XArray.
1098 * @xas: XArray operation state.
1099 * @max: Highest index to return.
1100 * @mark: Mark number to search for.
1102 * If the @xas has not yet been walked to an entry, return the marked entry
1103 * which has an index >= xas.xa_index. If it has been walked, the entry
1104 * currently being pointed at has been processed, and so we return the
1105 * first marked entry with an index > xas.xa_index.
1107 * If no marked entry is found and the array is smaller than @max, @xas is
1108 * set to the bounds state and xas->xa_index is set to the smallest index
1109 * not yet in the array. This allows @xas to be immediately passed to
1112 * If no entry is found before @max is reached, @xas is set to the restart
1115 * Return: The entry, if found, otherwise %NULL.
1117 void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1119 bool advance = true;
1120 unsigned int offset;
1126 if (!xas->xa_node) {
1129 } else if (xas_top(xas->xa_node)) {
1131 entry = xa_head(xas->xa);
1132 xas->xa_node = NULL;
1133 if (xas->xa_index > max_index(entry))
1135 if (!xa_is_node(entry)) {
1136 if (xa_marked(xas->xa, mark))
1141 xas->xa_node = xa_to_node(entry);
1142 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1145 while (xas->xa_index <= max) {
1146 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1147 xas->xa_offset = xas->xa_node->offset + 1;
1148 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1156 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1157 if (xa_is_sibling(entry)) {
1158 xas->xa_offset = xa_to_sibling(entry);
1159 xas_move_index(xas, xas->xa_offset);
1163 offset = xas_find_chunk(xas, advance, mark);
1164 if (offset > xas->xa_offset) {
1166 xas_move_index(xas, offset);
1168 if ((xas->xa_index - 1) >= max)
1170 xas->xa_offset = offset;
1171 if (offset == XA_CHUNK_SIZE)
1175 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1176 if (!xa_is_node(entry))
1178 xas->xa_node = xa_to_node(entry);
1179 xas_set_offset(xas);
1183 if (xas->xa_index > max)
1185 return set_bounds(xas);
1187 xas->xa_node = XAS_RESTART;
1190 EXPORT_SYMBOL_GPL(xas_find_marked);
1193 * xas_find_conflict() - Find the next present entry in a range.
1194 * @xas: XArray operation state.
1196 * The @xas describes both a range and a position within that range.
1198 * Context: Any context. Expects xa_lock to be held.
1199 * Return: The next entry in the range covered by @xas or %NULL.
1201 void *xas_find_conflict(struct xa_state *xas)
1211 if (xas_top(xas->xa_node)) {
1212 curr = xas_start(xas);
1215 while (xa_is_node(curr)) {
1216 struct xa_node *node = xa_to_node(curr);
1217 curr = xas_descend(xas, node);
1223 if (xas->xa_node->shift > xas->xa_shift)
1227 if (xas->xa_node->shift == xas->xa_shift) {
1228 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1230 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1231 xas->xa_offset = xas->xa_node->offset;
1232 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1237 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1238 if (xa_is_sibling(curr))
1240 while (xa_is_node(curr)) {
1241 xas->xa_node = xa_to_node(curr);
1243 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1248 xas->xa_offset -= xas->xa_sibs;
1251 EXPORT_SYMBOL_GPL(xas_find_conflict);
1254 * xa_init_flags() - Initialise an empty XArray with flags.
1256 * @flags: XA_FLAG values.
1258 * If you need to initialise an XArray with special flags (eg you need
1259 * to take the lock from interrupt context), use this function instead
1262 * Context: Any context.
1264 void xa_init_flags(struct xarray *xa, gfp_t flags)
1266 unsigned int lock_type;
1267 static struct lock_class_key xa_lock_irq;
1268 static struct lock_class_key xa_lock_bh;
1270 spin_lock_init(&xa->xa_lock);
1271 xa->xa_flags = flags;
1274 lock_type = xa_lock_type(xa);
1275 if (lock_type == XA_LOCK_IRQ)
1276 lockdep_set_class(&xa->xa_lock, &xa_lock_irq);
1277 else if (lock_type == XA_LOCK_BH)
1278 lockdep_set_class(&xa->xa_lock, &xa_lock_bh);
1280 EXPORT_SYMBOL(xa_init_flags);
1283 * xa_load() - Load an entry from an XArray.
