436124da00e665d3990d1291d5c596b764e15992
[linux-2.6-microblaze.git] / lib / test_hmm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This is a module to test the HMM (Heterogeneous Memory Management)
4  * mirror and zone device private memory migration APIs of the kernel.
5  * Userspace programs can register with the driver to mirror their own address
6  * space and can use the device to read/write any valid virtual address.
7  */
8 #include <linux/init.h>
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/cdev.h>
14 #include <linux/device.h>
15 #include <linux/memremap.h>
16 #include <linux/mutex.h>
17 #include <linux/rwsem.h>
18 #include <linux/sched.h>
19 #include <linux/slab.h>
20 #include <linux/highmem.h>
21 #include <linux/delay.h>
22 #include <linux/pagemap.h>
23 #include <linux/hmm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/swap.h>
26 #include <linux/swapops.h>
27 #include <linux/sched/mm.h>
28 #include <linux/platform_device.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/migrate.h>
32
33 #include "test_hmm_uapi.h"
34
35 #define DMIRROR_NDEVICES                2
36 #define DMIRROR_RANGE_FAULT_TIMEOUT     1000
37 #define DEVMEM_CHUNK_SIZE               (256 * 1024 * 1024U)
38 #define DEVMEM_CHUNKS_RESERVE           16
39
40 static unsigned long spm_addr_dev0;
41 module_param(spm_addr_dev0, long, 0644);
42 MODULE_PARM_DESC(spm_addr_dev0,
43                 "Specify start address for SPM (special purpose memory) used for device 0. By setting this Coherent device type will be used. Make sure spm_addr_dev1 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
44
45 static unsigned long spm_addr_dev1;
46 module_param(spm_addr_dev1, long, 0644);
47 MODULE_PARM_DESC(spm_addr_dev1,
48                 "Specify start address for SPM (special purpose memory) used for device 1. By setting this Coherent device type will be used. Make sure spm_addr_dev0 is set too. Minimum SPM size should be DEVMEM_CHUNK_SIZE.");
49
50 static const struct dev_pagemap_ops dmirror_devmem_ops;
51 static const struct mmu_interval_notifier_ops dmirror_min_ops;
52 static dev_t dmirror_dev;
53
54 struct dmirror_device;
55
56 struct dmirror_bounce {
57         void                    *ptr;
58         unsigned long           size;
59         unsigned long           addr;
60         unsigned long           cpages;
61 };
62
63 #define DPT_XA_TAG_ATOMIC 1UL
64 #define DPT_XA_TAG_WRITE 3UL
65
66 /*
67  * Data structure to track address ranges and register for mmu interval
68  * notifier updates.
69  */
70 struct dmirror_interval {
71         struct mmu_interval_notifier    notifier;
72         struct dmirror                  *dmirror;
73 };
74
75 /*
76  * Data attached to the open device file.
77  * Note that it might be shared after a fork().
78  */
79 struct dmirror {
80         struct dmirror_device           *mdevice;
81         struct xarray                   pt;
82         struct mmu_interval_notifier    notifier;
83         struct mutex                    mutex;
84 };
85
86 /*
87  * ZONE_DEVICE pages for migration and simulating device memory.
88  */
89 struct dmirror_chunk {
90         struct dev_pagemap      pagemap;
91         struct dmirror_device   *mdevice;
92 };
93
94 /*
95  * Per device data.
96  */
97 struct dmirror_device {
98         struct cdev             cdevice;
99         struct hmm_devmem       *devmem;
100         unsigned int            zone_device_type;
101
102         unsigned int            devmem_capacity;
103         unsigned int            devmem_count;
104         struct dmirror_chunk    **devmem_chunks;
105         struct mutex            devmem_lock;    /* protects the above */
106
107         unsigned long           calloc;
108         unsigned long           cfree;
109         struct page             *free_pages;
110         spinlock_t              lock;           /* protects the above */
111 };
112
113 static struct dmirror_device dmirror_devices[DMIRROR_NDEVICES];
114
115 static int dmirror_bounce_init(struct dmirror_bounce *bounce,
116                                unsigned long addr,
117                                unsigned long size)
118 {
119         bounce->addr = addr;
120         bounce->size = size;
121         bounce->cpages = 0;
122         bounce->ptr = vmalloc(size);
123         if (!bounce->ptr)
124                 return -ENOMEM;
125         return 0;
126 }
127
128 static void dmirror_bounce_fini(struct dmirror_bounce *bounce)
129 {
130         vfree(bounce->ptr);
131 }
132
133 static int dmirror_fops_open(struct inode *inode, struct file *filp)
134 {
135         struct cdev *cdev = inode->i_cdev;
136         struct dmirror *dmirror;
137         int ret;
138
139         /* Mirror this process address space */
140         dmirror = kzalloc(sizeof(*dmirror), GFP_KERNEL);
141         if (dmirror == NULL)
142                 return -ENOMEM;
143
144         dmirror->mdevice = container_of(cdev, struct dmirror_device, cdevice);
145         mutex_init(&dmirror->mutex);
146         xa_init(&dmirror->pt);
147
148         ret = mmu_interval_notifier_insert(&dmirror->notifier, current->mm,
149                                 0, ULONG_MAX & PAGE_MASK, &dmirror_min_ops);
150         if (ret) {
151                 kfree(dmirror);
152                 return ret;
153         }
154
155         filp->private_data = dmirror;
156         return 0;
157 }
158
159 static int dmirror_fops_release(struct inode *inode, struct file *filp)
160 {
161         struct dmirror *dmirror = filp->private_data;
162
163         mmu_interval_notifier_remove(&dmirror->notifier);
164         xa_destroy(&dmirror->pt);
165         kfree(dmirror);
166         return 0;
167 }
168
169 static struct dmirror_device *dmirror_page_to_device(struct page *page)
170
171 {
172         return container_of(page->pgmap, struct dmirror_chunk,
173                             pagemap)->mdevice;
174 }
175
176 static int dmirror_do_fault(struct dmirror *dmirror, struct hmm_range *range)
177 {
178         unsigned long *pfns = range->hmm_pfns;
179         unsigned long pfn;
180
181         for (pfn = (range->start >> PAGE_SHIFT);
182              pfn < (range->end >> PAGE_SHIFT);
183              pfn++, pfns++) {
184                 struct page *page;
185                 void *entry;
186
187                 /*
188                  * Since we asked for hmm_range_fault() to populate pages,
189                  * it shouldn't return an error entry on success.
