Merge tag 'sfi-removal-5.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local.h>
31
32 static void update_pages_handler(struct work_struct *work);
33
34 /*
35  * The ring buffer header is special. We must manually up keep it.
36  */
37 int ring_buffer_print_entry_header(struct trace_seq *s)
38 {
39         trace_seq_puts(s, "# compressed entry header\n");
40         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
41         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
42         trace_seq_puts(s, "\tarray       :   32 bits\n");
43         trace_seq_putc(s, '\n');
44         trace_seq_printf(s, "\tpadding     : type == %d\n",
45                          RINGBUF_TYPE_PADDING);
46         trace_seq_printf(s, "\ttime_extend : type == %d\n",
47                          RINGBUF_TYPE_TIME_EXTEND);
48         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
49                          RINGBUF_TYPE_TIME_STAMP);
50         trace_seq_printf(s, "\tdata max type_len  == %d\n",
51                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
52
53         return !trace_seq_has_overflowed(s);
54 }
55
56 /*
57  * The ring buffer is made up of a list of pages. A separate list of pages is
58  * allocated for each CPU. A writer may only write to a buffer that is
59  * associated with the CPU it is currently executing on.  A reader may read
60  * from any per cpu buffer.
61  *
62  * The reader is special. For each per cpu buffer, the reader has its own
63  * reader page. When a reader has read the entire reader page, this reader
64  * page is swapped with another page in the ring buffer.
65  *
66  * Now, as long as the writer is off the reader page, the reader can do what
67  * ever it wants with that page. The writer will never write to that page
68  * again (as long as it is out of the ring buffer).
69  *
70  * Here's some silly ASCII art.
71  *
72  *   +------+
73  *   |reader|          RING BUFFER
74  *   |page  |
75  *   +------+        +---+   +---+   +---+
76  *                   |   |-->|   |-->|   |
77  *                   +---+   +---+   +---+
78  *                     ^               |
79  *                     |               |
80  *                     +---------------+
81  *
82  *
83  *   +------+
84  *   |reader|          RING BUFFER
85  *   |page  |------------------v
86  *   +------+        +---+   +---+   +---+
87  *                   |   |-->|   |-->|   |
88  *                   +---+   +---+   +---+
89  *                     ^               |
90  *                     |               |
91  *                     +---------------+
92  *
93  *
94  *   +------+
95  *   |reader|          RING BUFFER
96  *   |page  |------------------v
97  *   +------+        +---+   +---+   +---+
98  *      ^            |   |-->|   |-->|   |
99  *      |            +---+   +---+   +---+
100  *      |                              |
101  *      |                              |
102  *      +------------------------------+
103  *
104  *
105  *   +------+
106  *   |buffer|          RING BUFFER
107  *   |page  |------------------v
108  *   +------+        +---+   +---+   +---+
109  *      ^            |   |   |   |-->|   |
110  *      |   New      +---+   +---+   +---+
111  *      |  Reader------^               |
112  *      |   page                       |
113  *      +------------------------------+
114  *
115  *
116  * After we make this swap, the reader can hand this page off to the splice
117  * code and be done with it. It can even allocate a new page if it needs to
118  * and swap that into the ring buffer.
119  *
120  * We will be using cmpxchg soon to make all this lockless.
121  *
122  */
123
124 /* Used for individual buffers (after the counter) */
125 #define RB_BUFFER_OFF           (1 << 20)
126
127 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
128
129 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
130 #define RB_ALIGNMENT            4U
131 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
132 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
133
134 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
135 # define RB_FORCE_8BYTE_ALIGNMENT       0
136 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
137 #else
138 # define RB_FORCE_8BYTE_ALIGNMENT       1
139 # define RB_ARCH_ALIGNMENT              8U
140 #endif
141
142 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
143
144 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
145 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
146
147 enum {
148         RB_LEN_TIME_EXTEND = 8,
149         RB_LEN_TIME_STAMP =  8,
150 };
151
152 #define skip_time_extend(event) \
153         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
154
155 #define extended_time(event) \
156         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
157
158 static inline int rb_null_event(struct ring_buffer_event *event)
159 {
160         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
161 }
162
163 static void rb_event_set_padding(struct ring_buffer_event *event)
164 {
165         /* padding has a NULL time_delta */
166         event->type_len = RINGBUF_TYPE_PADDING;
167         event->time_delta = 0;
168 }
169
170 static unsigned
171 rb_event_data_length(struct ring_buffer_event *event)
172 {
173         unsigned length;
174
175         if (event->type_len)
176                 length = event->type_len * RB_ALIGNMENT;
177         else
178                 length = event->array[0];
179         return length + RB_EVNT_HDR_SIZE;
180 }
181
182 /*
183  * Return the length of the given event. Will return
184  * the length of the time extend if the event is a
185  * time extend.
186  */
187 static inline unsigned
188 rb_event_length(struct ring_buffer_event *event)
189 {
190         switch (event->type_len) {
191         case RINGBUF_TYPE_PADDING:
192                 if (rb_null_event(event))
193                         /* undefined */
194                         return -1;
195                 return  event->array[0] + RB_EVNT_HDR_SIZE;
196
197         case RINGBUF_TYPE_TIME_EXTEND:
198                 return RB_LEN_TIME_EXTEND;
199
200         case RINGBUF_TYPE_TIME_STAMP:
201                 return RB_LEN_TIME_STAMP;
202
203         case RINGBUF_TYPE_DATA:
204                 return rb_event_data_length(event);
205         default:
206                 WARN_ON_ONCE(1);
207         }
208         /* not hit */
209         return 0;
210 }
211
212 /*
213  * Return total length of time extend and data,
214  *   or just the event length for all other events.
215  */
216 static inline unsigned
217 rb_event_ts_length(struct ring_buffer_event *event)
218 {
219         unsigned len = 0;
220
221         if (extended_time(event)) {
222                 /* time extends include the data event after it */
223                 len = RB_LEN_TIME_EXTEND;
224                 event = skip_time_extend(event);
225         }
226         return len + rb_event_length(event);
227 }
228
229 /**
230  * ring_buffer_event_length - return the length of the event
231  * @event: the event to get the length of
232  *
233  * Returns the size of the data load of a data event.
234  * If the event is something other than a data event, it
235  * returns the size of the event itself. With the exception
236  * of a TIME EXTEND, where it still returns the size of the
237  * data load of the data event after it.
238  */
239 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
240 {
241         unsigned length;
242
243         if (extended_time(event))
244                 event = skip_time_extend(event);
245
246         length = rb_event_length(event);
247         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
248                 return length;
249         length -= RB_EVNT_HDR_SIZE;
250         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
251                 length -= sizeof(event->array[0]);
252         return length;
253 }
254 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
255
256 /* inline for ring buffer fast paths */
257 static __always_inline void *
258 rb_event_data(struct ring_buffer_event *event)
259 {
260         if (extended_time(event))
261                 event = skip_time_extend(event);
262         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
263         /* If length is in len field, then array[0] has the data */
264         if (event->type_len)
265                 return (void *)&event->array[0];
266         /* Otherwise length is in array[0] and array[1] has the data */
267         return (void *)&event->array[1];
268 }
269
270 /**
271  * ring_buffer_event_data - return the data of the event
272  * @event: the event to get the data from
273  */
274 void *ring_buffer_event_data(struct ring_buffer_event *event)
275 {
276         return rb_event_data(event);
277 }
278 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
279
280 #define for_each_buffer_cpu(buffer, cpu)                \
281         for_each_cpu(cpu, buffer->cpumask)
282
283 #define for_each_online_buffer_cpu(buffer, cpu)         \
284         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
285
286 #define TS_SHIFT        27
287 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
288 #define TS_DELTA_TEST   (~TS_MASK)
289
290 /**
291  * ring_buffer_event_time_stamp - return the event's extended timestamp
292  * @event: the event to get the timestamp of
293  *
294  * Returns the extended timestamp associated with a data event.
295  * An extended time_stamp is a 64-bit timestamp represented
296  * internally in a special way that makes the best use of space
297  * contained within a ring buffer event.  This function decodes
298  * it and maps it to a straight u64 value.
299  */
300 u64 ring_buffer_event_time_stamp(struct ring_buffer_event *event)
301 {
302         u64 ts;
303
304         ts = event->array[0];
305         ts <<= TS_SHIFT;
306         ts += event->time_delta;
307
308         return ts;
309 }
310
311 /* Flag when events were overwritten */
312 #define RB_MISSED_EVENTS        (1 << 31)
313 /* Missed count stored at end */
314 #define RB_MISSED_STORED        (1 << 30)
315
316 struct buffer_data_page {
317         u64              time_stamp;    /* page time stamp */
318         local_t          commit;        /* write committed index */
319         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
320 };
321
322 /*
323  * Note, the buffer_page list must be first. The buffer pages
324  * are allocated in cache lines, which means that each buffer
325  * page will be at the beginning of a cache line, and thus
326  * the least significant bits will be zero. We use this to
327  * add flags in the list struct pointers, to make the ring buffer
328  * lockless.
329  */
330 struct buffer_page {
331         struct list_head list;          /* list of buffer pages */
332         local_t          write;         /* index for next write */
333         unsigned         read;          /* index for next read */
334         local_t          entries;       /* entries on this page */
335         unsigned long    real_end;      /* real end of data */
336         struct buffer_data_page *page;  /* Actual data page */
337 };
338
339 /*
340  * The buffer page counters, write and entries, must be reset
341  * atomically when crossing page boundaries. To synchronize this
342  * update, two counters are inserted into the number. One is
343  * the actual counter for the write position or count on the page.
344  *
345  * The other is a counter of updaters. Before an update happens
346  * the update partition of the counter is incremented. This will
347  * allow the updater to update the counter atomically.
348  *
349  * The counter is 20 bits, and the state data is 12.
350  */
351 #define RB_WRITE_MASK           0xfffff
352 #define RB_WRITE_INTCNT         (1 << 20)
353
354 static void rb_init_page(struct buffer_data_page *bpage)
355 {
356         local_set(&bpage->commit, 0);
357 }
358
359 /*
360  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
361  * this issue out.
362  */
363 static void free_buffer_page(struct buffer_page *bpage)
364 {
365         free_page((unsigned long)bpage->page);
366         kfree(bpage);
367 }
368
369 /*
370  * We need to fit the time_stamp delta into 27 bits.
371  */
372 static inline int test_time_stamp(u64 delta)
373 {
374         if (delta & TS_DELTA_TEST)
375                 return 1;
376         return 0;
377 }
378
379 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
380
381 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
382 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
383
384 int ring_buffer_print_page_header(struct trace_seq *s)
385 {
386         struct buffer_data_page field;
387
388         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
389                          "offset:0;\tsize:%u;\tsigned:%u;\n",
390                          (unsigned int)sizeof(field.time_stamp),
391                          (unsigned int)is_signed_type(u64));
392
393         trace_seq_printf(s, "\tfield: local_t commit;\t"
394                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
395                          (unsigned int)offsetof(typeof(field), commit),
396                          (unsigned int)sizeof(field.commit),
397                          (unsigned int)is_signed_type(long));
398
399         trace_seq_printf(s, "\tfield: int overwrite;\t"
400                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
401                          (unsigned int)offsetof(typeof(field), commit),
402                          1,
403                          (unsigned int)is_signed_type(long));
404
405         trace_seq_printf(s, "\tfield: char data;\t"
406                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
407                          (unsigned int)offsetof(typeof(field), data),
408                          (unsigned int)BUF_PAGE_SIZE,
409                          (unsigned int)is_signed_type(char));
410
411         return !trace_seq_has_overflowed(s);
412 }
413
414 struct rb_irq_work {
415         struct irq_work                 work;
416         wait_queue_head_t               waiters;
417         wait_queue_head_t               full_waiters;
418         bool                            waiters_pending;
419         bool                            full_waiters_pending;
420         bool                            wakeup_full;
421 };
422
423 /*
424  * Structure to hold event state and handle nested events.
425  */
426 struct rb_event_info {
427         u64                     ts;
428         u64                     delta;
429         u64                     before;
430         u64                     after;
431         unsigned long           length;
432         struct buffer_page      *tail_page;
433         int                     add_timestamp;
434 };
435
436 /*
437  * Used for the add_timestamp
438  *  NONE
439  *  EXTEND - wants a time extend
440  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
441  *  FORCE - force a full time stamp.
442  */
443 enum {
444         RB_ADD_STAMP_NONE               = 0,
445         RB_ADD_STAMP_EXTEND             = BIT(1),
446         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
447         RB_ADD_STAMP_FORCE              = BIT(3)
448 };
449 /*
450  * Used for which event context the event is in.
451  *  TRANSITION = 0
452  *  NMI     = 1
453  *  IRQ     = 2
454  *  SOFTIRQ = 3
455  *  NORMAL  = 4
456  *
457  * See trace_recursive_lock() comment below for more details.
458  */
459 enum {
460         RB_CTX_TRANSITION,
461         RB_CTX_NMI,
462         RB_CTX_IRQ,
463         RB_CTX_SOFTIRQ,
464         RB_CTX_NORMAL,
465         RB_CTX_MAX
466 };
467
468 #if BITS_PER_LONG == 32
469 #define RB_TIME_32
470 #endif
471
472 /* To test on 64 bit machines */
473 //#define RB_TIME_32
474
475 #ifdef RB_TIME_32
476
477 struct rb_time_struct {
478         local_t         cnt;
479         local_t         top;
480         local_t         bottom;
481 };
482 #else
483 #include <asm/local64.h>
484 struct rb_time_struct {
485         local64_t       time;
486 };
487 #endif
488 typedef struct rb_time_struct rb_time_t;
489
490 /*
491  * head_page == tail_page && head == tail then buffer is empty.
492  */
493 struct ring_buffer_per_cpu {
494         int                             cpu;
495         atomic_t                        record_disabled;
496         atomic_t                        resize_disabled;
497         struct trace_buffer     *buffer;
498         raw_spinlock_t                  reader_lock;    /* serialize readers */
499         arch_spinlock_t                 lock;
500         struct lock_class_key           lock_key;
501         struct buffer_data_page         *free_page;
502         unsigned long                   nr_pages;
503         unsigned int                    current_context;
504         struct list_head                *pages;
505         struct buffer_page              *head_page;     /* read from head */
506         struct buffer_page              *tail_page;     /* write to tail */
507         struct buffer_page              *commit_page;   /* committed pages */
508         struct buffer_page              *reader_page;
509         unsigned long                   lost_events;
510         unsigned long                   last_overrun;
511         unsigned long                   nest;
512         local_t                         entries_bytes;
513         local_t                         entries;
514         local_t                         overrun;
515         local_t                         commit_overrun;
516         local_t                         dropped_events;
517         local_t                         committing;
518         local_t                         commits;
519         local_t                         pages_touched;
520         local_t                         pages_read;
521         long                            last_pages_touch;
522         size_t                          shortest_full;
523         unsigned long                   read;
524         unsigned long                   read_bytes;
525         rb_time_t                       write_stamp;
526         rb_time_t                       before_stamp;
527         u64                             read_stamp;
528         /* ring buffer pages to update, > 0 to add, < 0 to remove */
529         long                            nr_pages_to_update;
530         struct list_head                new_pages; /* new pages to add */
531         struct work_struct              update_pages_work;
532         struct completion               update_done;
533
534         struct rb_irq_work              irq_work;
535 };
536
537 struct trace_buffer {
538         unsigned                        flags;
539         int                             cpus;
540         atomic_t                        record_disabled;
541         cpumask_var_t                   cpumask;
542
543         struct lock_class_key           *reader_lock_key;
544
545         struct mutex                    mutex;
546
547         struct ring_buffer_per_cpu      **buffers;
548
549         struct hlist_node               node;
550         u64                             (*clock)(void);
551
552         struct rb_irq_work              irq_work;
553         bool                            time_stamp_abs;
554 };
555
556 struct ring_buffer_iter {
557         struct ring_buffer_per_cpu      *cpu_buffer;
558         unsigned long                   head;
559         unsigned long                   next_event;
560         struct buffer_page              *head_page;
561         struct buffer_page              *cache_reader_page;
562         unsigned long                   cache_read;
563         u64                             read_stamp;
564         u64                             page_stamp;
565         struct ring_buffer_event        *event;
566         int                             missed_events;
567 };
568
569 #ifdef RB_TIME_32
570
571 /*
572  * On 32 bit machines, local64_t is very expensive. As the ring
573  * buffer doesn't need all the features of a true 64 bit atomic,
574  * on 32 bit, it uses these functions (64 still uses local64_t).
575  *
576  * For the ring buffer, 64 bit required operations for the time is
577  * the following:
578  *
579  *  - Only need 59 bits (uses 60 to make it even).
580  *  - Reads may fail if it interrupted a modification of the time stamp.
581  *      It will succeed if it did not interrupt another write even if
582  *      the read itself is interrupted by a write.
583  *      It returns whether it was successful or not.
584  *
585  *  - Writes always succeed and will overwrite other writes and writes
586  *      that were done by events interrupting the current write.
587  *
588  *  - A write followed by a read of the same time stamp will always succeed,
589  *      but may not contain the same value.
590  *
591  *  - A cmpxchg will fail if it interrupted another write or cmpxchg.
592  *      Other than that, it acts like a normal cmpxchg.
593  *
594  * The 60 bit time stamp is broken up by 30 bits in a top and bottom half
595  *  (bottom being the least significant 30 bits of the 60 bit time stamp).
596  *
597  * The two most significant bits of each half holds a 2 bit counter (0-3).
598  * Each update will increment this counter by one.
599  * When reading the top and bottom, if the two counter bits match then the
600  *  top and bottom together make a valid 60 bit number.
601  */
602 #define RB_TIME_SHIFT   30
603 #define RB_TIME_VAL_MASK ((1 << RB_TIME_SHIFT) - 1)
604
605 static inline int rb_time_cnt(unsigned long val)
606 {
607         return (val >> RB_TIME_SHIFT) & 3;
608 }
609
610 static inline u64 rb_time_val(unsigned long top, unsigned long bottom)
611 {
612         u64 val;
613
614         val = top & RB_TIME_VAL_MASK;
615         val <<= RB_TIME_SHIFT;
616         val |= bottom & RB_TIME_VAL_MASK;
617
618         return val;
619 }
620
621 static inline bool __rb_time_read(rb_time_t *t, u64 *ret, unsigned long *cnt)
622 {
623         unsigned long top, bottom;
624         unsigned long c;
625
626         /*
627          * If the read is interrupted by a write, then the cnt will
628          * be different. Loop until both top and bottom have been read
629          * without interruption.
630          */
631         do {
632                 c = local_read(&t->cnt);
633                 top = local_read(&t->top);
634                 bottom = local_read(&t->bottom);
635         } while (c != local_read(&t->cnt));
636
637         *cnt = rb_time_cnt(top);
638
639         /* If top and bottom counts don't match, this interrupted a write */
640         if (*cnt != rb_time_cnt(bottom))
641                 return false;
642
643         *ret = rb_time_val(top, bottom);
644         return true;
645 }
646
647 static bool rb_time_read(rb_time_t *t, u64 *ret)
648 {
649         unsigned long cnt;
650
651         return __rb_time_read(t, ret, &cnt);
652 }
653
654 static inline unsigned long rb_time_val_cnt(unsigned long val, unsigned long cnt)
655 {
656         return (val & RB_TIME_VAL_MASK) | ((cnt & 3) << RB_TIME_SHIFT);
657 }
658
659 static inline void rb_time_split(u64 val, unsigned long *top, unsigned long *bottom)
660 {
661         *top = (unsigned long)((val >> RB_TIME_SHIFT) & RB_TIME_VAL_MASK);
662         *bottom = (unsigned long)(val & RB_TIME_VAL_MASK);
663 }
664
665 static inline void rb_time_val_set(local_t *t, unsigned long val, unsigned long cnt)
666 {
667         val = rb_time_val_cnt(val, cnt);
668         local_set(t, val);
669 }
670
671 static void rb_time_set(rb_time_t *t, u64 val)
672 {
673         unsigned long cnt, top, bottom;
674
675         rb_time_split(val, &top, &bottom);
676
677         /* Writes always succeed with a valid number even if it gets interrupted. */
678         do {
679                 cnt = local_inc_return(&t->cnt);
680                 rb_time_val_set(&t->top, top, cnt);
681                 rb_time_val_set(&t->bottom, bottom, cnt);
682         } while (cnt != local_read(&t->cnt));
683 }
684
685 static inline bool
686 rb_time_read_cmpxchg(local_t *l, unsigned long expect, unsigned long set)
687 {
688         unsigned long ret;
689
690         ret = local_cmpxchg(l, expect, set);
691         return ret == expect;
692 }
693
694 static int rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
695 {
696         unsigned long cnt, top, bottom;
697         unsigned long cnt2, top2, bottom2;
698         u64 val;
699
700         /* The cmpxchg always fails if it interrupted an update */
701          if (!__rb_time_read(t, &val, &cnt2))
702                  return false;
703
704          if (val != expect)
705                  return false;
706
707          cnt = local_read(&t->cnt);
708          if ((cnt & 3) != cnt2)
709                  return false;
710
711          cnt2 = cnt + 1;
712
713          rb_time_split(val, &top, &bottom);
714          top = rb_time_val_cnt(top, cnt);
715          bottom = rb_time_val_cnt(bottom, cnt);
716
717          rb_time_split(set, &top2, &bottom2);
718          top2 = rb_time_val_cnt(top2, cnt2);
719          bottom2 = rb_time_val_cnt(bottom2, cnt2);
720
721         if (!rb_time_read_cmpxchg(&t->cnt, cnt, cnt2))
722                 return false;
723         if (!rb_time_read_cmpxchg(&t->top, top, top2))
724                 return false;
725         if (!rb_time_read_cmpxchg(&t->bottom, bottom, bottom2))
726                 return false;
727         return true;
728 }
729
730 #else /* 64 bits */
731
732 /* local64_t always succeeds */
733
734 static inline bool rb_time_read(rb_time_t *t, u64 *ret)
735 {
736         *ret = local64_read(&t->time);
737         return true;
738 }
739 static void rb_time_set(rb_time_t *t, u64 val)
740 {
741         local64_set(&t->time, val);
742 }
743
744 static bool rb_time_cmpxchg(rb_time_t *t, u64 expect, u64 set)
745 {
746         u64 val;
747         val = local64_cmpxchg(&t->time, expect, set);
748         return val == expect;
749 }
750 #endif
751
752 /**
753  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
754  * @buffer: The ring_buffer to get the number of pages from
755  * @cpu: The cpu of the ring_buffer to get the number of pages from
756  *
757  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
758  */
759 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
760 {
761         return buffer->buffers[cpu]->nr_pages;
762 }
763
764 /**
765  * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
766  * @buffer: The ring_buffer to get the number of pages from
767  * @cpu: The cpu of the ring_buffer to get the number of pages from
768  *
769  * Returns the number of pages that have content in the ring buffer.
