ce9f8b9168ea44c7ad2466589d7a1f56f8caf0c9
[linux-2.6-microblaze.git] / lib / iov_iter.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <crypto/hash.h>
3 #include <linux/export.h>
4 #include <linux/bvec.h>
5 #include <linux/fault-inject-usercopy.h>
6 #include <linux/uio.h>
7 #include <linux/pagemap.h>
8 #include <linux/highmem.h>
9 #include <linux/slab.h>
10 #include <linux/vmalloc.h>
11 #include <linux/splice.h>
12 #include <linux/compat.h>
13 #include <net/checksum.h>
14 #include <linux/scatterlist.h>
15 #include <linux/instrumented.h>
16
17 #define PIPE_PARANOIA /* for now */
18
19 #define iterate_iovec(i, n, __v, __p, skip, STEP) {     \
20         size_t left;                                    \
21         size_t wanted = n;                              \
22         __p = i->iov;                                   \
23         __v.iov_len = min(n, __p->iov_len - skip);      \
24         if (likely(__v.iov_len)) {                      \
25                 __v.iov_base = __p->iov_base + skip;    \
26                 left = (STEP);                          \
27                 __v.iov_len -= left;                    \
28                 skip += __v.iov_len;                    \
29                 n -= __v.iov_len;                       \
30         } else {                                        \
31                 left = 0;                               \
32         }                                               \
33         while (unlikely(!left && n)) {                  \
34                 __p++;                                  \
35                 __v.iov_len = min(n, __p->iov_len);     \
36                 if (unlikely(!__v.iov_len))             \
37                         continue;                       \
38                 __v.iov_base = __p->iov_base;           \
39                 left = (STEP);                          \
40                 __v.iov_len -= left;                    \
41                 skip = __v.iov_len;                     \
42                 n -= __v.iov_len;                       \
43         }                                               \
44         n = wanted - n;                                 \
45 }
46
47 #define iterate_kvec(i, n, __v, __p, skip, STEP) {      \
48         size_t wanted = n;                              \
49         __p = i->kvec;                                  \
50         __v.iov_len = min(n, __p->iov_len - skip);      \
51         if (likely(__v.iov_len)) {                      \
52                 __v.iov_base = __p->iov_base + skip;    \
53                 (void)(STEP);                           \
54                 skip += __v.iov_len;                    \
55                 n -= __v.iov_len;                       \
56         }                                               \
57         while (unlikely(n)) {                           \
58                 __p++;                                  \
59                 __v.iov_len = min(n, __p->iov_len);     \
60                 if (unlikely(!__v.iov_len))             \
61                         continue;                       \
62                 __v.iov_base = __p->iov_base;           \
63                 (void)(STEP);                           \
64                 skip = __v.iov_len;                     \
65                 n -= __v.iov_len;                       \
66         }                                               \
67         n = wanted;                                     \
68 }
69
70 #define iterate_bvec(i, n, __v, __bi, skip, STEP) {     \
71         struct bvec_iter __start;                       \
72         __start.bi_size = n;                            \
73         __start.bi_bvec_done = skip;                    \
74         __start.bi_idx = 0;                             \
75         for_each_bvec(__v, i->bvec, __bi, __start) {    \
76                 (void)(STEP);                           \
77         }                                               \
78 }
79
80 #define iterate_xarray(i, n, __v, skip, STEP) {         \
81         struct page *head = NULL;                               \
82         size_t wanted = n, seg, offset;                         \
83         loff_t start = i->xarray_start + skip;                  \
84         pgoff_t index = start >> PAGE_SHIFT;                    \
85         int j;                                                  \
86                                                                 \
87         XA_STATE(xas, i->xarray, index);                        \
88                                                                 \
89         rcu_read_lock();                                                \
90         xas_for_each(&xas, head, ULONG_MAX) {                           \
91                 if (xas_retry(&xas, head))                              \
92                         continue;                                       \
93                 if (WARN_ON(xa_is_value(head)))                         \
94                         break;                                          \
95                 if (WARN_ON(PageHuge(head)))                            \
96                         break;                                          \
97                 for (j = (head->index < index) ? index - head->index : 0; \
98                      j < thp_nr_pages(head); j++) {                     \
99                         __v.bv_page = head + j;                         \
100                         offset = (i->xarray_start + skip) & ~PAGE_MASK; \
101                         seg = PAGE_SIZE - offset;                       \
102                         __v.bv_offset = offset;                         \
103                         __v.bv_len = min(n, seg);                       \
104                         (void)(STEP);                                   \
105                         n -= __v.bv_len;                                \
106                         skip += __v.bv_len;                             \
107                         if (n == 0)                                     \
108                                 break;                                  \
109                 }                                                       \
110                 if (n == 0)                                             \
111                         break;                                          \
112         }                                                       \
113         rcu_read_unlock();                                      \
114         n = wanted - n;                                         \
115 }
116
117 #define iterate_all_kinds(i, n, v, I, B, K, X) {                \
118         if (likely(n)) {                                        \
119                 size_t skip = i->iov_offset;                    \
120                 if (unlikely(i->type & ITER_BVEC)) {            \
121                         struct bio_vec v;                       \
122                         struct bvec_iter __bi;                  \
123                         iterate_bvec(i, n, v, __bi, skip, (B))  \
124                 } else if (unlikely(i->type & ITER_KVEC)) {     \
125                         const struct kvec *kvec;                \
126                         struct kvec v;                          \
127                         iterate_kvec(i, n, v, kvec, skip, (K))  \
128                 } else if (unlikely(i->type & ITER_DISCARD)) {  \
129                 } else if (unlikely(i->type & ITER_XARRAY)) {   \
130                         struct bio_vec v;                       \
131                         iterate_xarray(i, n, v, skip, (X));     \
132                 } else {                                        \
133                         const struct iovec *iov;                \
134                         struct iovec v;                         \
135                         iterate_iovec(i, n, v, iov, skip, (I))  \
136                 }                                               \
137         }                                                       \
138 }
139
140 #define iterate_and_advance(i, n, v, I, B, K, X) {              \
141         if (unlikely(i->count < n))                             \
142                 n = i->count;                                   \
143         if (i->count) {                                         \
144                 size_t skip = i->iov_offset;                    \
145                 if (unlikely(i->type & ITER_BVEC)) {            \
146                         const struct bio_vec *bvec = i->bvec;   \
147                         struct bio_vec v;                       \
148                         struct bvec_iter __bi;                  \
149                         iterate_bvec(i, n, v, __bi, skip, (B))  \
150                         i->bvec = __bvec_iter_bvec(i->bvec, __bi);      \
151                         i->nr_segs -= i->bvec - bvec;           \
152                         skip = __bi.bi_bvec_done;               \
153                 } else if (unlikely(i->type & ITER_KVEC)) {     \
154                         const struct kvec *kvec;                \
155                         struct kvec v;                          \
156                         iterate_kvec(i, n, v, kvec, skip, (K))  \
157                         if (skip == kvec->iov_len) {            \
158                                 kvec++;                         \
159                                 skip = 0;                       \
160                         }                                       \
161                         i->nr_segs -= kvec - i->kvec;           \
162                         i->kvec = kvec;                         \
163                 } else if (unlikely(i->type & ITER_DISCARD)) {  \
164                         skip += n;                              \
165                 } else if (unlikely(i->type & ITER_XARRAY)) {   \
166                         struct bio_vec v;                       \
167                         iterate_xarray(i, n, v, skip, (X))      \
168                 } else {                                        \
169                         const struct iovec *iov;                \
170                         struct iovec v;                         \
171                         iterate_iovec(i, n, v, iov, skip, (I))  \
172                         if (skip == iov->iov_len) {             \
173                                 iov++;                          \
174                                 skip = 0;                       \