190                  */
191                 WARN_ON(*pfns & HMM_PFN_ERROR);
192                 WARN_ON(!(*pfns & HMM_PFN_VALID));
193
194                 page = hmm_pfn_to_page(*pfns);
195                 WARN_ON(!page);
196
197                 entry = page;
198                 if (*pfns & HMM_PFN_WRITE)
199                         entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
200                 else if (WARN_ON(range->default_flags & HMM_PFN_WRITE))
201                         return -EFAULT;
202                 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
203                 if (xa_is_err(entry))
204                         return xa_err(entry);
205         }
206
207         return 0;
208 }
209
210 static void dmirror_do_update(struct dmirror *dmirror, unsigned long start,
211                               unsigned long end)
212 {
213         unsigned long pfn;
214         void *entry;
215
216         /*
217          * The XArray doesn't hold references to pages since it relies on
218          * the mmu notifier to clear page pointers when they become stale.
219          * Therefore, it is OK to just clear the entry.
220          */
221         xa_for_each_range(&dmirror->pt, pfn, entry, start >> PAGE_SHIFT,
222                           end >> PAGE_SHIFT)
223                 xa_erase(&dmirror->pt, pfn);
224 }
225
226 static bool dmirror_interval_invalidate(struct mmu_interval_notifier *mni,
227                                 const struct mmu_notifier_range *range,
228                                 unsigned long cur_seq)
229 {
230         struct dmirror *dmirror = container_of(mni, struct dmirror, notifier);
231
232         /*
233          * Ignore invalidation callbacks for device private pages since
234          * the invalidation is handled as part of the migration process.
235          */
236         if (range->event == MMU_NOTIFY_MIGRATE &&
237             range->owner == dmirror->mdevice)
238                 return true;
239
240         if (mmu_notifier_range_blockable(range))
241                 mutex_lock(&dmirror->mutex);
242         else if (!mutex_trylock(&dmirror->mutex))
243                 return false;
244
245         mmu_interval_set_seq(mni, cur_seq);
246         dmirror_do_update(dmirror, range->start, range->end);
247
248         mutex_unlock(&dmirror->mutex);
249         return true;
250 }
251
252 static const struct mmu_interval_notifier_ops dmirror_min_ops = {
253         .invalidate = dmirror_interval_invalidate,
254 };
255
256 static int dmirror_range_fault(struct dmirror *dmirror,
257                                 struct hmm_range *range)
258 {
259         struct mm_struct *mm = dmirror->notifier.mm;
260         unsigned long timeout =
261                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
262         int ret;
263
264         while (true) {
265                 if (time_after(jiffies, timeout)) {
266                         ret = -EBUSY;
267                         goto out;
268                 }
269
270                 range->notifier_seq = mmu_interval_read_begin(range->notifier);
271                 mmap_read_lock(mm);
272                 ret = hmm_range_fault(range);
273                 mmap_read_unlock(mm);
274                 if (ret) {
275                         if (ret == -EBUSY)
276                                 continue;
277                         goto out;
278                 }
279
280                 mutex_lock(&dmirror->mutex);
281                 if (mmu_interval_read_retry(range->notifier,
282                                             range->notifier_seq)) {
283                         mutex_unlock(&dmirror->mutex);
284                         continue;
285                 }
286                 break;
287         }
288
289         ret = dmirror_do_fault(dmirror, range);
290
291         mutex_unlock(&dmirror->mutex);
292 out:
293         return ret;
294 }
295
296 static int dmirror_fault(struct dmirror *dmirror, unsigned long start,
297                          unsigned long end, bool write)
298 {
299         struct mm_struct *mm = dmirror->notifier.mm;
300         unsigned long addr;
301         unsigned long pfns[64];
302         struct hmm_range range = {
303                 .notifier = &dmirror->notifier,
304                 .hmm_pfns = pfns,
305                 .pfn_flags_mask = 0,
306                 .default_flags =
307                         HMM_PFN_REQ_FAULT | (write ? HMM_PFN_REQ_WRITE : 0),
308                 .dev_private_owner = dmirror->mdevice,
309         };
310         int ret = 0;
311
312         /* Since the mm is for the mirrored process, get a reference first. */
313         if (!mmget_not_zero(mm))
314                 return 0;
315
316         for (addr = start; addr < end; addr = range.end) {
317                 range.start = addr;
318                 range.end = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
319
320                 ret = dmirror_range_fault(dmirror, &range);
321                 if (ret)
322                         break;
323         }
324
325         mmput(mm);
326         return ret;
327 }
328
329 static int dmirror_do_read(struct dmirror *dmirror, unsigned long start,
330                            unsigned long end, struct dmirror_bounce *bounce)
331 {
332         unsigned long pfn;
333         void *ptr;
334
335         ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
336
337         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