770  */
771 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
772 {
773         size_t read;
774         size_t cnt;
775
776         read = local_read(&buffer->buffers[cpu]->pages_read);
777         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
778         /* The reader can read an empty page, but not more than that */
779         if (cnt < read) {
780                 WARN_ON_ONCE(read > cnt + 1);
781                 return 0;
782         }
783
784         return cnt - read;
785 }
786
787 /*
788  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
789  *
790  * Schedules a delayed work to wake up any task that is blocked on the
791  * ring buffer waiters queue.
792  */
793 static void rb_wake_up_waiters(struct irq_work *work)
794 {
795         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
796
797         wake_up_all(&rbwork->waiters);
798         if (rbwork->wakeup_full) {
799                 rbwork->wakeup_full = false;
800                 wake_up_all(&rbwork->full_waiters);
801         }
802 }
803
804 /**
805  * ring_buffer_wait - wait for input to the ring buffer
806  * @buffer: buffer to wait on
807  * @cpu: the cpu buffer to wait on
808  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
809  *
810  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
811  * as data is added to any of the @buffer's cpu buffers. Otherwise
812  * it will wait for data to be added to a specific cpu buffer.
813  */
814 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
815 {
816         struct ring_buffer_per_cpu *cpu_buffer;
817         DEFINE_WAIT(wait);
818         struct rb_irq_work *work;
819         int ret = 0;
820
821         /*
822          * Depending on what the caller is waiting for, either any
823          * data in any cpu buffer, or a specific buffer, put the
824          * caller on the appropriate wait queue.
825          */
826         if (cpu == RING_BUFFER_ALL_CPUS) {
827                 work = &buffer->irq_work;
828                 /* Full only makes sense on per cpu reads */
829                 full = 0;
830         } else {
831                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
832                         return -ENODEV;
833                 cpu_buffer = buffer->buffers[cpu];
834                 work = &cpu_buffer->irq_work;
835         }
836
837
838         while (true) {
839                 if (full)
840                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
841                 else
842                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
843
844                 /*
845                  * The events can happen in critical sections where
846                  * checking a work queue can cause deadlocks.
847                  * After adding a task to the queue, this flag is set
848                  * only to notify events to try to wake up the queue
849                  * using irq_work.
850                  *
851                  * We don't clear it even if the buffer is no longer
852                  * empty. The flag only causes the next event to run
853                  * irq_work to do the work queue wake up. The worse
854                  * that can happen if we race with !trace_empty() is that
855                  * an event will cause an irq_work to try to wake up
856                  * an empty queue.
857                  *
858                  * There's no reason to protect this flag either, as
859                  * the work queue and irq_work logic will do the necessary
860                  * synchronization for the wake ups. The only thing
861                  * that is necessary is that the wake up happens after
862                  * a task has been queued. It's OK for spurious wake ups.
863                  */
864                 if (full)
865                         work->full_waiters_pending = true;
866                 else
867                         work->waiters_pending = true;
868
869                 if (signal_pending(current)) {
870                         ret = -EINTR;
871                         break;
872                 }
873
874                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
875                         break;
876
877                 if (cpu != RING_BUFFER_ALL_CPUS &&
878                     !ring_buffer_empty_cpu(buffer, cpu)) {
879                         unsigned long flags;
880                         bool pagebusy;
881                         size_t nr_pages;
882                         size_t dirty;
883
884                         if (!full)
885                                 break;
886
887                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
888                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
889                         nr_pages = cpu_buffer->nr_pages;
890                         dirty = ring_buffer_nr_dirty_pages(buffer, cpu);
891                         if (!cpu_buffer->shortest_full ||
892                             cpu_buffer->shortest_full < full)
893                                 cpu_buffer->shortest_full = full;
894                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
895                         if (!pagebusy &&
896                             (!nr_pages || (dirty * 100) > full * nr_pages))
897                                 break;
898                 }
899
900                 schedule();
901         }
902
903         if (full)
904                 finish_wait(&work->full_waiters, &wait);
905         else
906                 finish_wait(&work->waiters, &wait);
907
908         return ret;
909 }
910
911 /**
912  * ring_buffer_poll_wait - poll on buffer input
913  * @buffer: buffer to wait on
914  * @cpu: the cpu buffer to wait on
915  * @filp: the file descriptor
916  * @poll_table: The poll descriptor
917  *
918  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
919  * as data is added to any of the @buffer's cpu buffers. Otherwise
920  * it will wait for data to be added to a specific cpu buffer.
921  *
922  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
923  * zero otherwise.
924  */
925 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
926                           struct file *filp, poll_table *poll_table)
927 {
928         struct ring_buffer_per_cpu *cpu_buffer;
929         struct rb_irq_work *work;
930
931         if (cpu == RING_BUFFER_ALL_CPUS)
932                 work = &buffer->irq_work;
933         else {
934                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
935                         return -EINVAL;
936
937                 cpu_buffer = buffer->buffers[cpu];
938                 work = &cpu_buffer->irq_work;
939         }
940
941         poll_wait(filp, &work->waiters, poll_table);
942         work->waiters_pending = true;
943         /*
944          * There's a tight race between setting the waiters_pending and
945          * checking if the ring buffer is empty.  Once the waiters_pending bit
946          * is set, the next event will wake the task up, but we can get stuck
947          * if there's only a single event in.
948          *
949          * FIXME: Ideally, we need a memory barrier on the writer side as well,
950          * but adding a memory barrier to all events will cause too much of a
951          * performance hit in the fast path.  We only need a memory barrier when
952          * the buffer goes from empty to having content.  But as this race is
953          * extremely small, and it's not a problem if another event comes in, we
954          * will fix it later.
955          */
956         smp_mb();
957
958         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
959             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
960                 return EPOLLIN | EPOLLRDNORM;
961         return 0;
962 }
963
964 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
965 #define RB_WARN_ON(b, cond)                                             \
966         ({                                                              \
967                 int _____ret = unlikely(cond);                          \
968                 if (_____ret) {                                         \
969                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
970                                 struct ring_buffer_per_cpu *__b =       \
971                                         (void *)b;                      \
972                                 atomic_inc(&__b->buffer->record_disabled); \
973                         } else                                          \
974                                 atomic_inc(&b->record_disabled);        \
975                         WARN_ON(1);                                     \
976                 }                                                       \
977                 _____ret;                                               \
978         })
979
980 /* Up this if you want to test the TIME_EXTENTS and normalization */
981 #define DEBUG_SHIFT 0
982
983 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
984 {
985         u64 ts;
986
987         /* Skip retpolines :-( */
988         if (IS_ENABLED(CONFIG_RETPOLINE) && likely(buffer->clock == trace_clock_local))
989                 ts = trace_clock_local();
990         else
991                 ts = buffer->clock();
992
993         /* shift to debug/test normalization and TIME_EXTENTS */
994         return ts << DEBUG_SHIFT;
995 }
996
997 u64 ring_buffer_time_stamp(struct trace_buffer *buffer, int cpu)
998 {
999         u64 time;
1000
1001         preempt_disable_notrace();
1002         time = rb_time_stamp(buffer);
1003         preempt_enable_notrace();
1004
1005         return time;
1006 }
1007 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1008
1009 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1010                                       int cpu, u64 *ts)
1011 {
1012         /* Just stupid testing the normalize function and deltas */
1013         *ts >>= DEBUG_SHIFT;
1014 }
1015 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1016
1017 /*
1018  * Making the ring buffer lockless makes things tricky.
1019  * Although writes only happen on the CPU that they are on,
1020  * and they only need to worry about interrupts. Reads can
1021  * happen on any CPU.
1022  *
1023  * The reader page is always off the ring buffer, but when the
1024  * reader finishes with a page, it needs to swap its page with
1025  * a new one from the buffer. The reader needs to take from
1026  * the head (writes go to the tail). But if a writer is in overwrite
1027  * mode and wraps, it must push the head page forward.
1028  *
1029  * Here lies the problem.
1030  *
1031  * The reader must be careful to replace only the head page, and
1032  * not another one. As described at the top of the file in the
1033  * ASCII art, the reader sets its old page to point to the next
1034  * page after head. It then sets the page after head to point to
1035  * the old reader page. But if the writer moves the head page
1036  * during this operation, the reader could end up with the tail.
1037  *
1038  * We use cmpxchg to help prevent this race. We also do something
1039  * special with the page before head. We set the LSB to 1.
1040  *
1041  * When the writer must push the page forward, it will clear the
1042  * bit that points to the head page, move the head, and then set
1043  * the bit that points to the new head page.
1044  *
1045  * We also don't want an interrupt coming in and moving the head
1046  * page on another writer. Thus we use the second LSB to catch
1047  * that too. Thus:
1048  *
1049  * head->list->prev->next        bit 1          bit 0
1050  *                              -------        -------
1051  * Normal page                     0              0
1052  * Points to head page             0              1
1053  * New head page                   1              0
1054  *
1055  * Note we can not trust the prev pointer of the head page, because:
1056  *
1057  * +----+       +-----+        +-----+
1058  * |    |------>|  T  |---X--->|  N  |
1059  * |    |<------|     |        |     |
1060  * +----+       +-----+        +-----+
1061  *   ^                           ^ |
1062  *   |          +-----+          | |
1063  *   +----------|  R  |----------+ |
1064  *              |     |<-----------+
1065  *              +-----+
1066  *
1067  * Key:  ---X-->  HEAD flag set in pointer
1068  *         T      Tail page
1069  *         R      Reader page
1070  *         N      Next page
1071  *
1072  * (see __rb_reserve_next() to see where this happens)
1073  *
1074  *  What the above shows is that the reader just swapped out
1075  *  the reader page with a page in the buffer, but before it
1076  *  could make the new header point back to the new page added
1077  *  it was preempted by a writer. The writer moved forward onto
1078  *  the new page added by the reader and is about to move forward
1079  *  again.
1080  *
1081  *  You can see, it is legitimate for the previous pointer of
1082  *  the head (or any page) not to point back to itself. But only
1083  *  temporarily.
1084  */
1085
1086 #define RB_PAGE_NORMAL          0UL
1087 #define RB_PAGE_HEAD            1UL
1088 #define RB_PAGE_UPDATE          2UL
1089
1090
1091 #define RB_FLAG_MASK            3UL
1092
1093 /* PAGE_MOVED is not part of the mask */
1094 #define RB_PAGE_MOVED           4UL
1095
1096 /*
1097  * rb_list_head - remove any bit
1098  */
1099 static struct list_head *rb_list_head(struct list_head *list)
1100 {
1101         unsigned long val = (unsigned long)list;
1102
1103         return (struct list_head *)(val & ~RB_FLAG_MASK);
1104 }
1105
1106 /*
1107  * rb_is_head_page - test if the given page is the head page
1108  *
1109  * Because the reader may move the head_page pointer, we can
1110  * not trust what the head page is (it may be pointing to
1111  * the reader page). But if the next page is a header page,
1112  * its flags will be non zero.
1113  */
1114 static inline int
1115 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1116 {
1117         unsigned long val;
1118
1119         val = (unsigned long)list->next;
1120
1121         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1122                 return RB_PAGE_MOVED;
1123
1124         return val & RB_FLAG_MASK;
1125 }
1126
1127 /*
1128  * rb_is_reader_page
1129  *
1130  * The unique thing about the reader page, is that, if the
1131  * writer is ever on it, the previous pointer never points
1132  * back to the reader page.
1133  */
1134 static bool rb_is_reader_page(struct buffer_page *page)
1135 {
1136         struct list_head *list = page->list.prev;
1137
1138         return rb_list_head(list->next) != &page->list;
1139 }
1140
1141 /*
1142  * rb_set_list_to_head - set a list_head to be pointing to head.
1143  */
1144 static void rb_set_list_to_head(struct list_head *list)
1145 {
1146         unsigned long *ptr;
1147
1148         ptr = (unsigned long *)&list->next;
1149         *ptr |= RB_PAGE_HEAD;
1150         *ptr &= ~RB_PAGE_UPDATE;
1151 }
1152
1153 /*
1154  * rb_head_page_activate - sets up head page
1155  */
1156 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1157 {
1158         struct buffer_page *head;
1159
1160         head = cpu_buffer->head_page;
1161         if (!head)
1162                 return;
1163
1164         /*
1165          * Set the previous list pointer to have the HEAD flag.
1166          */
1167         rb_set_list_to_head(head->list.prev);
1168 }
1169
1170 static void rb_list_head_clear(struct list_head *list)
1171 {
1172         unsigned long *ptr = (unsigned long *)&list->next;
1173
1174         *ptr &= ~RB_FLAG_MASK;
1175 }
1176
1177 /*
1178  * rb_head_page_deactivate - clears head page ptr (for free list)
1179  */
1180 static void
1181 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1182 {
1183         struct list_head *hd;
1184
1185         /* Go through the whole list and clear any pointers found. */
1186         rb_list_head_clear(cpu_buffer->pages);
1187
1188         list_for_each(hd, cpu_buffer->pages)
1189                 rb_list_head_clear(hd);
1190 }
1191
1192 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1193                             struct buffer_page *head,
1194                             struct buffer_page *prev,
1195                             int old_flag, int new_flag)
1196 {
1197         struct list_head *list;
1198         unsigned long val = (unsigned long)&head->list;
1199         unsigned long ret;
1200
1201         list = &prev->list;
1202
1203         val &= ~RB_FLAG_MASK;
1204
1205         ret = cmpxchg((unsigned long *)&list->next,
1206                       val | old_flag, val | new_flag);
1207
1208         /* check if the reader took the page */
1209         if ((ret & ~RB_FLAG_MASK) != val)
1210                 return RB_PAGE_MOVED;
1211
1212         return ret & RB_FLAG_MASK;
1213 }
1214
1215 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1216                                    struct buffer_page *head,
1217                                    struct buffer_page *prev,
1218                                    int old_flag)
1219 {
1220         return rb_head_page_set(cpu_buffer, head, prev,
1221                                 old_flag, RB_PAGE_UPDATE);
1222 }
1223
1224 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1225                                  struct buffer_page *head,
1226                                  struct buffer_page *prev,
1227                                  int old_flag)
1228 {
1229         return rb_head_page_set(cpu_buffer, head, prev,
1230                                 old_flag, RB_PAGE_HEAD);
1231 }
1232
1233 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1234                                    struct buffer_page *head,
1235                                    struct buffer_page *prev,
1236                                    int old_flag)
1237 {
1238         return rb_head_page_set(cpu_buffer, head, prev,
1239                                 old_flag, RB_PAGE_NORMAL);
1240 }
1241
1242 static inline void rb_inc_page(struct buffer_page **bpage)
1243 {
1244         struct list_head *p = rb_list_head((*bpage)->list.next);
1245
1246         *bpage = list_entry(p, struct buffer_page, list);
1247 }
1248
1249 static struct buffer_page *
1250 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1251 {
1252         struct buffer_page *head;
1253         struct buffer_page *page;
1254         struct list_head *list;
1255         int i;
1256
1257         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1258                 return NULL;
1259
1260         /* sanity check */
1261         list = cpu_buffer->pages;
1262         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1263                 return NULL;
1264
1265         page = head = cpu_buffer->head_page;
1266         /*
1267          * It is possible that the writer moves the header behind
1268          * where we started, and we miss in one loop.
1269          * A second loop should grab the header, but we'll do
1270          * three loops just because I'm paranoid.
1271          */
1272         for (i = 0; i < 3; i++) {
1273                 do {
1274                         if (rb_is_head_page(page, page->list.prev)) {
1275                                 cpu_buffer->head_page = page;
1276                                 return page;
1277                         }
1278                         rb_inc_page(&page);
1279                 } while (page != head);
1280         }
1281
1282         RB_WARN_ON(cpu_buffer, 1);
1283
1284         return NULL;
1285 }
1286
1287 static int rb_head_page_replace(struct buffer_page *old,
1288                                 struct buffer_page *new)
1289 {
1290         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1291         unsigned long val;
1292         unsigned long ret;
1293
1294         val = *ptr & ~RB_FLAG_MASK;
1295         val |= RB_PAGE_HEAD;
1296
1297         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1298
1299         return ret == val;
1300 }
1301
1302 /*
1303  * rb_tail_page_update - move the tail page forward
1304  */
1305 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1306                                struct buffer_page *tail_page,
1307                                struct buffer_page *next_page)
1308 {
1309         unsigned long old_entries;
1310         unsigned long old_write;
1311
1312         /*
1313          * The tail page now needs to be moved forward.
1314          *
1315          * We need to reset the tail page, but without messing
1316          * with possible erasing of data brought in by interrupts
1317          * that have moved the tail page and are currently on it.
1318          *
1319          * We add a counter to the write field to denote this.
1320          */
1321         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1322         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1323
1324         local_inc(&cpu_buffer->pages_touched);
1325         /*
1326          * Just make sure we have seen our old_write and synchronize
1327          * with any interrupts that come in.
1328          */
1329         barrier();
1330
1331         /*
1332          * If the tail page is still the same as what we think
1333          * it is, then it is up to us to update the tail
1334          * pointer.
1335          */
1336         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1337                 /* Zero the write counter */
1338                 unsigned long val = old_write & ~RB_WRITE_MASK;
1339                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1340
1341                 /*
1342                  * This will only succeed if an interrupt did
1343                  * not come in and change it. In which case, we
1344                  * do not want to modify it.
1345                  *
1346                  * We add (void) to let the compiler know that we do not care
1347                  * about the return value of these functions. We use the
1348                  * cmpxchg to only update if an interrupt did not already
1349                  * do it for us. If the cmpxchg fails, we don't care.
1350                  */
1351                 (void)local_cmpxchg(&next_page->write, old_write, val);
1352                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1353
1354                 /*
1355                  * No need to worry about races with clearing out the commit.
1356                  * it only can increment when a commit takes place. But that
1357                  * only happens in the outer most nested commit.
1358                  */
1359                 local_set(&next_page->page->commit, 0);
1360
1361                 /* Again, either we update tail_page or an interrupt does */
1362                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1363         }
1364 }
1365
1366 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1367                           struct buffer_page *bpage)
1368 {
1369         unsigned long val = (unsigned long)bpage;
1370
1371         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1372                 return 1;
1373
1374         return 0;
1375 }
1376
1377 /**
1378  * rb_check_list - make sure a pointer to a list has the last bits zero
1379  */
1380 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1381                          struct list_head *list)
1382 {
1383         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1384                 return 1;
1385         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1386                 return 1;
1387         return 0;
1388 }
1389
1390 /**
1391  * rb_check_pages - integrity check of buffer pages
1392  * @cpu_buffer: CPU buffer with pages to test
1393  *
1394  * As a safety measure we check to make sure the data pages have not
1395  * been corrupted.
1396  */
1397 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1398 {
1399         struct list_head *head = cpu_buffer->pages;
1400         struct buffer_page *bpage, *tmp;
1401
1402         /* Reset the head page if it exists */
1403         if (cpu_buffer->head_page)
1404                 rb_set_head_page(cpu_buffer);
1405
1406         rb_head_page_deactivate(cpu_buffer);
1407
1408         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1409                 return -1;
1410         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1411                 return -1;
1412
1413         if (rb_check_list(cpu_buffer, head))
1414                 return -1;
1415
1416         list_for_each_entry_safe(bpage, tmp, head, list) {
1417                 if (RB_WARN_ON(cpu_buffer,
1418                                bpage->list.next->prev != &bpage->list))
1419                         return -1;
1420                 if (RB_WARN_ON(cpu_buffer,
1421                                bpage->list.prev->next != &bpage->list))
1422                         return -1;
1423                 if (rb_check_list(cpu_buffer, &bpage->list))
1424                         return -1;
1425         }
1426
1427         rb_head_page_activate(cpu_buffer);
1428
1429         return 0;
1430 }
1431
1432 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1433                 long nr_pages, struct list_head *pages)
1434 {
1435         struct buffer_page *bpage, *tmp;
1436         bool user_thread = current->mm != NULL;
1437         gfp_t mflags;
1438         long i;
1439
1440         /*
1441          * Check if the available memory is there first.
1442          * Note, si_mem_available() only gives us a rough estimate of available
1443          * memory. It may not be accurate. But we don't care, we just want
1444          * to prevent doing any allocation when it is obvious that it is
1445          * not going to succeed.
1446          */
1447         i = si_mem_available();
1448         if (i < nr_pages)
1449                 return -ENOMEM;
1450
1451         /*
1452          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1453          * gracefully without invoking oom-killer and the system is not
1454          * destabilized.
1455          */
1456         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1457
1458         /*
1459          * If a user thread allocates too much, and si_mem_available()
1460          * reports there's enough memory, even though there is not.
1461          * Make sure the OOM killer kills this thread. This can happen
1462          * even with RETRY_MAYFAIL because another task may be doing
1463          * an allocation after this task has taken all memory.
1464          * This is the task the OOM killer needs to take out during this
1465          * loop, even if it was triggered by an allocation somewhere else.
1466          */
1467         if (user_thread)
1468                 set_current_oom_origin();
1469         for (i = 0; i < nr_pages; i++) {
1470                 struct page *page;
1471
1472                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1473                                     mflags, cpu_to_node(cpu_buffer->cpu));
1474                 if (!bpage)
1475                         goto free_pages;
1476
1477                 rb_check_bpage(cpu_buffer, bpage);
1478
1479                 list_add(&bpage->list, pages);
1480
1481                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags, 0);
1482                 if (!page)
1483                         goto free_pages;
1484                 bpage->page = page_address(page);
1485                 rb_init_page(bpage->page);
1486
1487                 if (user_thread && fatal_signal_pending(current))
1488                         goto free_pages;
1489         }
1490         if (user_thread)
1491                 clear_current_oom_origin();
1492
1493         return 0;
1494
1495 free_pages:
1496         list_for_each_entry_safe(bpage, tmp, pages, list) {
1497                 list_del_init(&bpage->list);
1498                 free_buffer_page(bpage);
1499         }
1500         if (user_thread)
1501                 clear_current_oom_origin();
1502
1503         return -ENOMEM;
1504 }
1505
1506 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1507                              unsigned long nr_pages)
1508 {
1509         LIST_HEAD(pages);
1510
1511         WARN_ON(!nr_pages);
1512
1513         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1514                 return -ENOMEM;
1515
1516         /*
1517          * The ring buffer page list is a circular list that does not
1518          * start and end with a list head. All page list items point to
1519          * other pages.