175                         }                                       \
176                         i->nr_segs -= iov - i->iov;             \
177                         i->iov = iov;                           \
178                 }                                               \
179                 i->count -= n;                                  \
180                 i->iov_offset = skip;                           \
181         }                                                       \
182 }
183
184 static int copyout(void __user *to, const void *from, size_t n)
185 {
186         if (should_fail_usercopy())
187                 return n;
188         if (access_ok(to, n)) {
189                 instrument_copy_to_user(to, from, n);
190                 n = raw_copy_to_user(to, from, n);
191         }
192         return n;
193 }
194
195 static int copyin(void *to, const void __user *from, size_t n)
196 {
197         if (should_fail_usercopy())
198                 return n;
199         if (access_ok(from, n)) {
200                 instrument_copy_from_user(to, from, n);
201                 n = raw_copy_from_user(to, from, n);
202         }
203         return n;
204 }
205
206 static size_t copy_page_to_iter_iovec(struct page *page, size_t offset, size_t bytes,
207                          struct iov_iter *i)
208 {
209         size_t skip, copy, left, wanted;
210         const struct iovec *iov;
211         char __user *buf;
212         void *kaddr, *from;
213
214         if (unlikely(bytes > i->count))
215                 bytes = i->count;
216
217         if (unlikely(!bytes))
218                 return 0;
219
220         might_fault();
221         wanted = bytes;
222         iov = i->iov;
223         skip = i->iov_offset;
224         buf = iov->iov_base + skip;
225         copy = min(bytes, iov->iov_len - skip);
226
227         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_writeable(buf, copy)) {
228                 kaddr = kmap_atomic(page);
229                 from = kaddr + offset;
230
231                 /* first chunk, usually the only one */
232                 left = copyout(buf, from, copy);
233                 copy -= left;
234                 skip += copy;
235                 from += copy;
236                 bytes -= copy;
237
238                 while (unlikely(!left && bytes)) {
239                         iov++;
240                         buf = iov->iov_base;
241                         copy = min(bytes, iov->iov_len);
242                         left = copyout(buf, from, copy);
243                         copy -= left;
244                         skip = copy;
245                         from += copy;
246                         bytes -= copy;
247                 }
248                 if (likely(!bytes)) {
249                         kunmap_atomic(kaddr);
250                         goto done;
251                 }
252                 offset = from - kaddr;
253                 buf += copy;
254                 kunmap_atomic(kaddr);
255                 copy = min(bytes, iov->iov_len - skip);
256         }
257         /* Too bad - revert to non-atomic kmap */
258
259         kaddr = kmap(page);
260         from = kaddr + offset;
261         left = copyout(buf, from, copy);
262         copy -= left;
263         skip += copy;
264         from += copy;
265         bytes -= copy;
266         while (unlikely(!left && bytes)) {
267                 iov++;
268                 buf = iov->iov_base;
269                 copy = min(bytes, iov->iov_len);
270                 left = copyout(buf, from, copy);
271                 copy -= left;
272                 skip = copy;
273                 from += copy;
274                 bytes -= copy;
275         }
276         kunmap(page);
277
278 done:
279         if (skip == iov->iov_len) {
280                 iov++;
281                 skip = 0;
282         }
283         i->count -= wanted - bytes;
284         i->nr_segs -= iov - i->iov;
285         i->iov = iov;
286         i->iov_offset = skip;
287         return wanted - bytes;
288 }
289
290 static size_t copy_page_from_iter_iovec(struct page *page, size_t offset, size_t bytes,
291                          struct iov_iter *i)
292 {
293         size_t skip, copy, left, wanted;
294         const struct iovec *iov;
295         char __user *buf;
296         void *kaddr, *to;
297
298         if (unlikely(bytes > i->count))
299                 bytes = i->count;
300
301         if (unlikely(!bytes))
302                 return 0;
303
304         might_fault();
305         wanted = bytes;
306         iov = i->iov;
307         skip = i->iov_offset;
308         buf = iov->iov_base + skip;
309         copy = min(bytes, iov->iov_len - skip);
310
311         if (IS_ENABLED(CONFIG_HIGHMEM) && !fault_in_pages_readable(buf, copy)) {
312                 kaddr = kmap_atomic(page);
313                 to = kaddr + offset;
314
315                 /* first chunk, usually the only one */
316                 left = copyin(to, buf, copy);
317                 copy -= left;
318                 skip += copy;
319                 to += copy;
320                 bytes -= copy;
321
322                 while (unlikely(!left && bytes)) {
323                         iov++;
324                         buf = iov->iov_base;
325                         copy = min(bytes, iov->iov_len);
326                         left = copyin(to, buf, copy);
327                         copy -= left;
328                         skip = copy;
329                         to += copy;
330                         bytes -= copy;
331                 }
332                 if (likely(!bytes)) {
333                         kunmap_atomic(kaddr);
334                         goto done;
335                 }
336                 offset = to - kaddr;
337                 buf += copy;
338                 kunmap_atomic(kaddr);
339                 copy = min(bytes, iov->iov_len - skip);
340         }
341         /* Too bad - revert to non-atomic kmap */
342
343         kaddr = kmap(page);
344         to = kaddr + offset;
345         left = copyin(to, buf, copy);
346         copy -= left;
347         skip += copy;
348         to += copy;
349         bytes -= copy;
350         while (unlikely(!left && bytes)) {
351                 iov++;
352                 buf = iov->iov_base;
353                 copy = min(bytes, iov->iov_len);
354                 left = copyin(to, buf, copy);
355                 copy -= left;
356                 skip = copy;
357                 to += copy;
358                 bytes -= copy;
359         }
360         kunmap(page);
361
362 done:
363         if (skip == iov->iov_len) {
364                 iov++;
365                 skip = 0;
366         }
367         i->count -= wanted - bytes;
368         i->nr_segs -= iov - i->iov;
369         i->iov = iov;
370         i->iov_offset = skip;
371         return wanted - bytes;
372 }
373
374 #ifdef PIPE_PARANOIA
375 static bool sanity(const struct iov_iter *i)
376 {
377         struct pipe_inode_info *pipe = i->pipe;
378         unsigned int p_head = pipe->head;
379         unsigned int p_tail = pipe->tail;
380         unsigned int p_mask = pipe->ring_size - 1;
381         unsigned int p_occupancy = pipe_occupancy(p_head, p_tail);
382         unsigned int i_head = i->head;
383         unsigned int idx;
384
385         if (i->iov_offset) {
386                 struct pipe_buffer *p;
387                 if (unlikely(p_occupancy == 0))
388                         goto Bad;       // pipe must be non-empty
389                 if (unlikely(i_head != p_head - 1))
390                         goto Bad;       // must be at the last buffer...
391
392                 p = &pipe->bufs[i_head & p_mask];
393                 if (unlikely(p->offset + p->len != i->iov_offset))
394                         goto Bad;       // ... at the end of segment
395         } else {
396                 if (i_head != p_head)
397                         goto Bad;       // must be right after the last buffer
398         }
399         return true;
400 Bad:
401         printk(KERN_ERR "idx = %d, offset = %zd\n", i_head, i->iov_offset);
402         printk(KERN_ERR "head = %d, tail = %d, buffers = %d\n",
403                         p_head, p_tail, pipe->ring_size);
404         for (idx = 0; idx < pipe->ring_size; idx++)
405                 printk(KERN_ERR "[%p %p %d %d]\n",
406                         pipe->bufs[idx].ops,
407                         pipe->bufs[idx].page,
408                         pipe->bufs[idx].offset,
409                         pipe->bufs[idx].len);
410         WARN_ON(1);
411         return false;
412 }
413 #else
414 #define sanity(i) true
415 #endif
416
417 static size_t copy_page_to_iter_pipe(struct page *page, size_t offset, size_t bytes,
418                          struct iov_iter *i)
419 {
420         struct pipe_inode_info *pipe = i->pipe;
421         struct pipe_buffer *buf;
422         unsigned int p_tail = pipe->tail;
423         unsigned int p_mask = pipe->ring_size - 1;
424         unsigned int i_head = i->head;
425         size_t off;
426
427         if (unlikely(bytes > i->count))
428                 bytes = i->count;
429
430         if (unlikely(!bytes))
431                 return 0;
432
433         if (!sanity(i))
434                 return 0;
435
436         off = i->iov_offset;
437         buf = &pipe->bufs[i_head & p_mask];
438         if (off) {
439                 if (offset == off && buf->page == page) {
440                         /* merge with the last one */
441                         buf->len += bytes;
442                         i->iov_offset += bytes;
443                         goto out;
444                 }
445                 i_head++;
446                 buf = &pipe->bufs[i_head & p_mask];
447         }
448         if (pipe_full(i_head, p_tail, pipe->max_usage))
449                 return 0;
450
451         buf->ops = &page_cache_pipe_buf_ops;
452         get_page(page);
453         buf->page = page;
454         buf->offset = offset;
455         buf->len = bytes;
456
457         pipe->head = i_head + 1;
458         i->iov_offset = offset + bytes;
459         i->head = i_head;
460 out:
461         i->count -= bytes;
462         return bytes;
463 }
464
465 /*
466  * Fault in one or more iovecs of the given iov_iter, to a maximum length of
467  * bytes.  For each iovec, fault in each page that constitutes the iovec.
468  *
469  * Return 0 on success, or non-zero if the memory could not be accessed (i.e.
470  * because it is an invalid address).