338                 void *entry;
339                 struct page *page;
340                 void *tmp;
341
342                 entry = xa_load(&dmirror->pt, pfn);
343                 page = xa_untag_pointer(entry);
344                 if (!page)
345                         return -ENOENT;
346
347                 tmp = kmap(page);
348                 memcpy(ptr, tmp, PAGE_SIZE);
349                 kunmap(page);
350
351                 ptr += PAGE_SIZE;
352                 bounce->cpages++;
353         }
354
355         return 0;
356 }
357
358 static int dmirror_read(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
359 {
360         struct dmirror_bounce bounce;
361         unsigned long start, end;
362         unsigned long size = cmd->npages << PAGE_SHIFT;
363         int ret;
364
365         start = cmd->addr;
366         end = start + size;
367         if (end < start)
368                 return -EINVAL;
369
370         ret = dmirror_bounce_init(&bounce, start, size);
371         if (ret)
372                 return ret;
373
374         while (1) {
375                 mutex_lock(&dmirror->mutex);
376                 ret = dmirror_do_read(dmirror, start, end, &bounce);
377                 mutex_unlock(&dmirror->mutex);
378                 if (ret != -ENOENT)
379                         break;
380
381                 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
382                 ret = dmirror_fault(dmirror, start, end, false);
383                 if (ret)
384                         break;
385                 cmd->faults++;
386         }
387
388         if (ret == 0) {
389                 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
390                                  bounce.size))
391                         ret = -EFAULT;
392         }
393         cmd->cpages = bounce.cpages;
394         dmirror_bounce_fini(&bounce);
395         return ret;
396 }
397
398 static int dmirror_do_write(struct dmirror *dmirror, unsigned long start,
399                             unsigned long end, struct dmirror_bounce *bounce)
400 {
401         unsigned long pfn;
402         void *ptr;
403
404         ptr = bounce->ptr + ((start - bounce->addr) & PAGE_MASK);
405
406         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
407                 void *entry;
408                 struct page *page;
409                 void *tmp;
410
411                 entry = xa_load(&dmirror->pt, pfn);
412                 page = xa_untag_pointer(entry);
413                 if (!page || xa_pointer_tag(entry) != DPT_XA_TAG_WRITE)
414                         return -ENOENT;
415
416                 tmp = kmap(page);
417                 memcpy(tmp, ptr, PAGE_SIZE);
418                 kunmap(page);
419
420                 ptr += PAGE_SIZE;
421                 bounce->cpages++;
422         }
423
424         return 0;
425 }
426
427 static int dmirror_write(struct dmirror *dmirror, struct hmm_dmirror_cmd *cmd)
428 {
429         struct dmirror_bounce bounce;
430         unsigned long start, end;
431         unsigned long size = cmd->npages << PAGE_SHIFT;
432         int ret;
433
434         start = cmd->addr;
435         end = start + size;
436         if (end < start)
437                 return -EINVAL;
438
439         ret = dmirror_bounce_init(&bounce, start, size);
440         if (ret)
441                 return ret;
442         if (copy_from_user(bounce.ptr, u64_to_user_ptr(cmd->ptr),
443                            bounce.size)) {
444                 ret = -EFAULT;
445                 goto fini;
446         }
447
448         while (1) {
449                 mutex_lock(&dmirror->mutex);
450                 ret = dmirror_do_write(dmirror, start, end, &bounce);
451                 mutex_unlock(&dmirror->mutex);
452                 if (ret != -ENOENT)
453                         break;
454
455                 start = cmd->addr + (bounce.cpages << PAGE_SHIFT);
456                 ret = dmirror_fault(dmirror, start, end, true);
457                 if (ret)
458                         break;
459                 cmd->faults++;
460         }
461
462 fini:
463         cmd->cpages = bounce.cpages;
464         dmirror_bounce_fini(&bounce);
465         return ret;
466 }
467
468 static int dmirror_allocate_chunk(struct dmirror_device *mdevice,
469                                    struct page **ppage)
470 {
471         struct dmirror_chunk *devmem;
472         struct resource *res = NULL;
473         unsigned long pfn;
474         unsigned long pfn_first;
475         unsigned long pfn_last;
476         void *ptr;
477         int ret = -ENOMEM;
478
479         devmem = kzalloc(sizeof(*devmem), GFP_KERNEL);
480         if (!devmem)
481                 return ret;
482
483         switch (mdevice->zone_device_type) {
484         case HMM_DMIRROR_MEMORY_DEVICE_PRIVATE:
485                 res = request_free_mem_region(&iomem_resource, DEVMEM_CHUNK_SIZE,
486                                               "hmm_dmirror");
487                 if (IS_ERR_OR_NULL(res))
488                         goto err_devmem;
489                 devmem->pagemap.range.start = res->start;
490                 devmem->pagemap.range.end = res->end;
491                 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
492                 break;
493         case HMM_DMIRROR_MEMORY_DEVICE_COHERENT:
494                 devmem->pagemap.range.start = (MINOR(mdevice->cdevice.dev) - 2) ?