1520          */
1521         cpu_buffer->pages = pages.next;
1522         list_del(&pages);
1523
1524         cpu_buffer->nr_pages = nr_pages;
1525
1526         rb_check_pages(cpu_buffer);
1527
1528         return 0;
1529 }
1530
1531 static struct ring_buffer_per_cpu *
1532 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1533 {
1534         struct ring_buffer_per_cpu *cpu_buffer;
1535         struct buffer_page *bpage;
1536         struct page *page;
1537         int ret;
1538
1539         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1540                                   GFP_KERNEL, cpu_to_node(cpu));
1541         if (!cpu_buffer)
1542                 return NULL;
1543
1544         cpu_buffer->cpu = cpu;
1545         cpu_buffer->buffer = buffer;
1546         raw_spin_lock_init(&cpu_buffer->reader_lock);
1547         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1548         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1549         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1550         init_completion(&cpu_buffer->update_done);
1551         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1552         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1553         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1554
1555         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1556                             GFP_KERNEL, cpu_to_node(cpu));
1557         if (!bpage)
1558                 goto fail_free_buffer;
1559
1560         rb_check_bpage(cpu_buffer, bpage);
1561
1562         cpu_buffer->reader_page = bpage;
1563         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1564         if (!page)
1565                 goto fail_free_reader;
1566         bpage->page = page_address(page);
1567         rb_init_page(bpage->page);
1568
1569         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1570         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1571
1572         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1573         if (ret < 0)
1574                 goto fail_free_reader;
1575
1576         cpu_buffer->head_page
1577                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1578         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1579
1580         rb_head_page_activate(cpu_buffer);
1581
1582         return cpu_buffer;
1583
1584  fail_free_reader:
1585         free_buffer_page(cpu_buffer->reader_page);
1586
1587  fail_free_buffer:
1588         kfree(cpu_buffer);
1589         return NULL;
1590 }
1591
1592 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1593 {
1594         struct list_head *head = cpu_buffer->pages;
1595         struct buffer_page *bpage, *tmp;
1596
1597         free_buffer_page(cpu_buffer->reader_page);
1598
1599         rb_head_page_deactivate(cpu_buffer);
1600
1601         if (head) {
1602                 list_for_each_entry_safe(bpage, tmp, head, list) {
1603                         list_del_init(&bpage->list);
1604                         free_buffer_page(bpage);
1605                 }
1606                 bpage = list_entry(head, struct buffer_page, list);
1607                 free_buffer_page(bpage);
1608         }
1609
1610         kfree(cpu_buffer);
1611 }
1612
1613 /**
1614  * __ring_buffer_alloc - allocate a new ring_buffer
1615  * @size: the size in bytes per cpu that is needed.
1616  * @flags: attributes to set for the ring buffer.
1617  * @key: ring buffer reader_lock_key.
1618  *
1619  * Currently the only flag that is available is the RB_FL_OVERWRITE
1620  * flag. This flag means that the buffer will overwrite old data
1621  * when the buffer wraps. If this flag is not set, the buffer will
1622  * drop data when the tail hits the head.
1623  */
1624 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1625                                         struct lock_class_key *key)
1626 {
1627         struct trace_buffer *buffer;
1628         long nr_pages;
1629         int bsize;
1630         int cpu;
1631         int ret;
1632
1633         /* keep it in its own cache line */
1634         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1635                          GFP_KERNEL);
1636         if (!buffer)
1637                 return NULL;
1638
1639         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1640                 goto fail_free_buffer;
1641
1642         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1643         buffer->flags = flags;
1644         buffer->clock = trace_clock_local;
1645         buffer->reader_lock_key = key;
1646
1647         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1648         init_waitqueue_head(&buffer->irq_work.waiters);
1649
1650         /* need at least two pages */
1651         if (nr_pages < 2)
1652                 nr_pages = 2;
1653
1654         buffer->cpus = nr_cpu_ids;
1655
1656         bsize = sizeof(void *) * nr_cpu_ids;
1657         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1658                                   GFP_KERNEL);
1659         if (!buffer->buffers)
1660                 goto fail_free_cpumask;
1661
1662         cpu = raw_smp_processor_id();
1663         cpumask_set_cpu(cpu, buffer->cpumask);
1664         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1665         if (!buffer->buffers[cpu])
1666                 goto fail_free_buffers;
1667
1668         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1669         if (ret < 0)
1670                 goto fail_free_buffers;
1671
1672         mutex_init(&buffer->mutex);
1673
1674         return buffer;
1675
1676  fail_free_buffers:
1677         for_each_buffer_cpu(buffer, cpu) {
1678                 if (buffer->buffers[cpu])
1679                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1680         }
1681         kfree(buffer->buffers);
1682
1683  fail_free_cpumask:
1684         free_cpumask_var(buffer->cpumask);
1685
1686  fail_free_buffer:
1687         kfree(buffer);
1688         return NULL;
1689 }
1690 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1691
1692 /**
1693  * ring_buffer_free - free a ring buffer.
1694  * @buffer: the buffer to free.
1695  */
1696 void
1697 ring_buffer_free(struct trace_buffer *buffer)
1698 {
1699         int cpu;
1700
1701         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1702
1703         for_each_buffer_cpu(buffer, cpu)
1704                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1705
1706         kfree(buffer->buffers);
1707         free_cpumask_var(buffer->cpumask);
1708
1709         kfree(buffer);
1710 }
1711 EXPORT_SYMBOL_GPL(ring_buffer_free);
1712
1713 void ring_buffer_set_clock(struct trace_buffer *buffer,
1714                            u64 (*clock)(void))
1715 {
1716         buffer->clock = clock;
1717 }
1718
1719 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1720 {
1721         buffer->time_stamp_abs = abs;
1722 }
1723
1724 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1725 {
1726         return buffer->time_stamp_abs;
1727 }
1728
1729 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1730
1731 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1732 {
1733         return local_read(&bpage->entries) & RB_WRITE_MASK;
1734 }
1735
1736 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1737 {
1738         return local_read(&bpage->write) & RB_WRITE_MASK;
1739 }
1740
1741 static int
1742 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1743 {
1744         struct list_head *tail_page, *to_remove, *next_page;
1745         struct buffer_page *to_remove_page, *tmp_iter_page;
1746         struct buffer_page *last_page, *first_page;
1747         unsigned long nr_removed;
1748         unsigned long head_bit;
1749         int page_entries;
1750
1751         head_bit = 0;
1752
1753         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1754         atomic_inc(&cpu_buffer->record_disabled);
1755         /*
1756          * We don't race with the readers since we have acquired the reader
1757          * lock. We also don't race with writers after disabling recording.
1758          * This makes it easy to figure out the first and the last page to be
1759          * removed from the list. We unlink all the pages in between including
1760          * the first and last pages. This is done in a busy loop so that we
1761          * lose the least number of traces.
1762          * The pages are freed after we restart recording and unlock readers.
1763          */
1764         tail_page = &cpu_buffer->tail_page->list;
1765
1766         /*
1767          * tail page might be on reader page, we remove the next page
1768          * from the ring buffer
1769          */
1770         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1771                 tail_page = rb_list_head(tail_page->next);
1772         to_remove = tail_page;
1773
1774         /* start of pages to remove */
1775         first_page = list_entry(rb_list_head(to_remove->next),
1776                                 struct buffer_page, list);
1777
1778         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1779                 to_remove = rb_list_head(to_remove)->next;
1780                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1781         }
1782
1783         next_page = rb_list_head(to_remove)->next;
1784
1785         /*
1786          * Now we remove all pages between tail_page and next_page.
1787          * Make sure that we have head_bit value preserved for the
1788          * next page
1789          */
1790         tail_page->next = (struct list_head *)((unsigned long)next_page |
1791                                                 head_bit);
1792         next_page = rb_list_head(next_page);
1793         next_page->prev = tail_page;
1794
1795         /* make sure pages points to a valid page in the ring buffer */
1796         cpu_buffer->pages = next_page;
1797
1798         /* update head page */
1799         if (head_bit)
1800                 cpu_buffer->head_page = list_entry(next_page,
1801                                                 struct buffer_page, list);
1802
1803         /*
1804          * change read pointer to make sure any read iterators reset
1805          * themselves
1806          */
1807         cpu_buffer->read = 0;
1808
1809         /* pages are removed, resume tracing and then free the pages */
1810         atomic_dec(&cpu_buffer->record_disabled);
1811         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1812
1813         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1814
1815         /* last buffer page to remove */
1816         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1817                                 list);
1818         tmp_iter_page = first_page;
1819
1820         do {
1821                 cond_resched();
1822
1823                 to_remove_page = tmp_iter_page;
1824                 rb_inc_page(&tmp_iter_page);
1825
1826                 /* update the counters */
1827                 page_entries = rb_page_entries(to_remove_page);
1828                 if (page_entries) {
1829                         /*
1830                          * If something was added to this page, it was full
1831                          * since it is not the tail page. So we deduct the
1832                          * bytes consumed in ring buffer from here.
1833                          * Increment overrun to account for the lost events.
1834                          */
1835                         local_add(page_entries, &cpu_buffer->overrun);
1836                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1837                 }
1838
1839                 /*
1840                  * We have already removed references to this list item, just
1841                  * free up the buffer_page and its page
1842                  */
1843                 free_buffer_page(to_remove_page);
1844                 nr_removed--;
1845
1846         } while (to_remove_page != last_page);
1847
1848         RB_WARN_ON(cpu_buffer, nr_removed);
1849
1850         return nr_removed == 0;
1851 }
1852
1853 static int
1854 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1855 {
1856         struct list_head *pages = &cpu_buffer->new_pages;
1857         int retries, success;
1858
1859         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1860         /*
1861          * We are holding the reader lock, so the reader page won't be swapped
1862          * in the ring buffer. Now we are racing with the writer trying to
1863          * move head page and the tail page.
1864          * We are going to adapt the reader page update process where:
1865          * 1. We first splice the start and end of list of new pages between
1866          *    the head page and its previous page.
1867          * 2. We cmpxchg the prev_page->next to point from head page to the
1868          *    start of new pages list.
1869          * 3. Finally, we update the head->prev to the end of new list.
1870          *
1871          * We will try this process 10 times, to make sure that we don't keep
1872          * spinning.
1873          */
1874         retries = 10;
1875         success = 0;
1876         while (retries--) {
1877                 struct list_head *head_page, *prev_page, *r;
1878                 struct list_head *last_page, *first_page;
1879                 struct list_head *head_page_with_bit;
1880
1881                 head_page = &rb_set_head_page(cpu_buffer)->list;
1882                 if (!head_page)
1883                         break;
1884                 prev_page = head_page->prev;
1885
1886                 first_page = pages->next;
1887                 last_page  = pages->prev;
1888
1889                 head_page_with_bit = (struct list_head *)
1890                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1891
1892                 last_page->next = head_page_with_bit;
1893                 first_page->prev = prev_page;
1894
1895                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1896
1897                 if (r == head_page_with_bit) {
1898                         /*
1899                          * yay, we replaced the page pointer to our new list,
1900                          * now, we just have to update to head page's prev
1901                          * pointer to point to end of list
1902                          */
1903                         head_page->prev = last_page;
1904                         success = 1;
1905                         break;
1906                 }
1907         }
1908
1909         if (success)
1910                 INIT_LIST_HEAD(pages);
1911         /*
1912          * If we weren't successful in adding in new pages, warn and stop
1913          * tracing
1914          */
1915         RB_WARN_ON(cpu_buffer, !success);
1916         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1917
1918         /* free pages if they weren't inserted */
1919         if (!success) {
1920                 struct buffer_page *bpage, *tmp;
1921                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1922                                          list) {
1923                         list_del_init(&bpage->list);
1924                         free_buffer_page(bpage);
1925                 }
1926         }
1927         return success;
1928 }
1929
1930 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1931 {
1932         int success;
1933
1934         if (cpu_buffer->nr_pages_to_update > 0)
1935                 success = rb_insert_pages(cpu_buffer);
1936         else
1937                 success = rb_remove_pages(cpu_buffer,
1938                                         -cpu_buffer->nr_pages_to_update);
1939
1940         if (success)
1941                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1942 }
1943
1944 static void update_pages_handler(struct work_struct *work)
1945 {
1946         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1947                         struct ring_buffer_per_cpu, update_pages_work);
1948         rb_update_pages(cpu_buffer);
1949         complete(&cpu_buffer->update_done);
1950 }
1951
1952 /**
1953  * ring_buffer_resize - resize the ring buffer
1954  * @buffer: the buffer to resize.
1955  * @size: the new size.
1956  * @cpu_id: the cpu buffer to resize
1957  *
1958  * Minimum size is 2 * BUF_PAGE_SIZE.
1959  *
1960  * Returns 0 on success and < 0 on failure.
1961  */
1962 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1963                         int cpu_id)
1964 {
1965         struct ring_buffer_per_cpu *cpu_buffer;
1966         unsigned long nr_pages;
1967         int cpu, err;
1968
1969         /*
1970          * Always succeed at resizing a non-existent buffer:
1971          */
1972         if (!buffer)
1973                 return 0;
1974
1975         /* Make sure the requested buffer exists */
1976         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1977             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1978                 return 0;
1979
1980         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1981
1982         /* we need a minimum of two pages */
1983         if (nr_pages < 2)
1984                 nr_pages = 2;
1985
1986         /* prevent another thread from changing buffer sizes */
1987         mutex_lock(&buffer->mutex);
1988
1989
1990         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1991                 /*
1992                  * Don't succeed if resizing is disabled, as a reader might be
1993                  * manipulating the ring buffer and is expecting a sane state while
1994                  * this is true.
1995                  */
1996                 for_each_buffer_cpu(buffer, cpu) {
1997                         cpu_buffer = buffer->buffers[cpu];
1998                         if (atomic_read(&cpu_buffer->resize_disabled)) {
1999                                 err = -EBUSY;
2000                                 goto out_err_unlock;
2001                         }
2002                 }
2003
2004                 /* calculate the pages to update */
2005                 for_each_buffer_cpu(buffer, cpu) {
2006                         cpu_buffer = buffer->buffers[cpu];
2007
2008                         cpu_buffer->nr_pages_to_update = nr_pages -
2009                                                         cpu_buffer->nr_pages;
2010                         /*
2011                          * nothing more to do for removing pages or no update
2012                          */
2013                         if (cpu_buffer->nr_pages_to_update <= 0)
2014                                 continue;
2015                         /*
2016                          * to add pages, make sure all new pages can be
2017                          * allocated without receiving ENOMEM
2018                          */
2019                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2020                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2021                                                 &cpu_buffer->new_pages)) {
2022                                 /* not enough memory for new pages */
2023                                 err = -ENOMEM;
2024                                 goto out_err;
2025                         }
2026                 }
2027
2028                 get_online_cpus();
2029                 /*
2030                  * Fire off all the required work handlers
2031                  * We can't schedule on offline CPUs, but it's not necessary
2032                  * since we can change their buffer sizes without any race.
2033                  */
2034                 for_each_buffer_cpu(buffer, cpu) {
2035                         cpu_buffer = buffer->buffers[cpu];
2036                         if (!cpu_buffer->nr_pages_to_update)
2037                                 continue;
2038
2039                         /* Can't run something on an offline CPU. */
2040                         if (!cpu_online(cpu)) {
2041                                 rb_update_pages(cpu_buffer);
2042                                 cpu_buffer->nr_pages_to_update = 0;
2043                         } else {
2044                                 schedule_work_on(cpu,
2045                                                 &cpu_buffer->update_pages_work);
2046                         }
2047                 }
2048
2049                 /* wait for all the updates to complete */
2050                 for_each_buffer_cpu(buffer, cpu) {
2051                         cpu_buffer = buffer->buffers[cpu];
2052                         if (!cpu_buffer->nr_pages_to_update)
2053                                 continue;
2054
2055                         if (cpu_online(cpu))
2056                                 wait_for_completion(&cpu_buffer->update_done);
2057                         cpu_buffer->nr_pages_to_update = 0;
2058                 }
2059
2060                 put_online_cpus();
2061         } else {
2062                 cpu_buffer = buffer->buffers[cpu_id];
2063
2064                 if (nr_pages == cpu_buffer->nr_pages)
2065                         goto out;
2066
2067                 /*
2068                  * Don't succeed if resizing is disabled, as a reader might be
2069                  * manipulating the ring buffer and is expecting a sane state while
2070                  * this is true.
2071                  */
2072                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2073                         err = -EBUSY;
2074                         goto out_err_unlock;
2075                 }
2076
2077                 cpu_buffer->nr_pages_to_update = nr_pages -
2078                                                 cpu_buffer->nr_pages;
2079
2080                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2081                 if (cpu_buffer->nr_pages_to_update > 0 &&
2082                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2083                                             &cpu_buffer->new_pages)) {
2084                         err = -ENOMEM;
2085                         goto out_err;
2086                 }
2087
2088                 get_online_cpus();
2089
2090                 /* Can't run something on an offline CPU. */
2091                 if (!cpu_online(cpu_id))
2092                         rb_update_pages(cpu_buffer);
2093                 else {
2094                         schedule_work_on(cpu_id,
2095                                          &cpu_buffer->update_pages_work);
2096                         wait_for_completion(&cpu_buffer->update_done);
2097                 }
2098
2099                 cpu_buffer->nr_pages_to_update = 0;
2100                 put_online_cpus();
2101         }
2102
2103  out:
2104         /*
2105          * The ring buffer resize can happen with the ring buffer
2106          * enabled, so that the update disturbs the tracing as little
2107          * as possible. But if the buffer is disabled, we do not need
2108          * to worry about that, and we can take the time to verify
2109          * that the buffer is not corrupt.
2110          */
2111         if (atomic_read(&buffer->record_disabled)) {
2112                 atomic_inc(&buffer->record_disabled);
2113                 /*
2114                  * Even though the buffer was disabled, we must make sure
2115                  * that it is truly disabled before calling rb_check_pages.
2116                  * There could have been a race between checking
2117                  * record_disable and incrementing it.
2118                  */
2119                 synchronize_rcu();
2120                 for_each_buffer_cpu(buffer, cpu) {
2121                         cpu_buffer = buffer->buffers[cpu];
2122                         rb_check_pages(cpu_buffer);
2123                 }
2124                 atomic_dec(&buffer->record_disabled);
2125         }
2126
2127         mutex_unlock(&buffer->mutex);
2128         return 0;
2129
2130  out_err:
2131         for_each_buffer_cpu(buffer, cpu) {
2132                 struct buffer_page *bpage, *tmp;
2133
2134                 cpu_buffer = buffer->buffers[cpu];
2135                 cpu_buffer->nr_pages_to_update = 0;
2136
2137                 if (list_empty(&cpu_buffer->new_pages))
2138                         continue;
2139
2140                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2141                                         list) {
2142                         list_del_init(&bpage->list);
2143                         free_buffer_page(bpage);
2144                 }
2145         }
2146  out_err_unlock:
2147         mutex_unlock(&buffer->mutex);
2148         return err;
2149 }
2150 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2151
2152 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2153 {
2154         mutex_lock(&buffer->mutex);
2155         if (val)
2156                 buffer->flags |= RB_FL_OVERWRITE;
2157         else
2158                 buffer->flags &= ~RB_FL_OVERWRITE;
2159         mutex_unlock(&buffer->mutex);
2160 }
2161 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2162
2163 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2164 {
2165         return bpage->page->data + index;
2166 }
2167
2168 static __always_inline struct ring_buffer_event *
2169 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2170 {
2171         return __rb_page_index(cpu_buffer->reader_page,
2172                                cpu_buffer->reader_page->read);
2173 }
2174
2175 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
2176 {
2177         return local_read(&bpage->page->commit);
2178 }
2179
2180 static struct ring_buffer_event *
2181 rb_iter_head_event(struct ring_buffer_iter *iter)
2182 {
2183         struct ring_buffer_event *event;
2184         struct buffer_page *iter_head_page = iter->head_page;
2185         unsigned long commit;
2186         unsigned length;
2187
2188         if (iter->head != iter->next_event)
2189                 return iter->event;
2190
2191         /*
2192          * When the writer goes across pages, it issues a cmpxchg which
2193          * is a mb(), which will synchronize with the rmb here.
2194          * (see rb_tail_page_update() and __rb_reserve_next())
2195          */
2196         commit = rb_page_commit(iter_head_page);
2197         smp_rmb();
2198         event = __rb_page_index(iter_head_page, iter->head);
2199         length = rb_event_length(event);
2200
2201         /*
2202          * READ_ONCE() doesn't work on functions and we don't want the
2203          * compiler doing any crazy optimizations with length.
2204          */
2205         barrier();
2206
2207         if ((iter->head + length) > commit || length > BUF_MAX_DATA_SIZE)
2208                 /* Writer corrupted the read? */
2209                 goto reset;
2210
2211         memcpy(iter->event, event, length);
2212         /*
2213          * If the page stamp is still the same after this rmb() then the
2214          * event was safely copied without the writer entering the page.
2215          */
2216         smp_rmb();
2217
2218         /* Make sure the page didn't change since we read this */
2219         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2220             commit > rb_page_commit(iter_head_page))
2221                 goto reset;
2222
2223         iter->next_event = iter->head + length;
2224         return iter->event;
2225  reset:
2226         /* Reset to the beginning */
2227         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2228         iter->head = 0;
2229         iter->next_event = 0;
2230         iter->missed_events = 1;
2231         return NULL;
2232 }
2233
2234 /* Size is determined by what has been committed */
2235 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2236 {
2237         return rb_page_commit(bpage);
2238 }
2239
2240 static __always_inline unsigned
2241 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2242 {
2243         return rb_page_commit(cpu_buffer->commit_page);
2244 }
2245
2246 static __always_inline unsigned
2247 rb_event_index(struct ring_buffer_event *event)
2248 {
2249         unsigned long addr = (unsigned long)event;
2250
2251         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
2252 }
2253
2254 static void rb_inc_iter(struct ring_buffer_iter *iter)
2255 {
2256         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2257
2258         /*
2259          * The iterator could be on the reader page (it starts there).