471  */
472 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
473 {
474         size_t skip = i->iov_offset;
475         const struct iovec *iov;
476         int err;
477         struct iovec v;
478
479         if (iter_is_iovec(i)) {
480                 iterate_iovec(i, bytes, v, iov, skip, ({
481                         err = fault_in_pages_readable(v.iov_base, v.iov_len);
482                         if (unlikely(err))
483                         return err;
484                 0;}))
485         }
486         return 0;
487 }
488 EXPORT_SYMBOL(iov_iter_fault_in_readable);
489
490 void iov_iter_init(struct iov_iter *i, unsigned int direction,
491                         const struct iovec *iov, unsigned long nr_segs,
492                         size_t count)
493 {
494         WARN_ON(direction & ~(READ | WRITE));
495         direction &= READ | WRITE;
496
497         /* It will get better.  Eventually... */
498         if (uaccess_kernel()) {
499                 i->type = ITER_KVEC | direction;
500                 i->kvec = (struct kvec *)iov;
501         } else {
502                 i->type = ITER_IOVEC | direction;
503                 i->iov = iov;
504         }
505         i->nr_segs = nr_segs;
506         i->iov_offset = 0;
507         i->count = count;
508 }
509 EXPORT_SYMBOL(iov_iter_init);
510
511 static inline bool allocated(struct pipe_buffer *buf)
512 {
513         return buf->ops == &default_pipe_buf_ops;
514 }
515
516 static inline void data_start(const struct iov_iter *i,
517                               unsigned int *iter_headp, size_t *offp)
518 {
519         unsigned int p_mask = i->pipe->ring_size - 1;
520         unsigned int iter_head = i->head;
521         size_t off = i->iov_offset;
522
523         if (off && (!allocated(&i->pipe->bufs[iter_head & p_mask]) ||
524                     off == PAGE_SIZE)) {
525                 iter_head++;
526                 off = 0;
527         }
528         *iter_headp = iter_head;
529         *offp = off;
530 }
531
532 static size_t push_pipe(struct iov_iter *i, size_t size,
533                         int *iter_headp, size_t *offp)
534 {
535         struct pipe_inode_info *pipe = i->pipe;
536         unsigned int p_tail = pipe->tail;
537         unsigned int p_mask = pipe->ring_size - 1;
538         unsigned int iter_head;
539         size_t off;
540         ssize_t left;
541
542         if (unlikely(size > i->count))
543                 size = i->count;
544         if (unlikely(!size))
545                 return 0;
546
547         left = size;
548         data_start(i, &iter_head, &off);
549         *iter_headp = iter_head;
550         *offp = off;
551         if (off) {
552                 left -= PAGE_SIZE - off;
553                 if (left <= 0) {
554                         pipe->bufs[iter_head & p_mask].len += size;
555                         return size;
556                 }
557                 pipe->bufs[iter_head & p_mask].len = PAGE_SIZE;
558                 iter_head++;
559         }
560         while (!pipe_full(iter_head, p_tail, pipe->max_usage)) {
561                 struct pipe_buffer *buf = &pipe->bufs[iter_head & p_mask];
562                 struct page *page = alloc_page(GFP_USER);
563                 if (!page)
564                         break;
565
566                 buf->ops = &default_pipe_buf_ops;
567                 buf->page = page;
568                 buf->offset = 0;
569                 buf->len = min_t(ssize_t, left, PAGE_SIZE);
570                 left -= buf->len;
571                 iter_head++;
572                 pipe->head = iter_head;
573
574                 if (left == 0)
575                         return size;
576         }
577         return size - left;
578 }
579
580 static size_t copy_pipe_to_iter(const void *addr, size_t bytes,
581                                 struct iov_iter *i)
582 {
583         struct pipe_inode_info *pipe = i->pipe;
584         unsigned int p_mask = pipe->ring_size - 1;
585         unsigned int i_head;
586         size_t n, off;
587
588         if (!sanity(i))
589                 return 0;
590
591         bytes = n = push_pipe(i, bytes, &i_head, &off);
592         if (unlikely(!n))
593                 return 0;
594         do {
595                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
596                 memcpy_to_page(pipe->bufs[i_head & p_mask].page, off, addr, chunk);
597                 i->head = i_head;
598                 i->iov_offset = off + chunk;
599                 n -= chunk;
600                 addr += chunk;
601                 off = 0;
602                 i_head++;
603         } while (n);
604         i->count -= bytes;
605         return bytes;
606 }
607
608 static __wsum csum_and_memcpy(void *to, const void *from, size_t len,
609                               __wsum sum, size_t off)
610 {
611         __wsum next = csum_partial_copy_nocheck(from, to, len);
612         return csum_block_add(sum, next, off);
613 }
614
615 static size_t csum_and_copy_to_pipe_iter(const void *addr, size_t bytes,
616                                          struct csum_state *csstate,
617                                          struct iov_iter *i)
618 {
619         struct pipe_inode_info *pipe = i->pipe;
620         unsigned int p_mask = pipe->ring_size - 1;
621         __wsum sum = csstate->csum;
622         size_t off = csstate->off;
623         unsigned int i_head;
624         size_t n, r;
625
626         if (!sanity(i))
627                 return 0;
628
629         bytes = n = push_pipe(i, bytes, &i_head, &r);
630         if (unlikely(!n))
631                 return 0;
632         do {
633                 size_t chunk = min_t(size_t, n, PAGE_SIZE - r);
634                 char *p = kmap_atomic(pipe->bufs[i_head & p_mask].page);
635                 sum = csum_and_memcpy(p + r, addr, chunk, sum, off);
636                 kunmap_atomic(p);
637                 i->head = i_head;
638                 i->iov_offset = r + chunk;
639                 n -= chunk;
640                 off += chunk;
641                 addr += chunk;
642                 r = 0;
643                 i_head++;
644         } while (n);
645         i->count -= bytes;
646         csstate->csum = sum;
647         csstate->off = off;
648         return bytes;
649 }
650
651 size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
652 {
653         const char *from = addr;
654         if (unlikely(iov_iter_is_pipe(i)))
655                 return copy_pipe_to_iter(addr, bytes, i);
656         if (iter_is_iovec(i))
657                 might_fault();
658         iterate_and_advance(i, bytes, v,
659                 copyout(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
660                 memcpy_to_page(v.bv_page, v.bv_offset,
661                                (from += v.bv_len) - v.bv_len, v.bv_len),
662                 memcpy(v.iov_base, (from += v.iov_len) - v.iov_len, v.iov_len),
663                 memcpy_to_page(v.bv_page, v.bv_offset,
664                                (from += v.bv_len) - v.bv_len, v.bv_len)
665         )
666
667         return bytes;
668 }
669 EXPORT_SYMBOL(_copy_to_iter);
670
671 #ifdef CONFIG_ARCH_HAS_COPY_MC
672 static int copyout_mc(void __user *to, const void *from, size_t n)
673 {
674         if (access_ok(to, n)) {
675                 instrument_copy_to_user(to, from, n);
676                 n = copy_mc_to_user((__force void *) to, from, n);
677         }
678         return n;
679 }
680
681 static unsigned long copy_mc_to_page(struct page *page, size_t offset,
682                 const char *from, size_t len)
683 {
684         unsigned long ret;
685         char *to;
686
687         to = kmap_atomic(page);
688         ret = copy_mc_to_kernel(to + offset, from, len);
689         kunmap_atomic(to);
690
691         return ret;
692 }
693
694 static size_t copy_mc_pipe_to_iter(const void *addr, size_t bytes,
695                                 struct iov_iter *i)
696 {
697         struct pipe_inode_info *pipe = i->pipe;
698         unsigned int p_mask = pipe->ring_size - 1;
699         unsigned int i_head;
700         size_t n, off, xfer = 0;
701
702         if (!sanity(i))
703                 return 0;
704
705         bytes = n = push_pipe(i, bytes, &i_head, &off);
706         if (unlikely(!n))
707                 return 0;
708         do {
709                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
710                 unsigned long rem;
711
712                 rem = copy_mc_to_page(pipe->bufs[i_head & p_mask].page,
713                                             off, addr, chunk);
714                 i->head = i_head;
715                 i->iov_offset = off + chunk - rem;
716                 xfer += chunk - rem;
717                 if (rem)
718                         break;
719                 n -= chunk;
720                 addr += chunk;
721                 off = 0;
722                 i_head++;
723         } while (n);
724         i->count -= xfer;
725         return xfer;
726 }
727
728 /**
729  * _copy_mc_to_iter - copy to iter with source memory error exception handling
730  * @addr: source kernel address
731  * @bytes: total transfer length
732  * @iter: destination iterator
733  *
734  * The pmem driver deploys this for the dax operation
735  * (dax_copy_to_iter()) for dax reads (bypass page-cache and the
736  * block-layer). Upon #MC read(2) aborts and returns EIO or the bytes
737  * successfully copied.
738  *
739  * The main differences between this and typical _copy_to_iter().
740  *
741  * * Typical tail/residue handling after a fault retries the copy
742  *   byte-by-byte until the fault happens again. Re-triggering machine
743  *   checks is potentially fatal so the implementation uses source
744  *   alignment and poison alignment assumptions to avoid re-triggering
745  *   hardware exceptions.
746  *
747  * * ITER_KVEC, ITER_PIPE, and ITER_BVEC can return short copies.
748  *   Compare to copy_to_iter() where only ITER_IOVEC attempts might return
749  *   a short copy.