495                                                         spm_addr_dev0 :
496                                                         spm_addr_dev1;
497                 devmem->pagemap.range.end = devmem->pagemap.range.start +
498                                             DEVMEM_CHUNK_SIZE - 1;
499                 devmem->pagemap.type = MEMORY_DEVICE_COHERENT;
500                 break;
501         default:
502                 ret = -EINVAL;
503                 goto err_devmem;
504         }
505
506         devmem->pagemap.nr_range = 1;
507         devmem->pagemap.ops = &dmirror_devmem_ops;
508         devmem->pagemap.owner = mdevice;
509
510         mutex_lock(&mdevice->devmem_lock);
511
512         if (mdevice->devmem_count == mdevice->devmem_capacity) {
513                 struct dmirror_chunk **new_chunks;
514                 unsigned int new_capacity;
515
516                 new_capacity = mdevice->devmem_capacity +
517                                 DEVMEM_CHUNKS_RESERVE;
518                 new_chunks = krealloc(mdevice->devmem_chunks,
519                                 sizeof(new_chunks[0]) * new_capacity,
520                                 GFP_KERNEL);
521                 if (!new_chunks)
522                         goto err_release;
523                 mdevice->devmem_capacity = new_capacity;
524                 mdevice->devmem_chunks = new_chunks;
525         }
526         ptr = memremap_pages(&devmem->pagemap, numa_node_id());
527         if (IS_ERR_OR_NULL(ptr)) {
528                 if (ptr)
529                         ret = PTR_ERR(ptr);
530                 else
531                         ret = -EFAULT;
532                 goto err_release;
533         }
534
535         devmem->mdevice = mdevice;
536         pfn_first = devmem->pagemap.range.start >> PAGE_SHIFT;
537         pfn_last = pfn_first + (range_len(&devmem->pagemap.range) >> PAGE_SHIFT);
538         mdevice->devmem_chunks[mdevice->devmem_count++] = devmem;
539
540         mutex_unlock(&mdevice->devmem_lock);
541
542         pr_info("added new %u MB chunk (total %u chunks, %u MB) PFNs [0x%lx 0x%lx)\n",
543                 DEVMEM_CHUNK_SIZE / (1024 * 1024),
544                 mdevice->devmem_count,
545                 mdevice->devmem_count * (DEVMEM_CHUNK_SIZE / (1024 * 1024)),
546                 pfn_first, pfn_last);
547
548         spin_lock(&mdevice->lock);
549         for (pfn = pfn_first; pfn < pfn_last; pfn++) {
550                 struct page *page = pfn_to_page(pfn);
551
552                 page->zone_device_data = mdevice->free_pages;
553                 mdevice->free_pages = page;
554         }
555         if (ppage) {
556                 *ppage = mdevice->free_pages;
557                 mdevice->free_pages = (*ppage)->zone_device_data;
558                 mdevice->calloc++;
559         }
560         spin_unlock(&mdevice->lock);
561
562         return 0;
563
564 err_release:
565         mutex_unlock(&mdevice->devmem_lock);
566         if (res && devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
567                 release_mem_region(devmem->pagemap.range.start,
568                                    range_len(&devmem->pagemap.range));
569 err_devmem:
570         kfree(devmem);
571
572         return ret;
573 }
574
575 static struct page *dmirror_devmem_alloc_page(struct dmirror_device *mdevice)
576 {
577         struct page *dpage = NULL;
578         struct page *rpage;
579
580         /*
581          * This is a fake device so we alloc real system memory to store
582          * our device memory.
583          */
584         rpage = alloc_page(GFP_HIGHUSER);
585         if (!rpage)
586                 return NULL;
587
588         spin_lock(&mdevice->lock);
589
590         if (mdevice->free_pages) {
591                 dpage = mdevice->free_pages;
592                 mdevice->free_pages = dpage->zone_device_data;
593                 mdevice->calloc++;
594                 spin_unlock(&mdevice->lock);
595         } else {
596                 spin_unlock(&mdevice->lock);
597                 if (dmirror_allocate_chunk(mdevice, &dpage))
598                         goto error;
599         }
600
601         dpage->zone_device_data = rpage;
602         lock_page(dpage);
603         return dpage;
604
605 error:
606         __free_page(rpage);
607         return NULL;
608 }
609
610 static void dmirror_migrate_alloc_and_copy(struct migrate_vma *args,
611                                            struct dmirror *dmirror)
612 {
613         struct dmirror_device *mdevice = dmirror->mdevice;
614         const unsigned long *src = args->src;
615         unsigned long *dst = args->dst;
616         unsigned long addr;
617
618         for (addr = args->start; addr < args->end; addr += PAGE_SIZE,
619                                                    src++, dst++) {
620                 struct page *spage;
621                 struct page *dpage;
622                 struct page *rpage;
623
624                 if (!(*src & MIGRATE_PFN_MIGRATE))
625                         continue;
626
627                 /*
628                  * Note that spage might be NULL which is OK since it is an
629                  * unallocated pte_none() or read-only zero page.
630                  */
631                 spage = migrate_pfn_to_page(*src);
632
633                 dpage = dmirror_devmem_alloc_page(mdevice);
634                 if (!dpage)
635                         continue;
636
637                 rpage = dpage->zone_device_data;
638                 if (spage)
639                         copy_highpage(rpage, spage);
640                 else
641                         clear_highpage(rpage);
642
643                 /*
644                  * Normally, a device would use the page->zone_device_data to
645                  * point to the mirror but here we use it to hold the page for
646                  * the simulated device memory and that page holds the pointer
647                  * to the mirror.
648                  */
649                 rpage->zone_device_data = dmirror;
650
651                 *dst = migrate_pfn(page_to_pfn(dpage));
652                 if ((*src & MIGRATE_PFN_WRITE) ||
653                     (!spage && args->vma->vm_flags & VM_WRITE))
654                         *dst |= MIGRATE_PFN_WRITE;
655         }
656 }
657
658 static int dmirror_check_atomic(struct dmirror *dmirror, unsigned long start,
659                              unsigned long end)
660 {
661         unsigned long pfn;
662
663         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++) {
664                 void *entry;
665
666                 entry = xa_load(&dmirror->pt, pfn);
667                 if (xa_pointer_tag(entry) == DPT_XA_TAG_ATOMIC)
668                         return -EPERM;
669         }
670
671         return 0;
672 }
673
674 static int dmirror_atomic_map(unsigned long start, unsigned long end,
675                               struct page **pages, struct dmirror *dmirror)
676 {
677         unsigned long pfn, mapped = 0;
678         int i;
679
680         /* Map the migrated pages into the device's page tables. */
681         mutex_lock(&dmirror->mutex);
682
683         for (i = 0, pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++, i++) {
684                 void *entry;
685
686                 if (!pages[i])
687                         continue;
688
689                 entry = pages[i];
690                 entry = xa_tag_pointer(entry, DPT_XA_TAG_ATOMIC);
691                 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
692                 if (xa_is_err(entry)) {
693                         mutex_unlock(&dmirror->mutex);
694                         return xa_err(entry);
695                 }
696
697                 mapped++;
698         }
699
700         mutex_unlock(&dmirror->mutex);
701         return mapped;
702 }
703
704 static int dmirror_migrate_finalize_and_map(struct migrate_vma *args,
705                                             struct dmirror *dmirror)
706 {
707         unsigned long start = args->start;
708         unsigned long end = args->end;
709         const unsigned long *src = args->src;
710         const unsigned long *dst = args->dst;
711         unsigned long pfn;
712
713         /* Map the migrated pages into the device's page tables. */
714         mutex_lock(&dmirror->mutex);
715
716         for (pfn = start >> PAGE_SHIFT; pfn < (end >> PAGE_SHIFT); pfn++,
717                                                                 src++, dst++) {
718                 struct page *dpage;
719                 void *entry;
720
721                 if (!(*src & MIGRATE_PFN_MIGRATE))
722                         continue;
723
724                 dpage = migrate_pfn_to_page(*dst);
725                 if (!dpage)
726                         continue;
727
728                 /*
729                  * Store the page that holds the data so the page table
730                  * doesn't have to deal with ZONE_DEVICE private pages.