2260          * But the head could have moved, since the reader was
2261          * found. Check for this case and assign the iterator
2262          * to the head page instead of next.
2263          */
2264         if (iter->head_page == cpu_buffer->reader_page)
2265                 iter->head_page = rb_set_head_page(cpu_buffer);
2266         else
2267                 rb_inc_page(&iter->head_page);
2268
2269         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2270         iter->head = 0;
2271         iter->next_event = 0;
2272 }
2273
2274 /*
2275  * rb_handle_head_page - writer hit the head page
2276  *
2277  * Returns: +1 to retry page
2278  *           0 to continue
2279  *          -1 on error
2280  */
2281 static int
2282 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2283                     struct buffer_page *tail_page,
2284                     struct buffer_page *next_page)
2285 {
2286         struct buffer_page *new_head;
2287         int entries;
2288         int type;
2289         int ret;
2290
2291         entries = rb_page_entries(next_page);
2292
2293         /*
2294          * The hard part is here. We need to move the head
2295          * forward, and protect against both readers on
2296          * other CPUs and writers coming in via interrupts.
2297          */
2298         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2299                                        RB_PAGE_HEAD);
2300
2301         /*
2302          * type can be one of four:
2303          *  NORMAL - an interrupt already moved it for us
2304          *  HEAD   - we are the first to get here.
2305          *  UPDATE - we are the interrupt interrupting
2306          *           a current move.
2307          *  MOVED  - a reader on another CPU moved the next
2308          *           pointer to its reader page. Give up
2309          *           and try again.
2310          */
2311
2312         switch (type) {
2313         case RB_PAGE_HEAD:
2314                 /*
2315                  * We changed the head to UPDATE, thus
2316                  * it is our responsibility to update
2317                  * the counters.
2318                  */
2319                 local_add(entries, &cpu_buffer->overrun);
2320                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
2321
2322                 /*
2323                  * The entries will be zeroed out when we move the
2324                  * tail page.
2325                  */
2326
2327                 /* still more to do */
2328                 break;
2329
2330         case RB_PAGE_UPDATE:
2331                 /*
2332                  * This is an interrupt that interrupt the
2333                  * previous update. Still more to do.
2334                  */
2335                 break;
2336         case RB_PAGE_NORMAL:
2337                 /*
2338                  * An interrupt came in before the update
2339                  * and processed this for us.
2340                  * Nothing left to do.
2341                  */
2342                 return 1;
2343         case RB_PAGE_MOVED:
2344                 /*
2345                  * The reader is on another CPU and just did
2346                  * a swap with our next_page.
2347                  * Try again.
2348                  */
2349                 return 1;
2350         default:
2351                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2352                 return -1;
2353         }
2354
2355         /*
2356          * Now that we are here, the old head pointer is
2357          * set to UPDATE. This will keep the reader from
2358          * swapping the head page with the reader page.
2359          * The reader (on another CPU) will spin till
2360          * we are finished.
2361          *
2362          * We just need to protect against interrupts
2363          * doing the job. We will set the next pointer
2364          * to HEAD. After that, we set the old pointer
2365          * to NORMAL, but only if it was HEAD before.
2366          * otherwise we are an interrupt, and only
2367          * want the outer most commit to reset it.
2368          */
2369         new_head = next_page;
2370         rb_inc_page(&new_head);
2371
2372         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2373                                     RB_PAGE_NORMAL);
2374
2375         /*
2376          * Valid returns are:
2377          *  HEAD   - an interrupt came in and already set it.
2378          *  NORMAL - One of two things:
2379          *            1) We really set it.
2380          *            2) A bunch of interrupts came in and moved
2381          *               the page forward again.
2382          */
2383         switch (ret) {
2384         case RB_PAGE_HEAD:
2385         case RB_PAGE_NORMAL:
2386                 /* OK */
2387                 break;
2388         default:
2389                 RB_WARN_ON(cpu_buffer, 1);
2390                 return -1;
2391         }
2392
2393         /*
2394          * It is possible that an interrupt came in,
2395          * set the head up, then more interrupts came in
2396          * and moved it again. When we get back here,
2397          * the page would have been set to NORMAL but we
2398          * just set it back to HEAD.
2399          *
2400          * How do you detect this? Well, if that happened
2401          * the tail page would have moved.
2402          */
2403         if (ret == RB_PAGE_NORMAL) {
2404                 struct buffer_page *buffer_tail_page;
2405
2406                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2407                 /*
2408                  * If the tail had moved passed next, then we need
2409                  * to reset the pointer.
2410                  */
2411                 if (buffer_tail_page != tail_page &&
2412                     buffer_tail_page != next_page)
2413                         rb_head_page_set_normal(cpu_buffer, new_head,
2414                                                 next_page,
2415                                                 RB_PAGE_HEAD);
2416         }
2417
2418         /*
2419          * If this was the outer most commit (the one that
2420          * changed the original pointer from HEAD to UPDATE),
2421          * then it is up to us to reset it to NORMAL.
2422          */
2423         if (type == RB_PAGE_HEAD) {
2424                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2425                                               tail_page,
2426                                               RB_PAGE_UPDATE);
2427                 if (RB_WARN_ON(cpu_buffer,
2428                                ret != RB_PAGE_UPDATE))
2429                         return -1;
2430         }
2431
2432         return 0;
2433 }
2434
2435 static inline void
2436 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2437               unsigned long tail, struct rb_event_info *info)
2438 {
2439         struct buffer_page *tail_page = info->tail_page;
2440         struct ring_buffer_event *event;
2441         unsigned long length = info->length;
2442
2443         /*
2444          * Only the event that crossed the page boundary
2445          * must fill the old tail_page with padding.
2446          */
2447         if (tail >= BUF_PAGE_SIZE) {
2448                 /*
2449                  * If the page was filled, then we still need
2450                  * to update the real_end. Reset it to zero
2451                  * and the reader will ignore it.
2452                  */
2453                 if (tail == BUF_PAGE_SIZE)
2454                         tail_page->real_end = 0;
2455
2456                 local_sub(length, &tail_page->write);
2457                 return;
2458         }
2459
2460         event = __rb_page_index(tail_page, tail);
2461
2462         /* account for padding bytes */
2463         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2464
2465         /*
2466          * Save the original length to the meta data.
2467          * This will be used by the reader to add lost event
2468          * counter.
2469          */
2470         tail_page->real_end = tail;
2471
2472         /*
2473          * If this event is bigger than the minimum size, then
2474          * we need to be careful that we don't subtract the
2475          * write counter enough to allow another writer to slip
2476          * in on this page.
2477          * We put in a discarded commit instead, to make sure
2478          * that this space is not used again.
2479          *
2480          * If we are less than the minimum size, we don't need to
2481          * worry about it.
2482          */
2483         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2484                 /* No room for any events */
2485
2486                 /* Mark the rest of the page with padding */
2487                 rb_event_set_padding(event);
2488
2489                 /* Set the write back to the previous setting */
2490                 local_sub(length, &tail_page->write);
2491                 return;
2492         }
2493
2494         /* Put in a discarded event */
2495         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2496         event->type_len = RINGBUF_TYPE_PADDING;
2497         /* time delta must be non zero */
2498         event->time_delta = 1;
2499
2500         /* Set write to end of buffer */
2501         length = (tail + length) - BUF_PAGE_SIZE;
2502         local_sub(length, &tail_page->write);
2503 }
2504
2505 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2506
2507 /*
2508  * This is the slow path, force gcc not to inline it.
2509  */
2510 static noinline struct ring_buffer_event *
2511 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2512              unsigned long tail, struct rb_event_info *info)
2513 {
2514         struct buffer_page *tail_page = info->tail_page;
2515         struct buffer_page *commit_page = cpu_buffer->commit_page;
2516         struct trace_buffer *buffer = cpu_buffer->buffer;
2517         struct buffer_page *next_page;
2518         int ret;
2519
2520         next_page = tail_page;
2521
2522         rb_inc_page(&next_page);
2523
2524         /*
2525          * If for some reason, we had an interrupt storm that made
2526          * it all the way around the buffer, bail, and warn
2527          * about it.
2528          */
2529         if (unlikely(next_page == commit_page)) {
2530                 local_inc(&cpu_buffer->commit_overrun);
2531                 goto out_reset;
2532         }
2533
2534         /*
2535          * This is where the fun begins!
2536          *
2537          * We are fighting against races between a reader that
2538          * could be on another CPU trying to swap its reader
2539          * page with the buffer head.
2540          *
2541          * We are also fighting against interrupts coming in and
2542          * moving the head or tail on us as well.
2543          *
2544          * If the next page is the head page then we have filled
2545          * the buffer, unless the commit page is still on the
2546          * reader page.
2547          */
2548         if (rb_is_head_page(next_page, &tail_page->list)) {
2549
2550                 /*
2551                  * If the commit is not on the reader page, then
2552                  * move the header page.
2553                  */
2554                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2555                         /*
2556                          * If we are not in overwrite mode,
2557                          * this is easy, just stop here.
2558                          */
2559                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2560                                 local_inc(&cpu_buffer->dropped_events);
2561                                 goto out_reset;
2562                         }
2563
2564                         ret = rb_handle_head_page(cpu_buffer,
2565                                                   tail_page,
2566                                                   next_page);
2567                         if (ret < 0)
2568                                 goto out_reset;
2569                         if (ret)
2570                                 goto out_again;
2571                 } else {
2572                         /*
2573                          * We need to be careful here too. The
2574                          * commit page could still be on the reader
2575                          * page. We could have a small buffer, and
2576                          * have filled up the buffer with events
2577                          * from interrupts and such, and wrapped.
2578                          *
2579                          * Note, if the tail page is also on the
2580                          * reader_page, we let it move out.
2581                          */
2582                         if (unlikely((cpu_buffer->commit_page !=
2583                                       cpu_buffer->tail_page) &&
2584                                      (cpu_buffer->commit_page ==
2585                                       cpu_buffer->reader_page))) {
2586                                 local_inc(&cpu_buffer->commit_overrun);
2587                                 goto out_reset;
2588                         }
2589                 }
2590         }
2591
2592         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2593
2594  out_again:
2595
2596         rb_reset_tail(cpu_buffer, tail, info);
2597
2598         /* Commit what we have for now. */
2599         rb_end_commit(cpu_buffer);
2600         /* rb_end_commit() decs committing */
2601         local_inc(&cpu_buffer->committing);
2602
2603         /* fail and let the caller try again */
2604         return ERR_PTR(-EAGAIN);
2605
2606  out_reset:
2607         /* reset write */
2608         rb_reset_tail(cpu_buffer, tail, info);
2609
2610         return NULL;
2611 }
2612
2613 /* Slow path */
2614 static struct ring_buffer_event *
2615 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta, bool abs)
2616 {
2617         if (abs)
2618                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2619         else
2620                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2621
2622         /* Not the first event on the page, or not delta? */
2623         if (abs || rb_event_index(event)) {
2624                 event->time_delta = delta & TS_MASK;
2625                 event->array[0] = delta >> TS_SHIFT;
2626         } else {
2627                 /* nope, just zero it */
2628                 event->time_delta = 0;
2629                 event->array[0] = 0;
2630         }
2631
2632         return skip_time_extend(event);
2633 }
2634
2635 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2636 static inline bool sched_clock_stable(void)
2637 {
2638         return true;
2639 }
2640 #endif
2641
2642 static void
2643 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2644                    struct rb_event_info *info)
2645 {
2646         u64 write_stamp;
2647
2648         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2649                   (unsigned long long)info->delta,
2650                   (unsigned long long)info->ts,
2651                   (unsigned long long)info->before,
2652                   (unsigned long long)info->after,
2653                   (unsigned long long)(rb_time_read(&cpu_buffer->write_stamp, &write_stamp) ? write_stamp : 0),
2654                   sched_clock_stable() ? "" :
2655                   "If you just came from a suspend/resume,\n"
2656                   "please switch to the trace global clock:\n"
2657                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n"
2658                   "or add trace_clock=global to the kernel command line\n");
2659 }
2660
2661 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2662                                       struct ring_buffer_event **event,
2663                                       struct rb_event_info *info,
2664                                       u64 *delta,
2665                                       unsigned int *length)
2666 {
2667         bool abs = info->add_timestamp &
2668                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2669
2670         if (unlikely(info->delta > (1ULL << 59))) {
2671                 /* did the clock go backwards */
2672                 if (info->before == info->after && info->before > info->ts) {
2673                         /* not interrupted */
2674                         static int once;
2675
2676                         /*
2677                          * This is possible with a recalibrating of the TSC.
2678                          * Do not produce a call stack, but just report it.
2679                          */
2680                         if (!once) {
2681                                 once++;
2682                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2683                                         info->before, info->ts);
2684                         }
2685                 } else
2686                         rb_check_timestamp(cpu_buffer, info);
2687                 if (!abs)
2688                         info->delta = 0;
2689         }
2690         *event = rb_add_time_stamp(*event, info->delta, abs);
2691         *length -= RB_LEN_TIME_EXTEND;
2692         *delta = 0;
2693 }
2694
2695 /**
2696  * rb_update_event - update event type and data
2697  * @cpu_buffer: The per cpu buffer of the @event
2698  * @event: the event to update
2699  * @info: The info to update the @event with (contains length and delta)
2700  *
2701  * Update the type and data fields of the @event. The length
2702  * is the actual size that is written to the ring buffer,
2703  * and with this, we can determine what to place into the
2704  * data field.
2705  */
2706 static void
2707 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2708                 struct ring_buffer_event *event,
2709                 struct rb_event_info *info)
2710 {
2711         unsigned length = info->length;
2712         u64 delta = info->delta;
2713
2714         /*
2715          * If we need to add a timestamp, then we
2716          * add it to the start of the reserved space.
2717          */
2718         if (unlikely(info->add_timestamp))
2719                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2720
2721         event->time_delta = delta;
2722         length -= RB_EVNT_HDR_SIZE;
2723         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2724                 event->type_len = 0;
2725                 event->array[0] = length;
2726         } else
2727                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2728 }
2729
2730 static unsigned rb_calculate_event_length(unsigned length)
2731 {
2732         struct ring_buffer_event event; /* Used only for sizeof array */
2733
2734         /* zero length can cause confusions */
2735         if (!length)
2736                 length++;
2737
2738         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2739                 length += sizeof(event.array[0]);
2740
2741         length += RB_EVNT_HDR_SIZE;
2742         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2743
2744         /*
2745          * In case the time delta is larger than the 27 bits for it
2746          * in the header, we need to add a timestamp. If another
2747          * event comes in when trying to discard this one to increase
2748          * the length, then the timestamp will be added in the allocated
2749          * space of this event. If length is bigger than the size needed
2750          * for the TIME_EXTEND, then padding has to be used. The events
2751          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2752          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2753          * As length is a multiple of 4, we only need to worry if it
2754          * is 12 (RB_LEN_TIME_EXTEND + 4).
2755          */
2756         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2757                 length += RB_ALIGNMENT;
2758
2759         return length;
2760 }
2761
2762 static u64 rb_time_delta(struct ring_buffer_event *event)
2763 {
2764         switch (event->type_len) {
2765         case RINGBUF_TYPE_PADDING:
2766                 return 0;
2767
2768         case RINGBUF_TYPE_TIME_EXTEND:
2769                 return ring_buffer_event_time_stamp(event);
2770
2771         case RINGBUF_TYPE_TIME_STAMP:
2772                 return 0;
2773
2774         case RINGBUF_TYPE_DATA:
2775                 return event->time_delta;
2776         default:
2777                 return 0;
2778         }
2779 }
2780
2781 static inline int
2782 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2783                   struct ring_buffer_event *event)
2784 {
2785         unsigned long new_index, old_index;
2786         struct buffer_page *bpage;
2787         unsigned long index;
2788         unsigned long addr;
2789         u64 write_stamp;
2790         u64 delta;
2791
2792         new_index = rb_event_index(event);
2793         old_index = new_index + rb_event_ts_length(event);
2794         addr = (unsigned long)event;
2795         addr &= PAGE_MASK;
2796
2797         bpage = READ_ONCE(cpu_buffer->tail_page);
2798
2799         delta = rb_time_delta(event);
2800
2801         if (!rb_time_read(&cpu_buffer->write_stamp, &write_stamp))
2802                 return 0;
2803
2804         /* Make sure the write stamp is read before testing the location */
2805         barrier();
2806
2807         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2808                 unsigned long write_mask =
2809                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2810                 unsigned long event_length = rb_event_length(event);
2811
2812                 /* Something came in, can't discard */
2813                 if (!rb_time_cmpxchg(&cpu_buffer->write_stamp,
2814                                        write_stamp, write_stamp - delta))
2815                         return 0;
2816
2817                 /*
2818                  * If an event were to come in now, it would see that the
2819                  * write_stamp and the before_stamp are different, and assume
2820                  * that this event just added itself before updating
2821                  * the write stamp. The interrupting event will fix the
2822                  * write stamp for us, and use the before stamp as its delta.
2823                  */
2824
2825                 /*
2826                  * This is on the tail page. It is possible that
2827                  * a write could come in and move the tail page
2828                  * and write to the next page. That is fine
2829                  * because we just shorten what is on this page.
2830                  */
2831                 old_index += write_mask;
2832                 new_index += write_mask;
2833                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2834                 if (index == old_index) {
2835                         /* update counters */
2836                         local_sub(event_length, &cpu_buffer->entries_bytes);
2837                         return 1;
2838                 }
2839         }
2840
2841         /* could not discard */
2842         return 0;
2843 }
2844
2845 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2846 {
2847         local_inc(&cpu_buffer->committing);
2848         local_inc(&cpu_buffer->commits);
2849 }
2850
2851 static __always_inline void
2852 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2853 {
2854         unsigned long max_count;
2855
2856         /*
2857          * We only race with interrupts and NMIs on this CPU.
2858          * If we own the commit event, then we can commit
2859          * all others that interrupted us, since the interruptions
2860          * are in stack format (they finish before they come
2861          * back to us). This allows us to do a simple loop to
2862          * assign the commit to the tail.
2863          */
2864  again:
2865         max_count = cpu_buffer->nr_pages * 100;
2866
2867         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2868                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2869                         return;
2870                 if (RB_WARN_ON(cpu_buffer,
2871                                rb_is_reader_page(cpu_buffer->tail_page)))
2872                         return;
2873                 local_set(&cpu_buffer->commit_page->page->commit,
2874                           rb_page_write(cpu_buffer->commit_page));
2875                 rb_inc_page(&cpu_buffer->commit_page);
2876                 /* add barrier to keep gcc from optimizing too much */
2877                 barrier();
2878         }
2879         while (rb_commit_index(cpu_buffer) !=
2880                rb_page_write(cpu_buffer->commit_page)) {
2881
2882                 local_set(&cpu_buffer->commit_page->page->commit,
2883                           rb_page_write(cpu_buffer->commit_page));
2884                 RB_WARN_ON(cpu_buffer,
2885                            local_read(&cpu_buffer->commit_page->page->commit) &
2886                            ~RB_WRITE_MASK);
2887                 barrier();
2888         }
2889
2890         /* again, keep gcc from optimizing */
2891         barrier();
2892
2893         /*
2894          * If an interrupt came in just after the first while loop
2895          * and pushed the tail page forward, we will be left with
2896          * a dangling commit that will never go forward.
2897          */
2898         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2899                 goto again;
2900 }
2901
2902 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2903 {
2904         unsigned long commits;
2905
2906         if (RB_WARN_ON(cpu_buffer,
2907                        !local_read(&cpu_buffer->committing)))
2908                 return;
2909
2910  again:
2911         commits = local_read(&cpu_buffer->commits);
2912         /* synchronize with interrupts */
2913         barrier();
2914         if (local_read(&cpu_buffer->committing) == 1)
2915                 rb_set_commit_to_write(cpu_buffer);
2916
2917         local_dec(&cpu_buffer->committing);
2918
2919         /* synchronize with interrupts */
2920         barrier();
2921
2922         /*
2923          * Need to account for interrupts coming in between the
2924          * updating of the commit page and the clearing of the
2925          * committing counter.
2926          */
2927         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2928             !local_read(&cpu_buffer->committing)) {
2929                 local_inc(&cpu_buffer->committing);
2930                 goto again;
2931         }
2932 }
2933
2934 static inline void rb_event_discard(struct ring_buffer_event *event)
2935 {
2936         if (extended_time(event))
2937                 event = skip_time_extend(event);
2938
2939         /* array[0] holds the actual length for the discarded event */
2940         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2941         event->type_len = RINGBUF_TYPE_PADDING;
2942         /* time delta must be non zero */
2943         if (!event->time_delta)
2944                 event->time_delta = 1;
2945 }
2946
2947 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2948                       struct ring_buffer_event *event)
2949 {
2950         local_inc(&cpu_buffer->entries);
2951         rb_end_commit(cpu_buffer);
2952 }
2953
2954 static __always_inline void
2955 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2956 {
2957         size_t nr_pages;
2958         size_t dirty;
2959         size_t full;
2960
2961         if (buffer->irq_work.waiters_pending) {
2962                 buffer->irq_work.waiters_pending = false;
2963                 /* irq_work_queue() supplies it's own memory barriers */
2964                 irq_work_queue(&buffer->irq_work.work);
2965         }
2966
2967         if (cpu_buffer->irq_work.waiters_pending) {
2968                 cpu_buffer->irq_work.waiters_pending = false;
2969                 /* irq_work_queue() supplies it's own memory barriers */
2970                 irq_work_queue(&cpu_buffer->irq_work.work);
2971         }
2972
2973         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
2974                 return;
2975
2976         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
2977                 return;
2978
2979         if (!cpu_buffer->irq_work.full_waiters_pending)
2980                 return;
2981
2982         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
2983
2984         full = cpu_buffer->shortest_full;
2985         nr_pages = cpu_buffer->nr_pages;
2986         dirty = ring_buffer_nr_dirty_pages(buffer, cpu_buffer->cpu);
2987         if (full && nr_pages && (dirty * 100) <= full * nr_pages)
2988                 return;
2989
2990         cpu_buffer->irq_work.wakeup_full = true;
2991         cpu_buffer->irq_work.full_waiters_pending = false;
2992         /* irq_work_queue() supplies it's own memory barriers */
2993         irq_work_queue(&cpu_buffer->irq_work.work);
2994 }
2995
2996 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
2997 # define do_ring_buffer_record_recursion()      \
2998         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
2999 #else
3000 # define do_ring_buffer_record_recursion() do { } while (0)
3001 #endif
3002
3003 /*
3004  * The lock and unlock are done within a preempt disable section.