1285 * @index: index into array.
1287 * Context: Any context. Takes and releases the RCU lock.
1288 * Return: The entry at @index in @xa.
1290 void *xa_load(struct xarray *xa, unsigned long index)
1292 XA_STATE(xas, xa, index);
1297 entry = xas_load(&xas);
1298 if (xa_is_zero(entry))
1300 } while (xas_retry(&xas, entry));
1305 EXPORT_SYMBOL(xa_load);
1307 static void *xas_result(struct xa_state *xas, void *curr)
1309 if (xa_is_zero(curr))
1311 XA_NODE_BUG_ON(xas->xa_node, xa_is_internal(curr));
1313 curr = xas->xa_node;
1318 * __xa_erase() - Erase this entry from the XArray while locked.
1320 * @index: Index into array.
1322 * If the entry at this index is a multi-index entry then all indices will
1323 * be erased, and the entry will no longer be a multi-index entry.
1324 * This function expects the xa_lock to be held on entry.
1326 * Context: Any context. Expects xa_lock to be held on entry. May
1327 * release and reacquire xa_lock if @gfp flags permit.
1328 * Return: The old entry at this index.
1330 void *__xa_erase(struct xarray *xa, unsigned long index)
1332 XA_STATE(xas, xa, index);
1333 return xas_result(&xas, xas_store(&xas, NULL));
1335 EXPORT_SYMBOL(__xa_erase);
1338 * xa_erase() - Erase this entry from the XArray.
1340 * @index: Index of entry.
1342 * This function is the equivalent of calling xa_store() with %NULL as
1343 * the third argument. The XArray does not need to allocate memory, so
1344 * the user does not need to provide GFP flags.
1346 * Context: Any context. Takes and releases the xa_lock.
1347 * Return: The entry which used to be at this index.
1349 void *xa_erase(struct xarray *xa, unsigned long index)
1354 entry = __xa_erase(xa, index);
1359 EXPORT_SYMBOL(xa_erase);
1362 * __xa_store() - Store this entry in the XArray.
1364 * @index: Index into array.
1365 * @entry: New entry.
1366 * @gfp: Memory allocation flags.
1368 * You must already be holding the xa_lock when calling this function.
1369 * It will drop the lock if needed to allocate memory, and then reacquire
1372 * Context: Any context. Expects xa_lock to be held on entry. May
1373 * release and reacquire xa_lock if @gfp flags permit.
1374 * Return: The old entry at this index or xa_err() if an error happened.
1376 void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1378 XA_STATE(xas, xa, index);
1381 if (WARN_ON_ONCE(xa_is_internal(entry)))
1382 return XA_ERROR(-EINVAL);
1383 if (xa_track_free(xa) && !entry)
1384 entry = XA_ZERO_ENTRY;
1387 curr = xas_store(&xas, entry);
1388 if (xa_track_free(xa))
1389 xas_clear_mark(&xas, XA_FREE_MARK);
1390 } while (__xas_nomem(&xas, gfp));
1392 return xas_result(&xas, curr);
1394 EXPORT_SYMBOL(__xa_store);
1397 * xa_store() - Store this entry in the XArray.
1399 * @index: Index into array.
1400 * @entry: New entry.
1401 * @gfp: Memory allocation flags.
1403 * After this function returns, loads from this index will return @entry.
1404 * Storing into an existing multislot entry updates the entry of every index.
1405 * The marks associated with @index are unaffected unless @entry is %NULL.
1407 * Context: Any context. Takes and releases the xa_lock.
1408 * May sleep if the @gfp flags permit.
1409 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1410 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1413 void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1418 curr = __xa_store(xa, index, entry, gfp);
1423 EXPORT_SYMBOL(xa_store);
1426 * __xa_cmpxchg() - Store this entry in the XArray.
1428 * @index: Index into array.
1429 * @old: Old value to test against.