731                  */
732                 entry = dpage->zone_device_data;
733                 if (*dst & MIGRATE_PFN_WRITE)
734                         entry = xa_tag_pointer(entry, DPT_XA_TAG_WRITE);
735                 entry = xa_store(&dmirror->pt, pfn, entry, GFP_ATOMIC);
736                 if (xa_is_err(entry)) {
737                         mutex_unlock(&dmirror->mutex);
738                         return xa_err(entry);
739                 }
740         }
741
742         mutex_unlock(&dmirror->mutex);
743         return 0;
744 }
745
746 static int dmirror_exclusive(struct dmirror *dmirror,
747                              struct hmm_dmirror_cmd *cmd)
748 {
749         unsigned long start, end, addr;
750         unsigned long size = cmd->npages << PAGE_SHIFT;
751         struct mm_struct *mm = dmirror->notifier.mm;
752         struct page *pages[64];
753         struct dmirror_bounce bounce;
754         unsigned long next;
755         int ret;
756
757         start = cmd->addr;
758         end = start + size;
759         if (end < start)
760                 return -EINVAL;
761
762         /* Since the mm is for the mirrored process, get a reference first. */
763         if (!mmget_not_zero(mm))
764                 return -EINVAL;
765
766         mmap_read_lock(mm);
767         for (addr = start; addr < end; addr = next) {
768                 unsigned long mapped = 0;
769                 int i;
770
771                 if (end < addr + (ARRAY_SIZE(pages) << PAGE_SHIFT))
772                         next = end;
773                 else
774                         next = addr + (ARRAY_SIZE(pages) << PAGE_SHIFT);
775
776                 ret = make_device_exclusive_range(mm, addr, next, pages, NULL);
777                 /*
778                  * Do dmirror_atomic_map() iff all pages are marked for
779                  * exclusive access to avoid accessing uninitialized
780                  * fields of pages.
781                  */
782                 if (ret == (next - addr) >> PAGE_SHIFT)
783                         mapped = dmirror_atomic_map(addr, next, pages, dmirror);
784                 for (i = 0; i < ret; i++) {
785                         if (pages[i]) {
786                                 unlock_page(pages[i]);
787                                 put_page(pages[i]);
788                         }
789                 }
790
791                 if (addr + (mapped << PAGE_SHIFT) < next) {
792                         mmap_read_unlock(mm);
793                         mmput(mm);
794                         return -EBUSY;
795                 }
796         }
797         mmap_read_unlock(mm);
798         mmput(mm);
799
800         /* Return the migrated data for verification. */
801         ret = dmirror_bounce_init(&bounce, start, size);
802         if (ret)
803                 return ret;
804         mutex_lock(&dmirror->mutex);
805         ret = dmirror_do_read(dmirror, start, end, &bounce);
806         mutex_unlock(&dmirror->mutex);
807         if (ret == 0) {
808                 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
809                                  bounce.size))
810                         ret = -EFAULT;
811         }
812
813         cmd->cpages = bounce.cpages;
814         dmirror_bounce_fini(&bounce);
815         return ret;
816 }
817
818 static int dmirror_migrate(struct dmirror *dmirror,
819                            struct hmm_dmirror_cmd *cmd)
820 {
821         unsigned long start, end, addr;
822         unsigned long size = cmd->npages << PAGE_SHIFT;
823         struct mm_struct *mm = dmirror->notifier.mm;
824         struct vm_area_struct *vma;
825         unsigned long src_pfns[64];
826         unsigned long dst_pfns[64];
827         struct dmirror_bounce bounce;
828         struct migrate_vma args;
829         unsigned long next;
830         int ret;
831
832         start = cmd->addr;
833         end = start + size;
834         if (end < start)
835                 return -EINVAL;
836
837         /* Since the mm is for the mirrored process, get a reference first. */
838         if (!mmget_not_zero(mm))
839                 return -EINVAL;
840
841         mmap_read_lock(mm);
842         for (addr = start; addr < end; addr = next) {
843                 vma = vma_lookup(mm, addr);
844                 if (!vma || !(vma->vm_flags & VM_READ)) {
845                         ret = -EINVAL;
846                         goto out;
847                 }
848                 next = min(end, addr + (ARRAY_SIZE(src_pfns) << PAGE_SHIFT));
849                 if (next > vma->vm_end)
850                         next = vma->vm_end;
851
852                 args.vma = vma;
853                 args.src = src_pfns;
854                 args.dst = dst_pfns;
855                 args.start = addr;
856                 args.end = next;
857                 args.pgmap_owner = dmirror->mdevice;
858                 args.flags = MIGRATE_VMA_SELECT_SYSTEM;
859                 ret = migrate_vma_setup(&args);
860                 if (ret)
861                         goto out;
862
863                 dmirror_migrate_alloc_and_copy(&args, dmirror);
864                 migrate_vma_pages(&args);
865                 dmirror_migrate_finalize_and_map(&args, dmirror);
866                 migrate_vma_finalize(&args);
867         }
868         mmap_read_unlock(mm);
869         mmput(mm);
870
871         /* Return the migrated data for verification. */
872         ret = dmirror_bounce_init(&bounce, start, size);
873         if (ret)
874                 return ret;
875         mutex_lock(&dmirror->mutex);
876         ret = dmirror_do_read(dmirror, start, end, &bounce);
877         mutex_unlock(&dmirror->mutex);
878         if (ret == 0) {
879                 if (copy_to_user(u64_to_user_ptr(cmd->ptr), bounce.ptr,
880                                  bounce.size))
881                         ret = -EFAULT;
882         }
883         cmd->cpages = bounce.cpages;
