Merge ath-next from git://git.kernel.org/pub/scm/linux/kernel/git/kvalo/ath.git
[linux-2.6-microblaze.git] / lib / rhashtable.c
1 /*
2  * Resizable, Scalable, Concurrent Hash Table
3  *
4  * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5  * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6  * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7  *
8  * Code partially derived from nft_hash
9  * Rewritten with rehash code from br_multicast plus single list
10  * pointer as suggested by Josh Triplett
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/rculist.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/mm.h>
26 #include <linux/jhash.h>
27 #include <linux/random.h>
28 #include <linux/rhashtable.h>
29 #include <linux/err.h>
30 #include <linux/export.h>
31
32 #define HASH_DEFAULT_SIZE       64UL
33 #define HASH_MIN_SIZE           4U
34
35 union nested_table {
36         union nested_table __rcu *table;
37         struct rhash_lock_head *bucket;
38 };
39
40 static u32 head_hashfn(struct rhashtable *ht,
41                        const struct bucket_table *tbl,
42                        const struct rhash_head *he)
43 {
44         return rht_head_hashfn(ht, tbl, he, ht->p);
45 }
46
47 #ifdef CONFIG_PROVE_LOCKING
48 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
49
50 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
51 {
52         return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
53 }
54 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
55
56 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
57 {
58         if (!debug_locks)
59                 return 1;
60         if (unlikely(tbl->nest))
61                 return 1;
62         return bit_spin_is_locked(0, (unsigned long *)&tbl->buckets[hash]);
63 }
64 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
65 #else
66 #define ASSERT_RHT_MUTEX(HT)
67 #endif
68
69 static void nested_table_free(union nested_table *ntbl, unsigned int size)
70 {
71         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
72         const unsigned int len = 1 << shift;
73         unsigned int i;
74
75         ntbl = rcu_dereference_raw(ntbl->table);
76         if (!ntbl)
77                 return;
78
79         if (size > len) {
80                 size >>= shift;
81                 for (i = 0; i < len; i++)
82                         nested_table_free(ntbl + i, size);
83         }
84
85         kfree(ntbl);
86 }
87
88 static void nested_bucket_table_free(const struct bucket_table *tbl)
89 {
90         unsigned int size = tbl->size >> tbl->nest;
91         unsigned int len = 1 << tbl->nest;
92         union nested_table *ntbl;
93         unsigned int i;
94
95         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
96
97         for (i = 0; i < len; i++)
98                 nested_table_free(ntbl + i, size);
99
100         kfree(ntbl);
101 }
102
103 static void bucket_table_free(const struct bucket_table *tbl)
104 {
105         if (tbl->nest)
106                 nested_bucket_table_free(tbl);
107
108         kvfree(tbl);
109 }
110
111 static void bucket_table_free_rcu(struct rcu_head *head)
112 {
113         bucket_table_free(container_of(head, struct bucket_table, rcu));
114 }
115
116 static union nested_table *nested_table_alloc(struct rhashtable *ht,
117                                               union nested_table __rcu **prev,
118                                               bool leaf)
119 {
120         union nested_table *ntbl;
121         int i;
122
123         ntbl = rcu_dereference(*prev);
124         if (ntbl)
125                 return ntbl;
126
127         ntbl = kzalloc(PAGE_SIZE, GFP_ATOMIC);
128
129         if (ntbl && leaf) {
130                 for (i = 0; i < PAGE_SIZE / sizeof(ntbl[0]); i++)
131                         INIT_RHT_NULLS_HEAD(ntbl[i].bucket);
132         }
133
134         if (cmpxchg((union nested_table **)prev, NULL, ntbl) == NULL)
135                 return ntbl;
136         /* Raced with another thread. */
137         kfree(ntbl);
138         return rcu_dereference(*prev);
139 }
140
141 static struct bucket_table *nested_bucket_table_alloc(struct rhashtable *ht,
142                                                       size_t nbuckets,
143                                                       gfp_t gfp)
144 {
145         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
146         struct bucket_table *tbl;
147         size_t size;
148
149         if (nbuckets < (1 << (shift + 1)))
150                 return NULL;
151
152         size = sizeof(*tbl) + sizeof(tbl->buckets[0]);
153
154         tbl = kzalloc(size, gfp);
155         if (!tbl)
156                 return NULL;
157
158         if (!nested_table_alloc(ht, (union nested_table __rcu **)tbl->buckets,
159                                 false)) {
160                 kfree(tbl);
161                 return NULL;
162         }
163
164         tbl->nest = (ilog2(nbuckets) - 1) % shift + 1;
165
166         return tbl;
167 }
168
169 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
170                                                size_t nbuckets,
171                                                gfp_t gfp)
172 {
173         struct bucket_table *tbl = NULL;
174         size_t size;
175         int i;
176         static struct lock_class_key __key;
177
