Merge remote-tracking branch 'asoc/for-4.19' into asoc-4.20
[linux-2.6-microblaze.git] / lib / rhashtable.c
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31 #include <linux/rhashtable.h>
32
33 #define HASH_DEFAULT_SIZE       64UL
34 #define HASH_MIN_SIZE           4U
35 #define BUCKET_LOCKS_PER_CPU    32UL
36
37 union nested_table {
38         union nested_table __rcu *table;
39         struct rhash_head __rcu *bucket;
40 };
41
42 static u32 head_hashfn(struct rhashtable *ht,
43                        const struct bucket_table *tbl,
44                        const struct rhash_head *he)
45 {
46         return rht_head_hashfn(ht, tbl, he, ht->p);
47 }
48
49 #ifdef CONFIG_PROVE_LOCKING
50 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
51
52 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
53 {
54         return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
55 }
56 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
57
58 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
59 {
60         spinlock_t *lock = rht_bucket_lock(tbl, hash);
61
62         return (debug_locks) ? lockdep_is_held(lock) : 1;
63 }
64 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
65 #else
66 #define ASSERT_RHT_MUTEX(HT)
67 #endif
68
69 static void nested_table_free(union nested_table *ntbl, unsigned int size)
70 {
71         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
72         const unsigned int len = 1 << shift;
73         unsigned int i;
74
75         ntbl = rcu_dereference_raw(ntbl->table);
76         if (!ntbl)
77                 return;
78
79         if (size > len) {
80                 size >>= shift;
81                 for (i = 0; i < len; i++)
82                         nested_table_free(ntbl + i, size);
83         }
84
85         kfree(ntbl);
86 }
87
88 static void nested_bucket_table_free(const struct bucket_table *tbl)
89 {
90         unsigned int size = tbl->size >> tbl->nest;
91         unsigned int len = 1 << tbl->nest;
92         union nested_table *ntbl;
93         unsigned int i;
94
95         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
96
97         for (i = 0; i < len; i++)
98                 nested_table_free(ntbl + i, size);
99
100         kfree(ntbl);
101 }
102
103 static void bucket_table_free(const struct bucket_table *tbl)
104 {
105         if (tbl->nest)
106                 nested_bucket_table_free(tbl);
107
108         free_bucket_spinlocks(tbl->locks);
109         kvfree(tbl);
110 }
111
112 static void bucket_table_free_rcu(struct rcu_head *head)
113 {
114         bucket_table_free(container_of(head, struct bucket_table, rcu));
115 }
116
117 static union nested_table *nested_table_alloc(struct rhashtable *ht,
118                                               union nested_table __rcu **prev,
119                                               bool leaf)
120 {
121         union nested_table *ntbl;
122         int i;
123
124         ntbl = rcu_dereference(*prev);
125         if (ntbl)
126                 return ntbl;
127
128         ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
129
130         if (ntbl && leaf) {
131                 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
132                         INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
133         }
134
135         rcu_assign_pointer(*prev, ntbl);
136
137         return ntbl;
138 }
139
140 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
141                                                       size_t nbuckets,
142                                                       gfp_t gfp)
143 {
144         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
145         struct bucket_table *tbl;
146         size_t size;
147
148         if (nbuckets < (1 << (shift + 1)))
149                 return NULL;
150
151         size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
152
153         tbl = kzalloc(size, gfp);
154         if (!tbl)
155                 return NULL;
156
157         if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
158                                 false)) {
159                 kfree(tbl);
160                 return NULL;
161         }
162
163         tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
164
165         return tbl;
166 }
167
168 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
169                                                size_t nbuckets,
170                                                gfp_t gfp)
171 {
172         struct bucket_table *tbl = NULL;
173         size_t size, max_locks;
174         int i;
175
176         size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
177         tbl = kvzalloc(size, gfp);
178
179         size = nbuckets;
180
181         if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
182                 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
183                 nbuckets = 0;
184         }
185
186         if (tbl == NULL)
187                 return NULL;
188
189         tbl->size = size;
190
191         max_locks = size >> 1;
192         if (tbl->nest)
193                 max_locks = min_t(size_t, max_locks, 1U << tbl->nest);
194
195         if (alloc_bucket_spinlocks(&tbl->locks, &tbl->locks_mask, max_locks,
196                                    ht->p.locks_mul, gfp) < 0) {
197                 bucket_table_free(tbl);
198                 return NULL;
199         }
200
201         INIT_LIST_HEAD(&tbl->walkers);
202
203         tbl->hash_rnd = get_random_u32();
204
205         for (i = 0; i < nbuckets; i++)