884         dmirror_bounce_fini(&bounce);
885         return ret;
886
887 out:
888         mmap_read_unlock(mm);
889         mmput(mm);
890         return ret;
891 }
892
893 static void dmirror_mkentry(struct dmirror *dmirror, struct hmm_range *range,
894                             unsigned char *perm, unsigned long entry)
895 {
896         struct page *page;
897
898         if (entry & HMM_PFN_ERROR) {
899                 *perm = HMM_DMIRROR_PROT_ERROR;
900                 return;
901         }
902         if (!(entry & HMM_PFN_VALID)) {
903                 *perm = HMM_DMIRROR_PROT_NONE;
904                 return;
905         }
906
907         page = hmm_pfn_to_page(entry);
908         if (is_device_private_page(page)) {
909                 /* Is the page migrated to this device or some other? */
910                 if (dmirror->mdevice == dmirror_page_to_device(page))
911                         *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_LOCAL;
912                 else
913                         *perm = HMM_DMIRROR_PROT_DEV_PRIVATE_REMOTE;
914         } else if (is_zero_pfn(page_to_pfn(page)))
915                 *perm = HMM_DMIRROR_PROT_ZERO;
916         else
917                 *perm = HMM_DMIRROR_PROT_NONE;
918         if (entry & HMM_PFN_WRITE)
919                 *perm |= HMM_DMIRROR_PROT_WRITE;
920         else
921                 *perm |= HMM_DMIRROR_PROT_READ;
922         if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PMD_SHIFT)
923                 *perm |= HMM_DMIRROR_PROT_PMD;
924         else if (hmm_pfn_to_map_order(entry) + PAGE_SHIFT == PUD_SHIFT)
925                 *perm |= HMM_DMIRROR_PROT_PUD;
926 }
927
928 static bool dmirror_snapshot_invalidate(struct mmu_interval_notifier *mni,
929                                 const struct mmu_notifier_range *range,
930                                 unsigned long cur_seq)
931 {
932         struct dmirror_interval *dmi =
933                 container_of(mni, struct dmirror_interval, notifier);
934         struct dmirror *dmirror = dmi->dmirror;
935
936         if (mmu_notifier_range_blockable(range))
937                 mutex_lock(&dmirror->mutex);
938         else if (!mutex_trylock(&dmirror->mutex))
939                 return false;
940
941         /*
942          * Snapshots only need to set the sequence number since any
943          * invalidation in the interval invalidates the whole snapshot.
944          */
945         mmu_interval_set_seq(mni, cur_seq);
946
947         mutex_unlock(&dmirror->mutex);
948         return true;
949 }
950
951 static const struct mmu_interval_notifier_ops dmirror_mrn_ops = {
952         .invalidate = dmirror_snapshot_invalidate,
953 };
954
955 static int dmirror_range_snapshot(struct dmirror *dmirror,
956                                   struct hmm_range *range,
957                                   unsigned char *perm)
958 {
959         struct mm_struct *mm = dmirror->notifier.mm;
960         struct dmirror_interval notifier;
961         unsigned long timeout =
962                 jiffies + msecs_to_jiffies(HMM_RANGE_DEFAULT_TIMEOUT);
963         unsigned long i;
964         unsigned long n;
965         int ret = 0;
966
967         notifier.dmirror = dmirror;
968         range->notifier = &notifier.notifier;
969
970         ret = mmu_interval_notifier_insert(range->notifier, mm,
971                         range->start, range->end - range->start,
972                         &dmirror_mrn_ops);
973         if (ret)
974                 return ret;
975
976         while (true) {
977                 if (time_after(jiffies, timeout)) {
978                         ret = -EBUSY;
979                         goto out;
980                 }
981
982                 range->notifier_seq = mmu_interval_read_begin(range->notifier);
983
984                 mmap_read_lock(mm);
985                 ret = hmm_range_fault(range);
986                 mmap_read_unlock(mm);
987                 if (ret) {
988                         if (ret == -EBUSY)
989                                 continue;
990                         goto out;
991                 }
992
993                 mutex_lock(&dmirror->mutex);
994                 if (mmu_interval_read_retry(range->notifier,
995                                             range->notifier_seq)) {
996                         mutex_unlock(&dmirror->mutex);
997                         continue;
998                 }
999                 break;
1000         }
1001
1002         n = (range->end - range->start) >> PAGE_SHIFT;
1003         for (i = 0; i < n; i++)
1004                 dmirror_mkentry(dmirror, range, perm + i, range->hmm_pfns[i]);
1005
1006         mutex_unlock(&dmirror->mutex);
1007 out:
1008         mmu_interval_notifier_remove(range->notifier);
1009         return ret;
1010 }
1011
1012 static int dmirror_snapshot(struct dmirror *dmirror,
1013                             struct hmm_dmirror_cmd *cmd)
1014 {
1015         struct mm_struct *mm = dmirror->notifier.mm;
1016         unsigned long start, end;
1017         unsigned long size = cmd->npages << PAGE_SHIFT;
1018         unsigned long addr;
1019         unsigned long next;
1020         unsigned long pfns[64];
1021         unsigned char perm[64];
1022         char __user *uptr;
1023         struct hmm_range range = {
1024                 .hmm_pfns = pfns,
1025                 .dev_private_owner = dmirror->mdevice,
1026         };
1027         int ret = 0;
1028
1029         start = cmd->addr;
1030         end = start + size;
1031         if (end < start)
1032                 return -EINVAL;
1033
1034         /* Since the mm is for the mirrored process, get a reference first. */
1035         if (!mmget_not_zero(mm))
1036                 return -EINVAL;
1037
1038         /*
1039          * Register a temporary notifier to detect invalidations even if it
1040          * overlaps with other mmu_interval_notifiers.