1430 * @entry: New entry.
1431 * @gfp: Memory allocation flags.
1433 * You must already be holding the xa_lock when calling this function.
1434 * It will drop the lock if needed to allocate memory, and then reacquire
1437 * Context: Any context. Expects xa_lock to be held on entry. May
1438 * release and reacquire xa_lock if @gfp flags permit.
1439 * Return: The old entry at this index or xa_err() if an error happened.
1441 void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1442 void *old, void *entry, gfp_t gfp)
1444 XA_STATE(xas, xa, index);
1447 if (WARN_ON_ONCE(xa_is_internal(entry)))
1448 return XA_ERROR(-EINVAL);
1449 if (xa_track_free(xa) && !entry)
1450 entry = XA_ZERO_ENTRY;
1453 curr = xas_load(&xas);
1454 if (curr == XA_ZERO_ENTRY)
1457 xas_store(&xas, entry);
1458 if (xa_track_free(xa))
1459 xas_clear_mark(&xas, XA_FREE_MARK);
1461 } while (__xas_nomem(&xas, gfp));
1463 return xas_result(&xas, curr);
1465 EXPORT_SYMBOL(__xa_cmpxchg);
1468 * __xa_reserve() - Reserve this index in the XArray.
1470 * @index: Index into array.
1471 * @gfp: Memory allocation flags.
1473 * Ensures there is somewhere to store an entry at @index in the array.
1474 * If there is already something stored at @index, this function does
1475 * nothing. If there was nothing there, the entry is marked as reserved.
1476 * Loading from a reserved entry returns a %NULL pointer.
1478 * If you do not use the entry that you have reserved, call xa_release()
1479 * or xa_erase() to free any unnecessary memory.
1481 * Context: Any context. Expects the xa_lock to be held on entry. May
1482 * release the lock, sleep and reacquire the lock if the @gfp flags permit.
1483 * Return: 0 if the reservation succeeded or -ENOMEM if it failed.
1485 int __xa_reserve(struct xarray *xa, unsigned long index, gfp_t gfp)
1487 XA_STATE(xas, xa, index);
1491 curr = xas_load(&xas);
1493 xas_store(&xas, XA_ZERO_ENTRY);
1494 if (xa_track_free(xa))
1495 xas_clear_mark(&xas, XA_FREE_MARK);
1497 } while (__xas_nomem(&xas, gfp));
1499 return xas_error(&xas);
1501 EXPORT_SYMBOL(__xa_reserve);
1503 #ifdef CONFIG_XARRAY_MULTI
1504 static void xas_set_range(struct xa_state *xas, unsigned long first,
1507 unsigned int shift = 0;
1508 unsigned long sibs = last - first;
1509 unsigned int offset = XA_CHUNK_MASK;
1511 xas_set(xas, first);
1513 while ((first & XA_CHUNK_MASK) == 0) {
1514 if (sibs < XA_CHUNK_MASK)
1516 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1518 shift += XA_CHUNK_SHIFT;
1519 if (offset == XA_CHUNK_MASK)
1520 offset = sibs & XA_CHUNK_MASK;
1521 sibs >>= XA_CHUNK_SHIFT;
1522 first >>= XA_CHUNK_SHIFT;
1525 offset = first & XA_CHUNK_MASK;
1526 if (offset + sibs > XA_CHUNK_MASK)
1527 sibs = XA_CHUNK_MASK - offset;
1528 if ((((first + sibs + 1) << shift) - 1) > last)
1531 xas->xa_shift = shift;
1532 xas->xa_sibs = sibs;
1536 * xa_store_range() - Store this entry at a range of indices in the XArray.
1538 * @first: First index to affect.
1539 * @last: Last index to affect.
1540 * @entry: New entry.
1541 * @gfp: Memory allocation flags.
1543 * After this function returns, loads from any index between @first and @last,
1544 * inclusive will return @entry.
1545 * Storing into an existing multislot entry updates the entry of every index.
1546 * The marks associated with @index are unaffected unless @entry is %NULL.
1548 * Context: Process context. Takes and releases the xa_lock. May sleep
1549 * if the @gfp flags permit.