3005  * The current_context per_cpu variable can only be modified
3006  * by the current task between lock and unlock. But it can
3007  * be modified more than once via an interrupt. To pass this
3008  * information from the lock to the unlock without having to
3009  * access the 'in_interrupt()' functions again (which do show
3010  * a bit of overhead in something as critical as function tracing,
3011  * we use a bitmask trick.
3012  *
3013  *  bit 1 =  NMI context
3014  *  bit 2 =  IRQ context
3015  *  bit 3 =  SoftIRQ context
3016  *  bit 4 =  normal context.
3017  *
3018  * This works because this is the order of contexts that can
3019  * preempt other contexts. A SoftIRQ never preempts an IRQ
3020  * context.
3021  *
3022  * When the context is determined, the corresponding bit is
3023  * checked and set (if it was set, then a recursion of that context
3024  * happened).
3025  *
3026  * On unlock, we need to clear this bit. To do so, just subtract
3027  * 1 from the current_context and AND it to itself.
3028  *
3029  * (binary)
3030  *  101 - 1 = 100
3031  *  101 & 100 = 100 (clearing bit zero)
3032  *
3033  *  1010 - 1 = 1001
3034  *  1010 & 1001 = 1000 (clearing bit 1)
3035  *
3036  * The least significant bit can be cleared this way, and it
3037  * just so happens that it is the same bit corresponding to
3038  * the current context.
3039  *
3040  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3041  * is set when a recursion is detected at the current context, and if
3042  * the TRANSITION bit is already set, it will fail the recursion.
3043  * This is needed because there's a lag between the changing of
3044  * interrupt context and updating the preempt count. In this case,
3045  * a false positive will be found. To handle this, one extra recursion
3046  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3047  * bit is already set, then it is considered a recursion and the function
3048  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3049  *
3050  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3051  * to be cleared. Even if it wasn't the context that set it. That is,
3052  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3053  * is called before preempt_count() is updated, since the check will
3054  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3055  * NMI then comes in, it will set the NMI bit, but when the NMI code
3056  * does the trace_recursive_unlock() it will clear the TRANSTION bit
3057  * and leave the NMI bit set. But this is fine, because the interrupt
3058  * code that set the TRANSITION bit will then clear the NMI bit when it
3059  * calls trace_recursive_unlock(). If another NMI comes in, it will
3060  * set the TRANSITION bit and continue.
3061  *
3062  * Note: The TRANSITION bit only handles a single transition between context.
3063  */
3064
3065 static __always_inline int
3066 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3067 {
3068         unsigned int val = cpu_buffer->current_context;
3069         unsigned long pc = preempt_count();
3070         int bit;
3071
3072         if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
3073                 bit = RB_CTX_NORMAL;
3074         else
3075                 bit = pc & NMI_MASK ? RB_CTX_NMI :
3076                         pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
3077
3078         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3079                 /*
3080                  * It is possible that this was called by transitioning
3081                  * between interrupt context, and preempt_count() has not
3082                  * been updated yet. In this case, use the TRANSITION bit.
3083                  */
3084                 bit = RB_CTX_TRANSITION;
3085                 if (val & (1 << (bit + cpu_buffer->nest))) {
3086                         do_ring_buffer_record_recursion();
3087                         return 1;
3088                 }
3089         }
3090
3091         val |= (1 << (bit + cpu_buffer->nest));
3092         cpu_buffer->current_context = val;
3093
3094         return 0;
3095 }
3096
3097 static __always_inline void
3098 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3099 {
3100         cpu_buffer->current_context &=
3101                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3102 }
3103
3104 /* The recursive locking above uses 5 bits */
3105 #define NESTED_BITS 5
3106
3107 /**
3108  * ring_buffer_nest_start - Allow to trace while nested
3109  * @buffer: The ring buffer to modify
3110  *
3111  * The ring buffer has a safety mechanism to prevent recursion.
3112  * But there may be a case where a trace needs to be done while
3113  * tracing something else. In this case, calling this function
3114  * will allow this function to nest within a currently active
3115  * ring_buffer_lock_reserve().
3116  *
3117  * Call this function before calling another ring_buffer_lock_reserve() and
3118  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3119  */
3120 void ring_buffer_nest_start(struct trace_buffer *buffer)
3121 {
3122         struct ring_buffer_per_cpu *cpu_buffer;
3123         int cpu;
3124
3125         /* Enabled by ring_buffer_nest_end() */
3126         preempt_disable_notrace();
3127         cpu = raw_smp_processor_id();
3128         cpu_buffer = buffer->buffers[cpu];
3129         /* This is the shift value for the above recursive locking */
3130         cpu_buffer->nest += NESTED_BITS;
3131 }
3132
3133 /**
3134  * ring_buffer_nest_end - Allow to trace while nested
3135  * @buffer: The ring buffer to modify
3136  *
3137  * Must be called after ring_buffer_nest_start() and after the
3138  * ring_buffer_unlock_commit().
3139  */
3140 void ring_buffer_nest_end(struct trace_buffer *buffer)
3141 {
3142         struct ring_buffer_per_cpu *cpu_buffer;
3143         int cpu;
3144
3145         /* disabled by ring_buffer_nest_start() */
3146         cpu = raw_smp_processor_id();
3147         cpu_buffer = buffer->buffers[cpu];
3148         /* This is the shift value for the above recursive locking */
3149         cpu_buffer->nest -= NESTED_BITS;
3150         preempt_enable_notrace();
3151 }
3152
3153 /**
3154  * ring_buffer_unlock_commit - commit a reserved
3155  * @buffer: The buffer to commit to
3156  * @event: The event pointer to commit.
3157  *
3158  * This commits the data to the ring buffer, and releases any locks held.
3159  *
3160  * Must be paired with ring_buffer_lock_reserve.
3161  */
3162 int ring_buffer_unlock_commit(struct trace_buffer *buffer,
3163                               struct ring_buffer_event *event)
3164 {
3165         struct ring_buffer_per_cpu *cpu_buffer;
3166         int cpu = raw_smp_processor_id();
3167
3168         cpu_buffer = buffer->buffers[cpu];
3169
3170         rb_commit(cpu_buffer, event);
3171
3172         rb_wakeups(buffer, cpu_buffer);
3173
3174         trace_recursive_unlock(cpu_buffer);
3175
3176         preempt_enable_notrace();
3177
3178         return 0;
3179 }
3180 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3181
3182 /* Special value to validate all deltas on a page. */
3183 #define CHECK_FULL_PAGE         1L
3184
3185 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3186 static void dump_buffer_page(struct buffer_data_page *bpage,
3187                              struct rb_event_info *info,
3188                              unsigned long tail)
3189 {
3190         struct ring_buffer_event *event;
3191         u64 ts, delta;
3192         int e;
3193
3194         ts = bpage->time_stamp;
3195         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3196
3197         for (e = 0; e < tail; e += rb_event_length(event)) {
3198
3199                 event = (struct ring_buffer_event *)(bpage->data + e);
3200
3201                 switch (event->type_len) {
3202
3203                 case RINGBUF_TYPE_TIME_EXTEND:
3204                         delta = ring_buffer_event_time_stamp(event);
3205                         ts += delta;
3206                         pr_warn("  [%lld] delta:%lld TIME EXTEND\n", ts, delta);
3207                         break;
3208
3209                 case RINGBUF_TYPE_TIME_STAMP:
3210                         delta = ring_buffer_event_time_stamp(event);
3211                         ts = delta;
3212                         pr_warn("  [%lld] absolute:%lld TIME STAMP\n", ts, delta);
3213                         break;
3214
3215                 case RINGBUF_TYPE_PADDING:
3216                         ts += event->time_delta;
3217                         pr_warn("  [%lld] delta:%d PADDING\n", ts, event->time_delta);
3218                         break;
3219
3220                 case RINGBUF_TYPE_DATA:
3221                         ts += event->time_delta;
3222                         pr_warn("  [%lld] delta:%d\n", ts, event->time_delta);
3223                         break;
3224
3225                 default:
3226                         break;
3227                 }
3228         }
3229 }
3230
3231 static DEFINE_PER_CPU(atomic_t, checking);
3232 static atomic_t ts_dump;
3233
3234 /*
3235  * Check if the current event time stamp matches the deltas on
3236  * the buffer page.
3237  */
3238 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3239                          struct rb_event_info *info,
3240                          unsigned long tail)
3241 {
3242         struct ring_buffer_event *event;
3243         struct buffer_data_page *bpage;
3244         u64 ts, delta;
3245         bool full = false;
3246         int e;
3247
3248         bpage = info->tail_page->page;
3249
3250         if (tail == CHECK_FULL_PAGE) {
3251                 full = true;
3252                 tail = local_read(&bpage->commit);
3253         } else if (info->add_timestamp &
3254                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3255                 /* Ignore events with absolute time stamps */
3256                 return;
3257         }
3258
3259         /*
3260          * Do not check the first event (skip possible extends too).
3261          * Also do not check if previous events have not been committed.
3262          */
3263         if (tail <= 8 || tail > local_read(&bpage->commit))
3264                 return;
3265
3266         /*
3267          * If this interrupted another event, 
3268          */
3269         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3270                 goto out;
3271
3272         ts = bpage->time_stamp;
3273
3274         for (e = 0; e < tail; e += rb_event_length(event)) {
3275
3276                 event = (struct ring_buffer_event *)(bpage->data + e);
3277
3278                 switch (event->type_len) {
3279
3280                 case RINGBUF_TYPE_TIME_EXTEND:
3281                         delta = ring_buffer_event_time_stamp(event);
3282                         ts += delta;
3283                         break;
3284
3285                 case RINGBUF_TYPE_TIME_STAMP:
3286                         delta = ring_buffer_event_time_stamp(event);
3287                         ts = delta;
3288                         break;
3289
3290                 case RINGBUF_TYPE_PADDING:
3291                         if (event->time_delta == 1)
3292                                 break;
3293                         /* fall through */
3294                 case RINGBUF_TYPE_DATA:
3295                         ts += event->time_delta;
3296                         break;
3297
3298                 default:
3299                         RB_WARN_ON(cpu_buffer, 1);
3300                 }
3301         }
3302         if ((full && ts > info->ts) ||
3303             (!full && ts + info->delta != info->ts)) {
3304                 /* If another report is happening, ignore this one */
3305                 if (atomic_inc_return(&ts_dump) != 1) {
3306                         atomic_dec(&ts_dump);
3307                         goto out;
3308                 }
3309                 atomic_inc(&cpu_buffer->record_disabled);
3310                 pr_warn("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld after:%lld\n",
3311                        cpu_buffer->cpu,
3312                        ts + info->delta, info->ts, info->delta, info->after);
3313                 dump_buffer_page(bpage, info, tail);
3314                 atomic_dec(&ts_dump);
3315                 /* Do not re-enable checking */
3316                 return;
3317         }
3318 out:
3319         atomic_dec(this_cpu_ptr(&checking));
3320 }
3321 #else
3322 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3323                          struct rb_event_info *info,
3324                          unsigned long tail)
3325 {
3326 }
3327 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3328
3329 static struct ring_buffer_event *
3330 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3331                   struct rb_event_info *info)
3332 {
3333         struct ring_buffer_event *event;
3334         struct buffer_page *tail_page;
3335         unsigned long tail, write, w;
3336         bool a_ok;
3337         bool b_ok;
3338
3339         /* Don't let the compiler play games with cpu_buffer->tail_page */
3340         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3341
3342  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3343         barrier();
3344         b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3345         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3346         barrier();
3347         info->ts = rb_time_stamp(cpu_buffer->buffer);
3348
3349         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3350                 info->delta = info->ts;
3351         } else {
3352                 /*
3353                  * If interrupting an event time update, we may need an
3354                  * absolute timestamp.
3355                  * Don't bother if this is the start of a new page (w == 0).
3356                  */
3357                 if (unlikely(!a_ok || !b_ok || (info->before != info->after && w))) {
3358                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3359                         info->length += RB_LEN_TIME_EXTEND;
3360                 } else {
3361                         info->delta = info->ts - info->after;
3362                         if (unlikely(test_time_stamp(info->delta))) {
3363                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3364                                 info->length += RB_LEN_TIME_EXTEND;
3365                         }
3366                 }
3367         }
3368
3369  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3370
3371  /*C*/  write = local_add_return(info->length, &tail_page->write);
3372
3373         /* set write to only the index of the write */
3374         write &= RB_WRITE_MASK;
3375
3376         tail = write - info->length;
3377
3378         /* See if we shot pass the end of this buffer page */
3379         if (unlikely(write > BUF_PAGE_SIZE)) {
3380                 /* before and after may now different, fix it up*/
3381                 b_ok = rb_time_read(&cpu_buffer->before_stamp, &info->before);
3382                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3383                 if (a_ok && b_ok && info->before != info->after)
3384                         (void)rb_time_cmpxchg(&cpu_buffer->before_stamp,
3385                                               info->before, info->after);
3386                 if (a_ok && b_ok)
3387                         check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3388                 return rb_move_tail(cpu_buffer, tail, info);
3389         }
3390
3391         if (likely(tail == w)) {
3392                 u64 save_before;
3393                 bool s_ok;
3394
3395                 /* Nothing interrupted us between A and C */
3396  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3397                 barrier();
3398  /*E*/          s_ok = rb_time_read(&cpu_buffer->before_stamp, &save_before);
3399                 RB_WARN_ON(cpu_buffer, !s_ok);
3400                 if (likely(!(info->add_timestamp &
3401                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3402                         /* This did not interrupt any time update */
3403                         info->delta = info->ts - info->after;
3404                 else
3405                         /* Just use full timestamp for interrupting event */
3406                         info->delta = info->ts;
3407                 barrier();
3408                 check_buffer(cpu_buffer, info, tail);
3409                 if (unlikely(info->ts != save_before)) {
3410                         /* SLOW PATH - Interrupted between C and E */
3411
3412                         a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3413                         RB_WARN_ON(cpu_buffer, !a_ok);
3414
3415                         /* Write stamp must only go forward */
3416                         if (save_before > info->after) {
3417                                 /*
3418                                  * We do not care about the result, only that
3419                                  * it gets updated atomically.
3420                                  */
3421                                 (void)rb_time_cmpxchg(&cpu_buffer->write_stamp,
3422                                                       info->after, save_before);
3423                         }
3424                 }
3425         } else {
3426                 u64 ts;
3427                 /* SLOW PATH - Interrupted between A and C */
3428                 a_ok = rb_time_read(&cpu_buffer->write_stamp, &info->after);
3429                 /* Was interrupted before here, write_stamp must be valid */
3430                 RB_WARN_ON(cpu_buffer, !a_ok);
3431                 ts = rb_time_stamp(cpu_buffer->buffer);
3432                 barrier();
3433  /*E*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3434                     info->after < ts &&
3435                     rb_time_cmpxchg(&cpu_buffer->write_stamp,
3436                                     info->after, ts)) {
3437                         /* Nothing came after this event between C and E */
3438                         info->delta = ts - info->after;
3439                         info->ts = ts;
3440                 } else {
3441                         /*
3442                          * Interrupted between C and E:
3443                          * Lost the previous events time stamp. Just set the
3444                          * delta to zero, and this will be the same time as
3445                          * the event this event interrupted. And the events that
3446                          * came after this will still be correct (as they would
3447                          * have built their delta on the previous event.
3448                          */
3449                         info->delta = 0;
3450                 }
3451                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3452         }
3453
3454         /*
3455          * If this is the first commit on the page, then it has the same
3456          * timestamp as the page itself.
3457          */
3458         if (unlikely(!tail && !(info->add_timestamp &
3459                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3460                 info->delta = 0;
3461
3462         /* We reserved something on the buffer */
3463
3464         event = __rb_page_index(tail_page, tail);
3465         rb_update_event(cpu_buffer, event, info);
3466
3467         local_inc(&tail_page->entries);
3468
3469         /*
3470          * If this is the first commit on the page, then update
3471          * its timestamp.
3472          */
3473         if (unlikely(!tail))
3474                 tail_page->page->time_stamp = info->ts;
3475
3476         /* account for these added bytes */
3477         local_add(info->length, &cpu_buffer->entries_bytes);
3478
3479         return event;
3480 }
3481
3482 static __always_inline struct ring_buffer_event *
3483 rb_reserve_next_event(struct trace_buffer *buffer,
3484                       struct ring_buffer_per_cpu *cpu_buffer,
3485                       unsigned long length)
3486 {
3487         struct ring_buffer_event *event;
3488         struct rb_event_info info;
3489         int nr_loops = 0;
3490         int add_ts_default;
3491
3492         rb_start_commit(cpu_buffer);
3493         /* The commit page can not change after this */
3494
3495 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3496         /*
3497          * Due to the ability to swap a cpu buffer from a buffer
3498          * it is possible it was swapped before we committed.
3499          * (committing stops a swap). We check for it here and
3500          * if it happened, we have to fail the write.
3501          */
3502         barrier();
3503         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3504                 local_dec(&cpu_buffer->committing);
3505                 local_dec(&cpu_buffer->commits);
3506                 return NULL;
3507         }
3508 #endif
3509
3510         info.length = rb_calculate_event_length(length);
3511
3512         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3513                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3514                 info.length += RB_LEN_TIME_EXTEND;
3515         } else {
3516                 add_ts_default = RB_ADD_STAMP_NONE;
3517         }
3518
3519  again:
3520         info.add_timestamp = add_ts_default;
3521         info.delta = 0;
3522
3523         /*
3524          * We allow for interrupts to reenter here and do a trace.
3525          * If one does, it will cause this original code to loop
3526          * back here. Even with heavy interrupts happening, this
3527          * should only happen a few times in a row. If this happens
3528          * 1000 times in a row, there must be either an interrupt
3529          * storm or we have something buggy.
3530          * Bail!
3531          */
3532         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3533                 goto out_fail;
3534
3535         event = __rb_reserve_next(cpu_buffer, &info);
3536
3537         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3538                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3539                         info.length -= RB_LEN_TIME_EXTEND;
3540                 goto again;
3541         }
3542
3543         if (likely(event))
3544                 return event;
3545  out_fail:
3546         rb_end_commit(cpu_buffer);
3547         return NULL;
3548 }
3549
3550 /**
3551  * ring_buffer_lock_reserve - reserve a part of the buffer
3552  * @buffer: the ring buffer to reserve from
3553  * @length: the length of the data to reserve (excluding event header)
3554  *
3555  * Returns a reserved event on the ring buffer to copy directly to.
3556  * The user of this interface will need to get the body to write into
3557  * and can use the ring_buffer_event_data() interface.
3558  *
3559  * The length is the length of the data needed, not the event length
3560  * which also includes the event header.
3561  *
3562  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3563  * If NULL is returned, then nothing has been allocated or locked.
3564  */
3565 struct ring_buffer_event *
3566 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3567 {
3568         struct ring_buffer_per_cpu *cpu_buffer;
3569         struct ring_buffer_event *event;
3570         int cpu;
3571
3572         /* If we are tracing schedule, we don't want to recurse */
3573         preempt_disable_notrace();
3574
3575         if (unlikely(atomic_read(&buffer->record_disabled)))
3576                 goto out;
3577
3578         cpu = raw_smp_processor_id();
3579
3580         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3581                 goto out;
3582
3583         cpu_buffer = buffer->buffers[cpu];
3584
3585         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3586                 goto out;
3587
3588         if (unlikely(length > BUF_MAX_DATA_SIZE))
3589                 goto out;
3590
3591         if (unlikely(trace_recursive_lock(cpu_buffer)))
3592                 goto out;
3593
3594         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3595         if (!event)
3596                 goto out_unlock;
3597
3598         return event;
3599
3600  out_unlock:
3601         trace_recursive_unlock(cpu_buffer);
3602  out:
3603         preempt_enable_notrace();
3604         return NULL;
3605 }
3606 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3607
3608 /*
3609  * Decrement the entries to the page that an event is on.
3610  * The event does not even need to exist, only the pointer
3611  * to the page it is on. This may only be called before the commit
3612  * takes place.
3613  */
3614 static inline void
3615 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3616                    struct ring_buffer_event *event)
3617 {
3618         unsigned long addr = (unsigned long)event;
3619         struct buffer_page *bpage = cpu_buffer->commit_page;
3620         struct buffer_page *start;
3621
3622         addr &= PAGE_MASK;
3623
3624         /* Do the likely case first */
3625         if (likely(bpage->page == (void *)addr)) {
3626                 local_dec(&bpage->entries);
3627                 return;
3628         }
3629
3630         /*
3631          * Because the commit page may be on the reader page we
3632          * start with the next page and check the end loop there.
3633          */
3634         rb_inc_page(&bpage);
3635         start = bpage;
3636         do {
3637                 if (bpage->page == (void *)addr) {
3638                         local_dec(&bpage->entries);
3639                         return;
3640                 }
3641                 rb_inc_page(&bpage);
3642         } while (bpage != start);
3643
3644         /* commit not part of this buffer?? */
3645         RB_WARN_ON(cpu_buffer, 1);
3646 }
3647
3648 /**
3649  * ring_buffer_discard_commit - discard an event that has not been committed
3650  * @buffer: the ring buffer
3651  * @event: non committed event to discard
3652  *
3653  * Sometimes an event that is in the ring buffer needs to be ignored.
3654  * This function lets the user discard an event in the ring buffer
3655  * and then that event will not be read later.
3656  *
3657  * This function only works if it is called before the item has been
3658  * committed. It will try to free the event from the ring buffer
3659  * if another event has not been added behind it.
3660  *
3661  * If another event has been added behind it, it will set the event
3662  * up as discarded, and perform the commit.
3663  *
3664  * If this function is called, do not call ring_buffer_unlock_commit on
3665  * the event.
3666  */
3667 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3668                                 struct ring_buffer_event *event)
3669 {
3670         struct ring_buffer_per_cpu *cpu_buffer;
3671         int cpu;
3672
3673         /* The event is discarded regardless */
3674         rb_event_discard(event);
3675
3676         cpu = smp_processor_id();
3677         cpu_buffer = buffer->buffers[cpu];
3678
3679         /*
3680          * This must only be called if the event has not been
3681          * committed yet. Thus we can assume that preemption
3682          * is still disabled.