178         tbl = kvzalloc(struct_size(tbl, buckets, nbuckets), gfp);
179
180         size = nbuckets;
181
182         if (tbl == NULL && (gfp & ~__GFP_NOFAIL) != GFP_KERNEL) {
183                 tbl = nested_bucket_table_alloc(ht, nbuckets, gfp);
184                 nbuckets = 0;
185         }
186
187         if (tbl == NULL)
188                 return NULL;
189
190         lockdep_init_map(&tbl->dep_map, "rhashtable_bucket", &__key, 0);
191
192         tbl->size = size;
193
194         rcu_head_init(&tbl->rcu);
195         INIT_LIST_HEAD(&tbl->walkers);
196
197         tbl->hash_rnd = get_random_u32();
198
199         for (i = 0; i < nbuckets; i++)
200                 INIT_RHT_NULLS_HEAD(tbl->buckets[i]);
201
202         return tbl;
203 }
204
205 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
206                                                   struct bucket_table *tbl)
207 {
208         struct bucket_table *new_tbl;
209
210         do {
211                 new_tbl = tbl;
212                 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
213         } while (tbl);
214
215         return new_tbl;
216 }
217
218 static int rhashtable_rehash_one(struct rhashtable *ht,
219                                  struct rhash_lock_head **bkt,
220                                  unsigned int old_hash)
221 {
222         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
223         struct bucket_table *new_tbl = rhashtable_last_table(ht, old_tbl);
224         int err = -EAGAIN;
225         struct rhash_head *head, *next, *entry;
226         struct rhash_head __rcu **pprev = NULL;
227         unsigned int new_hash;
228
229         if (new_tbl->nest)
230                 goto out;
231
232         err = -ENOENT;
233
234         rht_for_each_from(entry, rht_ptr(bkt, old_tbl, old_hash),
235                           old_tbl, old_hash) {
236                 err = 0;
237                 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
238
239                 if (rht_is_a_nulls(next))
240                         break;
241
242                 pprev = &entry->next;
243         }
244
245         if (err)
246                 goto out;
247
248         new_hash = head_hashfn(ht, new_tbl, entry);
249
250         rht_lock_nested(new_tbl, &new_tbl->buckets[new_hash], SINGLE_DEPTH_NESTING);
251
252         head = rht_ptr(new_tbl->buckets + new_hash, new_tbl, new_hash);
253
254         RCU_INIT_POINTER(entry->next, head);
255
256         rht_assign_unlock(new_tbl, &new_tbl->buckets[new_hash], entry);
257
258         if (pprev)
259                 rcu_assign_pointer(*pprev, next);
260         else
261                 /* Need to preserved the bit lock. */
262                 rht_assign_locked(bkt, next);
263
264 out:
265         return err;
266 }
267
268 static int rhashtable_rehash_chain(struct rhashtable *ht,
269                                     unsigned int old_hash)
270 {
271         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
272         struct rhash_lock_head **bkt = rht_bucket_var(old_tbl, old_hash);
273         int err;
274
275         if (!bkt)
276                 return 0;
277         rht_lock(old_tbl, bkt);
278
279         while (!(err = rhashtable_rehash_one(ht, bkt, old_hash)))
280                 ;
281
282         if (err == -ENOENT)
283                 err = 0;
284         rht_unlock(old_tbl, bkt);
285
286         return err;
287 }
288
289 static int rhashtable_rehash_attach(struct rhashtable *ht,
290                                     struct bucket_table *old_tbl,
291                                     struct bucket_table *new_tbl)
292 {
293         /* Make insertions go into the new, empty table right away. Deletions
294          * and lookups will be attempted in both tables until we synchronize.
295          * As cmpxchg() provides strong barriers, we do not need
296          * rcu_assign_pointer().
297          */
298
299         if (cmpxchg((struct bucket_table **)&old_tbl->future_tbl, NULL,
300                     new_tbl) != NULL)
301                 return -EEXIST;
302
303         return 0;
304 }
305
306 static int rhashtable_rehash_table(struct rhashtable *ht)
307 {
308         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
309         struct bucket_table *new_tbl;
310         struct rhashtable_walker *walker;
311         unsigned int old_hash;
312         int err;
313
314         new_tbl = rht_dereference(old_tbl->future_tbl, ht);
315         if (!new_tbl)
316                 return 0;
317
318         for (old_hash = 0; old_hash < old_tbl->size; old_hash++) {
319                 err = rhashtable_rehash_chain(ht, old_hash);
320                 if (err)
321                         return err;
322                 cond_resched();
323         }
324
325         /* Publish the new table pointer. */
326         rcu_assign_pointer(ht->tbl, new_tbl);
327
328         spin_lock(&ht->lock);
329         list_for_each_entry(walker, &old_tbl->walkers, list)
330                 walker->tbl = NULL;
331
332         /* Wait for readers. All new readers will see the new
333          * table, and thus no references to the old table will
334          * remain.
335          * We do this inside the locked region so that
336          * rhashtable_walk_stop() can use rcu_head_after_call_rcu()
337          * to check if it should not re-link the table.
