1 // SPDX-License-Identifier: GPL-2.0+
3 * Copyright (C) 2017 HiSilicon Limited, All Rights Reserved.
4 * Author: Gabriele Paoloni <gabriele.paoloni@huawei.com>
5 * Author: Zhichang Yuan <yuanzhichang@hisilicon.com>
6 * Author: John Garry <john.garry@huawei.com>
9 #define pr_fmt(fmt) "LOGIC PIO: " fmt
13 #include <linux/logic_pio.h>
15 #include <linux/rculist.h>
16 #include <linux/sizes.h>
17 #include <linux/slab.h>
19 /* The unique hardware address list */
20 static LIST_HEAD(io_range_list);
21 static DEFINE_MUTEX(io_range_mutex);
23 /* Consider a kernel general helper for this */
24 #define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
27 * logic_pio_register_range - register logical PIO range for a host
28 * @new_range: pointer to the IO range to be registered.
30 * Returns 0 on success, the error code in case of failure.
31 * If the range already exists, -EEXIST will be returned, which should be
32 * considered a success.
34 * Register a new IO range node in the IO range list.
36 int logic_pio_register_range(struct logic_pio_hwaddr *new_range)
38 struct logic_pio_hwaddr *range;
39 resource_size_t start;
41 resource_size_t mmio_end = 0;
42 resource_size_t iio_sz = MMIO_UPPER_LIMIT;
45 if (!new_range || !new_range->fwnode || !new_range->size ||
46 (new_range->flags == LOGIC_PIO_INDIRECT && !new_range->ops))
49 start = new_range->hw_start;
50 end = new_range->hw_start + new_range->size;
52 mutex_lock(&io_range_mutex);
53 list_for_each_entry(range, &io_range_list, list) {
54 if (range->fwnode == new_range->fwnode) {
55 /* range already there */
59 if (range->flags == LOGIC_PIO_CPU_MMIO &&
60 new_range->flags == LOGIC_PIO_CPU_MMIO) {
61 /* for MMIO ranges we need to check for overlap */
62 if (start >= range->hw_start + range->size ||
63 end < range->hw_start) {
64 mmio_end = range->io_start + range->size;
69 } else if (range->flags == LOGIC_PIO_INDIRECT &&
70 new_range->flags == LOGIC_PIO_INDIRECT) {
71 iio_sz += range->size;
75 /* range not registered yet, check for available space */
76 if (new_range->flags == LOGIC_PIO_CPU_MMIO) {
77 if (mmio_end + new_range->size - 1 > MMIO_UPPER_LIMIT) {
78 /* if it's too big check if 64K space can be reserved */
79 if (mmio_end + SZ_64K - 1 > MMIO_UPPER_LIMIT) {
83 new_range->size = SZ_64K;
84 pr_warn("Requested IO range too big, new size set to 64K\n");
86 new_range->io_start = mmio_end;
87 } else if (new_range->flags == LOGIC_PIO_INDIRECT) {
88 if (iio_sz + new_range->size - 1 > IO_SPACE_LIMIT) {
92 new_range->io_start = iio_sz;
99 list_add_tail_rcu(&new_range->list, &io_range_list);
102 mutex_unlock(&io_range_mutex);
107 * logic_pio_unregister_range - unregister a logical PIO range for a host
108 * @range: pointer to the IO range which has been already registered.
110 * Unregister a previously-registered IO range node.
112 void logic_pio_unregister_range(struct logic_pio_hwaddr *range)
114 mutex_lock(&io_range_mutex);
115 list_del_rcu(&range->list);
116 mutex_unlock(&io_range_mutex);
121 * find_io_range_by_fwnode - find logical PIO range for given FW node
122 * @fwnode: FW node handle associated with logical PIO range
124 * Returns pointer to node on success, NULL otherwise.
126 * Traverse the io_range_list to find the registered node for @fwnode.
128 struct logic_pio_hwaddr *find_io_range_by_fwnode(struct fwnode_handle *fwnode)
130 struct logic_pio_hwaddr *range, *found_range = NULL;
133 list_for_each_entry_rcu(range, &io_range_list, list) {
134 if (range->fwnode == fwnode) {
144 /* Return a registered range given an input PIO token */
145 static struct logic_pio_hwaddr *find_io_range(unsigned long pio)
147 struct logic_pio_hwaddr *range, *found_range = NULL;
150 list_for_each_entry_rcu(range, &io_range_list, list) {
151 if (in_range(pio, range->io_start, range->size)) {
159 pr_err("PIO entry token 0x%lx invalid\n", pio);
165 * logic_pio_to_hwaddr - translate logical PIO to HW address
166 * @pio: logical PIO value
168 * Returns HW address if valid, ~0 otherwise.