750  */
751 size_t _copy_mc_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
752 {
753         const char *from = addr;
754         unsigned long rem, curr_addr, s_addr = (unsigned long) addr;
755
756         if (unlikely(iov_iter_is_pipe(i)))
757                 return copy_mc_pipe_to_iter(addr, bytes, i);
758         if (iter_is_iovec(i))
759                 might_fault();
760         iterate_and_advance(i, bytes, v,
761                 copyout_mc(v.iov_base, (from += v.iov_len) - v.iov_len,
762                            v.iov_len),
763                 ({
764                 rem = copy_mc_to_page(v.bv_page, v.bv_offset,
765                                       (from += v.bv_len) - v.bv_len, v.bv_len);
766                 if (rem) {
767                         curr_addr = (unsigned long) from;
768                         bytes = curr_addr - s_addr - rem;
769                         return bytes;
770                 }
771                 }),
772                 ({
773                 rem = copy_mc_to_kernel(v.iov_base, (from += v.iov_len)
774                                         - v.iov_len, v.iov_len);
775                 if (rem) {
776                         curr_addr = (unsigned long) from;
777                         bytes = curr_addr - s_addr - rem;
778                         return bytes;
779                 }
780                 }),
781                 ({
782                 rem = copy_mc_to_page(v.bv_page, v.bv_offset,
783                                       (from += v.bv_len) - v.bv_len, v.bv_len);
784                 if (rem) {
785                         curr_addr = (unsigned long) from;
786                         bytes = curr_addr - s_addr - rem;
787                         rcu_read_unlock();
788                         i->iov_offset += bytes;
789                         i->count -= bytes;
790                         return bytes;
791                 }
792                 })
793         )
794
795         return bytes;
796 }
797 EXPORT_SYMBOL_GPL(_copy_mc_to_iter);
798 #endif /* CONFIG_ARCH_HAS_COPY_MC */
799
800 size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
801 {
802         char *to = addr;
803         if (unlikely(iov_iter_is_pipe(i))) {
804                 WARN_ON(1);
805                 return 0;
806         }
807         if (iter_is_iovec(i))
808                 might_fault();
809         iterate_and_advance(i, bytes, v,
810                 copyin((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
811                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
812                                  v.bv_offset, v.bv_len),
813                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
814                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
815                                  v.bv_offset, v.bv_len)
816         )
817
818         return bytes;
819 }
820 EXPORT_SYMBOL(_copy_from_iter);
821
822 size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
823 {
824         char *to = addr;
825         if (unlikely(iov_iter_is_pipe(i))) {
826                 WARN_ON(1);
827                 return 0;
828         }
829         iterate_and_advance(i, bytes, v,
830                 __copy_from_user_inatomic_nocache((to += v.iov_len) - v.iov_len,
831                                          v.iov_base, v.iov_len),
832                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
833                                  v.bv_offset, v.bv_len),
834                 memcpy((to += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
835                 memcpy_from_page((to += v.bv_len) - v.bv_len, v.bv_page,
836                                  v.bv_offset, v.bv_len)
837         )
838
839         return bytes;
840 }
841 EXPORT_SYMBOL(_copy_from_iter_nocache);
842
843 #ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
844 /**
845  * _copy_from_iter_flushcache - write destination through cpu cache
846  * @addr: destination kernel address
847  * @bytes: total transfer length
848  * @iter: source iterator
849  *
850  * The pmem driver arranges for filesystem-dax to use this facility via
851  * dax_copy_from_iter() for ensuring that writes to persistent memory
852  * are flushed through the CPU cache. It is differentiated from
853  * _copy_from_iter_nocache() in that guarantees all data is flushed for
854  * all iterator types. The _copy_from_iter_nocache() only attempts to
855  * bypass the cache for the ITER_IOVEC case, and on some archs may use
856  * instructions that strand dirty-data in the cache.
857  */
858 size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
859 {
860         char *to = addr;
861         if (unlikely(iov_iter_is_pipe(i))) {
862                 WARN_ON(1);
863                 return 0;
864         }
865         iterate_and_advance(i, bytes, v,
866                 __copy_from_user_flushcache((to += v.iov_len) - v.iov_len,
867                                          v.iov_base, v.iov_len),
868                 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
869                                  v.bv_offset, v.bv_len),
870                 memcpy_flushcache((to += v.iov_len) - v.iov_len, v.iov_base,
871                         v.iov_len),
872                 memcpy_page_flushcache((to += v.bv_len) - v.bv_len, v.bv_page,
873                                  v.bv_offset, v.bv_len)
874         )
875
876         return bytes;
877 }
878 EXPORT_SYMBOL_GPL(_copy_from_iter_flushcache);
879 #endif
880
881 static inline bool page_copy_sane(struct page *page, size_t offset, size_t n)
882 {
883         struct page *head;
884         size_t v = n + offset;
885
886         /*
887          * The general case needs to access the page order in order
888          * to compute the page size.
889          * However, we mostly deal with order-0 pages and thus can
890          * avoid a possible cache line miss for requests that fit all
891          * page orders.
892          */
893         if (n <= v && v <= PAGE_SIZE)
894                 return true;
895
896         head = compound_head(page);
897         v += (page - head) << PAGE_SHIFT;
898
899         if (likely(n <= v && v <= (page_size(head))))
900                 return true;
901         WARN_ON(1);
902         return false;
903 }
904
905 static size_t __copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
906                          struct iov_iter *i)
907 {
908         if (i->type & (ITER_BVEC | ITER_KVEC | ITER_XARRAY)) {
909                 void *kaddr = kmap_atomic(page);
910                 size_t wanted = copy_to_iter(kaddr + offset, bytes, i);
911                 kunmap_atomic(kaddr);
912                 return wanted;
913         } else if (unlikely(iov_iter_is_discard(i))) {
914                 if (unlikely(i->count < bytes))
915                         bytes = i->count;
916                 i->count -= bytes;
917                 return bytes;
918         } else if (likely(!iov_iter_is_pipe(i)))
919                 return copy_page_to_iter_iovec(page, offset, bytes, i);
920         else
921                 return copy_page_to_iter_pipe(page, offset, bytes, i);
922 }
923
924 size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
925                          struct iov_iter *i)
926 {
927         size_t res = 0;
928         if (unlikely(!page_copy_sane(page, offset, bytes)))
929                 return 0;
930         page += offset / PAGE_SIZE; // first subpage
931         offset %= PAGE_SIZE;
932         while (1) {
933                 size_t n = __copy_page_to_iter(page, offset,
934                                 min(bytes, (size_t)PAGE_SIZE - offset), i);
935                 res += n;
936                 bytes -= n;
937                 if (!bytes || !n)
938                         break;
939                 offset += n;
940                 if (offset == PAGE_SIZE) {
941                         page++;
942                         offset = 0;
943                 }
944         }
945         return res;
946 }
947 EXPORT_SYMBOL(copy_page_to_iter);
948
949 size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
950                          struct iov_iter *i)
951 {
952         if (unlikely(!page_copy_sane(page, offset, bytes)))
953                 return 0;
954         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
955                 WARN_ON(1);
956                 return 0;
957         }
958         if (i->type & (ITER_BVEC | ITER_KVEC | ITER_XARRAY)) {
959                 void *kaddr = kmap_atomic(page);
960                 size_t wanted = _copy_from_iter(kaddr + offset, bytes, i);
961                 kunmap_atomic(kaddr);
962                 return wanted;
963         } else
964                 return copy_page_from_iter_iovec(page, offset, bytes, i);
965 }
966 EXPORT_SYMBOL(copy_page_from_iter);
967
968 static size_t pipe_zero(size_t bytes, struct iov_iter *i)
969 {
970         struct pipe_inode_info *pipe = i->pipe;
971         unsigned int p_mask = pipe->ring_size - 1;
972         unsigned int i_head;
973         size_t n, off;
974
975         if (!sanity(i))
976                 return 0;
977
978         bytes = n = push_pipe(i, bytes, &i_head, &off);
979         if (unlikely(!n))
980                 return 0;
981
982         do {
983                 size_t chunk = min_t(size_t, n, PAGE_SIZE - off);
984                 memzero_page(pipe->bufs[i_head & p_mask].page, off, chunk);
985                 i->head = i_head;
986                 i->iov_offset = off + chunk;
987                 n -= chunk;
988                 off = 0;
989                 i_head++;
990         } while (n);
991         i->count -= bytes;
992         return bytes;
993 }
994
995 size_t iov_iter_zero(size_t bytes, struct iov_iter *i)
996 {
997         if (unlikely(iov_iter_is_pipe(i)))
998                 return pipe_zero(bytes, i);
999         iterate_and_advance(i, bytes, v,
1000                 clear_user(v.iov_base, v.iov_len),
1001                 memzero_page(v.bv_page, v.bv_offset, v.bv_len),
1002                 memset(v.iov_base, 0, v.iov_len),
1003                 memzero_page(v.bv_page, v.bv_offset, v.bv_len)
1004         )
1005
1006         return bytes;
1007 }
1008 EXPORT_SYMBOL(iov_iter_zero);
1009
1010 size_t iov_iter_copy_from_user_atomic(struct page *page,
1011                 struct iov_iter *i, unsigned long offset, size_t bytes)