338          */
339         call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
340         spin_unlock(&ht->lock);
341
342         return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
343 }
344
345 static int rhashtable_rehash_alloc(struct rhashtable *ht,
346                                    struct bucket_table *old_tbl,
347                                    unsigned int size)
348 {
349         struct bucket_table *new_tbl;
350         int err;
351
352         ASSERT_RHT_MUTEX(ht);
353
354         new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
355         if (new_tbl == NULL)
356                 return -ENOMEM;
357
358         err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
359         if (err)
360                 bucket_table_free(new_tbl);
361
362         return err;
363 }
364
365 /**
366  * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
367  * @ht:         the hash table to shrink
368  *
369  * This function shrinks the hash table to fit, i.e., the smallest
370  * size would not cause it to expand right away automatically.
371  *
372  * The caller must ensure that no concurrent resizing occurs by holding
373  * ht->mutex.
374  *
375  * The caller must ensure that no concurrent table mutations take place.
376  * It is however valid to have concurrent lookups if they are RCU protected.
377  *
378  * It is valid to have concurrent insertions and deletions protected by per
379  * bucket locks or concurrent RCU protected lookups and traversals.
380  */
381 static int rhashtable_shrink(struct rhashtable *ht)
382 {
383         struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
384         unsigned int nelems = atomic_read(&ht->nelems);
385         unsigned int size = 0;
386
387         if (nelems)
388                 size = roundup_pow_of_two(nelems * 3 / 2);
389         if (size < ht->p.min_size)
390                 size = ht->p.min_size;
391
392         if (old_tbl->size <= size)
393                 return 0;
394
395         if (rht_dereference(old_tbl->future_tbl, ht))
396                 return -EEXIST;
397
398         return rhashtable_rehash_alloc(ht, old_tbl, size);
399 }
400
401 static void rht_deferred_worker(struct work_struct *work)
402 {
403         struct rhashtable *ht;
404         struct bucket_table *tbl;
405         int err = 0;
406
407         ht = container_of(work, struct rhashtable, run_work);
408         mutex_lock(&ht->mutex);
409
410         tbl = rht_dereference(ht->tbl, ht);
411         tbl = rhashtable_last_table(ht, tbl);
412
413         if (rht_grow_above_75(ht, tbl))
414                 err = rhashtable_rehash_alloc(ht, tbl, tbl->size * 2);
415         else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
416                 err = rhashtable_shrink(ht);
417         else if (tbl->nest)
418                 err = rhashtable_rehash_alloc(ht, tbl, tbl->size);
419
420         if (!err || err == -EEXIST) {
421                 int nerr;
422
423                 nerr = rhashtable_rehash_table(ht);
424                 err = err ?: nerr;
425         }
426
427         mutex_unlock(&ht->mutex);
428
429         if (err)
430                 schedule_work(&ht->run_work);
431 }
432
433 static int rhashtable_insert_rehash(struct rhashtable *ht,
434                                     struct bucket_table *tbl)
435 {
436         struct bucket_table *old_tbl;
437         struct bucket_table *new_tbl;
438         unsigned int size;
439         int err;
440
441         old_tbl = rht_dereference_rcu(ht->tbl, ht);
442
443         size = tbl->size;
444
445         err = -EBUSY;
446
447         if (rht_grow_above_75(ht, tbl))
448                 size *= 2;
449         /* Do not schedule more than one rehash */
450         else if (old_tbl != tbl)
451                 goto fail;
452
453         err = -ENOMEM;
454
455         new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC | __GFP_NOWARN);
456         if (new_tbl == NULL)
457                 goto fail;
458
459         err = rhashtable_rehash_attach(ht, tbl, new_tbl);
460         if (err) {
461                 bucket_table_free(new_tbl);
462                 if (err == -EEXIST)
463                         err = 0;
464         } else
465                 schedule_work(&ht->run_work);
466
467         return err;
468
469 fail:
470         /* Do not fail the insert if someone else did a rehash. */
471         if (likely(rcu_access_pointer(tbl->future_tbl)))
472                 return 0;
473
474         /* Schedule async rehash to retry allocation in process context. */
475         if (err == -ENOMEM)
476                 schedule_work(&ht->run_work);
477
478         return err;
479 }
480
481 static void *rhashtable_lookup_one(struct rhashtable *ht,
482                                    struct rhash_lock_head **bkt,
483                                    struct bucket_table *tbl, unsigned int hash,
484                                    const void *key, struct rhash_head *obj)
485 {
486         struct rhashtable_compare_arg arg = {
487                 .ht = ht,
488                 .key = key,
489         };
490         struct rhash_head __rcu **pprev = NULL;
491         struct rhash_head *head;
492         int elasticity;
493
494         elasticity = RHT_ELASTICITY;
495         rht_for_each_from(head, rht_ptr(bkt, tbl, hash), tbl, hash) {
496                 struct rhlist_head *list;
497                 struct rhlist_head *plist;
498
499                 elasticity--;
500                 if (!key ||
501                     (ht->p.obj_cmpfn ?