1550 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1551 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1553 void *xa_store_range(struct xarray *xa, unsigned long first,
1554 unsigned long last, void *entry, gfp_t gfp)
1556 XA_STATE(xas, xa, 0);
1558 if (WARN_ON_ONCE(xa_is_internal(entry)))
1559 return XA_ERROR(-EINVAL);
1561 return XA_ERROR(-EINVAL);
1566 unsigned int order = BITS_PER_LONG;
1568 order = __ffs(last + 1);
1569 xas_set_order(&xas, last, order);
1571 if (xas_error(&xas))
1575 xas_set_range(&xas, first, last);
1576 xas_store(&xas, entry);
1577 if (xas_error(&xas))
1579 first += xas_size(&xas);
1580 } while (first <= last);
1583 } while (xas_nomem(&xas, gfp));
1585 return xas_result(&xas, NULL);
1587 EXPORT_SYMBOL(xa_store_range);
1588 #endif /* CONFIG_XARRAY_MULTI */
1591 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1593 * @id: Pointer to ID.
1594 * @max: Maximum ID to allocate (inclusive).
1595 * @entry: New entry.
1596 * @gfp: Memory allocation flags.
1598 * Allocates an unused ID in the range specified by @id and @max.
1599 * Updates the @id pointer with the index, then stores the entry at that
1600 * index. A concurrent lookup will not see an uninitialised @id.
1602 * Context: Any context. Expects xa_lock to be held on entry. May
1603 * release and reacquire xa_lock if @gfp flags permit.
1604 * Return: 0 on success, -ENOMEM if memory allocation fails or -ENOSPC if
1605 * there is no more space in the XArray.
1607 int __xa_alloc(struct xarray *xa, u32 *id, u32 max, void *entry, gfp_t gfp)
1609 XA_STATE(xas, xa, 0);
1612 if (WARN_ON_ONCE(xa_is_internal(entry)))
1614 if (WARN_ON_ONCE(!xa_track_free(xa)))
1618 entry = XA_ZERO_ENTRY;
1622 xas_find_marked(&xas, max, XA_FREE_MARK);
1623 if (xas.xa_node == XAS_RESTART)
1624 xas_set_err(&xas, -ENOSPC);
1625 xas_store(&xas, entry);
1626 xas_clear_mark(&xas, XA_FREE_MARK);
1627 } while (__xas_nomem(&xas, gfp));
1629 err = xas_error(&xas);
1634 EXPORT_SYMBOL(__xa_alloc);
1637 * __xa_set_mark() - Set this mark on this entry while locked.
1639 * @index: Index of entry.
1640 * @mark: Mark number.
1642 * Attempting to set a mark on a %NULL entry does not succeed.
1644 * Context: Any context. Expects xa_lock to be held on entry.
1646 void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1648 XA_STATE(xas, xa, index);
1649 void *entry = xas_load(&xas);
1652 xas_set_mark(&xas, mark);
1654 EXPORT_SYMBOL(__xa_set_mark);
1657 * __xa_clear_mark() - Clear this mark on this entry while locked.
1659 * @index: Index of entry.
1660 * @mark: Mark number.
1662 * Context: Any context. Expects xa_lock to be held on entry.
1664 void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1666 XA_STATE(xas, xa, index);
1667 void *entry = xas_load(&xas);
1670 xas_clear_mark(&xas, mark);
1672 EXPORT_SYMBOL(__xa_clear_mark);
1675 * xa_get_mark() - Inquire whether this mark is set on this entry.
1677 * @index: Index of entry.
1678 * @mark: Mark number.
1680 * This function uses the RCU read lock, so the result may be out of date
1681 * by the time it returns. If you need the result to be stable, use a lock.
1683 * Context: Any context. Takes and releases the RCU lock.
1684 * Return: True if the entry at @index has this mark set, false if it doesn't.
1686 bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1688 XA_STATE(xas, xa, index);
1692 entry = xas_start(&xas);
1693 while (xas_get_mark(&xas, mark)) {
1694 if (!xa_is_node(entry))
1696 entry = xas_descend(&xas, xa_to_node(entry));
1704 EXPORT_SYMBOL(xa_get_mark);
1707 * xa_set_mark() - Set this mark on this entry.