1012 {
1013         char *kaddr = kmap_atomic(page), *p = kaddr + offset;
1014         if (unlikely(!page_copy_sane(page, offset, bytes))) {
1015                 kunmap_atomic(kaddr);
1016                 return 0;
1017         }
1018         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1019                 kunmap_atomic(kaddr);
1020                 WARN_ON(1);
1021                 return 0;
1022         }
1023         iterate_all_kinds(i, bytes, v,
1024                 copyin((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1025                 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1026                                  v.bv_offset, v.bv_len),
1027                 memcpy((p += v.iov_len) - v.iov_len, v.iov_base, v.iov_len),
1028                 memcpy_from_page((p += v.bv_len) - v.bv_len, v.bv_page,
1029                                  v.bv_offset, v.bv_len)
1030         )
1031         kunmap_atomic(kaddr);
1032         return bytes;
1033 }
1034 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1035
1036 static inline void pipe_truncate(struct iov_iter *i)
1037 {
1038         struct pipe_inode_info *pipe = i->pipe;
1039         unsigned int p_tail = pipe->tail;
1040         unsigned int p_head = pipe->head;
1041         unsigned int p_mask = pipe->ring_size - 1;
1042
1043         if (!pipe_empty(p_head, p_tail)) {
1044                 struct pipe_buffer *buf;
1045                 unsigned int i_head = i->head;
1046                 size_t off = i->iov_offset;
1047
1048                 if (off) {
1049                         buf = &pipe->bufs[i_head & p_mask];
1050                         buf->len = off - buf->offset;
1051                         i_head++;
1052                 }
1053                 while (p_head != i_head) {
1054                         p_head--;
1055                         pipe_buf_release(pipe, &pipe->bufs[p_head & p_mask]);
1056                 }
1057
1058                 pipe->head = p_head;
1059         }
1060 }
1061
1062 static void pipe_advance(struct iov_iter *i, size_t size)
1063 {
1064         struct pipe_inode_info *pipe = i->pipe;
1065         if (size) {
1066                 struct pipe_buffer *buf;
1067                 unsigned int p_mask = pipe->ring_size - 1;
1068                 unsigned int i_head = i->head;
1069                 size_t off = i->iov_offset, left = size;
1070
1071                 if (off) /* make it relative to the beginning of buffer */
1072                         left += off - pipe->bufs[i_head & p_mask].offset;
1073                 while (1) {
1074                         buf = &pipe->bufs[i_head & p_mask];
1075                         if (left <= buf->len)
1076                                 break;
1077                         left -= buf->len;
1078                         i_head++;
1079                 }
1080                 i->head = i_head;
1081                 i->iov_offset = buf->offset + left;
1082         }
1083         i->count -= size;
1084         /* ... and discard everything past that point */
1085         pipe_truncate(i);
1086 }
1087
1088 static void iov_iter_bvec_advance(struct iov_iter *i, size_t size)
1089 {
1090         struct bvec_iter bi;
1091
1092         bi.bi_size = i->count;
1093         bi.bi_bvec_done = i->iov_offset;
1094         bi.bi_idx = 0;
1095         bvec_iter_advance(i->bvec, &bi, size);
1096
1097         i->bvec += bi.bi_idx;
1098         i->nr_segs -= bi.bi_idx;
1099         i->count = bi.bi_size;
1100         i->iov_offset = bi.bi_bvec_done;
1101 }
1102
1103 void iov_iter_advance(struct iov_iter *i, size_t size)
1104 {
1105         if (unlikely(i->count < size))
1106                 size = i->count;
1107         if (unlikely(iov_iter_is_pipe(i))) {
1108                 pipe_advance(i, size);
1109                 return;
1110         }
1111         if (unlikely(iov_iter_is_discard(i))) {
1112                 i->count -= size;
1113                 return;
1114         }
1115         if (unlikely(iov_iter_is_xarray(i))) {
1116                 i->iov_offset += size;
1117                 i->count -= size;
1118                 return;
1119         }
1120         if (iov_iter_is_bvec(i)) {
1121                 iov_iter_bvec_advance(i, size);
1122                 return;
1123         }
1124         iterate_and_advance(i, size, v, 0, 0, 0, 0)
1125 }
1126 EXPORT_SYMBOL(iov_iter_advance);
1127
1128 void iov_iter_revert(struct iov_iter *i, size_t unroll)
1129 {
1130         if (!unroll)
1131                 return;
1132         if (WARN_ON(unroll > MAX_RW_COUNT))
1133                 return;
1134         i->count += unroll;
1135         if (unlikely(iov_iter_is_pipe(i))) {
1136                 struct pipe_inode_info *pipe = i->pipe;
1137                 unsigned int p_mask = pipe->ring_size - 1;
1138                 unsigned int i_head = i->head;
1139                 size_t off = i->iov_offset;
1140                 while (1) {
1141                         struct pipe_buffer *b = &pipe->bufs[i_head & p_mask];
1142                         size_t n = off - b->offset;
1143                         if (unroll < n) {
1144                                 off -= unroll;
1145                                 break;
1146                         }
1147                         unroll -= n;
1148                         if (!unroll && i_head == i->start_head) {
1149                                 off = 0;
1150                                 break;
1151                         }
1152                         i_head--;
1153                         b = &pipe->bufs[i_head & p_mask];
1154                         off = b->offset + b->len;
1155                 }
1156                 i->iov_offset = off;
1157                 i->head = i_head;
1158                 pipe_truncate(i);
1159                 return;
1160         }
1161         if (unlikely(iov_iter_is_discard(i)))
1162                 return;
1163         if (unroll <= i->iov_offset) {
1164                 i->iov_offset -= unroll;
1165                 return;
1166         }
1167         unroll -= i->iov_offset;
1168         if (iov_iter_is_xarray(i)) {
1169                 BUG(); /* We should never go beyond the start of the specified
1170                         * range since we might then be straying into pages that
1171                         * aren't pinned.
1172                         */
1173         } else if (iov_iter_is_bvec(i)) {
1174                 const struct bio_vec *bvec = i->bvec;
1175                 while (1) {
1176                         size_t n = (--bvec)->bv_len;
1177                         i->nr_segs++;
1178                         if (unroll <= n) {
1179                                 i->bvec = bvec;
1180                                 i->iov_offset = n - unroll;
1181                                 return;
1182                         }
1183                         unroll -= n;
1184                 }
1185         } else { /* same logics for iovec and kvec */
1186                 const struct iovec *iov = i->iov;
1187                 while (1) {
1188                         size_t n = (--iov)->iov_len;
1189                         i->nr_segs++;
1190                         if (unroll <= n) {
1191                                 i->iov = iov;
1192                                 i->iov_offset = n - unroll;
1193                                 return;
1194                         }
1195                         unroll -= n;
1196                 }
1197         }
1198 }
1199 EXPORT_SYMBOL(iov_iter_revert);
1200
1201 /*
1202  * Return the count of just the current iov_iter segment.
1203  */
1204 size_t iov_iter_single_seg_count(const struct iov_iter *i)
1205 {
1206         if (unlikely(iov_iter_is_pipe(i)))
1207                 return i->count;        // it is a silly place, anyway
1208         if (i->nr_segs == 1)
1209                 return i->count;
1210         if (unlikely(iov_iter_is_discard(i) || iov_iter_is_xarray(i)))
1211                 return i->count;
1212         if (iov_iter_is_bvec(i))
1213                 return min(i->count, i->bvec->bv_len - i->iov_offset);
1214         else
1215                 return min(i->count, i->iov->iov_len - i->iov_offset);
1216 }
1217 EXPORT_SYMBOL(iov_iter_single_seg_count);
1218
1219 void iov_iter_kvec(struct iov_iter *i, unsigned int direction,
1220                         const struct kvec *kvec, unsigned long nr_segs,
1221                         size_t count)
1222 {
1223         WARN_ON(direction & ~(READ | WRITE));
1224         i->type = ITER_KVEC | (direction & (READ | WRITE));
1225         i->kvec = kvec;
1226         i->nr_segs = nr_segs;
1227         i->iov_offset = 0;
1228         i->count = count;
1229 }
1230 EXPORT_SYMBOL(iov_iter_kvec);
1231
1232 void iov_iter_bvec(struct iov_iter *i, unsigned int direction,
1233                         const struct bio_vec *bvec, unsigned long nr_segs,
1234                         size_t count)
1235 {
1236         WARN_ON(direction & ~(READ | WRITE));
1237         i->type = ITER_BVEC | (direction & (READ | WRITE));
1238         i->bvec = bvec;
1239         i->nr_segs = nr_segs;
1240         i->iov_offset = 0;
1241         i->count = count;
1242 }
1243 EXPORT_SYMBOL(iov_iter_bvec);
1244
1245 void iov_iter_pipe(struct iov_iter *i, unsigned int direction,
1246                         struct pipe_inode_info *pipe,
1247                         size_t count)
1248 {
1249         BUG_ON(direction != READ);
1250         WARN_ON(pipe_full(pipe->head, pipe->tail, pipe->ring_size));
1251         i->type = ITER_PIPE | READ;
1252         i->pipe = pipe;
1253         i->head = pipe->head;
1254         i->iov_offset = 0;
1255         i->count = count;
1256         i->start_head = i->head;
1257 }
1258 EXPORT_SYMBOL(iov_iter_pipe);
1259
1260 /**
1261  * iov_iter_xarray - Initialise an I/O iterator to use the pages in an xarray
1262  * @i: The iterator to initialise.
1263  * @direction: The direction of the transfer.
1264  * @xarray: The xarray to access.
1265  * @start: The start file position.
1266  * @count: The size of the I/O buffer in bytes.
1267  *
1268  * Set up an I/O iterator to either draw data out of the pages attached to an
1269  * inode or to inject data into those pages.  The pages *must* be prevented
1270  * from evaporation, either by taking a ref on them or locking them by the
1271  * caller.