502                      ht->p.obj_cmpfn(&arg, rht_obj(ht, head)) :
503                      rhashtable_compare(&arg, rht_obj(ht, head)))) {
504                         pprev = &head->next;
505                         continue;
506                 }
507
508                 if (!ht->rhlist)
509                         return rht_obj(ht, head);
510
511                 list = container_of(obj, struct rhlist_head, rhead);
512                 plist = container_of(head, struct rhlist_head, rhead);
513
514                 RCU_INIT_POINTER(list->next, plist);
515                 head = rht_dereference_bucket(head->next, tbl, hash);
516                 RCU_INIT_POINTER(list->rhead.next, head);
517                 if (pprev)
518                         rcu_assign_pointer(*pprev, obj);
519                 else
520                         /* Need to preserve the bit lock */
521                         rht_assign_locked(bkt, obj);
522
523                 return NULL;
524         }
525
526         if (elasticity <= 0)
527                 return ERR_PTR(-EAGAIN);
528
529         return ERR_PTR(-ENOENT);
530 }
531
532 static struct bucket_table *rhashtable_insert_one(struct rhashtable *ht,
533                                                   struct rhash_lock_head **bkt,
534                                                   struct bucket_table *tbl,
535                                                   unsigned int hash,
536                                                   struct rhash_head *obj,
537                                                   void *data)
538 {
539         struct bucket_table *new_tbl;
540         struct rhash_head *head;
541
542         if (!IS_ERR_OR_NULL(data))
543                 return ERR_PTR(-EEXIST);
544
545         if (PTR_ERR(data) != -EAGAIN && PTR_ERR(data) != -ENOENT)
546                 return ERR_CAST(data);
547
548         new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
549         if (new_tbl)
550                 return new_tbl;
551
552         if (PTR_ERR(data) != -ENOENT)
553                 return ERR_CAST(data);
554
555         if (unlikely(rht_grow_above_max(ht, tbl)))
556                 return ERR_PTR(-E2BIG);
557
558         if (unlikely(rht_grow_above_100(ht, tbl)))
559                 return ERR_PTR(-EAGAIN);
560
561         head = rht_ptr(bkt, tbl, hash);
562
563         RCU_INIT_POINTER(obj->next, head);
564         if (ht->rhlist) {
565                 struct rhlist_head *list;
566
567                 list = container_of(obj, struct rhlist_head, rhead);
568                 RCU_INIT_POINTER(list->next, NULL);
569         }
570
571         /* bkt is always the head of the list, so it holds
572          * the lock, which we need to preserve
573          */
574         rht_assign_locked(bkt, obj);
575
576         atomic_inc(&ht->nelems);
577         if (rht_grow_above_75(ht, tbl))
578                 schedule_work(&ht->run_work);
579
580         return NULL;
581 }
582
583 static void *rhashtable_try_insert(struct rhashtable *ht, const void *key,
584                                    struct rhash_head *obj)
585 {
586         struct bucket_table *new_tbl;
587         struct bucket_table *tbl;
588         struct rhash_lock_head **bkt;
589         unsigned int hash;
590         void *data;
591
592         new_tbl = rcu_dereference(ht->tbl);
593
594         do {
595                 tbl = new_tbl;
596                 hash = rht_head_hashfn(ht, tbl, obj, ht->p);
597                 if (rcu_access_pointer(tbl->future_tbl))
598                         /* Failure is OK */
599                         bkt = rht_bucket_var(tbl, hash);
600                 else
601                         bkt = rht_bucket_insert(ht, tbl, hash);
602                 if (bkt == NULL) {
603                         new_tbl = rht_dereference_rcu(tbl->future_tbl, ht);
604                         data = ERR_PTR(-EAGAIN);
605                 } else {
606                         rht_lock(tbl, bkt);
607                         data = rhashtable_lookup_one(ht, bkt, tbl,
608                                                      hash, key, obj);
609                         new_tbl = rhashtable_insert_one(ht, bkt, tbl,
610                                                         hash, obj, data);
611                         if (PTR_ERR(new_tbl) != -EEXIST)
612                                 data = ERR_CAST(new_tbl);
613
614                         rht_unlock(tbl, bkt);
615                 }
616         } while (!IS_ERR_OR_NULL(new_tbl));
617
618         if (PTR_ERR(data) == -EAGAIN)
619                 data = ERR_PTR(rhashtable_insert_rehash(ht, tbl) ?:
620                                -EAGAIN);
621
622         return data;
623 }
624
625 void *rhashtable_insert_slow(struct rhashtable *ht, const void *key,
626                              struct rhash_head *obj)
627 {
628         void *data;
629
630         do {
631                 rcu_read_lock();
632                 data = rhashtable_try_insert(ht, key, obj);
633                 rcu_read_unlock();
634         } while (PTR_ERR(data) == -EAGAIN);
635
636         return data;
637 }
638 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
639
640 /**
641  * rhashtable_walk_enter - Initialise an iterator
642  * @ht:         Table to walk over
643  * @iter:       Hash table Iterator
644  *
645  * This function prepares a hash table walk.
646  *
647  * Note that if you restart a walk after rhashtable_walk_stop you
648  * may see the same object twice.  Also, you may miss objects if
649  * there are removals in between rhashtable_walk_stop and the next
650  * call to rhashtable_walk_start.
651  *
652  * For a completely stable walk you should construct your own data
653  * structure outside the hash table.