1041          */
1042         uptr = u64_to_user_ptr(cmd->ptr);
1043         for (addr = start; addr < end; addr = next) {
1044                 unsigned long n;
1045
1046                 next = min(addr + (ARRAY_SIZE(pfns) << PAGE_SHIFT), end);
1047                 range.start = addr;
1048                 range.end = next;
1049
1050                 ret = dmirror_range_snapshot(dmirror, &range, perm);
1051                 if (ret)
1052                         break;
1053
1054                 n = (range.end - range.start) >> PAGE_SHIFT;
1055                 if (copy_to_user(uptr, perm, n)) {
1056                         ret = -EFAULT;
1057                         break;
1058                 }
1059
1060                 cmd->cpages += n;
1061                 uptr += n;
1062         }
1063         mmput(mm);
1064
1065         return ret;
1066 }
1067
1068 static long dmirror_fops_unlocked_ioctl(struct file *filp,
1069                                         unsigned int command,
1070                                         unsigned long arg)
1071 {
1072         void __user *uarg = (void __user *)arg;
1073         struct hmm_dmirror_cmd cmd;
1074         struct dmirror *dmirror;
1075         int ret;
1076
1077         dmirror = filp->private_data;
1078         if (!dmirror)
1079                 return -EINVAL;
1080
1081         if (copy_from_user(&cmd, uarg, sizeof(cmd)))
1082                 return -EFAULT;
1083
1084         if (cmd.addr & ~PAGE_MASK)
1085                 return -EINVAL;
1086         if (cmd.addr >= (cmd.addr + (cmd.npages << PAGE_SHIFT)))
1087                 return -EINVAL;
1088
1089         cmd.cpages = 0;
1090         cmd.faults = 0;
1091
1092         switch (command) {
1093         case HMM_DMIRROR_READ:
1094                 ret = dmirror_read(dmirror, &cmd);
1095                 break;
1096
1097         case HMM_DMIRROR_WRITE:
1098                 ret = dmirror_write(dmirror, &cmd);
1099                 break;
1100
1101         case HMM_DMIRROR_MIGRATE:
1102                 ret = dmirror_migrate(dmirror, &cmd);
1103                 break;
1104
1105         case HMM_DMIRROR_EXCLUSIVE:
1106                 ret = dmirror_exclusive(dmirror, &cmd);
1107                 break;
1108
1109         case HMM_DMIRROR_CHECK_EXCLUSIVE:
1110                 ret = dmirror_check_atomic(dmirror, cmd.addr,
1111                                         cmd.addr + (cmd.npages << PAGE_SHIFT));
1112                 break;
1113
1114         case HMM_DMIRROR_SNAPSHOT:
1115                 ret = dmirror_snapshot(dmirror, &cmd);
1116                 break;
1117
1118         default:
1119                 return -EINVAL;
1120         }
1121         if (ret)
1122                 return ret;
1123
1124         if (copy_to_user(uarg, &cmd, sizeof(cmd)))
1125                 return -EFAULT;
1126
1127         return 0;
1128 }
1129
1130 static int dmirror_fops_mmap(struct file *file, struct vm_area_struct *vma)
1131 {
1132         unsigned long addr;
1133
1134         for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE) {
1135                 struct page *page;
1136                 int ret;
1137
1138                 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
1139                 if (!page)
1140                         return -ENOMEM;
1141
1142                 ret = vm_insert_page(vma, addr, page);
1143                 if (ret) {
1144                         __free_page(page);
1145                         return ret;
1146                 }
1147                 put_page(page);
1148         }
1149
1150         return 0;
1151 }
1152
1153 static const struct file_operations dmirror_fops = {
1154         .open           = dmirror_fops_open,
1155         .release        = dmirror_fops_release,
1156         .mmap           = dmirror_fops_mmap,
1157         .unlocked_ioctl = dmirror_fops_unlocked_ioctl,
1158         .llseek         = default_llseek,
1159         .owner          = THIS_MODULE,
1160 };
1161
1162 static void dmirror_devmem_free(struct page *page)
1163 {
1164         struct page *rpage = page->zone_device_data;
1165         struct dmirror_device *mdevice;
1166
1167         if (rpage)
1168                 __free_page(rpage);
1169
1170         mdevice = dmirror_page_to_device(page);
1171
1172         spin_lock(&mdevice->lock);
1173         mdevice->cfree++;
1174         page->zone_device_data = mdevice->free_pages;
1175         mdevice->free_pages = page;
1176         spin_unlock(&mdevice->lock);
1177 }
1178
1179 static vm_fault_t dmirror_devmem_fault_alloc_and_copy(struct migrate_vma *args,
1180                                                       struct dmirror *dmirror)
1181 {
1182         const unsigned long *src = args->src;
1183         unsigned long *dst = args->dst;
1184         unsigned long start = args->start;
1185         unsigned long end = args->end;
1186         unsigned long addr;
1187
1188         for (addr = start; addr < end; addr += PAGE_SIZE,
1189                                        src++, dst++) {
1190                 struct page *dpage, *spage;
1191
1192                 spage = migrate_pfn_to_page(*src);
1193                 if (!spage || !(*src & MIGRATE_PFN_MIGRATE))
1194                         continue;
1195                 spage = spage->zone_device_data;
1196
1197                 dpage = alloc_page_vma(GFP_HIGHUSER_MOVABLE, args->vma, addr);
1198                 if (!dpage)
1199                         continue;
1200
1201                 lock_page(dpage);
1202                 xa_erase(&dmirror->pt, addr >> PAGE_SHIFT);
1203                 copy_highpage(dpage, spage);
1204                 *dst = migrate_pfn(page_to_pfn(dpage));
1205                 if (*src & MIGRATE_PFN_WRITE)
1206                         *dst |= MIGRATE_PFN_WRITE;
1207         }
1208         return 0;
1209 }
1210
1211 static vm_fault_t dmirror_devmem_fault(struct vm_fault *vmf)
1212 {
1213         struct migrate_vma args;
1214         unsigned long src_pfns;
1215         unsigned long dst_pfns;
1216         struct page *rpage;
1217         struct dmirror *dmirror;
1218         vm_fault_t ret;
1219
1220         /*
1221          * Normally, a device would use the page->zone_device_data to point to
1222          * the mirror but here we use it to hold the page for the simulated
1223          * device memory and that page holds the pointer to the mirror.