1709 * @index: Index of entry.
1710 * @mark: Mark number.
1712 * Attempting to set a mark on a %NULL entry does not succeed.
1714 * Context: Process context. Takes and releases the xa_lock.
1716 void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1719 __xa_set_mark(xa, index, mark);
1722 EXPORT_SYMBOL(xa_set_mark);
1725 * xa_clear_mark() - Clear this mark on this entry.
1727 * @index: Index of entry.
1728 * @mark: Mark number.
1730 * Clearing a mark always succeeds.
1732 * Context: Process context. Takes and releases the xa_lock.
1734 void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1737 __xa_clear_mark(xa, index, mark);
1740 EXPORT_SYMBOL(xa_clear_mark);
1743 * xa_find() - Search the XArray for an entry.
1745 * @indexp: Pointer to an index.
1746 * @max: Maximum index to search to.
1747 * @filter: Selection criterion.
1749 * Finds the entry in @xa which matches the @filter, and has the lowest
1750 * index that is at least @indexp and no more than @max.
1751 * If an entry is found, @indexp is updated to be the index of the entry.
1752 * This function is protected by the RCU read lock, so it may not find
1753 * entries which are being simultaneously added. It will not return an
1754 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1756 * Context: Any context. Takes and releases the RCU lock.
1757 * Return: The entry, if found, otherwise %NULL.
1759 void *xa_find(struct xarray *xa, unsigned long *indexp,
1760 unsigned long max, xa_mark_t filter)
1762 XA_STATE(xas, xa, *indexp);
1767 if ((__force unsigned int)filter < XA_MAX_MARKS)
1768 entry = xas_find_marked(&xas, max, filter);
1770 entry = xas_find(&xas, max);
1771 } while (xas_retry(&xas, entry));
1775 *indexp = xas.xa_index;
1778 EXPORT_SYMBOL(xa_find);
1781 * xa_find_after() - Search the XArray for a present entry.
1783 * @indexp: Pointer to an index.
1784 * @max: Maximum index to search to.
1785 * @filter: Selection criterion.
1787 * Finds the entry in @xa which matches the @filter and has the lowest
1788 * index that is above @indexp and no more than @max.
1789 * If an entry is found, @indexp is updated to be the index of the entry.
1790 * This function is protected by the RCU read lock, so it may miss entries
1791 * which are being simultaneously added. It will not return an
1792 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1794 * Context: Any context. Takes and releases the RCU lock.
1795 * Return: The pointer, if found, otherwise %NULL.
1797 void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1798 unsigned long max, xa_mark_t filter)
1800 XA_STATE(xas, xa, *indexp + 1);
1805 if ((__force unsigned int)filter < XA_MAX_MARKS)
1806 entry = xas_find_marked(&xas, max, filter);
1808 entry = xas_find(&xas, max);
1809 if (xas.xa_node == XAS_BOUNDS)
1812 if (xas.xa_index & ((1UL << xas.xa_shift) - 1))
1815 if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK))
1818 if (!xas_retry(&xas, entry))
1824 *indexp = xas.xa_index;
1827 EXPORT_SYMBOL(xa_find_after);
1829 static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1830 unsigned long max, unsigned int n)
1836 xas_for_each(xas, entry, max) {
1837 if (xas_retry(xas, entry))
1848 static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1849 unsigned long max, unsigned int n, xa_mark_t mark)
1855 xas_for_each_marked(xas, entry, max, mark) {
1856 if (xas_retry(xas, entry))
1868 * xa_extract() - Copy selected entries from the XArray into a normal array.
1869 * @xa: The source XArray to copy from.
1870 * @dst: The buffer to copy entries into.
1871 * @start: The first index in the XArray eligible to be selected.
1872 * @max: The last index in the XArray eligible to be selected.
1873 * @n: The maximum number of entries to copy.
1874 * @filter: Selection criterion.