654  *
655  * This function may be called from any process context, including
656  * non-preemptable context, but cannot be called from softirq or
657  * hardirq context.
658  *
659  * You must call rhashtable_walk_exit after this function returns.
660  */
661 void rhashtable_walk_enter(struct rhashtable *ht, struct rhashtable_iter *iter)
662 {
663         iter->ht = ht;
664         iter->p = NULL;
665         iter->slot = 0;
666         iter->skip = 0;
667         iter->end_of_table = 0;
668
669         spin_lock(&ht->lock);
670         iter->walker.tbl =
671                 rcu_dereference_protected(ht->tbl, lockdep_is_held(&ht->lock));
672         list_add(&iter->walker.list, &iter->walker.tbl->walkers);
673         spin_unlock(&ht->lock);
674 }
675 EXPORT_SYMBOL_GPL(rhashtable_walk_enter);
676
677 /**
678  * rhashtable_walk_exit - Free an iterator
679  * @iter:       Hash table Iterator
680  *
681  * This function frees resources allocated by rhashtable_walk_enter.
682  */
683 void rhashtable_walk_exit(struct rhashtable_iter *iter)
684 {
685         spin_lock(&iter->ht->lock);
686         if (iter->walker.tbl)
687                 list_del(&iter->walker.list);
688         spin_unlock(&iter->ht->lock);
689 }
690 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
691
692 /**
693  * rhashtable_walk_start_check - Start a hash table walk
694  * @iter:       Hash table iterator
695  *
696  * Start a hash table walk at the current iterator position.  Note that we take
697  * the RCU lock in all cases including when we return an error.  So you must
698  * always call rhashtable_walk_stop to clean up.
699  *
700  * Returns zero if successful.
701  *
702  * Returns -EAGAIN if resize event occured.  Note that the iterator
703  * will rewind back to the beginning and you may use it immediately
704  * by calling rhashtable_walk_next.
705  *
706  * rhashtable_walk_start is defined as an inline variant that returns
707  * void. This is preferred in cases where the caller would ignore
708  * resize events and always continue.
709  */
710 int rhashtable_walk_start_check(struct rhashtable_iter *iter)
711         __acquires(RCU)
712 {
713         struct rhashtable *ht = iter->ht;
714         bool rhlist = ht->rhlist;
715
716         rcu_read_lock();
717
718         spin_lock(&ht->lock);
719         if (iter->walker.tbl)
720                 list_del(&iter->walker.list);
721         spin_unlock(&ht->lock);
722
723         if (iter->end_of_table)
724                 return 0;
725         if (!iter->walker.tbl) {
726                 iter->walker.tbl = rht_dereference_rcu(ht->tbl, ht);
727                 iter->slot = 0;
728                 iter->skip = 0;
729                 return -EAGAIN;
730         }
731
732         if (iter->p && !rhlist) {
733                 /*
734                  * We need to validate that 'p' is still in the table, and
735                  * if so, update 'skip'
736                  */
737                 struct rhash_head *p;
738                 int skip = 0;
739                 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
740                         skip++;
741                         if (p == iter->p) {
742                                 iter->skip = skip;
743                                 goto found;
744                         }
745                 }
746                 iter->p = NULL;
747         } else if (iter->p && rhlist) {
748                 /* Need to validate that 'list' is still in the table, and
749                  * if so, update 'skip' and 'p'.
750                  */
751                 struct rhash_head *p;
752                 struct rhlist_head *list;
753                 int skip = 0;
754                 rht_for_each_rcu(p, iter->walker.tbl, iter->slot) {
755                         for (list = container_of(p, struct rhlist_head, rhead);
756                              list;
757                              list = rcu_dereference(list->next)) {
758                                 skip++;
759                                 if (list == iter->list) {
760                                         iter->p = p;
761                                         iter->skip = skip;
762                                         goto found;
763                                 }
764                         }
765                 }
766                 iter->p = NULL;
767         }
768 found:
769         return 0;
770 }
771 EXPORT_SYMBOL_GPL(rhashtable_walk_start_check);
772
773 /**
774  * __rhashtable_walk_find_next - Find the next element in a table (or the first
775  * one in case of a new walk).
776  *
777  * @iter:       Hash table iterator
778  *
779  * Returns the found object or NULL when the end of the table is reached.
780  *
781  * Returns -EAGAIN if resize event occurred.