1272  */
1273 void iov_iter_xarray(struct iov_iter *i, unsigned int direction,
1274                      struct xarray *xarray, loff_t start, size_t count)
1275 {
1276         BUG_ON(direction & ~1);
1277         i->type = ITER_XARRAY | (direction & (READ | WRITE));
1278         i->xarray = xarray;
1279         i->xarray_start = start;
1280         i->count = count;
1281         i->iov_offset = 0;
1282 }
1283 EXPORT_SYMBOL(iov_iter_xarray);
1284
1285 /**
1286  * iov_iter_discard - Initialise an I/O iterator that discards data
1287  * @i: The iterator to initialise.
1288  * @direction: The direction of the transfer.
1289  * @count: The size of the I/O buffer in bytes.
1290  *
1291  * Set up an I/O iterator that just discards everything that's written to it.
1292  * It's only available as a READ iterator.
1293  */
1294 void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count)
1295 {
1296         BUG_ON(direction != READ);
1297         i->type = ITER_DISCARD | READ;
1298         i->count = count;
1299         i->iov_offset = 0;
1300 }
1301 EXPORT_SYMBOL(iov_iter_discard);
1302
1303 unsigned long iov_iter_alignment(const struct iov_iter *i)
1304 {
1305         unsigned long res = 0;
1306         size_t size = i->count;
1307
1308         if (unlikely(iov_iter_is_pipe(i))) {
1309                 unsigned int p_mask = i->pipe->ring_size - 1;
1310
1311                 if (size && i->iov_offset && allocated(&i->pipe->bufs[i->head & p_mask]))
1312                         return size | i->iov_offset;
1313                 return size;
1314         }
1315         if (unlikely(iov_iter_is_xarray(i)))
1316                 return (i->xarray_start + i->iov_offset) | i->count;
1317         iterate_all_kinds(i, size, v,
1318                 (res |= (unsigned long)v.iov_base | v.iov_len, 0),
1319                 res |= v.bv_offset | v.bv_len,
1320                 res |= (unsigned long)v.iov_base | v.iov_len,
1321                 res |= v.bv_offset | v.bv_len
1322         )
1323         return res;
1324 }
1325 EXPORT_SYMBOL(iov_iter_alignment);
1326
1327 unsigned long iov_iter_gap_alignment(const struct iov_iter *i)
1328 {
1329         unsigned long res = 0;
1330         size_t size = i->count;
1331
1332         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1333                 WARN_ON(1);
1334                 return ~0U;
1335         }
1336
1337         iterate_all_kinds(i, size, v,
1338                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1339                         (size != v.iov_len ? size : 0), 0),
1340                 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1341                         (size != v.bv_len ? size : 0)),
1342                 (res |= (!res ? 0 : (unsigned long)v.iov_base) |
1343                         (size != v.iov_len ? size : 0)),
1344                 (res |= (!res ? 0 : (unsigned long)v.bv_offset) |
1345                         (size != v.bv_len ? size : 0))
1346                 );
1347         return res;
1348 }
1349 EXPORT_SYMBOL(iov_iter_gap_alignment);
1350
1351 static inline ssize_t __pipe_get_pages(struct iov_iter *i,
1352                                 size_t maxsize,
1353                                 struct page **pages,
1354                                 int iter_head,
1355                                 size_t *start)
1356 {
1357         struct pipe_inode_info *pipe = i->pipe;
1358         unsigned int p_mask = pipe->ring_size - 1;
1359         ssize_t n = push_pipe(i, maxsize, &iter_head, start);
1360         if (!n)
1361                 return -EFAULT;
1362
1363         maxsize = n;
1364         n += *start;
1365         while (n > 0) {
1366                 get_page(*pages++ = pipe->bufs[iter_head & p_mask].page);
1367                 iter_head++;
1368                 n -= PAGE_SIZE;
1369         }
1370
1371         return maxsize;
1372 }
1373
1374 static ssize_t pipe_get_pages(struct iov_iter *i,
1375                    struct page **pages, size_t maxsize, unsigned maxpages,
1376                    size_t *start)
1377 {
1378         unsigned int iter_head, npages;
1379         size_t capacity;
1380
1381         if (!maxsize)
1382                 return 0;
1383
1384         if (!sanity(i))
1385                 return -EFAULT;
1386
1387         data_start(i, &iter_head, start);
1388         /* Amount of free space: some of this one + all after this one */
1389         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1390         capacity = min(npages, maxpages) * PAGE_SIZE - *start;
1391
1392         return __pipe_get_pages(i, min(maxsize, capacity), pages, iter_head, start);
1393 }
1394
1395 static ssize_t iter_xarray_populate_pages(struct page **pages, struct xarray *xa,
1396                                           pgoff_t index, unsigned int nr_pages)
1397 {
1398         XA_STATE(xas, xa, index);
1399         struct page *page;
1400         unsigned int ret = 0;
1401
1402         rcu_read_lock();
1403         for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1404                 if (xas_retry(&xas, page))
1405                         continue;
1406
1407                 /* Has the page moved or been split? */
1408                 if (unlikely(page != xas_reload(&xas))) {
1409                         xas_reset(&xas);
1410                         continue;
1411                 }
1412
1413                 pages[ret] = find_subpage(page, xas.xa_index);
1414                 get_page(pages[ret]);
1415                 if (++ret == nr_pages)
1416                         break;
1417         }
1418         rcu_read_unlock();
1419         return ret;
1420 }
1421
1422 static ssize_t iter_xarray_get_pages(struct iov_iter *i,
1423                                      struct page **pages, size_t maxsize,
1424                                      unsigned maxpages, size_t *_start_offset)
1425 {
1426         unsigned nr, offset;
1427         pgoff_t index, count;
1428         size_t size = maxsize, actual;
1429         loff_t pos;
1430
1431         if (!size || !maxpages)
1432                 return 0;
1433
1434         pos = i->xarray_start + i->iov_offset;
1435         index = pos >> PAGE_SHIFT;
1436         offset = pos & ~PAGE_MASK;
1437         *_start_offset = offset;
1438
1439         count = 1;
1440         if (size > PAGE_SIZE - offset) {
1441                 size -= PAGE_SIZE - offset;
1442                 count += size >> PAGE_SHIFT;
1443                 size &= ~PAGE_MASK;
1444                 if (size)
1445                         count++;
1446         }
1447
1448         if (count > maxpages)
1449                 count = maxpages;
1450
1451         nr = iter_xarray_populate_pages(pages, i->xarray, index, count);
1452         if (nr == 0)
1453                 return 0;
1454
1455         actual = PAGE_SIZE * nr;
1456         actual -= offset;
1457         if (nr == count && size > 0) {
1458                 unsigned last_offset = (nr > 1) ? 0 : offset;
1459                 actual -= PAGE_SIZE - (last_offset + size);
1460         }
1461         return actual;
1462 }
1463
1464 ssize_t iov_iter_get_pages(struct iov_iter *i,
1465                    struct page **pages, size_t maxsize, unsigned maxpages,
1466                    size_t *start)
1467 {
1468         if (maxsize > i->count)
1469                 maxsize = i->count;
1470
1471         if (unlikely(iov_iter_is_pipe(i)))
1472                 return pipe_get_pages(i, pages, maxsize, maxpages, start);
1473         if (unlikely(iov_iter_is_xarray(i)))
1474                 return iter_xarray_get_pages(i, pages, maxsize, maxpages, start);
1475         if (unlikely(iov_iter_is_discard(i)))
1476                 return -EFAULT;
1477
1478         iterate_all_kinds(i, maxsize, v, ({
1479                 unsigned long addr = (unsigned long)v.iov_base;
1480                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1481                 int n;
1482                 int res;
1483
1484                 if (len > maxpages * PAGE_SIZE)
1485                         len = maxpages * PAGE_SIZE;
1486                 addr &= ~(PAGE_SIZE - 1);
1487                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1488                 res = get_user_pages_fast(addr, n,
1489                                 iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0,
1490                                 pages);
1491                 if (unlikely(res < 0))
1492                         return res;
1493                 return (res == n ? len : res * PAGE_SIZE) - *start;
1494         0;}),({
1495                 /* can't be more than PAGE_SIZE */
1496                 *start = v.bv_offset;
1497                 get_page(*pages = v.bv_page);
1498                 return v.bv_len;
1499         }),({
1500                 return -EFAULT;
1501         }),
1502         0
1503         )
1504         return 0;
1505 }
1506 EXPORT_SYMBOL(iov_iter_get_pages);
1507
1508 static struct page **get_pages_array(size_t n)
1509 {
1510         return kvmalloc_array(n, sizeof(struct page *), GFP_KERNEL);
1511 }
1512
1513 static ssize_t pipe_get_pages_alloc(struct iov_iter *i,
1514                    struct page ***pages, size_t maxsize,
1515                    size_t *start)
1516 {
1517         struct page **p;
1518         unsigned int iter_head, npages;
1519         ssize_t n;
1520
1521         if (!maxsize)
1522                 return 0;
1523
1524         if (!sanity(i))
1525                 return -EFAULT;
1526
1527         data_start(i, &iter_head, start);