1876 * Copies up to @n entries that match @filter from the XArray. The
1877 * copied entries will have indices between @start and @max, inclusive.
1879 * The @filter may be an XArray mark value, in which case entries which are
1880 * marked with that mark will be copied. It may also be %XA_PRESENT, in
1881 * which case all entries which are not %NULL will be copied.
1883 * The entries returned may not represent a snapshot of the XArray at a
1884 * moment in time. For example, if another thread stores to index 5, then
1885 * index 10, calling xa_extract() may return the old contents of index 5
1886 * and the new contents of index 10. Indices not modified while this
1887 * function is running will not be skipped.
1889 * If you need stronger guarantees, holding the xa_lock across calls to this
1890 * function will prevent concurrent modification.
1892 * Context: Any context. Takes and releases the RCU lock.
1893 * Return: The number of entries copied.
1895 unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1896 unsigned long max, unsigned int n, xa_mark_t filter)
1898 XA_STATE(xas, xa, start);
1903 if ((__force unsigned int)filter < XA_MAX_MARKS)
1904 return xas_extract_marked(&xas, dst, max, n, filter);
1905 return xas_extract_present(&xas, dst, max, n);
1907 EXPORT_SYMBOL(xa_extract);
1910 * xa_destroy() - Free all internal data structures.
1913 * After calling this function, the XArray is empty and has freed all memory
1914 * allocated for its internal data structures. You are responsible for
1915 * freeing the objects referenced by the XArray.
1917 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
1919 void xa_destroy(struct xarray *xa)
1921 XA_STATE(xas, xa, 0);
1922 unsigned long flags;
1926 xas_lock_irqsave(&xas, flags);
1927 entry = xa_head_locked(xa);
1928 RCU_INIT_POINTER(xa->xa_head, NULL);
1929 xas_init_marks(&xas);
1930 /* lockdep checks we're still holding the lock in xas_free_nodes() */
1931 if (xa_is_node(entry))
1932 xas_free_nodes(&xas, xa_to_node(entry));
1933 xas_unlock_irqrestore(&xas, flags);
1935 EXPORT_SYMBOL(xa_destroy);
1938 void xa_dump_node(const struct xa_node *node)
1944 if ((unsigned long)node & 3) {
1945 pr_cont("node %px\n", node);
1949 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
1950 "array %px list %px %px marks",
1951 node, node->parent ? "offset" : "max", node->offset,
1952 node->parent, node->shift, node->count, node->nr_values,
1953 node->array, node->private_list.prev, node->private_list.next);
1954 for (i = 0; i < XA_MAX_MARKS; i++)
1955 for (j = 0; j < XA_MARK_LONGS; j++)
1956 pr_cont(" %lx", node->marks[i][j]);
1960 void xa_dump_index(unsigned long index, unsigned int shift)
1963 pr_info("%lu: ", index);
1964 else if (shift >= BITS_PER_LONG)
1965 pr_info("0-%lu: ", ~0UL);
1967 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
1970 void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
1975 xa_dump_index(index, shift);
1977 if (xa_is_node(entry)) {
1979 pr_cont("%px\n", entry);
1982 struct xa_node *node = xa_to_node(entry);
1984 for (i = 0; i < XA_CHUNK_SIZE; i++)
1985 xa_dump_entry(node->slots[i],
1986 index + (i << node->shift), node->shift);
1988 } else if (xa_is_value(entry))
1989 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
1990 xa_to_value(entry), entry);
1991 else if (!xa_is_internal(entry))
1992 pr_cont("%px\n", entry);
1993 else if (xa_is_retry(entry))
1994 pr_cont("retry (%ld)\n", xa_to_internal(entry));
1995 else if (xa_is_sibling(entry))
1996 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
1997 else if (xa_is_zero(entry))
1998 pr_cont("zero (%ld)\n", xa_to_internal(entry));
2000 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2003 void xa_dump(const struct xarray *xa)
2005 void *entry = xa->xa_head;
2006 unsigned int shift = 0;
2008 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2009 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2010 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2011 if (xa_is_node(entry))
2012 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2013 xa_dump_entry(entry, 0, shift);