782  */
783 static void *__rhashtable_walk_find_next(struct rhashtable_iter *iter)
784 {
785         struct bucket_table *tbl = iter->walker.tbl;
786         struct rhlist_head *list = iter->list;
787         struct rhashtable *ht = iter->ht;
788         struct rhash_head *p = iter->p;
789         bool rhlist = ht->rhlist;
790
791         if (!tbl)
792                 return NULL;
793
794         for (; iter->slot < tbl->size; iter->slot++) {
795                 int skip = iter->skip;
796
797                 rht_for_each_rcu(p, tbl, iter->slot) {
798                         if (rhlist) {
799                                 list = container_of(p, struct rhlist_head,
800                                                     rhead);
801                                 do {
802                                         if (!skip)
803                                                 goto next;
804                                         skip--;
805                                         list = rcu_dereference(list->next);
806                                 } while (list);
807
808                                 continue;
809                         }
810                         if (!skip)
811                                 break;
812                         skip--;
813                 }
814
815 next:
816                 if (!rht_is_a_nulls(p)) {
817                         iter->skip++;
818                         iter->p = p;
819                         iter->list = list;
820                         return rht_obj(ht, rhlist ? &list->rhead : p);
821                 }
822
823                 iter->skip = 0;
824         }
825
826         iter->p = NULL;
827
828         /* Ensure we see any new tables. */
829         smp_rmb();
830
831         iter->walker.tbl = rht_dereference_rcu(tbl->future_tbl, ht);
832         if (iter->walker.tbl) {
833                 iter->slot = 0;
834                 iter->skip = 0;
835                 return ERR_PTR(-EAGAIN);
836         } else {
837                 iter->end_of_table = true;
838         }
839
840         return NULL;
841 }
842
843 /**
844  * rhashtable_walk_next - Return the next object and advance the iterator
845  * @iter:       Hash table iterator
846  *
847  * Note that you must call rhashtable_walk_stop when you are finished
848  * with the walk.
849  *
850  * Returns the next object or NULL when the end of the table is reached.
851  *
852  * Returns -EAGAIN if resize event occurred.  Note that the iterator
853  * will rewind back to the beginning and you may continue to use it.
854  */
855 void *rhashtable_walk_next(struct rhashtable_iter *iter)
856 {
857         struct rhlist_head *list = iter->list;
858         struct rhashtable *ht = iter->ht;
859         struct rhash_head *p = iter->p;
860         bool rhlist = ht->rhlist;
861
862         if (p) {
863                 if (!rhlist || !(list = rcu_dereference(list->next))) {
864                         p = rcu_dereference(p->next);
865                         list = container_of(p, struct rhlist_head, rhead);
866                 }
867                 if (!rht_is_a_nulls(p)) {
868                         iter->skip++;
869                         iter->p = p;
870                         iter->list = list;
871                         return rht_obj(ht, rhlist ? &list->rhead : p);
872                 }
873
874                 /* At the end of this slot, switch to next one and then find
875                  * next entry from that point.
876                  */
877                 iter->skip = 0;
878                 iter->slot++;
879         }
880
881         return __rhashtable_walk_find_next(iter);
882 }
883 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
884
885 /**
886  * rhashtable_walk_peek - Return the next object but don't advance the iterator
887  * @iter:       Hash table iterator
888  *
889  * Returns the next object or NULL when the end of the table is reached.
890  *
891  * Returns -EAGAIN if resize event occurred.  Note that the iterator
892  * will rewind back to the beginning and you may continue to use it.
893  */
894 void *rhashtable_walk_peek(struct rhashtable_iter *iter)
895 {
896         struct rhlist_head *list = iter->list;
897         struct rhashtable *ht = iter->ht;
898         struct rhash_head *p = iter->p;
899
900         if (p)
901                 return rht_obj(ht, ht->rhlist ? &list->rhead : p);
902
903         /* No object found in current iter, find next one in the table. */
904
905         if (iter->skip) {
906                 /* A nonzero skip value points to the next entry in the table
907                  * beyond that last one that was found. Decrement skip so
908                  * we find the current value. __rhashtable_walk_find_next
909                  * will restore the original value of skip assuming that
910                  * the table hasn't changed.
911                  */
912                 iter->skip--;
913         }
914
915         return __rhashtable_walk_find_next(iter);
916 }
917 EXPORT_SYMBOL_GPL(rhashtable_walk_peek);
918
919 /**
920  * rhashtable_walk_stop - Finish a hash table walk
921  * @iter:       Hash table iterator
922  *
923  * Finish a hash table walk.  Does not reset the iterator to the start of the
924  * hash table.
925  */
926 void rhashtable_walk_stop(struct rhashtable_iter *iter)
927         __releases(RCU)
928 {
929         struct rhashtable *ht;
930         struct bucket_table *tbl = iter->walker.tbl;
931
932         if (!tbl)
933                 goto out;
934
935         ht = iter->ht;
936
937         spin_lock(&ht->lock);
938         if (rcu_head_after_call_rcu(&tbl->rcu, bucket_table_free_rcu))
939                 /* This bucket table is being freed, don't re-link it. */
940                 iter->walker.tbl = NULL;
941         else
942                 list_add(&iter->walker.list, &tbl->walkers);
943         spin_unlock(&ht->lock);
944
945 out:
946         rcu_read_unlock();
947 }
948 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
949
950 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
951 {
952         size_t retsize;
953
954         if (params->nelem_hint)
955                 retsize = max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
956                               (unsigned long)params->min_size);
957         else
958                 retsize = max(HASH_DEFAULT_SIZE,
959                               (unsigned long)params->min_size);
960
961         return retsize;
962 }
963
964 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
965 {
966         return jhash2(key, length, seed);
967 }
968
969 /**
970  * rhashtable_init - initialize a new hash table
971  * @ht:         hash table to be initialized
972  * @params:     configuration parameters
973  *
974  * Initializes a new hash table based on the provided configuration
975  * parameters. A table can be configured either with a variable or
976  * fixed length key:
977  *
978  * Configuration Example 1: Fixed length keys
979  * struct test_obj {
980  *      int                     key;
981  *      void *                  my_member;
982  *      struct rhash_head       node;
983  * };
984  *
985  * struct rhashtable_params params = {
986  *      .head_offset = offsetof(struct test_obj, node),
987  *      .key_offset = offsetof(struct test_obj, key),
988  *      .key_len = sizeof(int),
989  *      .hashfn = jhash,
990  * };
991  *
992  * Configuration Example 2: Variable length keys
993  * struct test_obj {
994  *      [...]