206                 INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
207
208         return tbl;
209 }
210
211 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
212                                                   struct bucket_table *tbl)
213 {
214         struct bucket_table *new_tbl;
215
216         do {
217                 new_tbl = tbl;
218                 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
219         } while (tbl);
220
221         return new_tbl;
222 }
223
224 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
225 {
226         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
227         struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
228         struct rhash_head __rcu **pprev = rht_bucket_var(old_tbl, old_hash);
229         int err = -EAGAIN;
230         struct rhash_head *head, *next, *entry;
231         spinlock_t *new_bucket_lock;
232         unsigned int new_hash;
233
234         if (new_tbl->nest)
235                 goto out;
236
237         err = -ENOENT;
238
239         rht_for_each(entry, old_tbl, old_hash) {
240                 err = 0;
241                 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
242
243                 if (rht_is_a_nulls(next))
244                         break;
245
246                 pprev = &entry->next;
247         }
248
249         if (err)
250                 goto out;
251
252         new_hash = head_hashfn(ht, new_tbl, entry);
253
254         new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
255
256         spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
257         head = rht_dereference_bucket(new_tbl->buckets[new_hash],
258                                       new_tbl, new_hash);
259
260         RCU_INIT_POINTER(entry->next, head);
261
262         rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
263         spin_unlock(new_bucket_lock);
264
265         rcu_assign_pointer(*pprev, next);
266
267 out:
268         return err;
269 }
270
271 static int rhashtable_rehash_chain(struct rhashtable *ht,
272                                     unsigned int old_hash)
273 {
274         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
275         spinlock_t *old_bucket_lock;
276         int err;
277
278         old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
279
280         spin_lock_bh(old_bucket_lock);
281         while (!(err = rhashtable_rehash_one(ht, old_hash)))
282                 ;
283
284         if (err == -ENOENT) {
285                 old_tbl->rehash++;
286                 err = 0;
287         }
288         spin_unlock_bh(old_bucket_lock);
289
290         return err;
291 }
292
293 static int rhashtable_rehash_attach(struct rhashtable *ht,
294                                     struct bucket_table *old_tbl,
295                                     struct bucket_table *new_tbl)
296 {
297         /* Make insertions go into the new, empty table right away. Deletions
298          * and lookups will be attempted in both tables until we synchronize.
299          * As cmpxchg() provides strong barriers, we do not need
300          * rcu_assign_pointer().
301          */
302
303         if (cmpxchg(&old_tbl->future_tbl, NULL, new_tbl) != NULL)
304                 return -EEXIST;
305
306         return 0;
307 }
308
309 static int rhashtable_rehash_table(struct rhashtable *ht)
310 {
311         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
312         struct bucket_table *new_tbl;
313         struct rhashtable_walker *walker;
314         unsigned int old_hash;
315         int err;
316
317         new_tbl = rht_dereference(old_tbl->future_tbl, ht);
318         if (!new_tbl)
319                 return 0;
320
321         for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
322                 err = rhashtable_rehash_chain(ht, old_hash);
323                 if (err)
324                         return err;
325                 cond_resched();
326         }
327
328         /* Publish the new table pointer. */
329         rcu_assign_pointer(ht->tbl, new_tbl);
330
331         spin_lock(&ht->lock);
332         list_for_each_entry(walker, &old_tbl->walkers, list)
333                 walker->tbl = NULL;
334         spin_unlock(&ht->lock);
335
336         /* Wait for readers. All new readers will see the new
337          * table, and thus no references to the old table will
338          * remain.
339          */
340         call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
341
342         return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
343 }
344
345 static int rhashtable_rehash_alloc(struct rhashtable *ht,
346                                    struct bucket_table *old_tbl,
347                                    unsigned int size)
348 {
349         struct bucket_table *new_tbl;
350         int err;
351
352         ASSERT_RHT_MUTEX(ht);
353
354         new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
355         if (new_tbl == NULL)
356                 return -ENOMEM;
357
358         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
359         if (err)
360                 bucket_table_free(new_tbl);
361
362         return err;
363 }
364
365 /**
366  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
367  * @ht:         the hash table to shrink
368  *
369  * This function shrinks the hash table to fit, i.e., the smallest
370  * size would not cause it to expand right away automatically.
371  *
372  * The caller must ensure that no concurrent resizing occurs by holding
373  * ht->mutex.