170 * Translate the input logical PIO to the corresponding hardware address.
171 * The input PIO should be unique in the whole logical PIO space.
173 resource_size_t logic_pio_to_hwaddr(unsigned long pio)
175 struct logic_pio_hwaddr *range;
177 range = find_io_range(pio);
179 return range->hw_start + pio - range->io_start;
181 return (resource_size_t)~0;
185 * logic_pio_trans_hwaddr - translate HW address to logical PIO
186 * @fwnode: FW node reference for the host
187 * @addr: Host-relative HW address
188 * @size: size to translate
190 * Returns Logical PIO value if successful, ~0UL otherwise
192 unsigned long logic_pio_trans_hwaddr(struct fwnode_handle *fwnode,
193 resource_size_t addr, resource_size_t size)
195 struct logic_pio_hwaddr *range;
197 range = find_io_range_by_fwnode(fwnode);
198 if (!range || range->flags == LOGIC_PIO_CPU_MMIO) {
199 pr_err("IO range not found or invalid\n");
202 if (range->size < size) {
203 pr_err("resource size %pa cannot fit in IO range size %pa\n",
204 &size, &range->size);
207 return addr - range->hw_start + range->io_start;
210 unsigned long logic_pio_trans_cpuaddr(resource_size_t addr)
212 struct logic_pio_hwaddr *range;
215 list_for_each_entry_rcu(range, &io_range_list, list) {
216 if (range->flags != LOGIC_PIO_CPU_MMIO)
218 if (in_range(addr, range->hw_start, range->size)) {
219 unsigned long cpuaddr;
221 cpuaddr = addr - range->hw_start + range->io_start;
229 pr_err("addr %pa not registered in io_range_list\n", &addr);
234 #if defined(CONFIG_INDIRECT_PIO) && defined(PCI_IOBASE)
235 #define BUILD_LOGIC_IO(bwl, type) \
236 type logic_in##bwl(unsigned long addr) \
238 type ret = (type)~0; \
240 if (addr < MMIO_UPPER_LIMIT) { \
241 ret = _in##bwl(addr); \
242 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
243 struct logic_pio_hwaddr *entry = find_io_range(addr); \
246 ret = entry->ops->in(entry->hostdata, \
247 addr, sizeof(type)); \
254 void logic_out##bwl(type value, unsigned long addr) \
256 if (addr < MMIO_UPPER_LIMIT) { \
257 _out##bwl(value, addr); \
258 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
259 struct logic_pio_hwaddr *entry = find_io_range(addr); \
262 entry->ops->out(entry->hostdata, \
263 addr, value, sizeof(type)); \
269 void logic_ins##bwl(unsigned long addr, void *buffer, \
270 unsigned int count) \
272 if (addr < MMIO_UPPER_LIMIT) { \
273 reads##bwl(PCI_IOBASE + addr, buffer, count); \
274 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
275 struct logic_pio_hwaddr *entry = find_io_range(addr); \
278 entry->ops->ins(entry->hostdata, \
279 addr, buffer, sizeof(type), count); \
286 void logic_outs##bwl(unsigned long addr, const void *buffer, \
287 unsigned int count) \
289 if (addr < MMIO_UPPER_LIMIT) { \
290 writes##bwl(PCI_IOBASE + addr, buffer, count); \
291 } else if (addr >= MMIO_UPPER_LIMIT && addr < IO_SPACE_LIMIT) { \
292 struct logic_pio_hwaddr *entry = find_io_range(addr); \
295 entry->ops->outs(entry->hostdata, \
296 addr, buffer, sizeof(type), count); \
302 BUILD_LOGIC_IO(b, u8)
303 EXPORT_SYMBOL(logic_inb);
304 EXPORT_SYMBOL(logic_insb);
305 EXPORT_SYMBOL(logic_outb);
306 EXPORT_SYMBOL(logic_outsb);
308 BUILD_LOGIC_IO(w, u16)
309 EXPORT_SYMBOL(logic_inw);
310 EXPORT_SYMBOL(logic_insw);
311 EXPORT_SYMBOL(logic_outw);
312 EXPORT_SYMBOL(logic_outsw);
314 BUILD_LOGIC_IO(l, u32)
315 EXPORT_SYMBOL(logic_inl);
316 EXPORT_SYMBOL(logic_insl);
317 EXPORT_SYMBOL(logic_outl);
318 EXPORT_SYMBOL(logic_outsl);
320 #endif /* CONFIG_INDIRECT_PIO && PCI_IOBASE */