1528         /* Amount of free space: some of this one + all after this one */
1529         npages = pipe_space_for_user(iter_head, i->pipe->tail, i->pipe);
1530         n = npages * PAGE_SIZE - *start;
1531         if (maxsize > n)
1532                 maxsize = n;
1533         else
1534                 npages = DIV_ROUND_UP(maxsize + *start, PAGE_SIZE);
1535         p = get_pages_array(npages);
1536         if (!p)
1537                 return -ENOMEM;
1538         n = __pipe_get_pages(i, maxsize, p, iter_head, start);
1539         if (n > 0)
1540                 *pages = p;
1541         else
1542                 kvfree(p);
1543         return n;
1544 }
1545
1546 static ssize_t iter_xarray_get_pages_alloc(struct iov_iter *i,
1547                                            struct page ***pages, size_t maxsize,
1548                                            size_t *_start_offset)
1549 {
1550         struct page **p;
1551         unsigned nr, offset;
1552         pgoff_t index, count;
1553         size_t size = maxsize, actual;
1554         loff_t pos;
1555
1556         if (!size)
1557                 return 0;
1558
1559         pos = i->xarray_start + i->iov_offset;
1560         index = pos >> PAGE_SHIFT;
1561         offset = pos & ~PAGE_MASK;
1562         *_start_offset = offset;
1563
1564         count = 1;
1565         if (size > PAGE_SIZE - offset) {
1566                 size -= PAGE_SIZE - offset;
1567                 count += size >> PAGE_SHIFT;
1568                 size &= ~PAGE_MASK;
1569                 if (size)
1570                         count++;
1571         }
1572
1573         p = get_pages_array(count);
1574         if (!p)
1575                 return -ENOMEM;
1576         *pages = p;
1577
1578         nr = iter_xarray_populate_pages(p, i->xarray, index, count);
1579         if (nr == 0)
1580                 return 0;
1581
1582         actual = PAGE_SIZE * nr;
1583         actual -= offset;
1584         if (nr == count && size > 0) {
1585                 unsigned last_offset = (nr > 1) ? 0 : offset;
1586                 actual -= PAGE_SIZE - (last_offset + size);
1587         }
1588         return actual;
1589 }
1590
1591 ssize_t iov_iter_get_pages_alloc(struct iov_iter *i,
1592                    struct page ***pages, size_t maxsize,
1593                    size_t *start)
1594 {
1595         struct page **p;
1596
1597         if (maxsize > i->count)
1598                 maxsize = i->count;
1599
1600         if (unlikely(iov_iter_is_pipe(i)))
1601                 return pipe_get_pages_alloc(i, pages, maxsize, start);
1602         if (unlikely(iov_iter_is_xarray(i)))
1603                 return iter_xarray_get_pages_alloc(i, pages, maxsize, start);
1604         if (unlikely(iov_iter_is_discard(i)))
1605                 return -EFAULT;
1606
1607         iterate_all_kinds(i, maxsize, v, ({
1608                 unsigned long addr = (unsigned long)v.iov_base;
1609                 size_t len = v.iov_len + (*start = addr & (PAGE_SIZE - 1));
1610                 int n;
1611                 int res;
1612
1613                 addr &= ~(PAGE_SIZE - 1);
1614                 n = DIV_ROUND_UP(len, PAGE_SIZE);
1615                 p = get_pages_array(n);
1616                 if (!p)
1617                         return -ENOMEM;
1618                 res = get_user_pages_fast(addr, n,
1619                                 iov_iter_rw(i) != WRITE ?  FOLL_WRITE : 0, p);
1620                 if (unlikely(res < 0)) {
1621                         kvfree(p);
1622                         return res;
1623                 }
1624                 *pages = p;
1625                 return (res == n ? len : res * PAGE_SIZE) - *start;
1626         0;}),({
1627                 /* can't be more than PAGE_SIZE */
1628                 *start = v.bv_offset;
1629                 *pages = p = get_pages_array(1);
1630                 if (!p)
1631                         return -ENOMEM;
1632                 get_page(*p = v.bv_page);
1633                 return v.bv_len;
1634         }),({
1635                 return -EFAULT;
1636         }), 0
1637         )
1638         return 0;
1639 }
1640 EXPORT_SYMBOL(iov_iter_get_pages_alloc);
1641
1642 size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum,
1643                                struct iov_iter *i)
1644 {
1645         char *to = addr;
1646         __wsum sum, next;
1647         size_t off = 0;
1648         sum = *csum;
1649         if (unlikely(iov_iter_is_pipe(i) || iov_iter_is_discard(i))) {
1650                 WARN_ON(1);
1651                 return 0;
1652         }
1653         iterate_and_advance(i, bytes, v, ({
1654                 next = csum_and_copy_from_user(v.iov_base,
1655                                                (to += v.iov_len) - v.iov_len,
1656                                                v.iov_len);
1657                 if (next) {
1658                         sum = csum_block_add(sum, next, off);
1659                         off += v.iov_len;
1660                 }
1661                 next ? 0 : v.iov_len;
1662         }), ({
1663                 char *p = kmap_atomic(v.bv_page);
1664                 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1665                                       p + v.bv_offset, v.bv_len,
1666                                       sum, off);
1667                 kunmap_atomic(p);
1668                 off += v.bv_len;
1669         }),({
1670                 sum = csum_and_memcpy((to += v.iov_len) - v.iov_len,
1671                                       v.iov_base, v.iov_len,
1672                                       sum, off);
1673                 off += v.iov_len;
1674         }), ({
1675                 char *p = kmap_atomic(v.bv_page);
1676                 sum = csum_and_memcpy((to += v.bv_len) - v.bv_len,
1677                                       p + v.bv_offset, v.bv_len,
1678                                       sum, off);
1679                 kunmap_atomic(p);
1680                 off += v.bv_len;
1681         })
1682         )
1683         *csum = sum;
1684         return bytes;
1685 }
1686 EXPORT_SYMBOL(csum_and_copy_from_iter);
1687
1688 size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *_csstate,
1689                              struct iov_iter *i)
1690 {
1691         struct csum_state *csstate = _csstate;
1692         const char *from = addr;
1693         __wsum sum, next;
1694         size_t off;
1695
1696         if (unlikely(iov_iter_is_pipe(i)))
1697                 return csum_and_copy_to_pipe_iter(addr, bytes, _csstate, i);
1698
1699         sum = csstate->csum;
1700         off = csstate->off;
1701         if (unlikely(iov_iter_is_discard(i))) {
1702                 WARN_ON(1);     /* for now */
1703                 return 0;
1704         }
1705         iterate_and_advance(i, bytes, v, ({
1706                 next = csum_and_copy_to_user((from += v.iov_len) - v.iov_len,
1707                                              v.iov_base,
1708                                              v.iov_len);
1709                 if (next) {
1710                         sum = csum_block_add(sum, next, off);
1711                         off += v.iov_len;
1712                 }
1713                 next ? 0 : v.iov_len;
1714         }), ({
1715                 char *p = kmap_atomic(v.bv_page);
1716                 sum = csum_and_memcpy(p + v.bv_offset,
1717                                       (from += v.bv_len) - v.bv_len,
1718                                       v.bv_len, sum, off);
1719                 kunmap_atomic(p);
1720                 off += v.bv_len;
1721         }),({
1722                 sum = csum_and_memcpy(v.iov_base,
1723                                      (from += v.iov_len) - v.iov_len,
1724                                      v.iov_len, sum, off);
1725                 off += v.iov_len;
1726         }), ({
1727                 char *p = kmap_atomic(v.bv_page);
1728                 sum = csum_and_memcpy(p + v.bv_offset,
1729                                       (from += v.bv_len) - v.bv_len,
1730                                       v.bv_len, sum, off);
1731                 kunmap_atomic(p);
1732                 off += v.bv_len;
1733         })
1734         )
1735         csstate->csum = sum;
1736         csstate->off = off;
1737         return bytes;
1738 }
1739 EXPORT_SYMBOL(csum_and_copy_to_iter);
1740
1741 size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
1742                 struct iov_iter *i)
1743 {
1744 #ifdef CONFIG_CRYPTO_HASH
1745         struct ahash_request *hash = hashp;
1746         struct scatterlist sg;
1747         size_t copied;
1748
1749         copied = copy_to_iter(addr, bytes, i);
1750         sg_init_one(&sg, addr, copied);
1751         ahash_request_set_crypt(hash, &sg, NULL, copied);
1752         crypto_ahash_update(hash);
1753         return copied;
1754 #else
1755         return 0;
1756 #endif
1757 }
1758 EXPORT_SYMBOL(hash_and_copy_to_iter);
1759
1760 int iov_iter_npages(const struct iov_iter *i, int maxpages)
1761 {
1762         size_t size = i->count;
1763         int npages = 0;
1764
1765         if (!size)
1766                 return 0;
1767         if (unlikely(iov_iter_is_discard(i)))
1768                 return 0;
1769
1770         if (unlikely(iov_iter_is_pipe(i))) {
1771                 struct pipe_inode_info *pipe = i->pipe;
1772                 unsigned int iter_head;
1773                 size_t off;
1774
1775                 if (!sanity(i))