374  *
375  * The caller must ensure that no concurrent table mutations take place.
376  * It is however valid to have concurrent lookups if they are RCU protected.
377  *
378  * It is valid to have concurrent insertions and deletions protected by per
379  * bucket locks or concurrent RCU protected lookups and traversals.
380  */
381 static int rhashtable_shrink(struct rhashtable *ht)
382 {
383         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
384         unsigned int nelems = atomic_read(&ht->nelems);
385         unsigned int size = 0;
386
387         if (nelems)
388                 size = roundup_pow_of_two(nelems * 3 / 2);
389         if (size < ht->p.min_size)
390                 size = ht->p.min_size;
391
392         if (old_tbl->size <= size)
393                 return 0;
394
395         if (rht_dereference(old_tbl->future_tbl, ht))
396                 return -EEXIST;
397
398         return rhashtable_rehash_alloc(ht, old_tbl, size);
399 }
400
401 static void rht_deferred_worker(struct work_struct *work)
402 {
403         struct rhashtable *ht;
404         struct bucket_table *tbl;
405         int err = 0;
406
407         ht = container_of(work, struct rhashtable, run_work);
408         mutex_lock(&ht->mutex);
409
410         tbl = rht_dereference(ht->tbl, ht);
411         tbl = rhashtable_last_table(ht, tbl);
412
413         if (rht_grow_above_75(ht, tbl))
414                 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
415         else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
416                 err = rhashtable_shrink(ht);
417         else if (tbl->nest)
418                 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
419
420         if (!err)
421                 err = rhashtable_rehash_table(ht);
422
423         mutex_unlock(&ht->mutex);
424
425         if (err)
426                 schedule_work(&ht->run_work);
427 }
428
429 static int rhashtable_insert_rehash(struct rhashtable *ht,
430                                     struct bucket_table *tbl)
431 {
432         struct bucket_table *old_tbl;
433         struct bucket_table *new_tbl;
434         unsigned int size;
435         int err;
436
437         old_tbl = rht_dereference_rcu(ht->tbl, ht);
438
439         size = tbl->size;
440
441         err = -EBUSY;
442
443         if (rht_grow_above_75(ht, tbl))
444                 size *= 2;
445         /* Do not schedule more than one rehash */
446         else if (old_tbl != tbl)
447                 goto fail;
448
449         err = -ENOMEM;
450
451         new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
452         if (new_tbl == NULL)
453                 goto fail;
454
455         err = rhashtable_rehash_attach(ht, tbl, new_tbl);
456         if (err) {
457                 bucket_table_free(new_tbl);
458                 if (err == -EEXIST)
459                         err = 0;
460         } else
461                 schedule_work(&ht->run_work);
462
463         return err;
464
465 fail:
466         /* Do not fail the insert if someone else did a rehash. */
467         if (likely(rcu_access_pointer(tbl->future_tbl)))
468                 return 0;
469
470         /* Schedule async rehash to retry allocation in process context. */
471         if (err == -ENOMEM)
472                 schedule_work(&ht->run_work);
473
474         return err;
475 }
476
477 static void *rhashtable_lookup_one(struct rhashtable *ht,
478                                    struct bucket_table *tbl, unsigned int hash,
479                                    const void *key, struct rhash_head *obj)
480 {
481         struct rhashtable_compare_arg arg = {
482                 .ht = ht,
483                 .key = key,
484         };
485         struct rhash_head __rcu **pprev;
486         struct rhash_head *head;
487         int elasticity;
488
489         elasticity = RHT_ELASTICITY;
490         pprev = rht_bucket_var(tbl, hash);
491         rht_for_each_continue(head, *pprev, tbl, hash) {
492                 struct rhlist_head *list;
493                 struct rhlist_head *plist;
494
495                 elasticity--;
496                 if (!key ||
497                     (ht->p.obj_cmpfn ?