3683          */
3684         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3685
3686         rb_decrement_entry(cpu_buffer, event);
3687         if (rb_try_to_discard(cpu_buffer, event))
3688                 goto out;
3689
3690  out:
3691         rb_end_commit(cpu_buffer);
3692
3693         trace_recursive_unlock(cpu_buffer);
3694
3695         preempt_enable_notrace();
3696
3697 }
3698 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3699
3700 /**
3701  * ring_buffer_write - write data to the buffer without reserving
3702  * @buffer: The ring buffer to write to.
3703  * @length: The length of the data being written (excluding the event header)
3704  * @data: The data to write to the buffer.
3705  *
3706  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3707  * one function. If you already have the data to write to the buffer, it
3708  * may be easier to simply call this function.
3709  *
3710  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3711  * and not the length of the event which would hold the header.
3712  */
3713 int ring_buffer_write(struct trace_buffer *buffer,
3714                       unsigned long length,
3715                       void *data)
3716 {
3717         struct ring_buffer_per_cpu *cpu_buffer;
3718         struct ring_buffer_event *event;
3719         void *body;
3720         int ret = -EBUSY;
3721         int cpu;
3722
3723         preempt_disable_notrace();
3724
3725         if (atomic_read(&buffer->record_disabled))
3726                 goto out;
3727
3728         cpu = raw_smp_processor_id();
3729
3730         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3731                 goto out;
3732
3733         cpu_buffer = buffer->buffers[cpu];
3734
3735         if (atomic_read(&cpu_buffer->record_disabled))
3736                 goto out;
3737
3738         if (length > BUF_MAX_DATA_SIZE)
3739                 goto out;
3740
3741         if (unlikely(trace_recursive_lock(cpu_buffer)))
3742                 goto out;
3743
3744         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3745         if (!event)
3746                 goto out_unlock;
3747
3748         body = rb_event_data(event);
3749
3750         memcpy(body, data, length);
3751
3752         rb_commit(cpu_buffer, event);
3753
3754         rb_wakeups(buffer, cpu_buffer);
3755
3756         ret = 0;
3757
3758  out_unlock:
3759         trace_recursive_unlock(cpu_buffer);
3760
3761  out:
3762         preempt_enable_notrace();
3763
3764         return ret;
3765 }
3766 EXPORT_SYMBOL_GPL(ring_buffer_write);
3767
3768 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3769 {
3770         struct buffer_page *reader = cpu_buffer->reader_page;
3771         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3772         struct buffer_page *commit = cpu_buffer->commit_page;
3773
3774         /* In case of error, head will be NULL */
3775         if (unlikely(!head))
3776                 return true;
3777
3778         return reader->read == rb_page_commit(reader) &&
3779                 (commit == reader ||
3780                  (commit == head &&
3781                   head->read == rb_page_commit(commit)));
3782 }
3783
3784 /**
3785  * ring_buffer_record_disable - stop all writes into the buffer
3786  * @buffer: The ring buffer to stop writes to.
3787  *
3788  * This prevents all writes to the buffer. Any attempt to write
3789  * to the buffer after this will fail and return NULL.
3790  *
3791  * The caller should call synchronize_rcu() after this.
3792  */
3793 void ring_buffer_record_disable(struct trace_buffer *buffer)
3794 {
3795         atomic_inc(&buffer->record_disabled);
3796 }
3797 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3798
3799 /**
3800  * ring_buffer_record_enable - enable writes to the buffer
3801  * @buffer: The ring buffer to enable writes
3802  *
3803  * Note, multiple disables will need the same number of enables
3804  * to truly enable the writing (much like preempt_disable).
3805  */
3806 void ring_buffer_record_enable(struct trace_buffer *buffer)
3807 {
3808         atomic_dec(&buffer->record_disabled);
3809 }
3810 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3811
3812 /**
3813  * ring_buffer_record_off - stop all writes into the buffer
3814  * @buffer: The ring buffer to stop writes to.
3815  *
3816  * This prevents all writes to the buffer. Any attempt to write
3817  * to the buffer after this will fail and return NULL.
3818  *
3819  * This is different than ring_buffer_record_disable() as
3820  * it works like an on/off switch, where as the disable() version
3821  * must be paired with a enable().
3822  */
3823 void ring_buffer_record_off(struct trace_buffer *buffer)
3824 {
3825         unsigned int rd;
3826         unsigned int new_rd;
3827
3828         do {
3829                 rd = atomic_read(&buffer->record_disabled);
3830                 new_rd = rd | RB_BUFFER_OFF;
3831         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3832 }
3833 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3834
3835 /**
3836  * ring_buffer_record_on - restart writes into the buffer
3837  * @buffer: The ring buffer to start writes to.
3838  *
3839  * This enables all writes to the buffer that was disabled by
3840  * ring_buffer_record_off().
3841  *
3842  * This is different than ring_buffer_record_enable() as
3843  * it works like an on/off switch, where as the enable() version
3844  * must be paired with a disable().
3845  */
3846 void ring_buffer_record_on(struct trace_buffer *buffer)
3847 {
3848         unsigned int rd;
3849         unsigned int new_rd;
3850
3851         do {
3852                 rd = atomic_read(&buffer->record_disabled);
3853                 new_rd = rd & ~RB_BUFFER_OFF;
3854         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3855 }
3856 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3857
3858 /**
3859  * ring_buffer_record_is_on - return true if the ring buffer can write
3860  * @buffer: The ring buffer to see if write is enabled
3861  *
3862  * Returns true if the ring buffer is in a state that it accepts writes.
3863  */
3864 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
3865 {
3866         return !atomic_read(&buffer->record_disabled);
3867 }
3868
3869 /**
3870  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3871  * @buffer: The ring buffer to see if write is set enabled
3872  *
3873  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3874  * Note that this does NOT mean it is in a writable state.
3875  *
3876  * It may return true when the ring buffer has been disabled by
3877  * ring_buffer_record_disable(), as that is a temporary disabling of
3878  * the ring buffer.
3879  */
3880 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
3881 {
3882         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
3883 }
3884
3885 /**
3886  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3887  * @buffer: The ring buffer to stop writes to.
3888  * @cpu: The CPU buffer to stop
3889  *
3890  * This prevents all writes to the buffer. Any attempt to write
3891  * to the buffer after this will fail and return NULL.
3892  *
3893  * The caller should call synchronize_rcu() after this.
3894  */
3895 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
3896 {
3897         struct ring_buffer_per_cpu *cpu_buffer;
3898
3899         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3900                 return;
3901
3902         cpu_buffer = buffer->buffers[cpu];
3903         atomic_inc(&cpu_buffer->record_disabled);
3904 }
3905 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3906
3907 /**
3908  * ring_buffer_record_enable_cpu - enable writes to the buffer
3909  * @buffer: The ring buffer to enable writes
3910  * @cpu: The CPU to enable.
3911  *
3912  * Note, multiple disables will need the same number of enables
3913  * to truly enable the writing (much like preempt_disable).
3914  */
3915 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
3916 {
3917         struct ring_buffer_per_cpu *cpu_buffer;
3918
3919         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3920                 return;
3921
3922         cpu_buffer = buffer->buffers[cpu];
3923         atomic_dec(&cpu_buffer->record_disabled);
3924 }
3925 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3926
3927 /*
3928  * The total entries in the ring buffer is the running counter
3929  * of entries entered into the ring buffer, minus the sum of
3930  * the entries read from the ring buffer and the number of
3931  * entries that were overwritten.
3932  */
3933 static inline unsigned long
3934 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3935 {
3936         return local_read(&cpu_buffer->entries) -
3937                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3938 }
3939
3940 /**
3941  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3942  * @buffer: The ring buffer
3943  * @cpu: The per CPU buffer to read from.
3944  */
3945 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
3946 {
3947         unsigned long flags;
3948         struct ring_buffer_per_cpu *cpu_buffer;
3949         struct buffer_page *bpage;
3950         u64 ret = 0;
3951
3952         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3953                 return 0;
3954
3955         cpu_buffer = buffer->buffers[cpu];
3956         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3957         /*
3958          * if the tail is on reader_page, oldest time stamp is on the reader
3959          * page
3960          */
3961         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3962                 bpage = cpu_buffer->reader_page;
3963         else
3964                 bpage = rb_set_head_page(cpu_buffer);
3965         if (bpage)
3966                 ret = bpage->page->time_stamp;
3967         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3968
3969         return ret;
3970 }
3971 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3972
3973 /**
3974  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3975  * @buffer: The ring buffer
3976  * @cpu: The per CPU buffer to read from.
3977  */
3978 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
3979 {
3980         struct ring_buffer_per_cpu *cpu_buffer;
3981         unsigned long ret;
3982
3983         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3984                 return 0;
3985
3986         cpu_buffer = buffer->buffers[cpu];
3987         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3988
3989         return ret;
3990 }
3991 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3992
3993 /**
3994  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3995  * @buffer: The ring buffer
3996  * @cpu: The per CPU buffer to get the entries from.
3997  */
3998 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
3999 {
4000         struct ring_buffer_per_cpu *cpu_buffer;
4001
4002         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4003                 return 0;
4004
4005         cpu_buffer = buffer->buffers[cpu];
4006
4007         return rb_num_of_entries(cpu_buffer);
4008 }
4009 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4010
4011 /**
4012  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4013  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4014  * @buffer: The ring buffer
4015  * @cpu: The per CPU buffer to get the number of overruns from
4016  */
4017 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4018 {
4019         struct ring_buffer_per_cpu *cpu_buffer;
4020         unsigned long ret;
4021
4022         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4023                 return 0;
4024
4025         cpu_buffer = buffer->buffers[cpu];
4026         ret = local_read(&cpu_buffer->overrun);
4027
4028         return ret;
4029 }
4030 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4031
4032 /**
4033  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4034  * commits failing due to the buffer wrapping around while there are uncommitted
4035  * events, such as during an interrupt storm.
4036  * @buffer: The ring buffer
4037  * @cpu: The per CPU buffer to get the number of overruns from
4038  */
4039 unsigned long
4040 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4041 {
4042         struct ring_buffer_per_cpu *cpu_buffer;
4043         unsigned long ret;
4044
4045         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4046                 return 0;
4047
4048         cpu_buffer = buffer->buffers[cpu];
4049         ret = local_read(&cpu_buffer->commit_overrun);
4050
4051         return ret;
4052 }
4053 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4054
4055 /**
4056  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4057  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4058  * @buffer: The ring buffer
4059  * @cpu: The per CPU buffer to get the number of overruns from
4060  */
4061 unsigned long
4062 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4063 {
4064         struct ring_buffer_per_cpu *cpu_buffer;
4065         unsigned long ret;
4066
4067         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4068                 return 0;
4069
4070         cpu_buffer = buffer->buffers[cpu];
4071         ret = local_read(&cpu_buffer->dropped_events);
4072
4073         return ret;
4074 }
4075 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4076
4077 /**
4078  * ring_buffer_read_events_cpu - get the number of events successfully read
4079  * @buffer: The ring buffer
4080  * @cpu: The per CPU buffer to get the number of events read
4081  */
4082 unsigned long
4083 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4084 {
4085         struct ring_buffer_per_cpu *cpu_buffer;
4086
4087         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4088                 return 0;
4089
4090         cpu_buffer = buffer->buffers[cpu];
4091         return cpu_buffer->read;
4092 }
4093 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4094
4095 /**
4096  * ring_buffer_entries - get the number of entries in a buffer
4097  * @buffer: The ring buffer
4098  *
4099  * Returns the total number of entries in the ring buffer
4100  * (all CPU entries)
4101  */
4102 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4103 {
4104         struct ring_buffer_per_cpu *cpu_buffer;
4105         unsigned long entries = 0;
4106         int cpu;
4107
4108         /* if you care about this being correct, lock the buffer */
4109         for_each_buffer_cpu(buffer, cpu) {
4110                 cpu_buffer = buffer->buffers[cpu];
4111                 entries += rb_num_of_entries(cpu_buffer);
4112         }
4113
4114         return entries;
4115 }
4116 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4117
4118 /**
4119  * ring_buffer_overruns - get the number of overruns in buffer
4120  * @buffer: The ring buffer
4121  *
4122  * Returns the total number of overruns in the ring buffer
4123  * (all CPU entries)
4124  */
4125 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4126 {
4127         struct ring_buffer_per_cpu *cpu_buffer;
4128         unsigned long overruns = 0;
4129         int cpu;
4130
4131         /* if you care about this being correct, lock the buffer */
4132         for_each_buffer_cpu(buffer, cpu) {
4133                 cpu_buffer = buffer->buffers[cpu];
4134                 overruns += local_read(&cpu_buffer->overrun);
4135         }
4136
4137         return overruns;
4138 }
4139 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4140
4141 static void rb_iter_reset(struct ring_buffer_iter *iter)
4142 {
4143         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4144
4145         /* Iterator usage is expected to have record disabled */
4146         iter->head_page = cpu_buffer->reader_page;
4147         iter->head = cpu_buffer->reader_page->read;
4148         iter->next_event = iter->head;
4149
4150         iter->cache_reader_page = iter->head_page;
4151         iter->cache_read = cpu_buffer->read;
4152
4153         if (iter->head) {
4154                 iter->read_stamp = cpu_buffer->read_stamp;
4155                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4156         } else {
4157                 iter->read_stamp = iter->head_page->page->time_stamp;
4158                 iter->page_stamp = iter->read_stamp;
4159         }
4160 }
4161
4162 /**
4163  * ring_buffer_iter_reset - reset an iterator
4164  * @iter: The iterator to reset
4165  *
4166  * Resets the iterator, so that it will start from the beginning
4167  * again.
4168  */
4169 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4170 {
4171         struct ring_buffer_per_cpu *cpu_buffer;
4172         unsigned long flags;
4173
4174         if (!iter)
4175                 return;
4176
4177         cpu_buffer = iter->cpu_buffer;
4178
4179         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4180         rb_iter_reset(iter);
4181         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4182 }
4183 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4184
4185 /**
4186  * ring_buffer_iter_empty - check if an iterator has no more to read
4187  * @iter: The iterator to check
4188  */
4189 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4190 {
4191         struct ring_buffer_per_cpu *cpu_buffer;
4192         struct buffer_page *reader;
4193         struct buffer_page *head_page;
4194         struct buffer_page *commit_page;
4195         struct buffer_page *curr_commit_page;
4196         unsigned commit;
4197         u64 curr_commit_ts;
4198         u64 commit_ts;
4199
4200         cpu_buffer = iter->cpu_buffer;
4201         reader = cpu_buffer->reader_page;
4202         head_page = cpu_buffer->head_page;
4203         commit_page = cpu_buffer->commit_page;
4204         commit_ts = commit_page->page->time_stamp;
4205
4206         /*
4207          * When the writer goes across pages, it issues a cmpxchg which
4208          * is a mb(), which will synchronize with the rmb here.
4209          * (see rb_tail_page_update())
4210          */
4211         smp_rmb();
4212         commit = rb_page_commit(commit_page);
4213         /* We want to make sure that the commit page doesn't change */
4214         smp_rmb();
4215
4216         /* Make sure commit page didn't change */
4217         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4218         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4219
4220         /* If the commit page changed, then there's more data */
4221         if (curr_commit_page != commit_page ||
4222             curr_commit_ts != commit_ts)
4223                 return 0;
4224
4225         /* Still racy, as it may return a false positive, but that's OK */
4226         return ((iter->head_page == commit_page && iter->head >= commit) ||
4227                 (iter->head_page == reader && commit_page == head_page &&
4228                  head_page->read == commit &&
4229                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4230 }
4231 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4232
4233 static void
4234 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4235                      struct ring_buffer_event *event)
4236 {
4237         u64 delta;
4238
4239         switch (event->type_len) {
4240         case RINGBUF_TYPE_PADDING:
4241                 return;
4242
4243         case RINGBUF_TYPE_TIME_EXTEND:
4244                 delta = ring_buffer_event_time_stamp(event);
4245                 cpu_buffer->read_stamp += delta;
4246                 return;
4247
4248         case RINGBUF_TYPE_TIME_STAMP:
4249                 delta = ring_buffer_event_time_stamp(event);
4250                 cpu_buffer->read_stamp = delta;
4251                 return;
4252
4253         case RINGBUF_TYPE_DATA:
4254                 cpu_buffer->read_stamp += event->time_delta;
4255                 return;
4256
4257         default:
4258                 RB_WARN_ON(cpu_buffer, 1);
4259         }
4260         return;
4261 }
4262
4263 static void
4264 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4265                           struct ring_buffer_event *event)
4266 {
4267         u64 delta;
4268
4269         switch (event->type_len) {
4270         case RINGBUF_TYPE_PADDING:
4271                 return;
4272
4273         case RINGBUF_TYPE_TIME_EXTEND:
4274                 delta = ring_buffer_event_time_stamp(event);
4275                 iter->read_stamp += delta;
4276                 return;
4277
4278         case RINGBUF_TYPE_TIME_STAMP:
4279                 delta = ring_buffer_event_time_stamp(event);
4280                 iter->read_stamp = delta;
4281                 return;
4282
4283         case RINGBUF_TYPE_DATA:
4284                 iter->read_stamp += event->time_delta;
4285                 return;
4286
4287         default:
4288                 RB_WARN_ON(iter->cpu_buffer, 1);
4289         }
4290         return;
4291 }
4292
4293 static struct buffer_page *
4294 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4295 {
4296         struct buffer_page *reader = NULL;
4297         unsigned long overwrite;
4298         unsigned long flags;
4299         int nr_loops = 0;
4300         int ret;
4301
4302         local_irq_save(flags);
4303         arch_spin_lock(&cpu_buffer->lock);
4304
4305  again:
4306         /*
4307          * This should normally only loop twice. But because the
4308          * start of the reader inserts an empty page, it causes
4309          * a case where we will loop three times. There should be no
4310          * reason to loop four times (that I know of).
4311          */
4312         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4313                 reader = NULL;
4314                 goto out;
4315         }
4316
4317         reader = cpu_buffer->reader_page;
4318
4319         /* If there's more to read, return this page */
4320         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4321                 goto out;
4322
4323         /* Never should we have an index greater than the size */
4324         if (RB_WARN_ON(cpu_buffer,
4325                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4326                 goto out;
4327
4328         /* check if we caught up to the tail */
4329         reader = NULL;
4330         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4331                 goto out;
4332
4333         /* Don't bother swapping if the ring buffer is empty */
4334         if (rb_num_of_entries(cpu_buffer) == 0)
4335                 goto out;
4336
4337         /*
4338          * Reset the reader page to size zero.
4339          */
4340         local_set(&cpu_buffer->reader_page->write, 0);
4341         local_set(&cpu_buffer->reader_page->entries, 0);
4342         local_set(&cpu_buffer->reader_page->page->commit, 0);
4343         cpu_buffer->reader_page->real_end = 0;
4344
4345  spin:
4346         /*
4347          * Splice the empty reader page into the list around the head.
4348          */
4349         reader = rb_set_head_page(cpu_buffer);
4350         if (!reader)
4351                 goto out;
4352         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4353         cpu_buffer->reader_page->list.prev = reader->list.prev;
4354
4355         /*
4356          * cpu_buffer->pages just needs to point to the buffer, it
4357          *  has no specific buffer page to point to. Lets move it out
4358          *  of our way so we don't accidentally swap it.
4359          */
4360         cpu_buffer->pages = reader->list.prev;
4361
4362         /* The reader page will be pointing to the new head */
4363         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4364
4365         /*
4366          * We want to make sure we read the overruns after we set up our
4367          * pointers to the next object. The writer side does a
4368          * cmpxchg to cross pages which acts as the mb on the writer
4369          * side. Note, the reader will constantly fail the swap
4370          * while the writer is updating the pointers, so this
4371          * guarantees that the overwrite recorded here is the one we
4372          * want to compare with the last_overrun.
4373          */
4374         smp_mb();
4375         overwrite = local_read(&(cpu_buffer->overrun));
4376
4377         /*
4378          * Here's the tricky part.
4379          *
4380          * We need to move the pointer past the header page.
4381          * But we can only do that if a writer is not currently
4382          * moving it. The page before the header page has the
4383          * flag bit '1' set if it is pointing to the page we want.
4384          * but if the writer is in the process of moving it
4385          * than it will be '2' or already moved '0'.
4386          */
4387
4388         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4389
4390         /*
4391          * If we did not convert it, then we must try again.
4392          */
4393         if (!ret)
4394                 goto spin;
4395
4396         /*
4397          * Yay! We succeeded in replacing the page.
4398          *
4399          * Now make the new head point back to the reader page.
4400          */
4401         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4402         rb_inc_page(&cpu_buffer->head_page);
4403
4404         local_inc(&cpu_buffer->pages_read);
4405
4406         /* Finally update the reader page to the new head */
4407         cpu_buffer->reader_page = reader;
4408         cpu_buffer->reader_page->read = 0;
4409
4410         if (overwrite != cpu_buffer->last_overrun) {
4411                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4412                 cpu_buffer->last_overrun = overwrite;
4413         }
4414
4415         goto again;
4416
4417  out:
4418         /* Update the read_stamp on the first event */
4419         if (reader && reader->read == 0)
4420                 cpu_buffer->read_stamp = reader->page->time_stamp;
4421
4422         arch_spin_unlock(&cpu_buffer->lock);
4423         local_irq_restore(flags);
4424
4425         return reader;
4426 }
4427
4428 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4429 {
4430         struct ring_buffer_event *event;
4431         struct buffer_page *reader;
4432         unsigned length;
4433
4434         reader = rb_get_reader_page(cpu_buffer);
4435
4436         /* This function should not be called when buffer is empty */
4437         if (RB_WARN_ON(cpu_buffer, !reader))
4438                 return;
4439
4440         event = rb_reader_event(cpu_buffer);
4441
4442         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4443                 cpu_buffer->read++;
4444
4445         rb_update_read_stamp(cpu_buffer, event);
4446
4447         length = rb_event_length(event);
4448         cpu_buffer->reader_page->read += length;
4449 }
4450
4451 static void rb_advance_iter(struct ring_buffer_iter *iter)
4452 {
4453         struct ring_buffer_per_cpu *cpu_buffer;
4454
4455         cpu_buffer = iter->cpu_buffer;
4456
4457         /* If head == next_event then we need to jump to the next event */
4458         if (iter->head == iter->next_event) {
4459                 /* If the event gets overwritten again, there's nothing to do */
4460                 if (rb_iter_head_event(iter) == NULL)
4461                         return;
4462         }
4463
4464         iter->head = iter->next_event;
4465
4466         /*
4467          * Check if we are at the end of the buffer.