1776                         return 0;
1777
1778                 data_start(i, &iter_head, &off);
1779                 /* some of this one + all after this one */
1780                 npages = pipe_space_for_user(iter_head, pipe->tail, pipe);
1781                 if (npages >= maxpages)
1782                         return maxpages;
1783         } else if (unlikely(iov_iter_is_xarray(i))) {
1784                 unsigned offset;
1785
1786                 offset = (i->xarray_start + i->iov_offset) & ~PAGE_MASK;
1787
1788                 npages = 1;
1789                 if (size > PAGE_SIZE - offset) {
1790                         size -= PAGE_SIZE - offset;
1791                         npages += size >> PAGE_SHIFT;
1792                         size &= ~PAGE_MASK;
1793                         if (size)
1794                                 npages++;
1795                 }
1796                 if (npages >= maxpages)
1797                         return maxpages;
1798         } else iterate_all_kinds(i, size, v, ({
1799                 unsigned long p = (unsigned long)v.iov_base;
1800                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1801                         - p / PAGE_SIZE;
1802                 if (npages >= maxpages)
1803                         return maxpages;
1804         0;}),({
1805                 npages++;
1806                 if (npages >= maxpages)
1807                         return maxpages;
1808         }),({
1809                 unsigned long p = (unsigned long)v.iov_base;
1810                 npages += DIV_ROUND_UP(p + v.iov_len, PAGE_SIZE)
1811                         - p / PAGE_SIZE;
1812                 if (npages >= maxpages)
1813                         return maxpages;
1814         }),
1815         0
1816         )
1817         return npages;
1818 }
1819 EXPORT_SYMBOL(iov_iter_npages);
1820
1821 const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags)
1822 {
1823         *new = *old;
1824         if (unlikely(iov_iter_is_pipe(new))) {
1825                 WARN_ON(1);
1826                 return NULL;
1827         }
1828         if (unlikely(iov_iter_is_discard(new) || iov_iter_is_xarray(new)))
1829                 return NULL;
1830         if (iov_iter_is_bvec(new))
1831                 return new->bvec = kmemdup(new->bvec,
1832                                     new->nr_segs * sizeof(struct bio_vec),
1833                                     flags);
1834         else
1835                 /* iovec and kvec have identical layout */
1836                 return new->iov = kmemdup(new->iov,
1837                                    new->nr_segs * sizeof(struct iovec),
1838                                    flags);
1839 }
1840 EXPORT_SYMBOL(dup_iter);
1841
1842 static int copy_compat_iovec_from_user(struct iovec *iov,
1843                 const struct iovec __user *uvec, unsigned long nr_segs)
1844 {
1845         const struct compat_iovec __user *uiov =
1846                 (const struct compat_iovec __user *)uvec;
1847         int ret = -EFAULT, i;
1848
1849         if (!user_access_begin(uiov, nr_segs * sizeof(*uiov)))
1850                 return -EFAULT;
1851
1852         for (i = 0; i < nr_segs; i++) {
1853                 compat_uptr_t buf;
1854                 compat_ssize_t len;
1855
1856                 unsafe_get_user(len, &uiov[i].iov_len, uaccess_end);
1857                 unsafe_get_user(buf, &uiov[i].iov_base, uaccess_end);
1858
1859                 /* check for compat_size_t not fitting in compat_ssize_t .. */
1860                 if (len < 0) {
1861                         ret = -EINVAL;
1862                         goto uaccess_end;
1863                 }
1864                 iov[i].iov_base = compat_ptr(buf);
1865                 iov[i].iov_len = len;
1866         }
1867
1868         ret = 0;
1869 uaccess_end:
1870         user_access_end();
1871         return ret;
1872 }
1873
1874 static int copy_iovec_from_user(struct iovec *iov,
1875                 const struct iovec __user *uvec, unsigned long nr_segs)
1876 {
1877         unsigned long seg;
1878
1879         if (copy_from_user(iov, uvec, nr_segs * sizeof(*uvec)))
1880                 return -EFAULT;
1881         for (seg = 0; seg < nr_segs; seg++) {
1882                 if ((ssize_t)iov[seg].iov_len < 0)
1883                         return -EINVAL;
1884         }
1885
1886         return 0;
1887 }
1888
1889 struct iovec *iovec_from_user(const struct iovec __user *uvec,
1890                 unsigned long nr_segs, unsigned long fast_segs,
1891                 struct iovec *fast_iov, bool compat)
1892 {
1893         struct iovec *iov = fast_iov;
1894         int ret;
1895
1896         /*
1897          * SuS says "The readv() function *may* fail if the iovcnt argument was
1898          * less than or equal to 0, or greater than {IOV_MAX}.  Linux has
1899          * traditionally returned zero for zero segments, so...
1900          */
1901         if (nr_segs == 0)
1902                 return iov;
1903         if (nr_segs > UIO_MAXIOV)
1904                 return ERR_PTR(-EINVAL);
1905         if (nr_segs > fast_segs) {
1906                 iov = kmalloc_array(nr_segs, sizeof(struct iovec), GFP_KERNEL);
1907                 if (!iov)
1908                         return ERR_PTR(-ENOMEM);
1909         }
1910
1911         if (compat)
1912                 ret = copy_compat_iovec_from_user(iov, uvec, nr_segs);
1913         else
1914                 ret = copy_iovec_from_user(iov, uvec, nr_segs);
1915         if (ret) {
1916                 if (iov != fast_iov)
1917                         kfree(iov);
1918                 return ERR_PTR(ret);
1919         }
1920
1921         return iov;
1922 }
1923
1924 ssize_t __import_iovec(int type, const struct iovec __user *uvec,
1925                  unsigned nr_segs, unsigned fast_segs, struct iovec **iovp,
1926                  struct iov_iter *i, bool compat)
1927 {
1928         ssize_t total_len = 0;
1929         unsigned long seg;
1930         struct iovec *iov;
1931
1932         iov = iovec_from_user(uvec, nr_segs, fast_segs, *iovp, compat);
1933         if (IS_ERR(iov)) {
1934                 *iovp = NULL;
1935                 return PTR_ERR(iov);
1936         }
1937
1938         /*
1939          * According to the Single Unix Specification we should return EINVAL if
1940          * an element length is < 0 when cast to ssize_t or if the total length
1941          * would overflow the ssize_t return value of the system call.
1942          *
1943          * Linux caps all read/write calls to MAX_RW_COUNT, and avoids the
1944          * overflow case.
1945          */
1946         for (seg = 0; seg < nr_segs; seg++) {
1947                 ssize_t len = (ssize_t)iov[seg].iov_len;
1948
1949                 if (!access_ok(iov[seg].iov_base, len)) {
1950                         if (iov != *iovp)
1951                                 kfree(iov);
1952                         *iovp = NULL;
1953                         return -EFAULT;
1954                 }
1955
1956                 if (len > MAX_RW_COUNT - total_len) {
1957                         len = MAX_RW_COUNT - total_len;
1958                         iov[seg].iov_len = len;
1959                 }
1960                 total_len += len;
1961         }
1962
1963         iov_iter_init(i, type, iov, nr_segs, total_len);
1964         if (iov == *iovp)
1965                 *iovp = NULL;
1966         else
1967                 *iovp = iov;
1968         return total_len;
1969 }
1970
1971 /**
1972  * import_iovec() - Copy an array of &struct iovec from userspace
1973  *     into the kernel, check that it is valid, and initialize a new
1974  *     &struct iov_iter iterator to access it.
1975  *
1976  * @type: One of %READ or %WRITE.
1977  * @uvec: Pointer to the userspace array.
1978  * @nr_segs: Number of elements in userspace array.
1979  * @fast_segs: Number of elements in @iov.
1980  * @iovp: (input and output parameter) Pointer to pointer to (usually small
1981  *     on-stack) kernel array.
1982  * @i: Pointer to iterator that will be initialized on success.
1983  *
1984  * If the array pointed to by *@iov is large enough to hold all @nr_segs,
1985  * then this function places %NULL in *@iov on return. Otherwise, a new
1986  * array will be allocated and the result placed in *@iov. This means that
1987  * the caller may call kfree() on *@iov regardless of whether the small
1988  * on-stack array was used or not (and regardless of whether this function
1989  * returns an error or not).
1990  *
1991  * Return: Negative error code on error, bytes imported on success
1992  */
1993 ssize_t import_iovec(int type, const struct iovec __user *uvec,
1994                  unsigned nr_segs, unsigned fast_segs,
1995                  struct iovec **iovp, struct iov_iter *i)
1996 {
1997         return __import_iovec(type, uvec, nr_segs, fast_segs, iovp, i,
1998                               in_compat_syscall());
1999 }
2000 EXPORT_SYMBOL(import_iovec);
2001
2002 int import_single_range(int rw, void __user *buf, size_t len,
2003                  struct iovec *iov, struct iov_iter *i)
2004 {
2005         if (len > MAX_RW_COUNT)
2006                 len = MAX_RW_COUNT;
2007         if (unlikely(!access_ok(buf, len)))
2008                 return -EFAULT;
2009
2010         iov->iov_base = buf;
2011         iov->iov_len = len;
2012         iov_iter_init(i, rw, iov, 1, len);
2013         return 0;
2014 }
2015 EXPORT_SYMBOL(import_single_range);