498                      ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
499                      rhashtable_compare(&arg, rht_obj(ht, head)))) {
500                         pprev = &head->next;
501                         continue;
502                 }
503
504                 if (!ht->rhlist)
505                         return rht_obj(ht, head);
506
507                 list = container_of(obj, struct rhlist_head, rhead);
508                 plist = container_of(head, struct rhlist_head, rhead);
509
510                 RCU_INIT_POINTER(list->next, plist);
511                 head = rht_dereference_bucket(head->next, tbl, hash);
512                 RCU_INIT_POINTER(list->rhead.next, head);
513                 rcu_assign_pointer(*pprev, obj);
514
515                 return NULL;
516         }
517
518         if (elasticity <= 0)
519                 return ERR_PTR(-EAGAIN);
520
521         return ERR_PTR(-ENOENT);
522 }
523
524 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
525                                                   struct bucket_table *tbl,
526                                                   unsigned int hash,
527                                                   struct rhash_head *obj,
528                                                   void *data)
529 {
530         struct rhash_head __rcu **pprev;
531         struct bucket_table *new_tbl;
532         struct rhash_head *head;
533
534         if (!IS_ERR_OR_NULL(data))
535                 return ERR_PTR(-EEXIST);
536
537         if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
538                 return ERR_CAST(data);
539
540         new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
541         if (new_tbl)
542                 return new_tbl;
543
544         if (PTR_ERR(data) != -ENOENT)
545                 return ERR_CAST(data);
546
547         if (unlikely(rht_grow_above_max(ht, tbl)))
548                 return ERR_PTR(-E2BIG);
549
550         if (unlikely(rht_grow_above_100(ht, tbl)))
551                 return ERR_PTR(-EAGAIN);
552
553         pprev = rht_bucket_insert(ht, tbl, hash);
554         if (!pprev)
555                 return ERR_PTR(-ENOMEM);
556
557         head = rht_dereference_bucket(*pprev, tbl, hash);
558
559         RCU_INIT_POINTER(obj->next, head);
560         if (ht->rhlist) {
561                 struct rhlist_head *list;
562
563                 list = container_of(obj, struct rhlist_head, rhead);
564                 RCU_INIT_POINTER(list->next, NULL);
565         }
566
567         rcu_assign_pointer(*pprev, obj);
568
569         atomic_inc(&ht->nelems);
570         if (rht_grow_above_75(ht, tbl))
571                 schedule_work(&ht->run_work);
572
573         return NULL;
574 }
575
576 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
577                                    struct rhash_head *obj)
578 {
579         struct bucket_table *new_tbl;
580         struct bucket_table *tbl;
581         unsigned int hash;
582         spinlock_t *lock;
583         void *data;
584
585         tbl = rcu_dereference(ht->tbl);
586
587         /* All insertions must grab the oldest table containing
588          * the hashed bucket that is yet to be rehashed.
589          */
590         for (;;) {
591                 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
592                 lock = rht_bucket_lock(tbl, hash);
593                 spin_lock_bh(lock);
594
595                 if (tbl->rehash <= hash)
596                         break;
597
598                 spin_unlock_bh(lock);
599                 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
600         }
601
602         data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
603         new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
604         if (PTR_ERR(new_tbl) != -EEXIST)
605                 data = ERR_CAST(new_tbl);
606
607         while (!IS_ERR_OR_NULL(new_tbl)) {
608                 tbl = new_tbl;
609                 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
610                 spin_lock_nested(rht_bucket_lock(tbl, hash),
611                                  SINGLE_DEPTH_NESTING);
612
613                 data = rhashtable_lookup_one(ht, tbl, hash, key, obj);
614                 new_tbl = rhashtable_insert_one(ht, tbl, hash, obj, data);
615                 if (PTR_ERR(new_tbl) != -EEXIST)
616                         data = ERR_CAST(new_tbl);
617
618                 spin_unlock(rht_bucket_lock(tbl, hash));
619         }
620
621         spin_unlock_bh(lock);
622
623         if (PTR_ERR(data) == -EAGAIN)
624                 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
625                                -EAGAIN);
626
627         return data;
628 }
629
630 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
631                              struct rhash_head *obj)
632 {
633         void *data;
634
635         do {
636                 rcu_read_lock();
637                 data = rhashtable_try_insert(ht, key, obj);
638                 rcu_read_unlock();
639         } while (PTR_ERR(data) == -EAGAIN);
640
641         return data;
642 }
643 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
644
645 /**
646  * rhashtable_walk_enter - Initialise an iterator
647  * @ht:         Table to walk over
648  * @iter:       Hash table Iterator
649  *
650  * This function prepares a hash table walk.
651  *
652  * Note that if you restart a walk after rhashtable_walk_stop you
653  * may see the same object twice.  Also, you may miss objects if
654  * there are removals in between rhashtable_walk_stop and the next
655  * call to rhashtable_walk_start.
656  *
657  * For a completely stable walk you should construct your own data
658  * structure outside the hash table.
659  *
660  * This function may be called from any process context, including
661  * non-preemptable context, but cannot be called from softirq or
662  * hardirq context.
663  *
664  * You must call rhashtable_walk_exit after this function returns.