4468          */
4469         if (iter->next_event >= rb_page_size(iter->head_page)) {
4470                 /* discarded commits can make the page empty */
4471                 if (iter->head_page == cpu_buffer->commit_page)
4472                         return;
4473                 rb_inc_iter(iter);
4474                 return;
4475         }
4476
4477         rb_update_iter_read_stamp(iter, iter->event);
4478 }
4479
4480 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4481 {
4482         return cpu_buffer->lost_events;
4483 }
4484
4485 static struct ring_buffer_event *
4486 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4487                unsigned long *lost_events)
4488 {
4489         struct ring_buffer_event *event;
4490         struct buffer_page *reader;
4491         int nr_loops = 0;
4492
4493         if (ts)
4494                 *ts = 0;
4495  again:
4496         /*
4497          * We repeat when a time extend is encountered.
4498          * Since the time extend is always attached to a data event,
4499          * we should never loop more than once.
4500          * (We never hit the following condition more than twice).
4501          */
4502         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4503                 return NULL;
4504
4505         reader = rb_get_reader_page(cpu_buffer);
4506         if (!reader)
4507                 return NULL;
4508
4509         event = rb_reader_event(cpu_buffer);
4510
4511         switch (event->type_len) {
4512         case RINGBUF_TYPE_PADDING:
4513                 if (rb_null_event(event))
4514                         RB_WARN_ON(cpu_buffer, 1);
4515                 /*
4516                  * Because the writer could be discarding every
4517                  * event it creates (which would probably be bad)
4518                  * if we were to go back to "again" then we may never
4519                  * catch up, and will trigger the warn on, or lock
4520                  * the box. Return the padding, and we will release
4521                  * the current locks, and try again.
4522                  */
4523                 return event;
4524
4525         case RINGBUF_TYPE_TIME_EXTEND:
4526                 /* Internal data, OK to advance */
4527                 rb_advance_reader(cpu_buffer);
4528                 goto again;
4529
4530         case RINGBUF_TYPE_TIME_STAMP:
4531                 if (ts) {
4532                         *ts = ring_buffer_event_time_stamp(event);
4533                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4534                                                          cpu_buffer->cpu, ts);
4535                 }
4536                 /* Internal data, OK to advance */
4537                 rb_advance_reader(cpu_buffer);
4538                 goto again;
4539
4540         case RINGBUF_TYPE_DATA:
4541                 if (ts && !(*ts)) {
4542                         *ts = cpu_buffer->read_stamp + event->time_delta;
4543                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4544                                                          cpu_buffer->cpu, ts);
4545                 }
4546                 if (lost_events)
4547                         *lost_events = rb_lost_events(cpu_buffer);
4548                 return event;
4549
4550         default:
4551                 RB_WARN_ON(cpu_buffer, 1);
4552         }
4553
4554         return NULL;
4555 }
4556 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4557
4558 static struct ring_buffer_event *
4559 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4560 {
4561         struct trace_buffer *buffer;
4562         struct ring_buffer_per_cpu *cpu_buffer;
4563         struct ring_buffer_event *event;
4564         int nr_loops = 0;
4565
4566         if (ts)
4567                 *ts = 0;
4568
4569         cpu_buffer = iter->cpu_buffer;
4570         buffer = cpu_buffer->buffer;
4571
4572         /*
4573          * Check if someone performed a consuming read to
4574          * the buffer. A consuming read invalidates the iterator
4575          * and we need to reset the iterator in this case.
4576          */
4577         if (unlikely(iter->cache_read != cpu_buffer->read ||
4578                      iter->cache_reader_page != cpu_buffer->reader_page))
4579                 rb_iter_reset(iter);
4580
4581  again:
4582         if (ring_buffer_iter_empty(iter))
4583                 return NULL;
4584
4585         /*
4586          * As the writer can mess with what the iterator is trying
4587          * to read, just give up if we fail to get an event after
4588          * three tries. The iterator is not as reliable when reading
4589          * the ring buffer with an active write as the consumer is.
4590          * Do not warn if the three failures is reached.
4591          */
4592         if (++nr_loops > 3)
4593                 return NULL;
4594
4595         if (rb_per_cpu_empty(cpu_buffer))
4596                 return NULL;
4597
4598         if (iter->head >= rb_page_size(iter->head_page)) {
4599                 rb_inc_iter(iter);
4600                 goto again;
4601         }
4602
4603         event = rb_iter_head_event(iter);
4604         if (!event)
4605                 goto again;
4606
4607         switch (event->type_len) {
4608         case RINGBUF_TYPE_PADDING:
4609                 if (rb_null_event(event)) {
4610                         rb_inc_iter(iter);
4611                         goto again;
4612                 }
4613                 rb_advance_iter(iter);
4614                 return event;
4615
4616         case RINGBUF_TYPE_TIME_EXTEND:
4617                 /* Internal data, OK to advance */
4618                 rb_advance_iter(iter);
4619                 goto again;
4620
4621         case RINGBUF_TYPE_TIME_STAMP:
4622                 if (ts) {
4623                         *ts = ring_buffer_event_time_stamp(event);
4624                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4625                                                          cpu_buffer->cpu, ts);
4626                 }
4627                 /* Internal data, OK to advance */
4628                 rb_advance_iter(iter);
4629                 goto again;
4630
4631         case RINGBUF_TYPE_DATA:
4632                 if (ts && !(*ts)) {
4633                         *ts = iter->read_stamp + event->time_delta;
4634                         ring_buffer_normalize_time_stamp(buffer,
4635                                                          cpu_buffer->cpu, ts);
4636                 }
4637                 return event;
4638
4639         default:
4640                 RB_WARN_ON(cpu_buffer, 1);
4641         }
4642
4643         return NULL;
4644 }
4645 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4646
4647 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4648 {
4649         if (likely(!in_nmi())) {
4650                 raw_spin_lock(&cpu_buffer->reader_lock);
4651                 return true;
4652         }
4653
4654         /*
4655          * If an NMI die dumps out the content of the ring buffer
4656          * trylock must be used to prevent a deadlock if the NMI
4657          * preempted a task that holds the ring buffer locks. If
4658          * we get the lock then all is fine, if not, then continue
4659          * to do the read, but this can corrupt the ring buffer,
4660          * so it must be permanently disabled from future writes.
4661          * Reading from NMI is a oneshot deal.
4662          */
4663         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4664                 return true;
4665
4666         /* Continue without locking, but disable the ring buffer */
4667         atomic_inc(&cpu_buffer->record_disabled);
4668         return false;
4669 }
4670
4671 static inline void
4672 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4673 {
4674         if (likely(locked))
4675                 raw_spin_unlock(&cpu_buffer->reader_lock);
4676         return;
4677 }
4678
4679 /**
4680  * ring_buffer_peek - peek at the next event to be read
4681  * @buffer: The ring buffer to read
4682  * @cpu: The cpu to peak at
4683  * @ts: The timestamp counter of this event.
4684  * @lost_events: a variable to store if events were lost (may be NULL)
4685  *
4686  * This will return the event that will be read next, but does
4687  * not consume the data.
4688  */
4689 struct ring_buffer_event *
4690 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4691                  unsigned long *lost_events)
4692 {
4693         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4694         struct ring_buffer_event *event;
4695         unsigned long flags;
4696         bool dolock;
4697
4698         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4699                 return NULL;
4700
4701  again:
4702         local_irq_save(flags);
4703         dolock = rb_reader_lock(cpu_buffer);
4704         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4705         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4706                 rb_advance_reader(cpu_buffer);
4707         rb_reader_unlock(cpu_buffer, dolock);
4708         local_irq_restore(flags);
4709
4710         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4711                 goto again;
4712
4713         return event;
4714 }
4715
4716 /** ring_buffer_iter_dropped - report if there are dropped events
4717  * @iter: The ring buffer iterator
4718  *
4719  * Returns true if there was dropped events since the last peek.
4720  */
4721 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4722 {
4723         bool ret = iter->missed_events != 0;
4724
4725         iter->missed_events = 0;
4726         return ret;
4727 }
4728 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4729
4730 /**
4731  * ring_buffer_iter_peek - peek at the next event to be read
4732  * @iter: The ring buffer iterator
4733  * @ts: The timestamp counter of this event.
4734  *
4735  * This will return the event that will be read next, but does
4736  * not increment the iterator.
4737  */
4738 struct ring_buffer_event *
4739 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4740 {
4741         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4742         struct ring_buffer_event *event;
4743         unsigned long flags;
4744
4745  again:
4746         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4747         event = rb_iter_peek(iter, ts);
4748         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4749
4750         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4751                 goto again;
4752
4753         return event;
4754 }
4755
4756 /**
4757  * ring_buffer_consume - return an event and consume it
4758  * @buffer: The ring buffer to get the next event from
4759  * @cpu: the cpu to read the buffer from
4760  * @ts: a variable to store the timestamp (may be NULL)
4761  * @lost_events: a variable to store if events were lost (may be NULL)
4762  *
4763  * Returns the next event in the ring buffer, and that event is consumed.
4764  * Meaning, that sequential reads will keep returning a different event,
4765  * and eventually empty the ring buffer if the producer is slower.
4766  */
4767 struct ring_buffer_event *
4768 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4769                     unsigned long *lost_events)
4770 {
4771         struct ring_buffer_per_cpu *cpu_buffer;
4772         struct ring_buffer_event *event = NULL;
4773         unsigned long flags;
4774         bool dolock;
4775
4776  again:
4777         /* might be called in atomic */
4778         preempt_disable();
4779
4780         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4781                 goto out;
4782
4783         cpu_buffer = buffer->buffers[cpu];
4784         local_irq_save(flags);
4785         dolock = rb_reader_lock(cpu_buffer);
4786
4787         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4788         if (event) {
4789                 cpu_buffer->lost_events = 0;
4790                 rb_advance_reader(cpu_buffer);
4791         }
4792
4793         rb_reader_unlock(cpu_buffer, dolock);
4794         local_irq_restore(flags);
4795
4796  out:
4797         preempt_enable();
4798
4799         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4800                 goto again;
4801
4802         return event;
4803 }
4804 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4805
4806 /**
4807  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4808  * @buffer: The ring buffer to read from
4809  * @cpu: The cpu buffer to iterate over
4810  * @flags: gfp flags to use for memory allocation
4811  *
4812  * This performs the initial preparations necessary to iterate
4813  * through the buffer.  Memory is allocated, buffer recording
4814  * is disabled, and the iterator pointer is returned to the caller.
4815  *
4816  * Disabling buffer recording prevents the reading from being
4817  * corrupted. This is not a consuming read, so a producer is not
4818  * expected.
4819  *
4820  * After a sequence of ring_buffer_read_prepare calls, the user is
4821  * expected to make at least one call to ring_buffer_read_prepare_sync.
4822  * Afterwards, ring_buffer_read_start is invoked to get things going
4823  * for real.
4824  *
4825  * This overall must be paired with ring_buffer_read_finish.
4826  */
4827 struct ring_buffer_iter *
4828 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
4829 {
4830         struct ring_buffer_per_cpu *cpu_buffer;
4831         struct ring_buffer_iter *iter;
4832
4833         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4834                 return NULL;
4835
4836         iter = kzalloc(sizeof(*iter), flags);
4837         if (!iter)
4838                 return NULL;
4839
4840         iter->event = kmalloc(BUF_MAX_DATA_SIZE, flags);
4841         if (!iter->event) {
4842                 kfree(iter);
4843                 return NULL;
4844         }
4845
4846         cpu_buffer = buffer->buffers[cpu];
4847
4848         iter->cpu_buffer = cpu_buffer;
4849
4850         atomic_inc(&cpu_buffer->resize_disabled);
4851
4852         return iter;
4853 }
4854 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4855
4856 /**
4857  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4858  *
4859  * All previously invoked ring_buffer_read_prepare calls to prepare
4860  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4861  * calls on those iterators are allowed.
4862  */
4863 void
4864 ring_buffer_read_prepare_sync(void)
4865 {
4866         synchronize_rcu();
4867 }
4868 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4869
4870 /**
4871  * ring_buffer_read_start - start a non consuming read of the buffer
4872  * @iter: The iterator returned by ring_buffer_read_prepare
4873  *
4874  * This finalizes the startup of an iteration through the buffer.
4875  * The iterator comes from a call to ring_buffer_read_prepare and
4876  * an intervening ring_buffer_read_prepare_sync must have been
4877  * performed.
4878  *
4879  * Must be paired with ring_buffer_read_finish.
4880  */
4881 void
4882 ring_buffer_read_start(struct ring_buffer_iter *iter)
4883 {
4884         struct ring_buffer_per_cpu *cpu_buffer;
4885         unsigned long flags;
4886
4887         if (!iter)
4888                 return;
4889
4890         cpu_buffer = iter->cpu_buffer;
4891
4892         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4893         arch_spin_lock(&cpu_buffer->lock);
4894         rb_iter_reset(iter);
4895         arch_spin_unlock(&cpu_buffer->lock);
4896         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4897 }
4898 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4899
4900 /**
4901  * ring_buffer_read_finish - finish reading the iterator of the buffer
4902  * @iter: The iterator retrieved by ring_buffer_start
4903  *
4904  * This re-enables the recording to the buffer, and frees the
4905  * iterator.
4906  */
4907 void
4908 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4909 {
4910         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4911         unsigned long flags;
4912
4913         /*
4914          * Ring buffer is disabled from recording, here's a good place
4915          * to check the integrity of the ring buffer.
4916          * Must prevent readers from trying to read, as the check
4917          * clears the HEAD page and readers require it.
4918          */
4919         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4920         rb_check_pages(cpu_buffer);
4921         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4922
4923         atomic_dec(&cpu_buffer->resize_disabled);
4924         kfree(iter->event);
4925         kfree(iter);
4926 }
4927 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4928
4929 /**
4930  * ring_buffer_iter_advance - advance the iterator to the next location
4931  * @iter: The ring buffer iterator
4932  *
4933  * Move the location of the iterator such that the next read will
4934  * be the next location of the iterator.
4935  */
4936 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
4937 {
4938         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4939         unsigned long flags;
4940
4941         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4942
4943         rb_advance_iter(iter);
4944
4945         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4946 }
4947 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
4948
4949 /**
4950  * ring_buffer_size - return the size of the ring buffer (in bytes)
4951  * @buffer: The ring buffer.
4952  * @cpu: The CPU to get ring buffer size from.
4953  */
4954 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
4955 {
4956         /*
4957          * Earlier, this method returned
4958          *      BUF_PAGE_SIZE * buffer->nr_pages
4959          * Since the nr_pages field is now removed, we have converted this to
4960          * return the per cpu buffer value.
4961          */
4962         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4963                 return 0;
4964
4965         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4966 }
4967 EXPORT_SYMBOL_GPL(ring_buffer_size);
4968
4969 static void
4970 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4971 {
4972         rb_head_page_deactivate(cpu_buffer);
4973
4974         cpu_buffer->head_page
4975                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4976         local_set(&cpu_buffer->head_page->write, 0);
4977         local_set(&cpu_buffer->head_page->entries, 0);
4978         local_set(&cpu_buffer->head_page->page->commit, 0);
4979
4980         cpu_buffer->head_page->read = 0;
4981
4982         cpu_buffer->tail_page = cpu_buffer->head_page;
4983         cpu_buffer->commit_page = cpu_buffer->head_page;
4984
4985         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4986         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4987         local_set(&cpu_buffer->reader_page->write, 0);
4988         local_set(&cpu_buffer->reader_page->entries, 0);
4989         local_set(&cpu_buffer->reader_page->page->commit, 0);
4990         cpu_buffer->reader_page->read = 0;
4991
4992         local_set(&cpu_buffer->entries_bytes, 0);
4993         local_set(&cpu_buffer->overrun, 0);
4994         local_set(&cpu_buffer->commit_overrun, 0);
4995         local_set(&cpu_buffer->dropped_events, 0);
4996         local_set(&cpu_buffer->entries, 0);
4997         local_set(&cpu_buffer->committing, 0);
4998         local_set(&cpu_buffer->commits, 0);
4999         local_set(&cpu_buffer->pages_touched, 0);
5000         local_set(&cpu_buffer->pages_read, 0);
5001         cpu_buffer->last_pages_touch = 0;
5002         cpu_buffer->shortest_full = 0;
5003         cpu_buffer->read = 0;
5004         cpu_buffer->read_bytes = 0;
5005
5006         rb_time_set(&cpu_buffer->write_stamp, 0);
5007         rb_time_set(&cpu_buffer->before_stamp, 0);
5008
5009         cpu_buffer->lost_events = 0;
5010         cpu_buffer->last_overrun = 0;
5011
5012         rb_head_page_activate(cpu_buffer);
5013 }
5014
5015 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5016 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5017 {
5018         unsigned long flags;
5019
5020         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5021
5022         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5023                 goto out;
5024
5025         arch_spin_lock(&cpu_buffer->lock);
5026
5027         rb_reset_cpu(cpu_buffer);
5028
5029         arch_spin_unlock(&cpu_buffer->lock);
5030
5031  out:
5032         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5033 }
5034
5035 /**
5036  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5037  * @buffer: The ring buffer to reset a per cpu buffer of
5038  * @cpu: The CPU buffer to be reset
5039  */
5040 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5041 {
5042         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5043
5044         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5045                 return;
5046
5047         /* prevent another thread from changing buffer sizes */
5048         mutex_lock(&buffer->mutex);
5049
5050         atomic_inc(&cpu_buffer->resize_disabled);
5051         atomic_inc(&cpu_buffer->record_disabled);
5052
5053         /* Make sure all commits have finished */
5054         synchronize_rcu();
5055
5056         reset_disabled_cpu_buffer(cpu_buffer);
5057
5058         atomic_dec(&cpu_buffer->record_disabled);
5059         atomic_dec(&cpu_buffer->resize_disabled);
5060
5061         mutex_unlock(&buffer->mutex);
5062 }
5063 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5064
5065 /**
5066  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5067  * @buffer: The ring buffer to reset a per cpu buffer of
5068  * @cpu: The CPU buffer to be reset
5069  */
5070 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5071 {
5072         struct ring_buffer_per_cpu *cpu_buffer;
5073         int cpu;
5074
5075         /* prevent another thread from changing buffer sizes */
5076         mutex_lock(&buffer->mutex);
5077
5078         for_each_online_buffer_cpu(buffer, cpu) {
5079                 cpu_buffer = buffer->buffers[cpu];
5080
5081                 atomic_inc(&cpu_buffer->resize_disabled);
5082                 atomic_inc(&cpu_buffer->record_disabled);
5083         }
5084
5085         /* Make sure all commits have finished */
5086         synchronize_rcu();
5087
5088         for_each_online_buffer_cpu(buffer, cpu) {
5089                 cpu_buffer = buffer->buffers[cpu];
5090
5091                 reset_disabled_cpu_buffer(cpu_buffer);
5092
5093                 atomic_dec(&cpu_buffer->record_disabled);
5094                 atomic_dec(&cpu_buffer->resize_disabled);
5095         }
5096
5097         mutex_unlock(&buffer->mutex);
5098 }
5099
5100 /**
5101  * ring_buffer_reset - reset a ring buffer
5102  * @buffer: The ring buffer to reset all cpu buffers
5103  */
5104 void ring_buffer_reset(struct trace_buffer *buffer)
5105 {
5106         struct ring_buffer_per_cpu *cpu_buffer;
5107         int cpu;
5108
5109         for_each_buffer_cpu(buffer, cpu) {
5110                 cpu_buffer = buffer->buffers[cpu];
5111
5112                 atomic_inc(&cpu_buffer->resize_disabled);
5113                 atomic_inc(&cpu_buffer->record_disabled);
5114         }
5115
5116         /* Make sure all commits have finished */
5117         synchronize_rcu();
5118
5119         for_each_buffer_cpu(buffer, cpu) {
5120                 cpu_buffer = buffer->buffers[cpu];
5121
5122                 reset_disabled_cpu_buffer(cpu_buffer);
5123
5124                 atomic_dec(&cpu_buffer->record_disabled);
5125                 atomic_dec(&cpu_buffer->resize_disabled);
5126         }
5127 }
5128 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5129
5130 /**
5131  * rind_buffer_empty - is the ring buffer empty?
5132  * @buffer: The ring buffer to test
5133  */
5134 bool ring_buffer_empty(struct trace_buffer *buffer)
5135 {
5136         struct ring_buffer_per_cpu *cpu_buffer;
5137         unsigned long flags;
5138         bool dolock;
5139         int cpu;
5140         int ret;
5141
5142         /* yes this is racy, but if you don't like the race, lock the buffer */
5143         for_each_buffer_cpu(buffer, cpu) {
5144                 cpu_buffer = buffer->buffers[cpu];
5145                 local_irq_save(flags);
5146                 dolock = rb_reader_lock(cpu_buffer);
5147                 ret = rb_per_cpu_empty(cpu_buffer);
5148                 rb_reader_unlock(cpu_buffer, dolock);
5149                 local_irq_restore(flags);
5150
5151                 if (!ret)
5152                         return false;
5153         }
5154
5155         return true;
5156 }
5157 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5158
5159 /**
5160  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5161  * @buffer: The ring buffer
5162  * @cpu: The CPU buffer to test
5163  */
5164 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5165 {
5166         struct ring_buffer_per_cpu *cpu_buffer;
5167         unsigned long flags;
5168         bool dolock;
5169         int ret;
5170
5171         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5172                 return true;
5173
5174         cpu_buffer = buffer->buffers[cpu];
5175         local_irq_save(flags);
5176         dolock = rb_reader_lock(cpu_buffer);
5177         ret = rb_per_cpu_empty(cpu_buffer);
5178         rb_reader_unlock(cpu_buffer, dolock);
5179         local_irq_restore(flags);
5180
5181         return ret;
5182 }
5183 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5184
5185 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5186 /**
5187  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5188  * @buffer_a: One buffer to swap with
5189  * @buffer_b: The other buffer to swap with
5190  * @cpu: the CPU of the buffers to swap
5191  *
5192  * This function is useful for tracers that want to take a "snapshot"
5193  * of a CPU buffer and has another back up buffer lying around.
5194  * it is expected that the tracer handles the cpu buffer not being
5195  * used at the moment.