995  *      struct rhash_head       node;
996  * };
997  *
998  * u32 my_hash_fn(const void *data, u32 len, u32 seed)
999  * {
1000  *      struct test_obj *obj = data;
1001  *
1002  *      return [... hash ...];
1003  * }
1004  *
1005  * struct rhashtable_params params = {
1006  *      .head_offset = offsetof(struct test_obj, node),
1007  *      .hashfn = jhash,
1008  *      .obj_hashfn = my_hash_fn,
1009  * };
1010  */
1011 int rhashtable_init(struct rhashtable *ht,
1012                     const struct rhashtable_params *params)
1013 {
1014         struct bucket_table *tbl;
1015         size_t size;
1016
1017         if ((!params->key_len && !params->obj_hashfn) ||
1018             (params->obj_hashfn && !params->obj_cmpfn))
1019                 return -EINVAL;
1020
1021         memset(ht, 0, sizeof(*ht));
1022         mutex_init(&ht->mutex);
1023         spin_lock_init(&ht->lock);
1024         memcpy(&ht->p, params, sizeof(*params));
1025
1026         if (params->min_size)
1027                 ht->p.min_size = roundup_pow_of_two(params->min_size);
1028
1029         /* Cap total entries at 2^31 to avoid nelems overflow. */
1030         ht->max_elems = 1u << 31;
1031
1032         if (params->max_size) {
1033                 ht->p.max_size = rounddown_pow_of_two(params->max_size);
1034                 if (ht->p.max_size < ht->max_elems / 2)
1035                         ht->max_elems = ht->p.max_size * 2;
1036         }
1037
1038         ht->p.min_size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1039
1040         size = rounded_hashtable_size(&ht->p);
1041
1042         ht->key_len = ht->p.key_len;
1043         if (!params->hashfn) {
1044                 ht->p.hashfn = jhash;
1045
1046                 if (!(ht->key_len & (sizeof(u32) - 1))) {
1047                         ht->key_len /= sizeof(u32);
1048                         ht->p.hashfn = rhashtable_jhash2;
1049                 }
1050         }
1051
1052         /*
1053          * This is api initialization and thus we need to guarantee the
1054          * initial rhashtable allocation. Upon failure, retry with the
1055          * smallest possible size with __GFP_NOFAIL semantics.
1056          */
1057         tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
1058         if (unlikely(tbl == NULL)) {
1059                 size = max_t(u16, ht->p.min_size, HASH_MIN_SIZE);
1060                 tbl = bucket_table_alloc(ht, size, GFP_KERNEL | __GFP_NOFAIL);
1061         }
1062
1063         atomic_set(&ht->nelems, 0);
1064
1065         RCU_INIT_POINTER(ht->tbl, tbl);
1066
1067         INIT_WORK(&ht->run_work, rht_deferred_worker);
1068
1069         return 0;
1070 }
1071 EXPORT_SYMBOL_GPL(rhashtable_init);
1072
1073 /**
1074  * rhltable_init - initialize a new hash list table
1075  * @hlt:        hash list table to be initialized
1076  * @params:     configuration parameters
1077  *
1078  * Initializes a new hash list table.
1079  *
1080  * See documentation for rhashtable_init.
1081  */
1082 int rhltable_init(struct rhltable *hlt, const struct rhashtable_params *params)
1083 {
1084         int err;
1085
1086         err = rhashtable_init(&hlt->ht, params);
1087         hlt->ht.rhlist = true;
1088         return err;
1089 }
1090 EXPORT_SYMBOL_GPL(rhltable_init);
1091
1092 static void rhashtable_free_one(struct rhashtable *ht, struct rhash_head *obj,
1093                                 void (*free_fn)(void *ptr, void *arg),
1094                                 void *arg)
1095 {
1096         struct rhlist_head *list;
1097
1098         if (!ht->rhlist) {
1099                 free_fn(rht_obj(ht, obj), arg);
1100                 return;
1101         }
1102
1103         list = container_of(obj, struct rhlist_head, rhead);
1104         do {
1105                 obj = &list->rhead;
1106                 list = rht_dereference(list->next, ht);
1107                 free_fn(rht_obj(ht, obj), arg);
1108         } while (list);
1109 }
1110
1111 /**
1112  * rhashtable_free_and_destroy - free elements and destroy hash table
1113  * @ht:         the hash table to destroy
1114  * @free_fn:    callback to release resources of element
1115  * @arg:        pointer passed to free_fn
1116  *
1117  * Stops an eventual async resize. If defined, invokes free_fn for each
1118  * element to releasal resources. Please note that RCU protected
1119  * readers may still be accessing the elements. Releasing of resources
1120  * must occur in a compatible manner. Then frees the bucket array.