665  */
666 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
667 {
668         iter->ht = ht;
669         iter->p = NULL;
670         iter->slot = 0;
671         iter->skip = 0;
672         iter->end_of_table = 0;
673
674         spin_lock(&ht->lock);
675         iter->walker.tbl =
676                 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
677         list_add(&iter->walker.list, &iter->walker.tbl->walkers);
678         spin_unlock(&ht->lock);
679 }
680 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
681
682 /**
683  * rhashtable_walk_exit - Free an iterator
684  * @iter:       Hash table Iterator
685  *
686  * This function frees resources allocated by rhashtable_walk_init.
687  */
688 void rhashtable_walk_exit(struct rhashtable_iter *iter)
689 {
690         spin_lock(&iter->ht->lock);
691         if (iter->walker.tbl)
692                 list_del(&iter->walker.list);
693         spin_unlock(&iter->ht->lock);
694 }
695 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
696
697 /**
698  * rhashtable_walk_start_check - Start a hash table walk
699  * @iter:       Hash table iterator
700  *
701  * Start a hash table walk at the current iterator position.  Note that we take
702  * the RCU lock in all cases including when we return an error.  So you must
703  * always call rhashtable_walk_stop to clean up.
704  *
705  * Returns zero if successful.
706  *
707  * Returns -EAGAIN if resize event occured.  Note that the iterator
708  * will rewind back to the beginning and you may use it immediately
709  * by calling rhashtable_walk_next.
710  *
711  * rhashtable_walk_start is defined as an inline variant that returns
712  * void. This is preferred in cases where the caller would ignore
713  * resize events and always continue.
714  */
715 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
716         __acquires(RCU)
717 {
718         struct rhashtable *ht = iter->ht;
719         bool rhlist = ht->rhlist;
720
721         rcu_read_lock();
722
723         spin_lock(&ht->lock);
724         if (iter->walker.tbl)
725                 list_del(&iter->walker.list);
726         spin_unlock(&ht->lock);
727
728         if (iter->end_of_table)
729                 return 0;
730         if (!iter->walker.tbl) {
731                 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
732                 iter->slot = 0;
733                 iter->skip = 0;
734                 return -EAGAIN;
735         }
736
737         if (iter->p && !rhlist) {
738                 /*
739                  * We need to validate that 'p' is still in the table, and
740                  * if so, update 'skip'
741                  */
742                 struct rhash_head *p;
743                 int skip = 0;
744                 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
745                         skip++;
746                         if (p == iter->p) {
747                                 iter->skip = skip;
748                                 goto found;
749                         }
750                 }
751                 iter->p = NULL;
752         } else if (iter->p && rhlist) {
753                 /* Need to validate that 'list' is still in the table, and
754                  * if so, update 'skip' and 'p'.
755                  */
756                 struct rhash_head *p;
757                 struct rhlist_head *list;
758                 int skip = 0;
759                 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
760                         for (list = container_of(p, struct rhlist_head, rhead);
761                              list;
762                              list = rcu_dereference(list->next)) {
763                                 skip++;
764                                 if (list == iter->list) {
765                                         iter->p = p;
766                                         iter->skip = skip;
767                                         goto found;
768                                 }
769                         }
770                 }
771                 iter->p = NULL;
772         }
773 found:
774         return 0;
775 }
776 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
777
778 /**
779  * __rhashtable_walk_find_next - Find the next element in a table (or the first
780  * one in case of a new walk).
781  *
782  * @iter:       Hash table iterator
783  *
784  * Returns the found object or NULL when the end of the table is reached.
785  *
786  * Returns -EAGAIN if resize event occurred.