1224          */
1225         rpage = vmf->page->zone_device_data;
1226         dmirror = rpage->zone_device_data;
1227
1228         /* FIXME demonstrate how we can adjust migrate range */
1229         args.vma = vmf->vma;
1230         args.start = vmf->address;
1231         args.end = args.start + PAGE_SIZE;
1232         args.src = &src_pfns;
1233         args.dst = &dst_pfns;
1234         args.pgmap_owner = dmirror->mdevice;
1235         args.flags = MIGRATE_VMA_SELECT_DEVICE_PRIVATE;
1236
1237         if (migrate_vma_setup(&args))
1238                 return VM_FAULT_SIGBUS;
1239
1240         ret = dmirror_devmem_fault_alloc_and_copy(&args, dmirror);
1241         if (ret)
1242                 return ret;
1243         migrate_vma_pages(&args);
1244         /*
1245          * No device finalize step is needed since
1246          * dmirror_devmem_fault_alloc_and_copy() will have already
1247          * invalidated the device page table.
1248          */
1249         migrate_vma_finalize(&args);
1250         return 0;
1251 }
1252
1253 static const struct dev_pagemap_ops dmirror_devmem_ops = {
1254         .page_free      = dmirror_devmem_free,
1255         .migrate_to_ram = dmirror_devmem_fault,
1256 };
1257
1258 static int dmirror_device_init(struct dmirror_device *mdevice, int id)
1259 {
1260         dev_t dev;
1261         int ret;
1262
1263         dev = MKDEV(MAJOR(dmirror_dev), id);
1264         mutex_init(&mdevice->devmem_lock);
1265         spin_lock_init(&mdevice->lock);
1266
1267         cdev_init(&mdevice->cdevice, &dmirror_fops);
1268         mdevice->cdevice.owner = THIS_MODULE;
1269         ret = cdev_add(&mdevice->cdevice, dev, 1);
1270         if (ret)
1271                 return ret;
1272
1273         /* Build a list of free ZONE_DEVICE struct pages */
1274         return dmirror_allocate_chunk(mdevice, NULL);
1275 }
1276
1277 static void dmirror_device_remove(struct dmirror_device *mdevice)
1278 {
1279         unsigned int i;
1280
1281         if (mdevice->devmem_chunks) {
1282                 for (i = 0; i < mdevice->devmem_count; i++) {
1283                         struct dmirror_chunk *devmem =
1284                                 mdevice->devmem_chunks[i];
1285
1286                         memunmap_pages(&devmem->pagemap);
1287                         if (devmem->pagemap.type == MEMORY_DEVICE_PRIVATE)
1288                                 release_mem_region(devmem->pagemap.range.start,
1289                                                    range_len(&devmem->pagemap.range));
1290                         kfree(devmem);
1291                 }
1292                 kfree(mdevice->devmem_chunks);
1293         }
1294
1295         cdev_del(&mdevice->cdevice);
1296 }
1297
1298 static int __init hmm_dmirror_init(void)
1299 {
1300         int ret;
1301         int id = 0;
1302         int ndevices = 0;
1303
1304         ret = alloc_chrdev_region(&dmirror_dev, 0, DMIRROR_NDEVICES,
1305                                   "HMM_DMIRROR");
1306         if (ret)
1307                 goto err_unreg;
1308
1309         memset(dmirror_devices, 0, DMIRROR_NDEVICES * sizeof(dmirror_devices[0]));
1310         dmirror_devices[ndevices++].zone_device_type =
1311                                 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1312         dmirror_devices[ndevices++].zone_device_type =
1313                                 HMM_DMIRROR_MEMORY_DEVICE_PRIVATE;
1314         for (id = 0; id < ndevices; id++) {
1315                 ret = dmirror_device_init(dmirror_devices + id, id);
1316                 if (ret)
1317                         goto err_chrdev;
1318         }
1319
1320         pr_info("HMM test module loaded. This is only for testing HMM.\n");
1321         return 0;
1322
1323 err_chrdev:
1324         while (--id >= 0)
1325                 dmirror_device_remove(dmirror_devices + id);
1326         unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1327 err_unreg:
1328         return ret;
1329 }
1330
1331 static void __exit hmm_dmirror_exit(void)
1332 {
1333         int id;
1334
1335         for (id = 0; id < DMIRROR_NDEVICES; id++)
1336                 dmirror_device_remove(dmirror_devices + id);
1337         unregister_chrdev_region(dmirror_dev, DMIRROR_NDEVICES);
1338 }
1339
1340 module_init(hmm_dmirror_init);
1341 module_exit(hmm_dmirror_exit);
1342 MODULE_LICENSE("GPL");