1121  *
1122  * This function will eventually sleep to wait for an async resize
1123  * to complete. The caller is responsible that no further write operations
1124  * occurs in parallel.
1125  */
1126 void rhashtable_free_and_destroy(struct rhashtable *ht,
1127                                  void (*free_fn)(void *ptr, void *arg),
1128                                  void *arg)
1129 {
1130         struct bucket_table *tbl, *next_tbl;
1131         unsigned int i;
1132
1133         cancel_work_sync(&ht->run_work);
1134
1135         mutex_lock(&ht->mutex);
1136         tbl = rht_dereference(ht->tbl, ht);
1137 restart:
1138         if (free_fn) {
1139                 for (i = 0; i < tbl->size; i++) {
1140                         struct rhash_head *pos, *next;
1141
1142                         cond_resched();
1143                         for (pos = rht_ptr_exclusive(rht_bucket(tbl, i)),
1144                              next = !rht_is_a_nulls(pos) ?
1145                                         rht_dereference(pos->next, ht) : NULL;
1146                              !rht_is_a_nulls(pos);
1147                              pos = next,
1148                              next = !rht_is_a_nulls(pos) ?
1149                                         rht_dereference(pos->next, ht) : NULL)
1150                                 rhashtable_free_one(ht, pos, free_fn, arg);
1151                 }
1152         }
1153
1154         next_tbl = rht_dereference(tbl->future_tbl, ht);
1155         bucket_table_free(tbl);
1156         if (next_tbl) {
1157                 tbl = next_tbl;
1158                 goto restart;
1159         }
1160         mutex_unlock(&ht->mutex);
1161 }
1162 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
1163
1164 void rhashtable_destroy(struct rhashtable *ht)
1165 {
1166         return rhashtable_free_and_destroy(ht, NULL, NULL);
1167 }
1168 EXPORT_SYMBOL_GPL(rhashtable_destroy);
1169
1170 struct rhash_lock_head **__rht_bucket_nested(const struct bucket_table *tbl,
1171                                              unsigned int hash)
1172 {
1173         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1174         unsigned int index = hash & ((1 << tbl->nest) - 1);
1175         unsigned int size = tbl->size >> tbl->nest;
1176         unsigned int subhash = hash;
1177         union nested_table *ntbl;
1178
1179         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1180         ntbl = rht_dereference_bucket_rcu(ntbl[index].table, tbl, hash);
1181         subhash >>= tbl->nest;
1182
1183         while (ntbl && size > (1 << shift)) {
1184                 index = subhash & ((1 << shift) - 1);
1185                 ntbl = rht_dereference_bucket_rcu(ntbl[index].table,
1186                                                   tbl, hash);
1187                 size >>= shift;
1188                 subhash >>= shift;
1189         }
1190
1191         if (!ntbl)
1192                 return NULL;
1193
1194         return &ntbl[subhash].bucket;
1195
1196 }
1197 EXPORT_SYMBOL_GPL(__rht_bucket_nested);
1198
1199 struct rhash_lock_head **rht_bucket_nested(const struct bucket_table *tbl,
1200                                            unsigned int hash)
1201 {
1202         static struct rhash_lock_head *rhnull;
1203
1204         if (!rhnull)
1205                 INIT_RHT_NULLS_HEAD(rhnull);
1206         return __rht_bucket_nested(tbl, hash) ?: &rhnull;
1207 }
1208 EXPORT_SYMBOL_GPL(rht_bucket_nested);
1209
1210 struct rhash_lock_head **rht_bucket_nested_insert(struct rhashtable *ht,
1211                                                   struct bucket_table *tbl,
1212                                                   unsigned int hash)
1213 {
1214         const unsigned int shift = PAGE_SHIFT - ilog2(sizeof(void *));
1215         unsigned int index = hash & ((1 << tbl->nest) - 1);
1216         unsigned int size = tbl->size >> tbl->nest;
1217         union nested_table *ntbl;
1218
1219         ntbl = (union nested_table *)rcu_dereference_raw(tbl->buckets[0]);
1220         hash >>= tbl->nest;
1221         ntbl = nested_table_alloc(ht, &ntbl[index].table,
1222                                   size <= (1 << shift));
1223
1224         while (ntbl && size > (1 << shift)) {
1225                 index = hash & ((1 << shift) - 1);
1226                 size >>= shift;
1227                 hash >>= shift;
1228                 ntbl = nested_table_alloc(ht, &ntbl[index].table,
1229                                           size <= (1 << shift));
1230         }
1231
1232         if (!ntbl)
1233                 return NULL;
1234
1235         return &ntbl[hash].bucket;
1236
1237 }
1238 EXPORT_SYMBOL_GPL(rht_bucket_nested_insert);