787  */
788 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
789 {
790         struct bucket_table *tbl = iter->walker.tbl;
791         struct rhlist_head *list = iter->list;
792         struct rhashtable *ht = iter->ht;
793         struct rhash_head *p = iter->p;
794         bool rhlist = ht->rhlist;
795
796         if (!tbl)
797                 return NULL;
798
799         for (; iter->slot < tbl->size; iter->slot++) {
800                 int skip = iter->skip;
801
802                 rht_for_each_rcu(p, tbl, iter->slot) {
803                         if (rhlist) {
804                                 list = container_of(p, struct rhlist_head,
805                                                     rhead);
806                                 do {
807                                         if (!skip)
808                                                 goto next;
809                                         skip--;
810                                         list = rcu_dereference(list->next);
811                                 } while (list);
812
813                                 continue;
814                         }
815                         if (!skip)
816                                 break;
817                         skip--;
818                 }
819
820 next:
821                 if (!rht_is_a_nulls(p)) {
822                         iter->skip++;
823                         iter->p = p;
824                         iter->list = list;
825                         return rht_obj(ht, rhlist ? &list->rhead : p);
826                 }
827
828                 iter->skip = 0;
829         }
830
831         iter->p = NULL;
832
833         /* Ensure we see any new tables. */
834         smp_rmb();
835
836         iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
837         if (iter->walker.tbl) {
838                 iter->slot = 0;
839                 iter->skip = 0;
840                 return ERR_PTR(-EAGAIN);
841         } else {
842                 iter->end_of_table = true;
843         }
844
845         return NULL;
846 }
847
848 /**
849  * rhashtable_walk_next - Return the next object and advance the iterator
850  * @iter:       Hash table iterator
851  *
852  * Note that you must call rhashtable_walk_stop when you are finished
853  * with the walk.
854  *
855  * Returns the next object or NULL when the end of the table is reached.
856  *
857  * Returns -EAGAIN if resize event occurred.  Note that the iterator
858  * will rewind back to the beginning and you may continue to use it.
859  */
860 void *rhashtable_walk_next(struct rhashtable_iter *iter)
861 {
862         struct rhlist_head *list = iter->list;
863         struct rhashtable *ht = iter->ht;
864         struct rhash_head *p = iter->p;
865         bool rhlist = ht->rhlist;
866
867         if (p) {
868                 if (!rhlist || !(list = rcu_dereference(list->next))) {
869                         p = rcu_dereference(p->next);
870                         list = container_of(p, struct rhlist_head, rhead);
871                 }
872                 if (!rht_is_a_nulls(p)) {
873                         iter->skip++;
874                         iter->p = p;
875                         iter->list = list;
876                         return rht_obj(ht, rhlist ? &list->rhead : p);
877                 }
878
879                 /* At the end of this slot, switch to next one and then find
880                  * next entry from that point.
881                  */
882                 iter->skip = 0;
883                 iter->slot++;
884         }
885
886         return __rhashtable_walk_find_next(iter);
887 }
888 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
889
890 /**
891  * rhashtable_walk_peek - Return the next object but don't advance the iterator
892  * @iter:       Hash table iterator
893  *
894  * Returns the next object or NULL when the end of the table is reached.
895  *
896  * Returns -EAGAIN if resize event occurred.  Note that the iterator
897  * will rewind back to the beginning and you may continue to use it.
898  */
899 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
900 {
901         struct rhlist_head *list = iter->list;
902         struct rhashtable *ht = iter->ht;
903         struct rhash_head *p = iter->p;
904
905         if (p)
906                 return rht_obj(ht, ht->rhlist ? &list->rhead : p);
907
908         /* No object found in current iter, find next one in the table. */
909
910         if (iter->skip) {
911                 /* A nonzero skip value points to the next entry in the table
912                  * beyond that last one that was found. Decrement skip so
913                  * we find the current value. __rhashtable_walk_find_next
914                  * will restore the original value of skip assuming that
915                  * the table hasn't changed.
916                  */
917                 iter->skip--;
918         }
919
920         return __rhashtable_walk_find_next(iter);
921 }
922 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
923
924 /**
925  * rhashtable_walk_stop - Finish a hash table walk
926  * @iter:       Hash table iterator
927  *
928  * Finish a hash table walk.  Does not reset the iterator to the start of the
929  * hash table.
930  */
931 void rhashtable_walk_stop(struct rhashtable_iter *iter)
932         __releases(RCU)
933 {
934         struct rhashtable *ht;
935         struct bucket_table *tbl = iter->walker.tbl;
936
937         if (!tbl)
938                 goto out;
939
940         ht = iter->ht;
941
942         spin_lock(&ht->lock);
943         if (tbl->rehash < tbl->size)
944                 list_add(&iter->walker.list, &tbl->walkers);
945         else
946                 iter->walker.tbl = NULL;
947         spin_unlock(&ht->lock);
948
949 out:
950         rcu_read_unlock();
951 }
952 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
953
954 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
955 {
956         size_t retsize;
957
958         if (params->nelem_hint)
959                 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
960                               (unsigned long)params->min_size);
961         else
962                 retsize = max(HASH_DEFAULT_SIZE,
963                               (unsigned long)params->min_size);
964
965         return retsize;
966 }
967
968 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
969 {
970         return jhash2(key, length, seed);
971 }
972
973 /**
974  * rhashtable_init - initialize a new hash table
975  * @ht:         hash table to be initialized
976  * @params:     configuration parameters
977  *
978  * Initializes a new hash table based on the provided configuration
979  * parameters. A table can be configured either with a variable or
980  * fixed length key:
981  *
982  * Configuration Example 1: Fixed length keys
983  * struct test_obj {
984  *      int                     key;
985  *      void *                  my_member;
986  *      struct rhash_head       node;
987  * };
988  *
989  * struct rhashtable_params params = {
990  *      .head_offset = offsetof(struct test_obj, node),
991  *      .key_offset = offsetof(struct test_obj, key),
992  *      .key_len = sizeof(int),
993  *      .hashfn = jhash,
994  * };
995  *
996  * Configuration Example 2: Variable length keys
997  * struct test_obj {
998  *      [...]
999  *      struct rhash_head       node;
1000  * };
1001  *
1002  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
1003  * {
1004  *      struct test_obj *obj = data;
1005  *
1006  *      return [... hash ...];
1007  * }
1008  *
1009  * struct rhashtable_params params = {
1010  *      .head_offset = offsetof(struct test_obj, node),
1011  *      .hashfn = jhash,
1012  *      .obj_hashfn = my_hash_fn,
1013  * };
1014  */
1015 int rhashtable_init(struct rhashtable *ht,
1016                     const struct rhashtable_params *params)
1017 {
1018         struct bucket_table *tbl;
1019         size_t size;
1020
1021         if ((!params->key_len && !params->obj_hashfn) ||
1022             (params->obj_hashfn && !params->obj_cmpfn))
1023                 return -EINVAL;
1024
1025         memset(ht, 0, sizeof(*ht));
1026         mutex_init(&ht->mutex);
1027         spin_lock_init(&ht->lock);
1028         memcpy(&ht->p, params, sizeof(*params));
1029
1030         if (params->min_size)
1031                 ht->p.min_size = roundup_pow_of_two(params->min_size);
1032
1033         /* Cap total entries at 2^31 to avoid nelems overflow. */
1034         ht->max_elems = 1u << 31;
1035
1036         if (params->max_size) {
1037                 ht->p.max_size = rounddown_pow_of_two(params->max_size);
1038                 if (ht->p.max_size < ht->max_elems / 2)
1039                         ht->max_elems = ht->p.max_size * 2;
1040         }
1041
1042         ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1043
1044         size = rounded_hashtable_size(&ht->p);
1045
1046         if (params->locks_mul)
1047                 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
1048         else
1049                 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
1050
1051         ht->key_len = ht->p.key_len;
1052         if (!params->hashfn) {
1053                 ht->p.hashfn = jhash;
1054
1055                 if (!(ht->key_len & (sizeof(u32) - 1))) {
1056                         ht->key_len /= sizeof(u32);
1057                         ht->p.hashfn = rhashtable_jhash2;
1058                 }
1059         }
1060
1061         /*
1062          * This is api initialization and thus we need to guarantee the
1063          * initial rhashtable allocation. Upon failure, retry with the
1064          * smallest possible size with __GFP_NOFAIL semantics.
1065          */
1066         tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1067         if (unlikely(tbl == NULL)) {
1068                 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1069                 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1070         }
1071
1072         atomic_set(&ht->nelems, 0);
1073
1074         RCU_INIT_POINTER(ht->tbl, tbl);
1075
1076         INIT_WORK(&ht->run_work, rht_deferred_worker);
1077
1078         return 0;
1079 }
1080 EXPORT_SYMBOL_GPL(rhashtable_init);
1081
1082 /**
1083  * rhltable_init - initialize a new hash list table
1084  * @hlt:        hash list table to be initialized
1085  * @params:     configuration parameters
1086  *
1087  * Initializes a new hash list table.
1088  *
1089  * See documentation for rhashtable_init.
1090  */
1091 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1092 {
1093         int err;
1094
1095         err = rhashtable_init(&hlt->ht, params);
1096         hlt->ht.rhlist = true;
1097         return err;
1098 }
1099 EXPORT_SYMBOL_GPL(rhltable_init);
1100
1101 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1102                                 void (*free_fn)(void *ptr, void *arg),
1103                                 void *arg)
1104 {
1105         struct rhlist_head *list;
1106
1107         if (!ht->rhlist) {
1108                 free_fn(rht_obj(ht, obj), arg);
1109                 return;
1110         }
1111
1112         list = container_of(obj, struct rhlist_head, rhead);
1113         do {
1114                 obj = &list->rhead;
1115                 list = rht_dereference(list->next, ht);
1116                 free_fn(rht_obj(ht, obj), arg);
1117         } while (list);
1118 }
1119
1120 /**
1121  * rhashtable_free_and_destroy - free elements and destroy hash table
1122  * @ht:         the hash table to destroy
1123  * @free_fn:    callback to release resources of element
1124  * @arg:        pointer passed to free_fn
1125  *
1126  * Stops an eventual async resize. If defined, invokes free_fn for each
1127  * element to releasal resources. Please note that RCU protected
1128  * readers may still be accessing the elements. Releasing of resources
1129  * must occur in a compatible manner. Then frees the bucket array.
1130  *
1131  * This function will eventually sleep to wait for an async resize
1132  * to complete. The caller is responsible that no further write operations
1133  * occurs in parallel.
1134  */
1135 void rhashtable_free_and_destroy(struct rhashtable *ht,
1136                                  void (*free_fn)(void *ptr, void *arg),
1137                                  void *arg)
1138 {
1139         struct bucket_table *tbl, *next_tbl;
1140         unsigned int i;
1141
1142         cancel_work_sync(&ht->run_work);
1143
1144         mutex_lock(&ht->mutex);
1145         tbl = rht_dereference(ht->tbl, ht);
1146 restart:
1147         if (free_fn) {
1148                 for (i = 0; i < tbl->size; i++) {
1149                         struct rhash_head *pos, *next;
1150
1151                         cond_resched();
1152                         for (pos = rht_dereference(*rht_bucket(tbl, i), ht),
1153                              next = !rht_is_a_nulls(pos) ?
1154                                         rht_dereference(pos->next, ht) : NULL;
1155                              !rht_is_a_nulls(pos);
1156                              pos = next,
1157                              next = !rht_is_a_nulls(pos) ?
1158                                         rht_dereference(pos->next, ht) : NULL)
1159                                 rhashtable_free_one(ht, pos, free_fn, arg);
1160                 }
1161         }
1162
1163         next_tbl = rht_dereference(tbl->future_tbl, ht);
1164         bucket_table_free(tbl);
1165         if (next_tbl) {
1166                 tbl = next_tbl;
1167                 goto restart;
1168         }
1169         mutex_unlock(&ht->mutex);
1170 }
1171 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1172
1173 void rhashtable_destroy(struct rhashtable *ht)
1174 {
1175         return rhashtable_free_and_destroy(ht, NULL, NULL);
1176 }
1177 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1178
1179 struct rhash_head __rcu **rht_bucket_nested(const struct bucket_table *tbl,
1180                                             unsigned int hash)
1181 {
1182         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1183         static struct rhash_head __rcu *rhnull =
1184                 (struct rhash_head __rcu *)NULLS_MARKER(0);
1185         unsigned int index = hash & ((1 << tbl->nest) - 1);
1186         unsigned int size = tbl->size >> tbl->nest;
1187         unsigned int subhash = hash;
1188         union nested_table *ntbl;
1189
1190         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1191         ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1192         subhash >>= tbl->nest;
1193
1194         while (ntbl && size > (1 << shift)) {
1195                 index = subhash & ((1 << shift) - 1);
1196                 ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1197                                                   tbl, hash);
1198                 size >>= shift;
1199                 subhash >>= shift;
1200         }
1201
1202         if (!ntbl)
1203                 return &rhnull;
1204
1205         return &ntbl[subhash].bucket;
1206
1207 }
1208 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1209
1210 struct rhash_head __rcu **rht_bucket_nested_insert(struct rhashtable *ht,
1211                                                    struct bucket_table *tbl,
1212                                                    unsigned int hash)
1213 {
1214         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1215         unsigned int index = hash & ((1 << tbl->nest) - 1);
1216         unsigned int size = tbl->size >> tbl->nest;
1217         union nested_table *ntbl;
1218
1219         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1220         hash >>= tbl->nest;
1221         ntbl = nested_table_alloc(ht, &ntbl[index].table,
1222                                   size <= (1 << shift));
1223
1224         while (ntbl && size > (1 << shift)) {
1225                 index = hash & ((1 << shift) - 1);
1226                 size >>= shift;
1227                 hash >>= shift;
1228                 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1229                                           size <= (1 << shift));
1230         }
1231
1232         if (!ntbl)
1233                 return NULL;
1234
1235         return &ntbl[hash].bucket;
1236
1237 }
1238 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);