5196  */
5197 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5198                          struct trace_buffer *buffer_b, int cpu)
5199 {
5200         struct ring_buffer_per_cpu *cpu_buffer_a;
5201         struct ring_buffer_per_cpu *cpu_buffer_b;
5202         int ret = -EINVAL;
5203
5204         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5205             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5206                 goto out;
5207
5208         cpu_buffer_a = buffer_a->buffers[cpu];
5209         cpu_buffer_b = buffer_b->buffers[cpu];
5210
5211         /* At least make sure the two buffers are somewhat the same */
5212         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5213                 goto out;
5214
5215         ret = -EAGAIN;
5216
5217         if (atomic_read(&buffer_a->record_disabled))
5218                 goto out;
5219
5220         if (atomic_read(&buffer_b->record_disabled))
5221                 goto out;
5222
5223         if (atomic_read(&cpu_buffer_a->record_disabled))
5224                 goto out;
5225
5226         if (atomic_read(&cpu_buffer_b->record_disabled))
5227                 goto out;
5228
5229         /*
5230          * We can't do a synchronize_rcu here because this
5231          * function can be called in atomic context.
5232          * Normally this will be called from the same CPU as cpu.
5233          * If not it's up to the caller to protect this.
5234          */
5235         atomic_inc(&cpu_buffer_a->record_disabled);
5236         atomic_inc(&cpu_buffer_b->record_disabled);
5237
5238         ret = -EBUSY;
5239         if (local_read(&cpu_buffer_a->committing))
5240                 goto out_dec;
5241         if (local_read(&cpu_buffer_b->committing))
5242                 goto out_dec;
5243
5244         buffer_a->buffers[cpu] = cpu_buffer_b;
5245         buffer_b->buffers[cpu] = cpu_buffer_a;
5246
5247         cpu_buffer_b->buffer = buffer_a;
5248         cpu_buffer_a->buffer = buffer_b;
5249
5250         ret = 0;
5251
5252 out_dec:
5253         atomic_dec(&cpu_buffer_a->record_disabled);
5254         atomic_dec(&cpu_buffer_b->record_disabled);
5255 out:
5256         return ret;
5257 }
5258 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5259 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5260
5261 /**
5262  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5263  * @buffer: the buffer to allocate for.
5264  * @cpu: the cpu buffer to allocate.
5265  *
5266  * This function is used in conjunction with ring_buffer_read_page.
5267  * When reading a full page from the ring buffer, these functions
5268  * can be used to speed up the process. The calling function should
5269  * allocate a few pages first with this function. Then when it
5270  * needs to get pages from the ring buffer, it passes the result
5271  * of this function into ring_buffer_read_page, which will swap
5272  * the page that was allocated, with the read page of the buffer.
5273  *
5274  * Returns:
5275  *  The page allocated, or ERR_PTR
5276  */
5277 void *ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5278 {
5279         struct ring_buffer_per_cpu *cpu_buffer;
5280         struct buffer_data_page *bpage = NULL;
5281         unsigned long flags;
5282         struct page *page;
5283
5284         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5285                 return ERR_PTR(-ENODEV);
5286
5287         cpu_buffer = buffer->buffers[cpu];
5288         local_irq_save(flags);
5289         arch_spin_lock(&cpu_buffer->lock);
5290
5291         if (cpu_buffer->free_page) {
5292                 bpage = cpu_buffer->free_page;
5293                 cpu_buffer->free_page = NULL;
5294         }
5295
5296         arch_spin_unlock(&cpu_buffer->lock);
5297         local_irq_restore(flags);
5298
5299         if (bpage)
5300                 goto out;
5301
5302         page = alloc_pages_node(cpu_to_node(cpu),
5303                                 GFP_KERNEL | __GFP_NORETRY, 0);
5304         if (!page)
5305                 return ERR_PTR(-ENOMEM);
5306
5307         bpage = page_address(page);
5308
5309  out:
5310         rb_init_page(bpage);
5311
5312         return bpage;
5313 }
5314 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5315
5316 /**
5317  * ring_buffer_free_read_page - free an allocated read page
5318  * @buffer: the buffer the page was allocate for
5319  * @cpu: the cpu buffer the page came from
5320  * @data: the page to free
5321  *
5322  * Free a page allocated from ring_buffer_alloc_read_page.
5323  */
5324 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu, void *data)
5325 {
5326         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5327         struct buffer_data_page *bpage = data;
5328         struct page *page = virt_to_page(bpage);
5329         unsigned long flags;
5330
5331         /* If the page is still in use someplace else, we can't reuse it */
5332         if (page_ref_count(page) > 1)
5333                 goto out;
5334
5335         local_irq_save(flags);
5336         arch_spin_lock(&cpu_buffer->lock);
5337
5338         if (!cpu_buffer->free_page) {
5339                 cpu_buffer->free_page = bpage;
5340                 bpage = NULL;
5341         }
5342
5343         arch_spin_unlock(&cpu_buffer->lock);
5344         local_irq_restore(flags);
5345
5346  out:
5347         free_page((unsigned long)bpage);
5348 }
5349 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5350
5351 /**
5352  * ring_buffer_read_page - extract a page from the ring buffer
5353  * @buffer: buffer to extract from
5354  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5355  * @len: amount to extract
5356  * @cpu: the cpu of the buffer to extract
5357  * @full: should the extraction only happen when the page is full.
5358  *
5359  * This function will pull out a page from the ring buffer and consume it.
5360  * @data_page must be the address of the variable that was returned
5361  * from ring_buffer_alloc_read_page. This is because the page might be used
5362  * to swap with a page in the ring buffer.
5363  *
5364  * for example:
5365  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5366  *      if (IS_ERR(rpage))
5367  *              return PTR_ERR(rpage);
5368  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
5369  *      if (ret >= 0)
5370  *              process_page(rpage, ret);
5371  *
5372  * When @full is set, the function will not return true unless
5373  * the writer is off the reader page.
5374  *
5375  * Note: it is up to the calling functions to handle sleeps and wakeups.
5376  *  The ring buffer can be used anywhere in the kernel and can not
5377  *  blindly call wake_up. The layer that uses the ring buffer must be
5378  *  responsible for that.
5379  *
5380  * Returns:
5381  *  >=0 if data has been transferred, returns the offset of consumed data.
5382  *  <0 if no data has been transferred.
5383  */
5384 int ring_buffer_read_page(struct trace_buffer *buffer,
5385                           void **data_page, size_t len, int cpu, int full)
5386 {
5387         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5388         struct ring_buffer_event *event;
5389         struct buffer_data_page *bpage;
5390         struct buffer_page *reader;
5391         unsigned long missed_events;
5392         unsigned long flags;
5393         unsigned int commit;
5394         unsigned int read;
5395         u64 save_timestamp;
5396         int ret = -1;
5397
5398         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5399                 goto out;
5400
5401         /*
5402          * If len is not big enough to hold the page header, then
5403          * we can not copy anything.
5404          */
5405         if (len <= BUF_PAGE_HDR_SIZE)
5406                 goto out;
5407
5408         len -= BUF_PAGE_HDR_SIZE;
5409
5410         if (!data_page)
5411                 goto out;
5412
5413         bpage = *data_page;
5414         if (!bpage)
5415                 goto out;
5416
5417         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5418
5419         reader = rb_get_reader_page(cpu_buffer);
5420         if (!reader)
5421                 goto out_unlock;
5422
5423         event = rb_reader_event(cpu_buffer);
5424
5425         read = reader->read;
5426         commit = rb_page_commit(reader);
5427
5428         /* Check if any events were dropped */
5429         missed_events = cpu_buffer->lost_events;
5430
5431         /*
5432          * If this page has been partially read or
5433          * if len is not big enough to read the rest of the page or
5434          * a writer is still on the page, then
5435          * we must copy the data from the page to the buffer.
5436          * Otherwise, we can simply swap the page with the one passed in.
5437          */
5438         if (read || (len < (commit - read)) ||
5439             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5440                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5441                 unsigned int rpos = read;
5442                 unsigned int pos = 0;
5443                 unsigned int size;
5444
5445                 if (full)
5446                         goto out_unlock;
5447
5448                 if (len > (commit - read))
5449                         len = (commit - read);
5450
5451                 /* Always keep the time extend and data together */
5452                 size = rb_event_ts_length(event);
5453
5454                 if (len < size)
5455                         goto out_unlock;
5456
5457                 /* save the current timestamp, since the user will need it */
5458                 save_timestamp = cpu_buffer->read_stamp;
5459
5460                 /* Need to copy one event at a time */
5461                 do {
5462                         /* We need the size of one event, because
5463                          * rb_advance_reader only advances by one event,
5464                          * whereas rb_event_ts_length may include the size of
5465                          * one or two events.
5466                          * We have already ensured there's enough space if this
5467                          * is a time extend. */
5468                         size = rb_event_length(event);
5469                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5470
5471                         len -= size;
5472
5473                         rb_advance_reader(cpu_buffer);
5474                         rpos = reader->read;
5475                         pos += size;
5476
5477                         if (rpos >= commit)
5478                                 break;
5479
5480                         event = rb_reader_event(cpu_buffer);
5481                         /* Always keep the time extend and data together */
5482                         size = rb_event_ts_length(event);
5483                 } while (len >= size);
5484
5485                 /* update bpage */
5486                 local_set(&bpage->commit, pos);
5487                 bpage->time_stamp = save_timestamp;
5488
5489                 /* we copied everything to the beginning */
5490                 read = 0;
5491         } else {
5492                 /* update the entry counter */
5493                 cpu_buffer->read += rb_page_entries(reader);
5494                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
5495
5496                 /* swap the pages */
5497                 rb_init_page(bpage);
5498                 bpage = reader->page;
5499                 reader->page = *data_page;
5500                 local_set(&reader->write, 0);
5501                 local_set(&reader->entries, 0);
5502                 reader->read = 0;
5503                 *data_page = bpage;
5504
5505                 /*
5506                  * Use the real_end for the data size,
5507                  * This gives us a chance to store the lost events
5508                  * on the page.
5509                  */
5510                 if (reader->real_end)
5511                         local_set(&bpage->commit, reader->real_end);
5512         }
5513         ret = read;
5514
5515         cpu_buffer->lost_events = 0;
5516
5517         commit = local_read(&bpage->commit);
5518         /*
5519          * Set a flag in the commit field if we lost events
5520          */
5521         if (missed_events) {
5522                 /* If there is room at the end of the page to save the
5523                  * missed events, then record it there.
5524                  */
5525                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
5526                         memcpy(&bpage->data[commit], &missed_events,
5527                                sizeof(missed_events));
5528                         local_add(RB_MISSED_STORED, &bpage->commit);
5529                         commit += sizeof(missed_events);
5530                 }
5531                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5532         }
5533
5534         /*
5535          * This page may be off to user land. Zero it out here.
5536          */
5537         if (commit < BUF_PAGE_SIZE)
5538                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
5539
5540  out_unlock:
5541         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5542
5543  out:
5544         return ret;
5545 }
5546 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5547
5548 /*
5549  * We only allocate new buffers, never free them if the CPU goes down.
5550  * If we were to free the buffer, then the user would lose any trace that was in
5551  * the buffer.
5552  */
5553 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
5554 {
5555         struct trace_buffer *buffer;
5556         long nr_pages_same;
5557         int cpu_i;
5558         unsigned long nr_pages;
5559
5560         buffer = container_of(node, struct trace_buffer, node);
5561         if (cpumask_test_cpu(cpu, buffer->cpumask))
5562                 return 0;
5563
5564         nr_pages = 0;
5565         nr_pages_same = 1;
5566         /* check if all cpu sizes are same */
5567         for_each_buffer_cpu(buffer, cpu_i) {
5568                 /* fill in the size from first enabled cpu */
5569                 if (nr_pages == 0)
5570                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
5571                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
5572                         nr_pages_same = 0;
5573                         break;
5574                 }
5575         }
5576         /* allocate minimum pages, user can later expand it */
5577         if (!nr_pages_same)
5578                 nr_pages = 2;
5579         buffer->buffers[cpu] =
5580                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
5581         if (!buffer->buffers[cpu]) {
5582                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
5583                      cpu);
5584                 return -ENOMEM;
5585         }
5586         smp_wmb();
5587         cpumask_set_cpu(cpu, buffer->cpumask);
5588         return 0;
5589 }
5590
5591 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
5592 /*
5593  * This is a basic integrity check of the ring buffer.
5594  * Late in the boot cycle this test will run when configured in.
5595  * It will kick off a thread per CPU that will go into a loop
5596  * writing to the per cpu ring buffer various sizes of data.
5597  * Some of the data will be large items, some small.
5598  *
5599  * Another thread is created that goes into a spin, sending out
5600  * IPIs to the other CPUs to also write into the ring buffer.
5601  * this is to test the nesting ability of the buffer.
5602  *
5603  * Basic stats are recorded and reported. If something in the
5604  * ring buffer should happen that's not expected, a big warning
5605  * is displayed and all ring buffers are disabled.
5606  */
5607 static struct task_struct *rb_threads[NR_CPUS] __initdata;
5608
5609 struct rb_test_data {
5610         struct trace_buffer *buffer;
5611         unsigned long           events;
5612         unsigned long           bytes_written;
5613         unsigned long           bytes_alloc;
5614         unsigned long           bytes_dropped;
5615         unsigned long           events_nested;
5616         unsigned long           bytes_written_nested;
5617         unsigned long           bytes_alloc_nested;
5618         unsigned long           bytes_dropped_nested;
5619         int                     min_size_nested;
5620         int                     max_size_nested;
5621         int                     max_size;
5622         int                     min_size;
5623         int                     cpu;
5624         int                     cnt;
5625 };
5626
5627 static struct rb_test_data rb_data[NR_CPUS] __initdata;
5628
5629 /* 1 meg per cpu */
5630 #define RB_TEST_BUFFER_SIZE     1048576
5631
5632 static char rb_string[] __initdata =
5633         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
5634         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
5635         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
5636
5637 static bool rb_test_started __initdata;
5638
5639 struct rb_item {
5640         int size;
5641         char str[];
5642 };
5643
5644 static __init int rb_write_something(struct rb_test_data *data, bool nested)
5645 {
5646         struct ring_buffer_event *event;
5647         struct rb_item *item;
5648         bool started;
5649         int event_len;
5650         int size;
5651         int len;
5652         int cnt;
5653
5654         /* Have nested writes different that what is written */
5655         cnt = data->cnt + (nested ? 27 : 0);
5656
5657         /* Multiply cnt by ~e, to make some unique increment */
5658         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
5659
5660         len = size + sizeof(struct rb_item);
5661
5662         started = rb_test_started;
5663         /* read rb_test_started before checking buffer enabled */
5664         smp_rmb();
5665
5666         event = ring_buffer_lock_reserve(data->buffer, len);
5667         if (!event) {
5668                 /* Ignore dropped events before test starts. */
5669                 if (started) {
5670                         if (nested)
5671                                 data->bytes_dropped += len;
5672                         else
5673                                 data->bytes_dropped_nested += len;
5674                 }
5675                 return len;
5676         }
5677
5678         event_len = ring_buffer_event_length(event);
5679
5680         if (RB_WARN_ON(data->buffer, event_len < len))
5681                 goto out;
5682
5683         item = ring_buffer_event_data(event);
5684         item->size = size;
5685         memcpy(item->str, rb_string, size);
5686
5687         if (nested) {
5688                 data->bytes_alloc_nested += event_len;
5689                 data->bytes_written_nested += len;
5690                 data->events_nested++;
5691                 if (!data->min_size_nested || len < data->min_size_nested)
5692                         data->min_size_nested = len;
5693                 if (len > data->max_size_nested)
5694                         data->max_size_nested = len;
5695         } else {
5696                 data->bytes_alloc += event_len;
5697                 data->bytes_written += len;
5698                 data->events++;
5699                 if (!data->min_size || len < data->min_size)
5700                         data->max_size = len;
5701                 if (len > data->max_size)
5702                         data->max_size = len;
5703         }
5704
5705  out:
5706         ring_buffer_unlock_commit(data->buffer, event);
5707
5708         return 0;
5709 }
5710
5711 static __init int rb_test(void *arg)
5712 {
5713         struct rb_test_data *data = arg;
5714
5715         while (!kthread_should_stop()) {
5716                 rb_write_something(data, false);
5717                 data->cnt++;
5718
5719                 set_current_state(TASK_INTERRUPTIBLE);
5720                 /* Now sleep between a min of 100-300us and a max of 1ms */
5721                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
5722         }
5723
5724         return 0;
5725 }
5726
5727 static __init void rb_ipi(void *ignore)
5728 {
5729         struct rb_test_data *data;
5730         int cpu = smp_processor_id();
5731
5732         data = &rb_data[cpu];
5733         rb_write_something(data, true);
5734 }
5735
5736 static __init int rb_hammer_test(void *arg)
5737 {
5738         while (!kthread_should_stop()) {
5739
5740                 /* Send an IPI to all cpus to write data! */
5741                 smp_call_function(rb_ipi, NULL, 1);
5742                 /* No sleep, but for non preempt, let others run */
5743                 schedule();
5744         }
5745
5746         return 0;
5747 }
5748
5749 static __init int test_ringbuffer(void)
5750 {
5751         struct task_struct *rb_hammer;
5752         struct trace_buffer *buffer;
5753         int cpu;
5754         int ret = 0;
5755
5756         if (security_locked_down(LOCKDOWN_TRACEFS)) {
5757                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5758                 return 0;
5759         }
5760
5761         pr_info("Running ring buffer tests...\n");
5762
5763         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
5764         if (WARN_ON(!buffer))
5765                 return 0;
5766
5767         /* Disable buffer so that threads can't write to it yet */
5768         ring_buffer_record_off(buffer);
5769
5770         for_each_online_cpu(cpu) {
5771                 rb_data[cpu].buffer = buffer;
5772                 rb_data[cpu].cpu = cpu;
5773                 rb_data[cpu].cnt = cpu;
5774                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
5775                                                  "rbtester/%d", cpu);
5776                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
5777                         pr_cont("FAILED\n");
5778                         ret = PTR_ERR(rb_threads[cpu]);
5779                         goto out_free;
5780                 }
5781
5782                 kthread_bind(rb_threads[cpu], cpu);
5783                 wake_up_process(rb_threads[cpu]);
5784         }
5785
5786         /* Now create the rb hammer! */
5787         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
5788         if (WARN_ON(IS_ERR(rb_hammer))) {
5789                 pr_cont("FAILED\n");
5790                 ret = PTR_ERR(rb_hammer);
5791                 goto out_free;
5792         }
5793
5794         ring_buffer_record_on(buffer);
5795         /*
5796          * Show buffer is enabled before setting rb_test_started.
5797          * Yes there's a small race window where events could be
5798          * dropped and the thread wont catch it. But when a ring
5799          * buffer gets enabled, there will always be some kind of
5800          * delay before other CPUs see it. Thus, we don't care about
5801          * those dropped events. We care about events dropped after
5802          * the threads see that the buffer is active.
5803          */
5804         smp_wmb();
5805         rb_test_started = true;
5806
5807         set_current_state(TASK_INTERRUPTIBLE);
5808         /* Just run for 10 seconds */;
5809         schedule_timeout(10 * HZ);
5810
5811         kthread_stop(rb_hammer);
5812
5813  out_free:
5814         for_each_online_cpu(cpu) {
5815                 if (!rb_threads[cpu])
5816                         break;
5817                 kthread_stop(rb_threads[cpu]);
5818         }
5819         if (ret) {
5820                 ring_buffer_free(buffer);
5821                 return ret;
5822         }
5823
5824         /* Report! */
5825         pr_info("finished\n");
5826         for_each_online_cpu(cpu) {
5827                 struct ring_buffer_event *event;
5828                 struct rb_test_data *data = &rb_data[cpu];
5829                 struct rb_item *item;
5830                 unsigned long total_events;
5831                 unsigned long total_dropped;
5832                 unsigned long total_written;
5833                 unsigned long total_alloc;
5834                 unsigned long total_read = 0;
5835                 unsigned long total_size = 0;
5836                 unsigned long total_len = 0;
5837                 unsigned long total_lost = 0;
5838                 unsigned long lost;
5839                 int big_event_size;
5840                 int small_event_size;
5841
5842                 ret = -1;
5843
5844                 total_events = data->events + data->events_nested;
5845                 total_written = data->bytes_written + data->bytes_written_nested;
5846                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
5847                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
5848
5849                 big_event_size = data->max_size + data->max_size_nested;
5850                 small_event_size = data->min_size + data->min_size_nested;
5851
5852                 pr_info("CPU %d:\n", cpu);
5853                 pr_info("              events:    %ld\n", total_events);
5854                 pr_info("       dropped bytes:    %ld\n", total_dropped);
5855                 pr_info("       alloced bytes:    %ld\n", total_alloc);
5856                 pr_info("       written bytes:    %ld\n", total_written);
5857                 pr_info("       biggest event:    %d\n", big_event_size);
5858                 pr_info("      smallest event:    %d\n", small_event_size);
5859
5860                 if (RB_WARN_ON(buffer, total_dropped))
5861                         break;
5862
5863                 ret = 0;
5864
5865                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
5866                         total_lost += lost;
5867                         item = ring_buffer_event_data(event);
5868                         total_len += ring_buffer_event_length(event);
5869                         total_size += item->size + sizeof(struct rb_item);
5870                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
5871                                 pr_info("FAILED!\n");
5872                                 pr_info("buffer had: %.*s\n", item->size, item->str);
5873                                 pr_info("expected:   %.*s\n", item->size, rb_string);
5874                                 RB_WARN_ON(buffer, 1);
5875                                 ret = -1;
5876                                 break;
5877                         }
5878                         total_read++;
5879                 }
5880                 if (ret)
5881                         break;
5882
5883                 ret = -1;
5884
5885                 pr_info("         read events:   %ld\n", total_read);
5886                 pr_info("         lost events:   %ld\n", total_lost);
5887                 pr_info("        total events:   %ld\n", total_lost + total_read);
5888                 pr_info("  recorded len bytes:   %ld\n", total_len);
5889                 pr_info(" recorded size bytes:   %ld\n", total_size);
5890                 if (total_lost)
5891                         pr_info(" With dropped events, record len and size may not match\n"
5892                                 " alloced and written from above\n");
5893                 if (!total_lost) {
5894                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
5895                                        total_size != total_written))
5896                                 break;
5897                 }
5898                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5899                         break;
5900
5901                 ret = 0;
5902         }
5903         if (!ret)
5904                 pr_info("Ring buffer PASSED!\n");
5905
5906         ring_buffer_free(buffer);
5907         return 0;
5908 }
5909
5910 late_initcall(test_ringbuffer);
5911 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */