Linux 6.9-rc1
[linux-2.6-microblaze.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local64.h>
31 #include <asm/local.h>
32
33 /*
34  * The "absolute" timestamp in the buffer is only 59 bits.
35  * If a clock has the 5 MSBs set, it needs to be saved and
36  * reinserted.
37  */
38 #define TS_MSB          (0xf8ULL << 56)
39 #define ABS_TS_MASK     (~TS_MSB)
40
41 static void update_pages_handler(struct work_struct *work);
42
43 /*
44  * The ring buffer header is special. We must manually up keep it.
45  */
46 int ring_buffer_print_entry_header(struct trace_seq *s)
47 {
48         trace_seq_puts(s, "# compressed entry header\n");
49         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
50         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
51         trace_seq_puts(s, "\tarray       :   32 bits\n");
52         trace_seq_putc(s, '\n');
53         trace_seq_printf(s, "\tpadding     : type == %d\n",
54                          RINGBUF_TYPE_PADDING);
55         trace_seq_printf(s, "\ttime_extend : type == %d\n",
56                          RINGBUF_TYPE_TIME_EXTEND);
57         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
58                          RINGBUF_TYPE_TIME_STAMP);
59         trace_seq_printf(s, "\tdata max type_len  == %d\n",
60                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
61
62         return !trace_seq_has_overflowed(s);
63 }
64
65 /*
66  * The ring buffer is made up of a list of pages. A separate list of pages is
67  * allocated for each CPU. A writer may only write to a buffer that is
68  * associated with the CPU it is currently executing on.  A reader may read
69  * from any per cpu buffer.
70  *
71  * The reader is special. For each per cpu buffer, the reader has its own
72  * reader page. When a reader has read the entire reader page, this reader
73  * page is swapped with another page in the ring buffer.
74  *
75  * Now, as long as the writer is off the reader page, the reader can do what
76  * ever it wants with that page. The writer will never write to that page
77  * again (as long as it is out of the ring buffer).
78  *
79  * Here's some silly ASCII art.
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *                   |   |-->|   |-->|   |
97  *                   +---+   +---+   +---+
98  *                     ^               |
99  *                     |               |
100  *                     +---------------+
101  *
102  *
103  *   +------+
104  *   |reader|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |-->|   |-->|   |
108  *      |            +---+   +---+   +---+
109  *      |                              |
110  *      |                              |
111  *      +------------------------------+
112  *
113  *
114  *   +------+
115  *   |buffer|          RING BUFFER
116  *   |page  |------------------v
117  *   +------+        +---+   +---+   +---+
118  *      ^            |   |   |   |-->|   |
119  *      |   New      +---+   +---+   +---+
120  *      |  Reader------^               |
121  *      |   page                       |
122  *      +------------------------------+
123  *
124  *
125  * After we make this swap, the reader can hand this page off to the splice
126  * code and be done with it. It can even allocate a new page if it needs to
127  * and swap that into the ring buffer.
128  *
129  * We will be using cmpxchg soon to make all this lockless.
130  *
131  */
132
133 /* Used for individual buffers (after the counter) */
134 #define RB_BUFFER_OFF           (1 << 20)
135
136 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
137
138 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
139 #define RB_ALIGNMENT            4U
140 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
141 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
142
143 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
144 # define RB_FORCE_8BYTE_ALIGNMENT       0
145 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
146 #else
147 # define RB_FORCE_8BYTE_ALIGNMENT       1
148 # define RB_ARCH_ALIGNMENT              8U
149 #endif
150
151 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
152
153 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
154 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
155
156 enum {
157         RB_LEN_TIME_EXTEND = 8,
158         RB_LEN_TIME_STAMP =  8,
159 };
160
161 #define skip_time_extend(event) \
162         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
163
164 #define extended_time(event) \
165         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
166
167 static inline bool rb_null_event(struct ring_buffer_event *event)
168 {
169         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
170 }
171
172 static void rb_event_set_padding(struct ring_buffer_event *event)
173 {
174         /* padding has a NULL time_delta */
175         event->type_len = RINGBUF_TYPE_PADDING;
176         event->time_delta = 0;
177 }
178
179 static unsigned
180 rb_event_data_length(struct ring_buffer_event *event)
181 {
182         unsigned length;
183
184         if (event->type_len)
185                 length = event->type_len * RB_ALIGNMENT;
186         else
187                 length = event->array[0];
188         return length + RB_EVNT_HDR_SIZE;
189 }
190
191 /*
192  * Return the length of the given event. Will return
193  * the length of the time extend if the event is a
194  * time extend.
195  */
196 static inline unsigned
197 rb_event_length(struct ring_buffer_event *event)
198 {
199         switch (event->type_len) {
200         case RINGBUF_TYPE_PADDING:
201                 if (rb_null_event(event))
202                         /* undefined */
203                         return -1;
204                 return  event->array[0] + RB_EVNT_HDR_SIZE;
205
206         case RINGBUF_TYPE_TIME_EXTEND:
207                 return RB_LEN_TIME_EXTEND;
208
209         case RINGBUF_TYPE_TIME_STAMP:
210                 return RB_LEN_TIME_STAMP;
211
212         case RINGBUF_TYPE_DATA:
213                 return rb_event_data_length(event);
214         default:
215                 WARN_ON_ONCE(1);
216         }
217         /* not hit */
218         return 0;
219 }
220
221 /*
222  * Return total length of time extend and data,
223  *   or just the event length for all other events.
224  */
225 static inline unsigned
226 rb_event_ts_length(struct ring_buffer_event *event)
227 {
228         unsigned len = 0;
229
230         if (extended_time(event)) {
231                 /* time extends include the data event after it */
232                 len = RB_LEN_TIME_EXTEND;
233                 event = skip_time_extend(event);
234         }
235         return len + rb_event_length(event);
236 }
237
238 /**
239  * ring_buffer_event_length - return the length of the event
240  * @event: the event to get the length of
241  *
242  * Returns the size of the data load of a data event.
243  * If the event is something other than a data event, it
244  * returns the size of the event itself. With the exception
245  * of a TIME EXTEND, where it still returns the size of the
246  * data load of the data event after it.
247  */
248 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
249 {
250         unsigned length;
251
252         if (extended_time(event))
253                 event = skip_time_extend(event);
254
255         length = rb_event_length(event);
256         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
257                 return length;
258         length -= RB_EVNT_HDR_SIZE;
259         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
260                 length -= sizeof(event->array[0]);
261         return length;
262 }
263 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
264
265 /* inline for ring buffer fast paths */
266 static __always_inline void *
267 rb_event_data(struct ring_buffer_event *event)
268 {
269         if (extended_time(event))
270                 event = skip_time_extend(event);
271         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
272         /* If length is in len field, then array[0] has the data */
273         if (event->type_len)
274                 return (void *)&event->array[0];
275         /* Otherwise length is in array[0] and array[1] has the data */
276         return (void *)&event->array[1];
277 }
278
279 /**
280  * ring_buffer_event_data - return the data of the event
281  * @event: the event to get the data from
282  */
283 void *ring_buffer_event_data(struct ring_buffer_event *event)
284 {
285         return rb_event_data(event);
286 }
287 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
288
289 #define for_each_buffer_cpu(buffer, cpu)                \
290         for_each_cpu(cpu, buffer->cpumask)
291
292 #define for_each_online_buffer_cpu(buffer, cpu)         \
293         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
294
295 #define TS_SHIFT        27
296 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
297 #define TS_DELTA_TEST   (~TS_MASK)
298
299 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
300 {
301         u64 ts;
302
303         ts = event->array[0];
304         ts <<= TS_SHIFT;
305         ts += event->time_delta;
306
307         return ts;
308 }
309
310 /* Flag when events were overwritten */
311 #define RB_MISSED_EVENTS        (1 << 31)
312 /* Missed count stored at end */
313 #define RB_MISSED_STORED        (1 << 30)
314
315 struct buffer_data_page {
316         u64              time_stamp;    /* page time stamp */
317         local_t          commit;        /* write committed index */
318         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
319 };
320
321 struct buffer_data_read_page {
322         unsigned                order;  /* order of the page */
323         struct buffer_data_page *data;  /* actual data, stored in this page */
324 };
325
326 /*
327  * Note, the buffer_page list must be first. The buffer pages
328  * are allocated in cache lines, which means that each buffer
329  * page will be at the beginning of a cache line, and thus
330  * the least significant bits will be zero. We use this to
331  * add flags in the list struct pointers, to make the ring buffer
332  * lockless.
333  */
334 struct buffer_page {
335         struct list_head list;          /* list of buffer pages */
336         local_t          write;         /* index for next write */
337         unsigned         read;          /* index for next read */
338         local_t          entries;       /* entries on this page */
339         unsigned long    real_end;      /* real end of data */
340         unsigned         order;         /* order of the page */
341         struct buffer_data_page *page;  /* Actual data page */
342 };
343
344 /*
345  * The buffer page counters, write and entries, must be reset
346  * atomically when crossing page boundaries. To synchronize this
347  * update, two counters are inserted into the number. One is
348  * the actual counter for the write position or count on the page.
349  *
350  * The other is a counter of updaters. Before an update happens
351  * the update partition of the counter is incremented. This will
352  * allow the updater to update the counter atomically.
353  *
354  * The counter is 20 bits, and the state data is 12.
355  */
356 #define RB_WRITE_MASK           0xfffff
357 #define RB_WRITE_INTCNT         (1 << 20)
358
359 static void rb_init_page(struct buffer_data_page *bpage)
360 {
361         local_set(&bpage->commit, 0);
362 }
363
364 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
365 {
366         return local_read(&bpage->page->commit);
367 }
368
369 static void free_buffer_page(struct buffer_page *bpage)
370 {
371         free_pages((unsigned long)bpage->page, bpage->order);
372         kfree(bpage);
373 }
374
375 /*
376  * We need to fit the time_stamp delta into 27 bits.
377  */
378 static inline bool test_time_stamp(u64 delta)
379 {
380         return !!(delta & TS_DELTA_TEST);
381 }
382
383 struct rb_irq_work {
384         struct irq_work                 work;
385         wait_queue_head_t               waiters;
386         wait_queue_head_t               full_waiters;
387         atomic_t                        seq;
388         bool                            waiters_pending;
389         bool                            full_waiters_pending;
390         bool                            wakeup_full;
391 };
392
393 /*
394  * Structure to hold event state and handle nested events.
395  */
396 struct rb_event_info {
397         u64                     ts;
398         u64                     delta;
399         u64                     before;
400         u64                     after;
401         unsigned long           length;
402         struct buffer_page      *tail_page;
403         int                     add_timestamp;
404 };
405
406 /*
407  * Used for the add_timestamp
408  *  NONE
409  *  EXTEND - wants a time extend
410  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
411  *  FORCE - force a full time stamp.
412  */
413 enum {
414         RB_ADD_STAMP_NONE               = 0,
415         RB_ADD_STAMP_EXTEND             = BIT(1),
416         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
417         RB_ADD_STAMP_FORCE              = BIT(3)
418 };
419 /*
420  * Used for which event context the event is in.
421  *  TRANSITION = 0
422  *  NMI     = 1
423  *  IRQ     = 2
424  *  SOFTIRQ = 3
425  *  NORMAL  = 4
426  *
427  * See trace_recursive_lock() comment below for more details.
428  */
429 enum {
430         RB_CTX_TRANSITION,
431         RB_CTX_NMI,
432         RB_CTX_IRQ,
433         RB_CTX_SOFTIRQ,
434         RB_CTX_NORMAL,
435         RB_CTX_MAX
436 };
437
438 struct rb_time_struct {
439         local64_t       time;
440 };
441 typedef struct rb_time_struct rb_time_t;
442
443 #define MAX_NEST        5
444
445 /*
446  * head_page == tail_page && head == tail then buffer is empty.
447  */
448 struct ring_buffer_per_cpu {
449         int                             cpu;
450         atomic_t                        record_disabled;
451         atomic_t                        resize_disabled;
452         struct trace_buffer     *buffer;
453         raw_spinlock_t                  reader_lock;    /* serialize readers */
454         arch_spinlock_t                 lock;
455         struct lock_class_key           lock_key;
456         struct buffer_data_page         *free_page;
457         unsigned long                   nr_pages;
458         unsigned int                    current_context;
459         struct list_head                *pages;
460         struct buffer_page              *head_page;     /* read from head */
461         struct buffer_page              *tail_page;     /* write to tail */
462         struct buffer_page              *commit_page;   /* committed pages */
463         struct buffer_page              *reader_page;
464         unsigned long                   lost_events;
465         unsigned long                   last_overrun;
466         unsigned long                   nest;
467         local_t                         entries_bytes;
468         local_t                         entries;
469         local_t                         overrun;
470         local_t                         commit_overrun;
471         local_t                         dropped_events;
472         local_t                         committing;
473         local_t                         commits;
474         local_t                         pages_touched;
475         local_t                         pages_lost;
476         local_t                         pages_read;
477         long                            last_pages_touch;
478         size_t                          shortest_full;
479         unsigned long                   read;
480         unsigned long                   read_bytes;
481         rb_time_t                       write_stamp;
482         rb_time_t                       before_stamp;
483         u64                             event_stamp[MAX_NEST];
484         u64                             read_stamp;
485         /* pages removed since last reset */
486         unsigned long                   pages_removed;
487         /* ring buffer pages to update, > 0 to add, < 0 to remove */
488         long                            nr_pages_to_update;
489         struct list_head                new_pages; /* new pages to add */
490         struct work_struct              update_pages_work;
491         struct completion               update_done;
492
493         struct rb_irq_work              irq_work;
494 };
495
496 struct trace_buffer {
497         unsigned                        flags;
498         int                             cpus;
499         atomic_t                        record_disabled;
500         atomic_t                        resizing;
501         cpumask_var_t                   cpumask;
502
503         struct lock_class_key           *reader_lock_key;
504
505         struct mutex                    mutex;
506
507         struct ring_buffer_per_cpu      **buffers;
508
509         struct hlist_node               node;
510         u64                             (*clock)(void);
511
512         struct rb_irq_work              irq_work;
513         bool                            time_stamp_abs;
514
515         unsigned int                    subbuf_size;
516         unsigned int                    subbuf_order;
517         unsigned int                    max_data_size;
518 };
519
520 struct ring_buffer_iter {
521         struct ring_buffer_per_cpu      *cpu_buffer;
522         unsigned long                   head;
523         unsigned long                   next_event;
524         struct buffer_page              *head_page;
525         struct buffer_page              *cache_reader_page;
526         unsigned long                   cache_read;
527         unsigned long                   cache_pages_removed;
528         u64                             read_stamp;
529         u64                             page_stamp;
530         struct ring_buffer_event        *event;
531         size_t                          event_size;
532         int                             missed_events;
533 };
534
535 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
536 {
537         struct buffer_data_page field;
538
539         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
540                          "offset:0;\tsize:%u;\tsigned:%u;\n",
541                          (unsigned int)sizeof(field.time_stamp),
542                          (unsigned int)is_signed_type(u64));
543
544         trace_seq_printf(s, "\tfield: local_t commit;\t"
545                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
546                          (unsigned int)offsetof(typeof(field), commit),
547                          (unsigned int)sizeof(field.commit),
548                          (unsigned int)is_signed_type(long));
549
550         trace_seq_printf(s, "\tfield: int overwrite;\t"
551                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
552                          (unsigned int)offsetof(typeof(field), commit),
553                          1,
554                          (unsigned int)is_signed_type(long));
555
556         trace_seq_printf(s, "\tfield: char data;\t"
557                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
558                          (unsigned int)offsetof(typeof(field), data),
559                          (unsigned int)buffer->subbuf_size,
560                          (unsigned int)is_signed_type(char));
561
562         return !trace_seq_has_overflowed(s);
563 }
564
565 static inline void rb_time_read(rb_time_t *t, u64 *ret)
566 {
567         *ret = local64_read(&t->time);
568 }
569 static void rb_time_set(rb_time_t *t, u64 val)
570 {
571         local64_set(&t->time, val);
572 }
573
574 /*
575  * Enable this to make sure that the event passed to
576  * ring_buffer_event_time_stamp() is not committed and also
577  * is on the buffer that it passed in.
578  */
579 //#define RB_VERIFY_EVENT
580 #ifdef RB_VERIFY_EVENT
581 static struct list_head *rb_list_head(struct list_head *list);
582 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
583                          void *event)
584 {
585         struct buffer_page *page = cpu_buffer->commit_page;
586         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
587         struct list_head *next;
588         long commit, write;
589         unsigned long addr = (unsigned long)event;
590         bool done = false;
591         int stop = 0;
592
593         /* Make sure the event exists and is not committed yet */
594         do {
595                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
596                         done = true;
597                 commit = local_read(&page->page->commit);
598                 write = local_read(&page->write);
599                 if (addr >= (unsigned long)&page->page->data[commit] &&
600                     addr < (unsigned long)&page->page->data[write])
601                         return;
602
603                 next = rb_list_head(page->list.next);
604                 page = list_entry(next, struct buffer_page, list);
605         } while (!done);
606         WARN_ON_ONCE(1);
607 }
608 #else
609 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
610                          void *event)
611 {
612 }
613 #endif
614
615 /*
616  * The absolute time stamp drops the 5 MSBs and some clocks may
617  * require them. The rb_fix_abs_ts() will take a previous full
618  * time stamp, and add the 5 MSB of that time stamp on to the
619  * saved absolute time stamp. Then they are compared in case of
620  * the unlikely event that the latest time stamp incremented
621  * the 5 MSB.
622  */
623 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
624 {
625         if (save_ts & TS_MSB) {
626                 abs |= save_ts & TS_MSB;
627                 /* Check for overflow */
628                 if (unlikely(abs < save_ts))
629                         abs += 1ULL << 59;
630         }
631         return abs;
632 }
633
634 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
635
636 /**
637  * ring_buffer_event_time_stamp - return the event's current time stamp
638  * @buffer: The buffer that the event is on
639  * @event: the event to get the time stamp of
640  *
641  * Note, this must be called after @event is reserved, and before it is
642  * committed to the ring buffer. And must be called from the same
643  * context where the event was reserved (normal, softirq, irq, etc).
644  *
645  * Returns the time stamp associated with the current event.
646  * If the event has an extended time stamp, then that is used as
647  * the time stamp to return.
648  * In the highly unlikely case that the event was nested more than
649  * the max nesting, then the write_stamp of the buffer is returned,
650  * otherwise  current time is returned, but that really neither of
651  * the last two cases should ever happen.
652  */
653 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
654                                  struct ring_buffer_event *event)
655 {
656         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
657         unsigned int nest;
658         u64 ts;
659
660         /* If the event includes an absolute time, then just use that */
661         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
662                 ts = rb_event_time_stamp(event);
663                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
664         }
665
666         nest = local_read(&cpu_buffer->committing);
667         verify_event(cpu_buffer, event);
668         if (WARN_ON_ONCE(!nest))
669                 goto fail;
670
671         /* Read the current saved nesting level time stamp */
672         if (likely(--nest < MAX_NEST))
673                 return cpu_buffer->event_stamp[nest];
674
675         /* Shouldn't happen, warn if it does */
676         WARN_ONCE(1, "nest (%d) greater than max", nest);
677
678  fail:
679         rb_time_read(&cpu_buffer->write_stamp, &ts);
680
681         return ts;
682 }
683
684 /**
685  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
686  * @buffer: The ring_buffer to get the number of pages from
687  * @cpu: The cpu of the ring_buffer to get the number of pages from
688  *
689  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
690  */
691 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
692 {
693         return buffer->buffers[cpu]->nr_pages;
694 }
695
696 /**
697  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
698  * @buffer: The ring_buffer to get the number of pages from
699  * @cpu: The cpu of the ring_buffer to get the number of pages from
700  *
701  * Returns the number of pages that have content in the ring buffer.
702  */
703 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
704 {
705         size_t read;
706         size_t lost;
707         size_t cnt;
708
709         read = local_read(&buffer->buffers[cpu]->pages_read);
710         lost = local_read(&buffer->buffers[cpu]->pages_lost);
711         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
712
713         if (WARN_ON_ONCE(cnt < lost))
714                 return 0;
715
716         cnt -= lost;
717
718         /* The reader can read an empty page, but not more than that */
719         if (cnt < read) {
720                 WARN_ON_ONCE(read > cnt + 1);
721                 return 0;
722         }
723
724         return cnt - read;
725 }
726
727 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
728 {
729         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
730         size_t nr_pages;
731         size_t dirty;
732
733         nr_pages = cpu_buffer->nr_pages;
734         if (!nr_pages || !full)
735                 return true;
736
737         /*
738          * Add one as dirty will never equal nr_pages, as the sub-buffer
739          * that the writer is on is not counted as dirty.
740          * This is needed if "buffer_percent" is set to 100.
741          */
742         dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
743
744         return (dirty * 100) >= (full * nr_pages);
745 }
746
747 /*
748  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
749  *
750  * Schedules a delayed work to wake up any task that is blocked on the
751  * ring buffer waiters queue.
752  */
753 static void rb_wake_up_waiters(struct irq_work *work)
754 {
755         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
756
757         /* For waiters waiting for the first wake up */
758         (void)atomic_fetch_inc_release(&rbwork->seq);
759
760         wake_up_all(&rbwork->waiters);
761         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
762                 /* Only cpu_buffer sets the above flags */
763                 struct ring_buffer_per_cpu *cpu_buffer =
764                         container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
765
766                 /* Called from interrupt context */
767                 raw_spin_lock(&cpu_buffer->reader_lock);
768                 rbwork->wakeup_full = false;
769                 rbwork->full_waiters_pending = false;
770
771                 /* Waking up all waiters, they will reset the shortest full */
772                 cpu_buffer->shortest_full = 0;
773                 raw_spin_unlock(&cpu_buffer->reader_lock);
774
775                 wake_up_all(&rbwork->full_waiters);
776         }
777 }
778
779 /**
780  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
781  * @buffer: The ring buffer to wake waiters on
782  * @cpu: The CPU buffer to wake waiters on
783  *
784  * In the case of a file that represents a ring buffer is closing,
785  * it is prudent to wake up any waiters that are on this.
786  */
787 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
788 {
789         struct ring_buffer_per_cpu *cpu_buffer;
790         struct rb_irq_work *rbwork;
791
792         if (!buffer)
793                 return;
794
795         if (cpu == RING_BUFFER_ALL_CPUS) {
796
797                 /* Wake up individual ones too. One level recursion */
798                 for_each_buffer_cpu(buffer, cpu)
799                         ring_buffer_wake_waiters(buffer, cpu);
800
801                 rbwork = &buffer->irq_work;
802         } else {
803                 if (WARN_ON_ONCE(!buffer->buffers))
804                         return;
805                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
806                         return;
807
808                 cpu_buffer = buffer->buffers[cpu];
809                 /* The CPU buffer may not have been initialized yet */
810                 if (!cpu_buffer)
811                         return;
812                 rbwork = &cpu_buffer->irq_work;
813         }
814
815         /* This can be called in any context */
816         irq_work_queue(&rbwork->work);
817 }
818
819 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
820 {
821         struct ring_buffer_per_cpu *cpu_buffer;
822         bool ret = false;
823
824         /* Reads of all CPUs always waits for any data */
825         if (cpu == RING_BUFFER_ALL_CPUS)
826                 return !ring_buffer_empty(buffer);
827
828         cpu_buffer = buffer->buffers[cpu];
829
830         if (!ring_buffer_empty_cpu(buffer, cpu)) {
831                 unsigned long flags;
832                 bool pagebusy;
833
834                 if (!full)
835                         return true;
836
837                 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
838                 pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
839                 ret = !pagebusy && full_hit(buffer, cpu, full);
840
841                 if (!ret && (!cpu_buffer->shortest_full ||
842                              cpu_buffer->shortest_full > full)) {
843                     cpu_buffer->shortest_full = full;
844                 }
845                 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
846         }
847         return ret;
848 }
849
850 static inline bool
851 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
852              int cpu, int full, ring_buffer_cond_fn cond, void *data)
853 {
854         if (rb_watermark_hit(buffer, cpu, full))
855                 return true;
856
857         if (cond(data))
858                 return true;
859
860         /*
861          * The events can happen in critical sections where
862          * checking a work queue can cause deadlocks.
863          * After adding a task to the queue, this flag is set
864          * only to notify events to try to wake up the queue
865          * using irq_work.
866          *
867          * We don't clear it even if the buffer is no longer
868          * empty. The flag only causes the next event to run
869          * irq_work to do the work queue wake up. The worse
870          * that can happen if we race with !trace_empty() is that
871          * an event will cause an irq_work to try to wake up
872          * an empty queue.
873          *
874          * There's no reason to protect this flag either, as
875          * the work queue and irq_work logic will do the necessary
876          * synchronization for the wake ups. The only thing
877          * that is necessary is that the wake up happens after
878          * a task has been queued. It's OK for spurious wake ups.
879          */
880         if (full)
881                 rbwork->full_waiters_pending = true;
882         else
883                 rbwork->waiters_pending = true;
884
885         return false;
886 }
887
888 struct rb_wait_data {
889         struct rb_irq_work              *irq_work;
890         int                             seq;
891 };
892
893 /*
894  * The default wait condition for ring_buffer_wait() is to just to exit the
895  * wait loop the first time it is woken up.
896  */
897 static bool rb_wait_once(void *data)
898 {
899         struct rb_wait_data *rdata = data;
900         struct rb_irq_work *rbwork = rdata->irq_work;
901
902         return atomic_read_acquire(&rbwork->seq) != rdata->seq;
903 }
904
905 /**
906  * ring_buffer_wait - wait for input to the ring buffer
907  * @buffer: buffer to wait on
908  * @cpu: the cpu buffer to wait on
909  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
910  * @cond: condition function to break out of wait (NULL to run once)
911  * @data: the data to pass to @cond.
912  *
913  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
914  * as data is added to any of the @buffer's cpu buffers. Otherwise
915  * it will wait for data to be added to a specific cpu buffer.
916  */
917 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
918                      ring_buffer_cond_fn cond, void *data)
919 {
920         struct ring_buffer_per_cpu *cpu_buffer;
921         struct wait_queue_head *waitq;
922         struct rb_irq_work *rbwork;
923         struct rb_wait_data rdata;
924         int ret = 0;
925
926         /*
927          * Depending on what the caller is waiting for, either any
928          * data in any cpu buffer, or a specific buffer, put the
929          * caller on the appropriate wait queue.
930          */
931         if (cpu == RING_BUFFER_ALL_CPUS) {
932                 rbwork = &buffer->irq_work;
933                 /* Full only makes sense on per cpu reads */
934                 full = 0;
935         } else {
936                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
937                         return -ENODEV;
938                 cpu_buffer = buffer->buffers[cpu];
939                 rbwork = &cpu_buffer->irq_work;
940         }
941
942         if (full)
943                 waitq = &rbwork->full_waiters;
944         else
945                 waitq = &rbwork->waiters;
946
947         /* Set up to exit loop as soon as it is woken */
948         if (!cond) {
949                 cond = rb_wait_once;
950                 rdata.irq_work = rbwork;
951                 rdata.seq = atomic_read_acquire(&rbwork->seq);
952                 data = &rdata;
953         }
954
955         ret = wait_event_interruptible((*waitq),
956                                 rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
957
958         return ret;
959 }
960
961 /**
962  * ring_buffer_poll_wait - poll on buffer input
963  * @buffer: buffer to wait on
964  * @cpu: the cpu buffer to wait on
965  * @filp: the file descriptor
966  * @poll_table: The poll descriptor
967  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
968  *
969  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
970  * as data is added to any of the @buffer's cpu buffers. Otherwise
971  * it will wait for data to be added to a specific cpu buffer.
972  *
973  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
974  * zero otherwise.
975  */
976 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
977                           struct file *filp, poll_table *poll_table, int full)
978 {
979         struct ring_buffer_per_cpu *cpu_buffer;
980         struct rb_irq_work *rbwork;
981
982         if (cpu == RING_BUFFER_ALL_CPUS) {
983                 rbwork = &buffer->irq_work;
984                 full = 0;
985         } else {
986                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
987                         return EPOLLERR;
988
989                 cpu_buffer = buffer->buffers[cpu];
990                 rbwork = &cpu_buffer->irq_work;
991         }
992
993         if (full) {
994                 poll_wait(filp, &rbwork->full_waiters, poll_table);
995
996                 if (rb_watermark_hit(buffer, cpu, full))
997                         return EPOLLIN | EPOLLRDNORM;
998                 /*
999                  * Only allow full_waiters_pending update to be seen after
1000                  * the shortest_full is set (in rb_watermark_hit). If the
1001                  * writer sees the full_waiters_pending flag set, it will
1002                  * compare the amount in the ring buffer to shortest_full.
1003                  * If the amount in the ring buffer is greater than the
1004                  * shortest_full percent, it will call the irq_work handler
1005                  * to wake up this list. The irq_handler will reset shortest_full
1006                  * back to zero. That's done under the reader_lock, but
1007                  * the below smp_mb() makes sure that the update to
1008                  * full_waiters_pending doesn't leak up into the above.
1009                  */
1010                 smp_mb();
1011                 rbwork->full_waiters_pending = true;
1012                 return 0;
1013         }
1014
1015         poll_wait(filp, &rbwork->waiters, poll_table);
1016         rbwork->waiters_pending = true;
1017
1018         /*
1019          * There's a tight race between setting the waiters_pending and
1020          * checking if the ring buffer is empty.  Once the waiters_pending bit
1021          * is set, the next event will wake the task up, but we can get stuck
1022          * if there's only a single event in.
1023          *
1024          * FIXME: Ideally, we need a memory barrier on the writer side as well,
1025          * but adding a memory barrier to all events will cause too much of a
1026          * performance hit in the fast path.  We only need a memory barrier when
1027          * the buffer goes from empty to having content.  But as this race is
1028          * extremely small, and it's not a problem if another event comes in, we
1029          * will fix it later.
1030          */
1031         smp_mb();
1032
1033         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1034             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1035                 return EPOLLIN | EPOLLRDNORM;
1036         return 0;
1037 }
1038
1039 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1040 #define RB_WARN_ON(b, cond)                                             \
1041         ({                                                              \
1042                 int _____ret = unlikely(cond);                          \
1043                 if (_____ret) {                                         \
1044                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1045                                 struct ring_buffer_per_cpu *__b =       \
1046                                         (void *)b;                      \
1047                                 atomic_inc(&__b->buffer->record_disabled); \
1048                         } else                                          \
1049                                 atomic_inc(&b->record_disabled);        \
1050                         WARN_ON(1);                                     \
1051                 }                                                       \
1052                 _____ret;                                               \
1053         })
1054
1055 /* Up this if you want to test the TIME_EXTENTS and normalization */
1056 #define DEBUG_SHIFT 0
1057
1058 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1059 {
1060         u64 ts;
1061
1062         /* Skip retpolines :-( */
1063         if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1064                 ts = trace_clock_local();
1065         else
1066                 ts = buffer->clock();
1067
1068         /* shift to debug/test normalization and TIME_EXTENTS */
1069         return ts << DEBUG_SHIFT;
1070 }
1071
1072 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1073 {
1074         u64 time;
1075
1076         preempt_disable_notrace();
1077         time = rb_time_stamp(buffer);
1078         preempt_enable_notrace();
1079
1080         return time;
1081 }
1082 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1083
1084 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1085                                       int cpu, u64 *ts)
1086 {
1087         /* Just stupid testing the normalize function and deltas */
1088         *ts >>= DEBUG_SHIFT;
1089 }
1090 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1091
1092 /*
1093  * Making the ring buffer lockless makes things tricky.
1094  * Although writes only happen on the CPU that they are on,
1095  * and they only need to worry about interrupts. Reads can
1096  * happen on any CPU.
1097  *
1098  * The reader page is always off the ring buffer, but when the
1099  * reader finishes with a page, it needs to swap its page with
1100  * a new one from the buffer. The reader needs to take from
1101  * the head (writes go to the tail). But if a writer is in overwrite
1102  * mode and wraps, it must push the head page forward.
1103  *
1104  * Here lies the problem.
1105  *
1106  * The reader must be careful to replace only the head page, and
1107  * not another one. As described at the top of the file in the
1108  * ASCII art, the reader sets its old page to point to the next
1109  * page after head. It then sets the page after head to point to
1110  * the old reader page. But if the writer moves the head page
1111  * during this operation, the reader could end up with the tail.
1112  *
1113  * We use cmpxchg to help prevent this race. We also do something
1114  * special with the page before head. We set the LSB to 1.
1115  *
1116  * When the writer must push the page forward, it will clear the
1117  * bit that points to the head page, move the head, and then set
1118  * the bit that points to the new head page.
1119  *
1120  * We also don't want an interrupt coming in and moving the head
1121  * page on another writer. Thus we use the second LSB to catch
1122  * that too. Thus:
1123  *
1124  * head->list->prev->next        bit 1          bit 0
1125  *                              -------        -------
1126  * Normal page                     0              0
1127  * Points to head page             0              1
1128  * New head page                   1              0
1129  *
1130  * Note we can not trust the prev pointer of the head page, because:
1131  *
1132  * +----+       +-----+        +-----+
1133  * |    |------>|  T  |---X--->|  N  |
1134  * |    |<------|     |        |     |
1135  * +----+       +-----+        +-----+
1136  *   ^                           ^ |
1137  *   |          +-----+          | |
1138  *   +----------|  R  |----------+ |
1139  *              |     |<-----------+
1140  *              +-----+
1141  *
1142  * Key:  ---X-->  HEAD flag set in pointer
1143  *         T      Tail page
1144  *         R      Reader page
1145  *         N      Next page
1146  *
1147  * (see __rb_reserve_next() to see where this happens)
1148  *
1149  *  What the above shows is that the reader just swapped out
1150  *  the reader page with a page in the buffer, but before it
1151  *  could make the new header point back to the new page added
1152  *  it was preempted by a writer. The writer moved forward onto
1153  *  the new page added by the reader and is about to move forward
1154  *  again.
1155  *
1156  *  You can see, it is legitimate for the previous pointer of
1157  *  the head (or any page) not to point back to itself. But only
1158  *  temporarily.
1159  */
1160
1161 #define RB_PAGE_NORMAL          0UL
1162 #define RB_PAGE_HEAD            1UL
1163 #define RB_PAGE_UPDATE          2UL
1164
1165
1166 #define RB_FLAG_MASK            3UL
1167
1168 /* PAGE_MOVED is not part of the mask */
1169 #define RB_PAGE_MOVED           4UL
1170
1171 /*
1172  * rb_list_head - remove any bit
1173  */
1174 static struct list_head *rb_list_head(struct list_head *list)
1175 {
1176         unsigned long val = (unsigned long)list;
1177
1178         return (struct list_head *)(val & ~RB_FLAG_MASK);
1179 }
1180
1181 /*
1182  * rb_is_head_page - test if the given page is the head page
1183  *
1184  * Because the reader may move the head_page pointer, we can
1185  * not trust what the head page is (it may be pointing to
1186  * the reader page). But if the next page is a header page,
1187  * its flags will be non zero.
1188  */
1189 static inline int
1190 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1191 {
1192         unsigned long val;
1193
1194         val = (unsigned long)list->next;
1195
1196         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1197                 return RB_PAGE_MOVED;
1198
1199         return val & RB_FLAG_MASK;
1200 }
1201
1202 /*
1203  * rb_is_reader_page
1204  *
1205  * The unique thing about the reader page, is that, if the
1206  * writer is ever on it, the previous pointer never points
1207  * back to the reader page.
1208  */
1209 static bool rb_is_reader_page(struct buffer_page *page)
1210 {
1211         struct list_head *list = page->list.prev;
1212
1213         return rb_list_head(list->next) != &page->list;
1214 }
1215
1216 /*
1217  * rb_set_list_to_head - set a list_head to be pointing to head.
1218  */
1219 static void rb_set_list_to_head(struct list_head *list)
1220 {
1221         unsigned long *ptr;
1222
1223         ptr = (unsigned long *)&list->next;
1224         *ptr |= RB_PAGE_HEAD;
1225         *ptr &= ~RB_PAGE_UPDATE;
1226 }
1227
1228 /*
1229  * rb_head_page_activate - sets up head page
1230  */
1231 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1232 {
1233         struct buffer_page *head;
1234
1235         head = cpu_buffer->head_page;
1236         if (!head)
1237                 return;
1238
1239         /*
1240          * Set the previous list pointer to have the HEAD flag.
1241          */
1242         rb_set_list_to_head(head->list.prev);
1243 }
1244
1245 static void rb_list_head_clear(struct list_head *list)
1246 {
1247         unsigned long *ptr = (unsigned long *)&list->next;
1248
1249         *ptr &= ~RB_FLAG_MASK;
1250 }
1251
1252 /*
1253  * rb_head_page_deactivate - clears head page ptr (for free list)
1254  */
1255 static void
1256 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1257 {
1258         struct list_head *hd;
1259
1260         /* Go through the whole list and clear any pointers found. */
1261         rb_list_head_clear(cpu_buffer->pages);
1262
1263         list_for_each(hd, cpu_buffer->pages)
1264                 rb_list_head_clear(hd);
1265 }
1266
1267 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1268                             struct buffer_page *head,
1269                             struct buffer_page *prev,
1270                             int old_flag, int new_flag)
1271 {
1272         struct list_head *list;
1273         unsigned long val = (unsigned long)&head->list;
1274         unsigned long ret;
1275
1276         list = &prev->list;
1277
1278         val &= ~RB_FLAG_MASK;
1279
1280         ret = cmpxchg((unsigned long *)&list->next,
1281                       val | old_flag, val | new_flag);
1282
1283         /* check if the reader took the page */
1284         if ((ret & ~RB_FLAG_MASK) != val)
1285                 return RB_PAGE_MOVED;
1286
1287         return ret & RB_FLAG_MASK;
1288 }
1289
1290 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1291                                    struct buffer_page *head,
1292                                    struct buffer_page *prev,
1293                                    int old_flag)
1294 {
1295         return rb_head_page_set(cpu_buffer, head, prev,
1296                                 old_flag, RB_PAGE_UPDATE);
1297 }
1298
1299 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1300                                  struct buffer_page *head,
1301                                  struct buffer_page *prev,
1302                                  int old_flag)
1303 {
1304         return rb_head_page_set(cpu_buffer, head, prev,
1305                                 old_flag, RB_PAGE_HEAD);
1306 }
1307
1308 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1309                                    struct buffer_page *head,
1310                                    struct buffer_page *prev,
1311                                    int old_flag)
1312 {
1313         return rb_head_page_set(cpu_buffer, head, prev,
1314                                 old_flag, RB_PAGE_NORMAL);
1315 }
1316
1317 static inline void rb_inc_page(struct buffer_page **bpage)
1318 {
1319         struct list_head *p = rb_list_head((*bpage)->list.next);
1320
1321         *bpage = list_entry(p, struct buffer_page, list);
1322 }
1323
1324 static struct buffer_page *
1325 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1326 {
1327         struct buffer_page *head;
1328         struct buffer_page *page;
1329         struct list_head *list;
1330         int i;
1331
1332         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1333                 return NULL;
1334
1335         /* sanity check */
1336         list = cpu_buffer->pages;
1337         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1338                 return NULL;
1339
1340         page = head = cpu_buffer->head_page;
1341         /*
1342          * It is possible that the writer moves the header behind
1343          * where we started, and we miss in one loop.
1344          * A second loop should grab the header, but we'll do
1345          * three loops just because I'm paranoid.
1346          */
1347         for (i = 0; i < 3; i++) {
1348                 do {
1349                         if (rb_is_head_page(page, page->list.prev)) {
1350                                 cpu_buffer->head_page = page;
1351                                 return page;
1352                         }
1353                         rb_inc_page(&page);
1354                 } while (page != head);
1355         }
1356
1357         RB_WARN_ON(cpu_buffer, 1);
1358
1359         return NULL;
1360 }
1361
1362 static bool rb_head_page_replace(struct buffer_page *old,
1363                                 struct buffer_page *new)
1364 {
1365         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1366         unsigned long val;
1367
1368         val = *ptr & ~RB_FLAG_MASK;
1369         val |= RB_PAGE_HEAD;
1370
1371         return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1372 }
1373
1374 /*
1375  * rb_tail_page_update - move the tail page forward
1376  */
1377 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1378                                struct buffer_page *tail_page,
1379                                struct buffer_page *next_page)
1380 {
1381         unsigned long old_entries;
1382         unsigned long old_write;
1383
1384         /*
1385          * The tail page now needs to be moved forward.
1386          *
1387          * We need to reset the tail page, but without messing
1388          * with possible erasing of data brought in by interrupts
1389          * that have moved the tail page and are currently on it.
1390          *
1391          * We add a counter to the write field to denote this.
1392          */
1393         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1394         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1395
1396         local_inc(&cpu_buffer->pages_touched);
1397         /*
1398          * Just make sure we have seen our old_write and synchronize
1399          * with any interrupts that come in.
1400          */
1401         barrier();
1402
1403         /*
1404          * If the tail page is still the same as what we think
1405          * it is, then it is up to us to update the tail
1406          * pointer.
1407          */
1408         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1409                 /* Zero the write counter */
1410                 unsigned long val = old_write & ~RB_WRITE_MASK;
1411                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1412
1413                 /*
1414                  * This will only succeed if an interrupt did
1415                  * not come in and change it. In which case, we
1416                  * do not want to modify it.
1417                  *
1418                  * We add (void) to let the compiler know that we do not care
1419                  * about the return value of these functions. We use the
1420                  * cmpxchg to only update if an interrupt did not already
1421                  * do it for us. If the cmpxchg fails, we don't care.
1422                  */
1423                 (void)local_cmpxchg(&next_page->write, old_write, val);
1424                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1425
1426                 /*
1427                  * No need to worry about races with clearing out the commit.
1428                  * it only can increment when a commit takes place. But that
1429                  * only happens in the outer most nested commit.
1430                  */
1431                 local_set(&next_page->page->commit, 0);
1432
1433                 /* Again, either we update tail_page or an interrupt does */
1434                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1435         }
1436 }
1437
1438 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1439                           struct buffer_page *bpage)
1440 {
1441         unsigned long val = (unsigned long)bpage;
1442
1443         RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1444 }
1445
1446 /**
1447  * rb_check_pages - integrity check of buffer pages
1448  * @cpu_buffer: CPU buffer with pages to test
1449  *
1450  * As a safety measure we check to make sure the data pages have not
1451  * been corrupted.
1452  */
1453 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1454 {
1455         struct list_head *head = rb_list_head(cpu_buffer->pages);
1456         struct list_head *tmp;
1457
1458         if (RB_WARN_ON(cpu_buffer,
1459                         rb_list_head(rb_list_head(head->next)->prev) != head))
1460                 return;
1461
1462         if (RB_WARN_ON(cpu_buffer,
1463                         rb_list_head(rb_list_head(head->prev)->next) != head))
1464                 return;
1465
1466         for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1467                 if (RB_WARN_ON(cpu_buffer,
1468                                 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1469                         return;
1470
1471                 if (RB_WARN_ON(cpu_buffer,
1472                                 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1473                         return;
1474         }
1475 }
1476
1477 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1478                 long nr_pages, struct list_head *pages)
1479 {
1480         struct buffer_page *bpage, *tmp;
1481         bool user_thread = current->mm != NULL;
1482         gfp_t mflags;
1483         long i;
1484
1485         /*
1486          * Check if the available memory is there first.
1487          * Note, si_mem_available() only gives us a rough estimate of available
1488          * memory. It may not be accurate. But we don't care, we just want
1489          * to prevent doing any allocation when it is obvious that it is
1490          * not going to succeed.
1491          */
1492         i = si_mem_available();
1493         if (i < nr_pages)
1494                 return -ENOMEM;
1495
1496         /*
1497          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1498          * gracefully without invoking oom-killer and the system is not
1499          * destabilized.
1500          */
1501         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1502
1503         /*
1504          * If a user thread allocates too much, and si_mem_available()
1505          * reports there's enough memory, even though there is not.
1506          * Make sure the OOM killer kills this thread. This can happen
1507          * even with RETRY_MAYFAIL because another task may be doing
1508          * an allocation after this task has taken all memory.
1509          * This is the task the OOM killer needs to take out during this
1510          * loop, even if it was triggered by an allocation somewhere else.
1511          */
1512         if (user_thread)
1513                 set_current_oom_origin();
1514         for (i = 0; i < nr_pages; i++) {
1515                 struct page *page;
1516
1517                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1518                                     mflags, cpu_to_node(cpu_buffer->cpu));
1519                 if (!bpage)
1520                         goto free_pages;
1521
1522                 rb_check_bpage(cpu_buffer, bpage);
1523
1524                 list_add(&bpage->list, pages);
1525
1526                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
1527                                         mflags | __GFP_ZERO,
1528                                         cpu_buffer->buffer->subbuf_order);
1529                 if (!page)
1530                         goto free_pages;
1531                 bpage->page = page_address(page);
1532                 bpage->order = cpu_buffer->buffer->subbuf_order;
1533                 rb_init_page(bpage->page);
1534
1535                 if (user_thread && fatal_signal_pending(current))
1536                         goto free_pages;
1537         }
1538         if (user_thread)
1539                 clear_current_oom_origin();
1540
1541         return 0;
1542
1543 free_pages:
1544         list_for_each_entry_safe(bpage, tmp, pages, list) {
1545                 list_del_init(&bpage->list);
1546                 free_buffer_page(bpage);
1547         }
1548         if (user_thread)
1549                 clear_current_oom_origin();
1550
1551         return -ENOMEM;
1552 }
1553
1554 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1555                              unsigned long nr_pages)
1556 {
1557         LIST_HEAD(pages);
1558
1559         WARN_ON(!nr_pages);
1560
1561         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1562                 return -ENOMEM;
1563
1564         /*
1565          * The ring buffer page list is a circular list that does not
1566          * start and end with a list head. All page list items point to
1567          * other pages.
1568          */
1569         cpu_buffer->pages = pages.next;
1570         list_del(&pages);
1571
1572         cpu_buffer->nr_pages = nr_pages;
1573
1574         rb_check_pages(cpu_buffer);
1575
1576         return 0;
1577 }
1578
1579 static struct ring_buffer_per_cpu *
1580 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1581 {
1582         struct ring_buffer_per_cpu *cpu_buffer;
1583         struct buffer_page *bpage;
1584         struct page *page;
1585         int ret;
1586
1587         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1588                                   GFP_KERNEL, cpu_to_node(cpu));
1589         if (!cpu_buffer)
1590                 return NULL;
1591
1592         cpu_buffer->cpu = cpu;
1593         cpu_buffer->buffer = buffer;
1594         raw_spin_lock_init(&cpu_buffer->reader_lock);
1595         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1596         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1597         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1598         init_completion(&cpu_buffer->update_done);
1599         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1600         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1601         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1602
1603         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1604                             GFP_KERNEL, cpu_to_node(cpu));
1605         if (!bpage)
1606                 goto fail_free_buffer;
1607
1608         rb_check_bpage(cpu_buffer, bpage);
1609
1610         cpu_buffer->reader_page = bpage;
1611
1612         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_ZERO,
1613                                 cpu_buffer->buffer->subbuf_order);
1614         if (!page)
1615                 goto fail_free_reader;
1616         bpage->page = page_address(page);
1617         rb_init_page(bpage->page);
1618
1619         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1620         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1621
1622         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1623         if (ret < 0)
1624                 goto fail_free_reader;
1625
1626         cpu_buffer->head_page
1627                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1628         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1629
1630         rb_head_page_activate(cpu_buffer);
1631
1632         return cpu_buffer;
1633
1634  fail_free_reader:
1635         free_buffer_page(cpu_buffer->reader_page);
1636
1637  fail_free_buffer:
1638         kfree(cpu_buffer);
1639         return NULL;
1640 }
1641
1642 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1643 {
1644         struct list_head *head = cpu_buffer->pages;
1645         struct buffer_page *bpage, *tmp;
1646
1647         irq_work_sync(&cpu_buffer->irq_work.work);
1648
1649         free_buffer_page(cpu_buffer->reader_page);
1650
1651         if (head) {
1652                 rb_head_page_deactivate(cpu_buffer);
1653
1654                 list_for_each_entry_safe(bpage, tmp, head, list) {
1655                         list_del_init(&bpage->list);
1656                         free_buffer_page(bpage);
1657                 }
1658                 bpage = list_entry(head, struct buffer_page, list);
1659                 free_buffer_page(bpage);
1660         }
1661
1662         free_page((unsigned long)cpu_buffer->free_page);
1663
1664         kfree(cpu_buffer);
1665 }
1666
1667 /**
1668  * __ring_buffer_alloc - allocate a new ring_buffer
1669  * @size: the size in bytes per cpu that is needed.
1670  * @flags: attributes to set for the ring buffer.
1671  * @key: ring buffer reader_lock_key.
1672  *
1673  * Currently the only flag that is available is the RB_FL_OVERWRITE
1674  * flag. This flag means that the buffer will overwrite old data
1675  * when the buffer wraps. If this flag is not set, the buffer will
1676  * drop data when the tail hits the head.
1677  */
1678 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1679                                         struct lock_class_key *key)
1680 {
1681         struct trace_buffer *buffer;
1682         long nr_pages;
1683         int bsize;
1684         int cpu;
1685         int ret;
1686
1687         /* keep it in its own cache line */
1688         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1689                          GFP_KERNEL);
1690         if (!buffer)
1691                 return NULL;
1692
1693         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1694                 goto fail_free_buffer;
1695
1696         /* Default buffer page size - one system page */
1697         buffer->subbuf_order = 0;
1698         buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE;
1699
1700         /* Max payload is buffer page size - header (8bytes) */
1701         buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
1702
1703         nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1704         buffer->flags = flags;
1705         buffer->clock = trace_clock_local;
1706         buffer->reader_lock_key = key;
1707
1708         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1709         init_waitqueue_head(&buffer->irq_work.waiters);
1710
1711         /* need at least two pages */
1712         if (nr_pages < 2)
1713                 nr_pages = 2;
1714
1715         buffer->cpus = nr_cpu_ids;
1716
1717         bsize = sizeof(void *) * nr_cpu_ids;
1718         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1719                                   GFP_KERNEL);
1720         if (!buffer->buffers)
1721                 goto fail_free_cpumask;
1722
1723         cpu = raw_smp_processor_id();
1724         cpumask_set_cpu(cpu, buffer->cpumask);
1725         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1726         if (!buffer->buffers[cpu])
1727                 goto fail_free_buffers;
1728
1729         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1730         if (ret < 0)
1731                 goto fail_free_buffers;
1732
1733         mutex_init(&buffer->mutex);
1734
1735         return buffer;
1736
1737  fail_free_buffers:
1738         for_each_buffer_cpu(buffer, cpu) {
1739                 if (buffer->buffers[cpu])
1740                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1741         }
1742         kfree(buffer->buffers);
1743
1744  fail_free_cpumask:
1745         free_cpumask_var(buffer->cpumask);
1746
1747  fail_free_buffer:
1748         kfree(buffer);
1749         return NULL;
1750 }
1751 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1752
1753 /**
1754  * ring_buffer_free - free a ring buffer.
1755  * @buffer: the buffer to free.
1756  */
1757 void
1758 ring_buffer_free(struct trace_buffer *buffer)
1759 {
1760         int cpu;
1761
1762         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1763
1764         irq_work_sync(&buffer->irq_work.work);
1765
1766         for_each_buffer_cpu(buffer, cpu)
1767                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1768
1769         kfree(buffer->buffers);
1770         free_cpumask_var(buffer->cpumask);
1771
1772         kfree(buffer);
1773 }
1774 EXPORT_SYMBOL_GPL(ring_buffer_free);
1775
1776 void ring_buffer_set_clock(struct trace_buffer *buffer,
1777                            u64 (*clock)(void))
1778 {
1779         buffer->clock = clock;
1780 }
1781
1782 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1783 {
1784         buffer->time_stamp_abs = abs;
1785 }
1786
1787 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1788 {
1789         return buffer->time_stamp_abs;
1790 }
1791
1792 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1793
1794 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1795 {
1796         return local_read(&bpage->entries) & RB_WRITE_MASK;
1797 }
1798
1799 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1800 {
1801         return local_read(&bpage->write) & RB_WRITE_MASK;
1802 }
1803
1804 static bool
1805 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1806 {
1807         struct list_head *tail_page, *to_remove, *next_page;
1808         struct buffer_page *to_remove_page, *tmp_iter_page;
1809         struct buffer_page *last_page, *first_page;
1810         unsigned long nr_removed;
1811         unsigned long head_bit;
1812         int page_entries;
1813
1814         head_bit = 0;
1815
1816         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1817         atomic_inc(&cpu_buffer->record_disabled);
1818         /*
1819          * We don't race with the readers since we have acquired the reader
1820          * lock. We also don't race with writers after disabling recording.
1821          * This makes it easy to figure out the first and the last page to be
1822          * removed from the list. We unlink all the pages in between including
1823          * the first and last pages. This is done in a busy loop so that we
1824          * lose the least number of traces.
1825          * The pages are freed after we restart recording and unlock readers.
1826          */
1827         tail_page = &cpu_buffer->tail_page->list;
1828
1829         /*
1830          * tail page might be on reader page, we remove the next page
1831          * from the ring buffer
1832          */
1833         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1834                 tail_page = rb_list_head(tail_page->next);
1835         to_remove = tail_page;
1836
1837         /* start of pages to remove */
1838         first_page = list_entry(rb_list_head(to_remove->next),
1839                                 struct buffer_page, list);
1840
1841         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1842                 to_remove = rb_list_head(to_remove)->next;
1843                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1844         }
1845         /* Read iterators need to reset themselves when some pages removed */
1846         cpu_buffer->pages_removed += nr_removed;
1847
1848         next_page = rb_list_head(to_remove)->next;
1849
1850         /*
1851          * Now we remove all pages between tail_page and next_page.
1852          * Make sure that we have head_bit value preserved for the
1853          * next page
1854          */
1855         tail_page->next = (struct list_head *)((unsigned long)next_page |
1856                                                 head_bit);
1857         next_page = rb_list_head(next_page);
1858         next_page->prev = tail_page;
1859
1860         /* make sure pages points to a valid page in the ring buffer */
1861         cpu_buffer->pages = next_page;
1862
1863         /* update head page */
1864         if (head_bit)
1865                 cpu_buffer->head_page = list_entry(next_page,
1866                                                 struct buffer_page, list);
1867
1868         /* pages are removed, resume tracing and then free the pages */
1869         atomic_dec(&cpu_buffer->record_disabled);
1870         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1871
1872         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1873
1874         /* last buffer page to remove */
1875         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1876                                 list);
1877         tmp_iter_page = first_page;
1878
1879         do {
1880                 cond_resched();
1881
1882                 to_remove_page = tmp_iter_page;
1883                 rb_inc_page(&tmp_iter_page);
1884
1885                 /* update the counters */
1886                 page_entries = rb_page_entries(to_remove_page);
1887                 if (page_entries) {
1888                         /*
1889                          * If something was added to this page, it was full
1890                          * since it is not the tail page. So we deduct the
1891                          * bytes consumed in ring buffer from here.
1892                          * Increment overrun to account for the lost events.
1893                          */
1894                         local_add(page_entries, &cpu_buffer->overrun);
1895                         local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1896                         local_inc(&cpu_buffer->pages_lost);
1897                 }
1898
1899                 /*
1900                  * We have already removed references to this list item, just
1901                  * free up the buffer_page and its page
1902                  */
1903                 free_buffer_page(to_remove_page);
1904                 nr_removed--;
1905
1906         } while (to_remove_page != last_page);
1907
1908         RB_WARN_ON(cpu_buffer, nr_removed);
1909
1910         return nr_removed == 0;
1911 }
1912
1913 static bool
1914 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1915 {
1916         struct list_head *pages = &cpu_buffer->new_pages;
1917         unsigned long flags;
1918         bool success;
1919         int retries;
1920
1921         /* Can be called at early boot up, where interrupts must not been enabled */
1922         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1923         /*
1924          * We are holding the reader lock, so the reader page won't be swapped
1925          * in the ring buffer. Now we are racing with the writer trying to
1926          * move head page and the tail page.
1927          * We are going to adapt the reader page update process where:
1928          * 1. We first splice the start and end of list of new pages between
1929          *    the head page and its previous page.
1930          * 2. We cmpxchg the prev_page->next to point from head page to the
1931          *    start of new pages list.
1932          * 3. Finally, we update the head->prev to the end of new list.
1933          *
1934          * We will try this process 10 times, to make sure that we don't keep
1935          * spinning.
1936          */
1937         retries = 10;
1938         success = false;
1939         while (retries--) {
1940                 struct list_head *head_page, *prev_page;
1941                 struct list_head *last_page, *first_page;
1942                 struct list_head *head_page_with_bit;
1943                 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
1944
1945                 if (!hpage)
1946                         break;
1947                 head_page = &hpage->list;
1948                 prev_page = head_page->prev;
1949
1950                 first_page = pages->next;
1951                 last_page  = pages->prev;
1952
1953                 head_page_with_bit = (struct list_head *)
1954                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1955
1956                 last_page->next = head_page_with_bit;
1957                 first_page->prev = prev_page;
1958
1959                 /* caution: head_page_with_bit gets updated on cmpxchg failure */
1960                 if (try_cmpxchg(&prev_page->next,
1961                                 &head_page_with_bit, first_page)) {
1962                         /*
1963                          * yay, we replaced the page pointer to our new list,
1964                          * now, we just have to update to head page's prev
1965                          * pointer to point to end of list
1966                          */
1967                         head_page->prev = last_page;
1968                         success = true;
1969                         break;
1970                 }
1971         }
1972
1973         if (success)
1974                 INIT_LIST_HEAD(pages);
1975         /*
1976          * If we weren't successful in adding in new pages, warn and stop
1977          * tracing
1978          */
1979         RB_WARN_ON(cpu_buffer, !success);
1980         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1981
1982         /* free pages if they weren't inserted */
1983         if (!success) {
1984                 struct buffer_page *bpage, *tmp;
1985                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1986                                          list) {
1987                         list_del_init(&bpage->list);
1988                         free_buffer_page(bpage);
1989                 }
1990         }
1991         return success;
1992 }
1993
1994 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1995 {
1996         bool success;
1997
1998         if (cpu_buffer->nr_pages_to_update > 0)
1999                 success = rb_insert_pages(cpu_buffer);
2000         else
2001                 success = rb_remove_pages(cpu_buffer,
2002                                         -cpu_buffer->nr_pages_to_update);
2003
2004         if (success)
2005                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2006 }
2007
2008 static void update_pages_handler(struct work_struct *work)
2009 {
2010         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2011                         struct ring_buffer_per_cpu, update_pages_work);
2012         rb_update_pages(cpu_buffer);
2013         complete(&cpu_buffer->update_done);
2014 }
2015
2016 /**
2017  * ring_buffer_resize - resize the ring buffer
2018  * @buffer: the buffer to resize.
2019  * @size: the new size.
2020  * @cpu_id: the cpu buffer to resize
2021  *
2022  * Minimum size is 2 * buffer->subbuf_size.
2023  *
2024  * Returns 0 on success and < 0 on failure.
2025  */
2026 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2027                         int cpu_id)
2028 {
2029         struct ring_buffer_per_cpu *cpu_buffer;
2030         unsigned long nr_pages;
2031         int cpu, err;
2032
2033         /*
2034          * Always succeed at resizing a non-existent buffer:
2035          */
2036         if (!buffer)
2037                 return 0;
2038
2039         /* Make sure the requested buffer exists */
2040         if (cpu_id != RING_BUFFER_ALL_CPUS &&
2041             !cpumask_test_cpu(cpu_id, buffer->cpumask))
2042                 return 0;
2043
2044         nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2045
2046         /* we need a minimum of two pages */
2047         if (nr_pages < 2)
2048                 nr_pages = 2;
2049
2050         /* prevent another thread from changing buffer sizes */
2051         mutex_lock(&buffer->mutex);
2052         atomic_inc(&buffer->resizing);
2053
2054         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2055                 /*
2056                  * Don't succeed if resizing is disabled, as a reader might be
2057                  * manipulating the ring buffer and is expecting a sane state while
2058                  * this is true.
2059                  */
2060                 for_each_buffer_cpu(buffer, cpu) {
2061                         cpu_buffer = buffer->buffers[cpu];
2062                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2063                                 err = -EBUSY;
2064                                 goto out_err_unlock;
2065                         }
2066                 }
2067
2068                 /* calculate the pages to update */
2069                 for_each_buffer_cpu(buffer, cpu) {
2070                         cpu_buffer = buffer->buffers[cpu];
2071
2072                         cpu_buffer->nr_pages_to_update = nr_pages -
2073                                                         cpu_buffer->nr_pages;
2074                         /*
2075                          * nothing more to do for removing pages or no update
2076                          */
2077                         if (cpu_buffer->nr_pages_to_update <= 0)
2078                                 continue;
2079                         /*
2080                          * to add pages, make sure all new pages can be
2081                          * allocated without receiving ENOMEM
2082                          */
2083                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2084                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2085                                                 &cpu_buffer->new_pages)) {
2086                                 /* not enough memory for new pages */
2087                                 err = -ENOMEM;
2088                                 goto out_err;
2089                         }
2090
2091                         cond_resched();
2092                 }
2093
2094                 cpus_read_lock();
2095                 /*
2096                  * Fire off all the required work handlers
2097                  * We can't schedule on offline CPUs, but it's not necessary
2098                  * since we can change their buffer sizes without any race.
2099                  */
2100                 for_each_buffer_cpu(buffer, cpu) {
2101                         cpu_buffer = buffer->buffers[cpu];
2102                         if (!cpu_buffer->nr_pages_to_update)
2103                                 continue;
2104
2105                         /* Can't run something on an offline CPU. */
2106                         if (!cpu_online(cpu)) {
2107                                 rb_update_pages(cpu_buffer);
2108                                 cpu_buffer->nr_pages_to_update = 0;
2109                         } else {
2110                                 /* Run directly if possible. */
2111                                 migrate_disable();
2112                                 if (cpu != smp_processor_id()) {
2113                                         migrate_enable();
2114                                         schedule_work_on(cpu,
2115                                                          &cpu_buffer->update_pages_work);
2116                                 } else {
2117                                         update_pages_handler(&cpu_buffer->update_pages_work);
2118                                         migrate_enable();
2119                                 }
2120                         }
2121                 }
2122
2123                 /* wait for all the updates to complete */
2124                 for_each_buffer_cpu(buffer, cpu) {
2125                         cpu_buffer = buffer->buffers[cpu];
2126                         if (!cpu_buffer->nr_pages_to_update)
2127                                 continue;
2128
2129                         if (cpu_online(cpu))
2130                                 wait_for_completion(&cpu_buffer->update_done);
2131                         cpu_buffer->nr_pages_to_update = 0;
2132                 }
2133
2134                 cpus_read_unlock();
2135         } else {
2136                 cpu_buffer = buffer->buffers[cpu_id];
2137
2138                 if (nr_pages == cpu_buffer->nr_pages)
2139                         goto out;
2140
2141                 /*
2142                  * Don't succeed if resizing is disabled, as a reader might be
2143                  * manipulating the ring buffer and is expecting a sane state while
2144                  * this is true.
2145                  */
2146                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2147                         err = -EBUSY;
2148                         goto out_err_unlock;
2149                 }
2150
2151                 cpu_buffer->nr_pages_to_update = nr_pages -
2152                                                 cpu_buffer->nr_pages;
2153
2154                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2155                 if (cpu_buffer->nr_pages_to_update > 0 &&
2156                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2157                                             &cpu_buffer->new_pages)) {
2158                         err = -ENOMEM;
2159                         goto out_err;
2160                 }
2161
2162                 cpus_read_lock();
2163
2164                 /* Can't run something on an offline CPU. */
2165                 if (!cpu_online(cpu_id))
2166                         rb_update_pages(cpu_buffer);
2167                 else {
2168                         /* Run directly if possible. */
2169                         migrate_disable();
2170                         if (cpu_id == smp_processor_id()) {
2171                                 rb_update_pages(cpu_buffer);
2172                                 migrate_enable();
2173                         } else {
2174                                 migrate_enable();
2175                                 schedule_work_on(cpu_id,
2176                                                  &cpu_buffer->update_pages_work);
2177                                 wait_for_completion(&cpu_buffer->update_done);
2178                         }
2179                 }
2180
2181                 cpu_buffer->nr_pages_to_update = 0;
2182                 cpus_read_unlock();
2183         }
2184
2185  out:
2186         /*
2187          * The ring buffer resize can happen with the ring buffer
2188          * enabled, so that the update disturbs the tracing as little
2189          * as possible. But if the buffer is disabled, we do not need
2190          * to worry about that, and we can take the time to verify
2191          * that the buffer is not corrupt.
2192          */
2193         if (atomic_read(&buffer->record_disabled)) {
2194                 atomic_inc(&buffer->record_disabled);
2195                 /*
2196                  * Even though the buffer was disabled, we must make sure
2197                  * that it is truly disabled before calling rb_check_pages.
2198                  * There could have been a race between checking
2199                  * record_disable and incrementing it.
2200                  */
2201                 synchronize_rcu();
2202                 for_each_buffer_cpu(buffer, cpu) {
2203                         cpu_buffer = buffer->buffers[cpu];
2204                         rb_check_pages(cpu_buffer);
2205                 }
2206                 atomic_dec(&buffer->record_disabled);
2207         }
2208
2209         atomic_dec(&buffer->resizing);
2210         mutex_unlock(&buffer->mutex);
2211         return 0;
2212
2213  out_err:
2214         for_each_buffer_cpu(buffer, cpu) {
2215                 struct buffer_page *bpage, *tmp;
2216
2217                 cpu_buffer = buffer->buffers[cpu];
2218                 cpu_buffer->nr_pages_to_update = 0;
2219
2220                 if (list_empty(&cpu_buffer->new_pages))
2221                         continue;
2222
2223                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2224                                         list) {
2225                         list_del_init(&bpage->list);
2226                         free_buffer_page(bpage);
2227                 }
2228         }
2229  out_err_unlock:
2230         atomic_dec(&buffer->resizing);
2231         mutex_unlock(&buffer->mutex);
2232         return err;
2233 }
2234 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2235
2236 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2237 {
2238         mutex_lock(&buffer->mutex);
2239         if (val)
2240                 buffer->flags |= RB_FL_OVERWRITE;
2241         else
2242                 buffer->flags &= ~RB_FL_OVERWRITE;
2243         mutex_unlock(&buffer->mutex);
2244 }
2245 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2246
2247 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2248 {
2249         return bpage->page->data + index;
2250 }
2251
2252 static __always_inline struct ring_buffer_event *
2253 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2254 {
2255         return __rb_page_index(cpu_buffer->reader_page,
2256                                cpu_buffer->reader_page->read);
2257 }
2258
2259 static struct ring_buffer_event *
2260 rb_iter_head_event(struct ring_buffer_iter *iter)
2261 {
2262         struct ring_buffer_event *event;
2263         struct buffer_page *iter_head_page = iter->head_page;
2264         unsigned long commit;
2265         unsigned length;
2266
2267         if (iter->head != iter->next_event)
2268                 return iter->event;
2269
2270         /*
2271          * When the writer goes across pages, it issues a cmpxchg which
2272          * is a mb(), which will synchronize with the rmb here.
2273          * (see rb_tail_page_update() and __rb_reserve_next())
2274          */
2275         commit = rb_page_commit(iter_head_page);
2276         smp_rmb();
2277
2278         /* An event needs to be at least 8 bytes in size */
2279         if (iter->head > commit - 8)
2280                 goto reset;
2281
2282         event = __rb_page_index(iter_head_page, iter->head);
2283         length = rb_event_length(event);
2284
2285         /*
2286          * READ_ONCE() doesn't work on functions and we don't want the
2287          * compiler doing any crazy optimizations with length.
2288          */
2289         barrier();
2290
2291         if ((iter->head + length) > commit || length > iter->event_size)
2292                 /* Writer corrupted the read? */
2293                 goto reset;
2294
2295         memcpy(iter->event, event, length);
2296         /*
2297          * If the page stamp is still the same after this rmb() then the
2298          * event was safely copied without the writer entering the page.
2299          */
2300         smp_rmb();
2301
2302         /* Make sure the page didn't change since we read this */
2303         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2304             commit > rb_page_commit(iter_head_page))
2305                 goto reset;
2306
2307         iter->next_event = iter->head + length;
2308         return iter->event;
2309  reset:
2310         /* Reset to the beginning */
2311         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2312         iter->head = 0;
2313         iter->next_event = 0;
2314         iter->missed_events = 1;
2315         return NULL;
2316 }
2317
2318 /* Size is determined by what has been committed */
2319 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2320 {
2321         return rb_page_commit(bpage);
2322 }
2323
2324 static __always_inline unsigned
2325 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2326 {
2327         return rb_page_commit(cpu_buffer->commit_page);
2328 }
2329
2330 static __always_inline unsigned
2331 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
2332 {
2333         unsigned long addr = (unsigned long)event;
2334
2335         addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
2336
2337         return addr - BUF_PAGE_HDR_SIZE;
2338 }
2339
2340 static void rb_inc_iter(struct ring_buffer_iter *iter)
2341 {
2342         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2343
2344         /*
2345          * The iterator could be on the reader page (it starts there).
2346          * But the head could have moved, since the reader was
2347          * found. Check for this case and assign the iterator
2348          * to the head page instead of next.
2349          */
2350         if (iter->head_page == cpu_buffer->reader_page)
2351                 iter->head_page = rb_set_head_page(cpu_buffer);
2352         else
2353                 rb_inc_page(&iter->head_page);
2354
2355         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2356         iter->head = 0;
2357         iter->next_event = 0;
2358 }
2359
2360 /*
2361  * rb_handle_head_page - writer hit the head page
2362  *
2363  * Returns: +1 to retry page
2364  *           0 to continue
2365  *          -1 on error
2366  */
2367 static int
2368 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2369                     struct buffer_page *tail_page,
2370                     struct buffer_page *next_page)
2371 {
2372         struct buffer_page *new_head;
2373         int entries;
2374         int type;
2375         int ret;
2376
2377         entries = rb_page_entries(next_page);
2378
2379         /*
2380          * The hard part is here. We need to move the head
2381          * forward, and protect against both readers on
2382          * other CPUs and writers coming in via interrupts.
2383          */
2384         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2385                                        RB_PAGE_HEAD);
2386
2387         /*
2388          * type can be one of four:
2389          *  NORMAL - an interrupt already moved it for us
2390          *  HEAD   - we are the first to get here.
2391          *  UPDATE - we are the interrupt interrupting
2392          *           a current move.
2393          *  MOVED  - a reader on another CPU moved the next
2394          *           pointer to its reader page. Give up
2395          *           and try again.
2396          */
2397
2398         switch (type) {
2399         case RB_PAGE_HEAD:
2400                 /*
2401                  * We changed the head to UPDATE, thus
2402                  * it is our responsibility to update
2403                  * the counters.
2404                  */
2405                 local_add(entries, &cpu_buffer->overrun);
2406                 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2407                 local_inc(&cpu_buffer->pages_lost);
2408
2409                 /*
2410                  * The entries will be zeroed out when we move the
2411                  * tail page.
2412                  */
2413
2414                 /* still more to do */
2415                 break;
2416
2417         case RB_PAGE_UPDATE:
2418                 /*
2419                  * This is an interrupt that interrupt the
2420                  * previous update. Still more to do.
2421                  */
2422                 break;
2423         case RB_PAGE_NORMAL:
2424                 /*
2425                  * An interrupt came in before the update
2426                  * and processed this for us.
2427                  * Nothing left to do.
2428                  */
2429                 return 1;
2430         case RB_PAGE_MOVED:
2431                 /*
2432                  * The reader is on another CPU and just did
2433                  * a swap with our next_page.
2434                  * Try again.
2435                  */
2436                 return 1;
2437         default:
2438                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2439                 return -1;
2440         }
2441
2442         /*
2443          * Now that we are here, the old head pointer is
2444          * set to UPDATE. This will keep the reader from
2445          * swapping the head page with the reader page.
2446          * The reader (on another CPU) will spin till
2447          * we are finished.
2448          *
2449          * We just need to protect against interrupts
2450          * doing the job. We will set the next pointer
2451          * to HEAD. After that, we set the old pointer
2452          * to NORMAL, but only if it was HEAD before.
2453          * otherwise we are an interrupt, and only
2454          * want the outer most commit to reset it.
2455          */
2456         new_head = next_page;
2457         rb_inc_page(&new_head);
2458
2459         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2460                                     RB_PAGE_NORMAL);
2461
2462         /*
2463          * Valid returns are:
2464          *  HEAD   - an interrupt came in and already set it.
2465          *  NORMAL - One of two things:
2466          *            1) We really set it.
2467          *            2) A bunch of interrupts came in and moved
2468          *               the page forward again.
2469          */
2470         switch (ret) {
2471         case RB_PAGE_HEAD:
2472         case RB_PAGE_NORMAL:
2473                 /* OK */
2474                 break;
2475         default:
2476                 RB_WARN_ON(cpu_buffer, 1);
2477                 return -1;
2478         }
2479
2480         /*
2481          * It is possible that an interrupt came in,
2482          * set the head up, then more interrupts came in
2483          * and moved it again. When we get back here,
2484          * the page would have been set to NORMAL but we
2485          * just set it back to HEAD.
2486          *
2487          * How do you detect this? Well, if that happened
2488          * the tail page would have moved.
2489          */
2490         if (ret == RB_PAGE_NORMAL) {
2491                 struct buffer_page *buffer_tail_page;
2492
2493                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2494                 /*
2495                  * If the tail had moved passed next, then we need
2496                  * to reset the pointer.
2497                  */
2498                 if (buffer_tail_page != tail_page &&
2499                     buffer_tail_page != next_page)
2500                         rb_head_page_set_normal(cpu_buffer, new_head,
2501                                                 next_page,
2502                                                 RB_PAGE_HEAD);
2503         }
2504
2505         /*
2506          * If this was the outer most commit (the one that
2507          * changed the original pointer from HEAD to UPDATE),
2508          * then it is up to us to reset it to NORMAL.
2509          */
2510         if (type == RB_PAGE_HEAD) {
2511                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2512                                               tail_page,
2513                                               RB_PAGE_UPDATE);
2514                 if (RB_WARN_ON(cpu_buffer,
2515                                ret != RB_PAGE_UPDATE))
2516                         return -1;
2517         }
2518
2519         return 0;
2520 }
2521
2522 static inline void
2523 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2524               unsigned long tail, struct rb_event_info *info)
2525 {
2526         unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
2527         struct buffer_page *tail_page = info->tail_page;
2528         struct ring_buffer_event *event;
2529         unsigned long length = info->length;
2530
2531         /*
2532          * Only the event that crossed the page boundary
2533          * must fill the old tail_page with padding.
2534          */
2535         if (tail >= bsize) {
2536                 /*
2537                  * If the page was filled, then we still need
2538                  * to update the real_end. Reset it to zero
2539                  * and the reader will ignore it.
2540                  */
2541                 if (tail == bsize)
2542                         tail_page->real_end = 0;
2543
2544                 local_sub(length, &tail_page->write);
2545                 return;
2546         }
2547
2548         event = __rb_page_index(tail_page, tail);
2549
2550         /*
2551          * Save the original length to the meta data.
2552          * This will be used by the reader to add lost event
2553          * counter.
2554          */
2555         tail_page->real_end = tail;
2556
2557         /*
2558          * If this event is bigger than the minimum size, then
2559          * we need to be careful that we don't subtract the
2560          * write counter enough to allow another writer to slip
2561          * in on this page.
2562          * We put in a discarded commit instead, to make sure
2563          * that this space is not used again, and this space will
2564          * not be accounted into 'entries_bytes'.
2565          *
2566          * If we are less than the minimum size, we don't need to
2567          * worry about it.
2568          */
2569         if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
2570                 /* No room for any events */
2571
2572                 /* Mark the rest of the page with padding */
2573                 rb_event_set_padding(event);
2574
2575                 /* Make sure the padding is visible before the write update */
2576                 smp_wmb();
2577
2578                 /* Set the write back to the previous setting */
2579                 local_sub(length, &tail_page->write);
2580                 return;
2581         }
2582
2583         /* Put in a discarded event */
2584         event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
2585         event->type_len = RINGBUF_TYPE_PADDING;
2586         /* time delta must be non zero */
2587         event->time_delta = 1;
2588
2589         /* account for padding bytes */
2590         local_add(bsize - tail, &cpu_buffer->entries_bytes);
2591
2592         /* Make sure the padding is visible before the tail_page->write update */
2593         smp_wmb();
2594
2595         /* Set write to end of buffer */
2596         length = (tail + length) - bsize;
2597         local_sub(length, &tail_page->write);
2598 }
2599
2600 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2601
2602 /*
2603  * This is the slow path, force gcc not to inline it.
2604  */
2605 static noinline struct ring_buffer_event *
2606 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2607              unsigned long tail, struct rb_event_info *info)
2608 {
2609         struct buffer_page *tail_page = info->tail_page;
2610         struct buffer_page *commit_page = cpu_buffer->commit_page;
2611         struct trace_buffer *buffer = cpu_buffer->buffer;
2612         struct buffer_page *next_page;
2613         int ret;
2614
2615         next_page = tail_page;
2616
2617         rb_inc_page(&next_page);
2618
2619         /*
2620          * If for some reason, we had an interrupt storm that made
2621          * it all the way around the buffer, bail, and warn
2622          * about it.
2623          */
2624         if (unlikely(next_page == commit_page)) {
2625                 local_inc(&cpu_buffer->commit_overrun);
2626                 goto out_reset;
2627         }
2628
2629         /*
2630          * This is where the fun begins!
2631          *
2632          * We are fighting against races between a reader that
2633          * could be on another CPU trying to swap its reader
2634          * page with the buffer head.
2635          *
2636          * We are also fighting against interrupts coming in and
2637          * moving the head or tail on us as well.
2638          *
2639          * If the next page is the head page then we have filled
2640          * the buffer, unless the commit page is still on the
2641          * reader page.
2642          */
2643         if (rb_is_head_page(next_page, &tail_page->list)) {
2644
2645                 /*
2646                  * If the commit is not on the reader page, then
2647                  * move the header page.
2648                  */
2649                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2650                         /*
2651                          * If we are not in overwrite mode,
2652                          * this is easy, just stop here.
2653                          */
2654                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2655                                 local_inc(&cpu_buffer->dropped_events);
2656                                 goto out_reset;
2657                         }
2658
2659                         ret = rb_handle_head_page(cpu_buffer,
2660                                                   tail_page,
2661                                                   next_page);
2662                         if (ret < 0)
2663                                 goto out_reset;
2664                         if (ret)
2665                                 goto out_again;
2666                 } else {
2667                         /*
2668                          * We need to be careful here too. The
2669                          * commit page could still be on the reader
2670                          * page. We could have a small buffer, and
2671                          * have filled up the buffer with events
2672                          * from interrupts and such, and wrapped.
2673                          *
2674                          * Note, if the tail page is also on the
2675                          * reader_page, we let it move out.
2676                          */
2677                         if (unlikely((cpu_buffer->commit_page !=
2678                                       cpu_buffer->tail_page) &&
2679                                      (cpu_buffer->commit_page ==
2680                                       cpu_buffer->reader_page))) {
2681                                 local_inc(&cpu_buffer->commit_overrun);
2682                                 goto out_reset;
2683                         }
2684                 }
2685         }
2686
2687         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2688
2689  out_again:
2690
2691         rb_reset_tail(cpu_buffer, tail, info);
2692
2693         /* Commit what we have for now. */
2694         rb_end_commit(cpu_buffer);
2695         /* rb_end_commit() decs committing */
2696         local_inc(&cpu_buffer->committing);
2697
2698         /* fail and let the caller try again */
2699         return ERR_PTR(-EAGAIN);
2700
2701  out_reset:
2702         /* reset write */
2703         rb_reset_tail(cpu_buffer, tail, info);
2704
2705         return NULL;
2706 }
2707
2708 /* Slow path */
2709 static struct ring_buffer_event *
2710 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2711                   struct ring_buffer_event *event, u64 delta, bool abs)
2712 {
2713         if (abs)
2714                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2715         else
2716                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2717
2718         /* Not the first event on the page, or not delta? */
2719         if (abs || rb_event_index(cpu_buffer, event)) {
2720                 event->time_delta = delta & TS_MASK;
2721                 event->array[0] = delta >> TS_SHIFT;
2722         } else {
2723                 /* nope, just zero it */
2724                 event->time_delta = 0;
2725                 event->array[0] = 0;
2726         }
2727
2728         return skip_time_extend(event);
2729 }
2730
2731 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2732 static inline bool sched_clock_stable(void)
2733 {
2734         return true;
2735 }
2736 #endif
2737
2738 static void
2739 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2740                    struct rb_event_info *info)
2741 {
2742         u64 write_stamp;
2743
2744         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2745                   (unsigned long long)info->delta,
2746                   (unsigned long long)info->ts,
2747                   (unsigned long long)info->before,
2748                   (unsigned long long)info->after,
2749                   (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
2750                   sched_clock_stable() ? "" :
2751                   "If you just came from a suspend/resume,\n"
2752                   "please switch to the trace global clock:\n"
2753                   "  echo global > /sys/kernel/tracing/trace_clock\n"
2754                   "or add trace_clock=global to the kernel command line\n");
2755 }
2756
2757 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2758                                       struct ring_buffer_event **event,
2759                                       struct rb_event_info *info,
2760                                       u64 *delta,
2761                                       unsigned int *length)
2762 {
2763         bool abs = info->add_timestamp &
2764                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2765
2766         if (unlikely(info->delta > (1ULL << 59))) {
2767                 /*
2768                  * Some timers can use more than 59 bits, and when a timestamp
2769                  * is added to the buffer, it will lose those bits.
2770                  */
2771                 if (abs && (info->ts & TS_MSB)) {
2772                         info->delta &= ABS_TS_MASK;
2773
2774                 /* did the clock go backwards */
2775                 } else if (info->before == info->after && info->before > info->ts) {
2776                         /* not interrupted */
2777                         static int once;
2778
2779                         /*
2780                          * This is possible with a recalibrating of the TSC.
2781                          * Do not produce a call stack, but just report it.
2782                          */
2783                         if (!once) {
2784                                 once++;
2785                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2786                                         info->before, info->ts);
2787                         }
2788                 } else
2789                         rb_check_timestamp(cpu_buffer, info);
2790                 if (!abs)
2791                         info->delta = 0;
2792         }
2793         *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
2794         *length -= RB_LEN_TIME_EXTEND;
2795         *delta = 0;
2796 }
2797
2798 /**
2799  * rb_update_event - update event type and data
2800  * @cpu_buffer: The per cpu buffer of the @event
2801  * @event: the event to update
2802  * @info: The info to update the @event with (contains length and delta)
2803  *
2804  * Update the type and data fields of the @event. The length
2805  * is the actual size that is written to the ring buffer,
2806  * and with this, we can determine what to place into the
2807  * data field.
2808  */
2809 static void
2810 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2811                 struct ring_buffer_event *event,
2812                 struct rb_event_info *info)
2813 {
2814         unsigned length = info->length;
2815         u64 delta = info->delta;
2816         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2817
2818         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2819                 cpu_buffer->event_stamp[nest] = info->ts;
2820
2821         /*
2822          * If we need to add a timestamp, then we
2823          * add it to the start of the reserved space.
2824          */
2825         if (unlikely(info->add_timestamp))
2826                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2827
2828         event->time_delta = delta;
2829         length -= RB_EVNT_HDR_SIZE;
2830         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2831                 event->type_len = 0;
2832                 event->array[0] = length;
2833         } else
2834                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2835 }
2836
2837 static unsigned rb_calculate_event_length(unsigned length)
2838 {
2839         struct ring_buffer_event event; /* Used only for sizeof array */
2840
2841         /* zero length can cause confusions */
2842         if (!length)
2843                 length++;
2844
2845         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2846                 length += sizeof(event.array[0]);
2847
2848         length += RB_EVNT_HDR_SIZE;
2849         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2850
2851         /*
2852          * In case the time delta is larger than the 27 bits for it
2853          * in the header, we need to add a timestamp. If another
2854          * event comes in when trying to discard this one to increase
2855          * the length, then the timestamp will be added in the allocated
2856          * space of this event. If length is bigger than the size needed
2857          * for the TIME_EXTEND, then padding has to be used. The events
2858          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2859          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2860          * As length is a multiple of 4, we only need to worry if it
2861          * is 12 (RB_LEN_TIME_EXTEND + 4).
2862          */
2863         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2864                 length += RB_ALIGNMENT;
2865
2866         return length;
2867 }
2868
2869 static inline bool
2870 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2871                   struct ring_buffer_event *event)
2872 {
2873         unsigned long new_index, old_index;
2874         struct buffer_page *bpage;
2875         unsigned long addr;
2876
2877         new_index = rb_event_index(cpu_buffer, event);
2878         old_index = new_index + rb_event_ts_length(event);
2879         addr = (unsigned long)event;
2880         addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
2881
2882         bpage = READ_ONCE(cpu_buffer->tail_page);
2883
2884         /*
2885          * Make sure the tail_page is still the same and
2886          * the next write location is the end of this event
2887          */
2888         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2889                 unsigned long write_mask =
2890                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2891                 unsigned long event_length = rb_event_length(event);
2892
2893                 /*
2894                  * For the before_stamp to be different than the write_stamp
2895                  * to make sure that the next event adds an absolute
2896                  * value and does not rely on the saved write stamp, which
2897                  * is now going to be bogus.
2898                  *
2899                  * By setting the before_stamp to zero, the next event
2900                  * is not going to use the write_stamp and will instead
2901                  * create an absolute timestamp. This means there's no
2902                  * reason to update the wirte_stamp!
2903                  */
2904                 rb_time_set(&cpu_buffer->before_stamp, 0);
2905
2906                 /*
2907                  * If an event were to come in now, it would see that the
2908                  * write_stamp and the before_stamp are different, and assume
2909                  * that this event just added itself before updating
2910                  * the write stamp. The interrupting event will fix the
2911                  * write stamp for us, and use an absolute timestamp.
2912                  */
2913
2914                 /*
2915                  * This is on the tail page. It is possible that
2916                  * a write could come in and move the tail page
2917                  * and write to the next page. That is fine
2918                  * because we just shorten what is on this page.
2919                  */
2920                 old_index += write_mask;
2921                 new_index += write_mask;
2922
2923                 /* caution: old_index gets updated on cmpxchg failure */
2924                 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2925                         /* update counters */
2926                         local_sub(event_length, &cpu_buffer->entries_bytes);
2927                         return true;
2928                 }
2929         }
2930
2931         /* could not discard */
2932         return false;
2933 }
2934
2935 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2936 {
2937         local_inc(&cpu_buffer->committing);
2938         local_inc(&cpu_buffer->commits);
2939 }
2940
2941 static __always_inline void
2942 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2943 {
2944         unsigned long max_count;
2945
2946         /*
2947          * We only race with interrupts and NMIs on this CPU.
2948          * If we own the commit event, then we can commit
2949          * all others that interrupted us, since the interruptions
2950          * are in stack format (they finish before they come
2951          * back to us). This allows us to do a simple loop to
2952          * assign the commit to the tail.
2953          */
2954  again:
2955         max_count = cpu_buffer->nr_pages * 100;
2956
2957         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2958                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2959                         return;
2960                 if (RB_WARN_ON(cpu_buffer,
2961                                rb_is_reader_page(cpu_buffer->tail_page)))
2962                         return;
2963                 /*
2964                  * No need for a memory barrier here, as the update
2965                  * of the tail_page did it for this page.
2966                  */
2967                 local_set(&cpu_buffer->commit_page->page->commit,
2968                           rb_page_write(cpu_buffer->commit_page));
2969                 rb_inc_page(&cpu_buffer->commit_page);
2970                 /* add barrier to keep gcc from optimizing too much */
2971                 barrier();
2972         }
2973         while (rb_commit_index(cpu_buffer) !=
2974                rb_page_write(cpu_buffer->commit_page)) {
2975
2976                 /* Make sure the readers see the content of what is committed. */
2977                 smp_wmb();
2978                 local_set(&cpu_buffer->commit_page->page->commit,
2979                           rb_page_write(cpu_buffer->commit_page));
2980                 RB_WARN_ON(cpu_buffer,
2981                            local_read(&cpu_buffer->commit_page->page->commit) &
2982                            ~RB_WRITE_MASK);
2983                 barrier();
2984         }
2985
2986         /* again, keep gcc from optimizing */
2987         barrier();
2988
2989         /*
2990          * If an interrupt came in just after the first while loop
2991          * and pushed the tail page forward, we will be left with
2992          * a dangling commit that will never go forward.
2993          */
2994         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2995                 goto again;
2996 }
2997
2998 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2999 {
3000         unsigned long commits;
3001
3002         if (RB_WARN_ON(cpu_buffer,
3003                        !local_read(&cpu_buffer->committing)))
3004                 return;
3005
3006  again:
3007         commits = local_read(&cpu_buffer->commits);
3008         /* synchronize with interrupts */
3009         barrier();
3010         if (local_read(&cpu_buffer->committing) == 1)
3011                 rb_set_commit_to_write(cpu_buffer);
3012
3013         local_dec(&cpu_buffer->committing);
3014
3015         /* synchronize with interrupts */
3016         barrier();
3017
3018         /*
3019          * Need to account for interrupts coming in between the
3020          * updating of the commit page and the clearing of the
3021          * committing counter.
3022          */
3023         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3024             !local_read(&cpu_buffer->committing)) {
3025                 local_inc(&cpu_buffer->committing);
3026                 goto again;
3027         }
3028 }
3029
3030 static inline void rb_event_discard(struct ring_buffer_event *event)
3031 {
3032         if (extended_time(event))
3033                 event = skip_time_extend(event);
3034
3035         /* array[0] holds the actual length for the discarded event */
3036         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3037         event->type_len = RINGBUF_TYPE_PADDING;
3038         /* time delta must be non zero */
3039         if (!event->time_delta)
3040                 event->time_delta = 1;
3041 }
3042
3043 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3044 {
3045         local_inc(&cpu_buffer->entries);
3046         rb_end_commit(cpu_buffer);
3047 }
3048
3049 static __always_inline void
3050 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3051 {
3052         if (buffer->irq_work.waiters_pending) {
3053                 buffer->irq_work.waiters_pending = false;
3054                 /* irq_work_queue() supplies it's own memory barriers */
3055                 irq_work_queue(&buffer->irq_work.work);
3056         }
3057
3058         if (cpu_buffer->irq_work.waiters_pending) {
3059                 cpu_buffer->irq_work.waiters_pending = false;
3060                 /* irq_work_queue() supplies it's own memory barriers */
3061                 irq_work_queue(&cpu_buffer->irq_work.work);
3062         }
3063
3064         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3065                 return;
3066
3067         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3068                 return;
3069
3070         if (!cpu_buffer->irq_work.full_waiters_pending)
3071                 return;
3072
3073         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3074
3075         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3076                 return;
3077
3078         cpu_buffer->irq_work.wakeup_full = true;
3079         cpu_buffer->irq_work.full_waiters_pending = false;
3080         /* irq_work_queue() supplies it's own memory barriers */
3081         irq_work_queue(&cpu_buffer->irq_work.work);
3082 }
3083
3084 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3085 # define do_ring_buffer_record_recursion()      \
3086         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3087 #else
3088 # define do_ring_buffer_record_recursion() do { } while (0)
3089 #endif
3090
3091 /*
3092  * The lock and unlock are done within a preempt disable section.
3093  * The current_context per_cpu variable can only be modified
3094  * by the current task between lock and unlock. But it can
3095  * be modified more than once via an interrupt. To pass this
3096  * information from the lock to the unlock without having to
3097  * access the 'in_interrupt()' functions again (which do show
3098  * a bit of overhead in something as critical as function tracing,
3099  * we use a bitmask trick.
3100  *
3101  *  bit 1 =  NMI context
3102  *  bit 2 =  IRQ context
3103  *  bit 3 =  SoftIRQ context
3104  *  bit 4 =  normal context.
3105  *
3106  * This works because this is the order of contexts that can
3107  * preempt other contexts. A SoftIRQ never preempts an IRQ
3108  * context.
3109  *
3110  * When the context is determined, the corresponding bit is
3111  * checked and set (if it was set, then a recursion of that context
3112  * happened).
3113  *
3114  * On unlock, we need to clear this bit. To do so, just subtract
3115  * 1 from the current_context and AND it to itself.
3116  *
3117  * (binary)
3118  *  101 - 1 = 100
3119  *  101 & 100 = 100 (clearing bit zero)
3120  *
3121  *  1010 - 1 = 1001
3122  *  1010 & 1001 = 1000 (clearing bit 1)
3123  *
3124  * The least significant bit can be cleared this way, and it
3125  * just so happens that it is the same bit corresponding to
3126  * the current context.
3127  *
3128  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3129  * is set when a recursion is detected at the current context, and if
3130  * the TRANSITION bit is already set, it will fail the recursion.
3131  * This is needed because there's a lag between the changing of
3132  * interrupt context and updating the preempt count. In this case,
3133  * a false positive will be found. To handle this, one extra recursion
3134  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3135  * bit is already set, then it is considered a recursion and the function
3136  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3137  *
3138  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3139  * to be cleared. Even if it wasn't the context that set it. That is,
3140  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3141  * is called before preempt_count() is updated, since the check will
3142  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3143  * NMI then comes in, it will set the NMI bit, but when the NMI code
3144  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3145  * and leave the NMI bit set. But this is fine, because the interrupt
3146  * code that set the TRANSITION bit will then clear the NMI bit when it
3147  * calls trace_recursive_unlock(). If another NMI comes in, it will
3148  * set the TRANSITION bit and continue.
3149  *
3150  * Note: The TRANSITION bit only handles a single transition between context.
3151  */
3152
3153 static __always_inline bool
3154 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3155 {
3156         unsigned int val = cpu_buffer->current_context;
3157         int bit = interrupt_context_level();
3158
3159         bit = RB_CTX_NORMAL - bit;
3160
3161         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3162                 /*
3163                  * It is possible that this was called by transitioning
3164                  * between interrupt context, and preempt_count() has not
3165                  * been updated yet. In this case, use the TRANSITION bit.
3166                  */
3167                 bit = RB_CTX_TRANSITION;
3168                 if (val & (1 << (bit + cpu_buffer->nest))) {
3169                         do_ring_buffer_record_recursion();
3170                         return true;
3171                 }
3172         }
3173
3174         val |= (1 << (bit + cpu_buffer->nest));
3175         cpu_buffer->current_context = val;
3176
3177         return false;
3178 }
3179
3180 static __always_inline void
3181 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3182 {
3183         cpu_buffer->current_context &=
3184                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3185 }
3186
3187 /* The recursive locking above uses 5 bits */
3188 #define NESTED_BITS 5
3189
3190 /**
3191  * ring_buffer_nest_start - Allow to trace while nested
3192  * @buffer: The ring buffer to modify
3193  *
3194  * The ring buffer has a safety mechanism to prevent recursion.
3195  * But there may be a case where a trace needs to be done while
3196  * tracing something else. In this case, calling this function
3197  * will allow this function to nest within a currently active
3198  * ring_buffer_lock_reserve().
3199  *
3200  * Call this function before calling another ring_buffer_lock_reserve() and
3201  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3202  */
3203 void ring_buffer_nest_start(struct trace_buffer *buffer)
3204 {
3205         struct ring_buffer_per_cpu *cpu_buffer;
3206         int cpu;
3207
3208         /* Enabled by ring_buffer_nest_end() */
3209         preempt_disable_notrace();
3210         cpu = raw_smp_processor_id();
3211         cpu_buffer = buffer->buffers[cpu];
3212         /* This is the shift value for the above recursive locking */
3213         cpu_buffer->nest += NESTED_BITS;
3214 }
3215
3216 /**
3217  * ring_buffer_nest_end - Allow to trace while nested
3218  * @buffer: The ring buffer to modify
3219  *
3220  * Must be called after ring_buffer_nest_start() and after the
3221  * ring_buffer_unlock_commit().
3222  */
3223 void ring_buffer_nest_end(struct trace_buffer *buffer)
3224 {
3225         struct ring_buffer_per_cpu *cpu_buffer;
3226         int cpu;
3227
3228         /* disabled by ring_buffer_nest_start() */
3229         cpu = raw_smp_processor_id();
3230         cpu_buffer = buffer->buffers[cpu];
3231         /* This is the shift value for the above recursive locking */
3232         cpu_buffer->nest -= NESTED_BITS;
3233         preempt_enable_notrace();
3234 }
3235
3236 /**
3237  * ring_buffer_unlock_commit - commit a reserved
3238  * @buffer: The buffer to commit to
3239  *
3240  * This commits the data to the ring buffer, and releases any locks held.
3241  *
3242  * Must be paired with ring_buffer_lock_reserve.
3243  */
3244 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3245 {
3246         struct ring_buffer_per_cpu *cpu_buffer;
3247         int cpu = raw_smp_processor_id();
3248
3249         cpu_buffer = buffer->buffers[cpu];
3250
3251         rb_commit(cpu_buffer);
3252
3253         rb_wakeups(buffer, cpu_buffer);
3254
3255         trace_recursive_unlock(cpu_buffer);
3256
3257         preempt_enable_notrace();
3258
3259         return 0;
3260 }
3261 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3262
3263 /* Special value to validate all deltas on a page. */
3264 #define CHECK_FULL_PAGE         1L
3265
3266 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3267
3268 static const char *show_irq_str(int bits)
3269 {
3270         const char *type[] = {
3271                 ".",    // 0
3272                 "s",    // 1
3273                 "h",    // 2
3274                 "Hs",   // 3
3275                 "n",    // 4
3276                 "Ns",   // 5
3277                 "Nh",   // 6
3278                 "NHs",  // 7
3279         };
3280
3281         return type[bits];
3282 }
3283
3284 /* Assume this is an trace event */
3285 static const char *show_flags(struct ring_buffer_event *event)
3286 {
3287         struct trace_entry *entry;
3288         int bits = 0;
3289
3290         if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3291                 return "X";
3292
3293         entry = ring_buffer_event_data(event);
3294
3295         if (entry->flags & TRACE_FLAG_SOFTIRQ)
3296                 bits |= 1;
3297
3298         if (entry->flags & TRACE_FLAG_HARDIRQ)
3299                 bits |= 2;
3300
3301         if (entry->flags & TRACE_FLAG_NMI)
3302                 bits |= 4;
3303
3304         return show_irq_str(bits);
3305 }
3306
3307 static const char *show_irq(struct ring_buffer_event *event)
3308 {
3309         struct trace_entry *entry;
3310
3311         if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3312                 return "";
3313
3314         entry = ring_buffer_event_data(event);
3315         if (entry->flags & TRACE_FLAG_IRQS_OFF)
3316                 return "d";
3317         return "";
3318 }
3319
3320 static const char *show_interrupt_level(void)
3321 {
3322         unsigned long pc = preempt_count();
3323         unsigned char level = 0;
3324
3325         if (pc & SOFTIRQ_OFFSET)
3326                 level |= 1;
3327
3328         if (pc & HARDIRQ_MASK)
3329                 level |= 2;
3330
3331         if (pc & NMI_MASK)
3332                 level |= 4;
3333
3334         return show_irq_str(level);
3335 }
3336
3337 static void dump_buffer_page(struct buffer_data_page *bpage,
3338                              struct rb_event_info *info,
3339                              unsigned long tail)
3340 {
3341         struct ring_buffer_event *event;
3342         u64 ts, delta;
3343         int e;
3344
3345         ts = bpage->time_stamp;
3346         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3347
3348         for (e = 0; e < tail; e += rb_event_length(event)) {
3349
3350                 event = (struct ring_buffer_event *)(bpage->data + e);
3351
3352                 switch (event->type_len) {
3353
3354                 case RINGBUF_TYPE_TIME_EXTEND:
3355                         delta = rb_event_time_stamp(event);
3356                         ts += delta;
3357                         pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
3358                                 e, ts, delta);
3359                         break;
3360
3361                 case RINGBUF_TYPE_TIME_STAMP:
3362                         delta = rb_event_time_stamp(event);
3363                         ts = rb_fix_abs_ts(delta, ts);
3364                         pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
3365                                 e, ts, delta);
3366                         break;
3367
3368                 case RINGBUF_TYPE_PADDING:
3369                         ts += event->time_delta;
3370                         pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
3371                                 e, ts, event->time_delta);
3372                         break;
3373
3374                 case RINGBUF_TYPE_DATA:
3375                         ts += event->time_delta;
3376                         pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
3377                                 e, ts, event->time_delta,
3378                                 show_flags(event), show_irq(event));
3379                         break;
3380
3381                 default:
3382                         break;
3383                 }
3384         }
3385         pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
3386 }
3387
3388 static DEFINE_PER_CPU(atomic_t, checking);
3389 static atomic_t ts_dump;
3390
3391 #define buffer_warn_return(fmt, ...)                                    \
3392         do {                                                            \
3393                 /* If another report is happening, ignore this one */   \
3394                 if (atomic_inc_return(&ts_dump) != 1) {                 \
3395                         atomic_dec(&ts_dump);                           \
3396                         goto out;                                       \
3397                 }                                                       \
3398                 atomic_inc(&cpu_buffer->record_disabled);               \
3399                 pr_warn(fmt, ##__VA_ARGS__);                            \
3400                 dump_buffer_page(bpage, info, tail);                    \
3401                 atomic_dec(&ts_dump);                                   \
3402                 /* There's some cases in boot up that this can happen */ \
3403                 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))       \
3404                         /* Do not re-enable checking */                 \
3405                         return;                                         \
3406         } while (0)
3407
3408 /*
3409  * Check if the current event time stamp matches the deltas on
3410  * the buffer page.
3411  */
3412 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3413                          struct rb_event_info *info,
3414                          unsigned long tail)
3415 {
3416         struct ring_buffer_event *event;
3417         struct buffer_data_page *bpage;
3418         u64 ts, delta;
3419         bool full = false;
3420         int e;
3421
3422         bpage = info->tail_page->page;
3423
3424         if (tail == CHECK_FULL_PAGE) {
3425                 full = true;
3426                 tail = local_read(&bpage->commit);
3427         } else if (info->add_timestamp &
3428                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3429                 /* Ignore events with absolute time stamps */
3430                 return;
3431         }
3432
3433         /*
3434          * Do not check the first event (skip possible extends too).
3435          * Also do not check if previous events have not been committed.
3436          */
3437         if (tail <= 8 || tail > local_read(&bpage->commit))
3438                 return;
3439
3440         /*
3441          * If this interrupted another event,
3442          */
3443         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3444                 goto out;
3445
3446         ts = bpage->time_stamp;
3447
3448         for (e = 0; e < tail; e += rb_event_length(event)) {
3449
3450                 event = (struct ring_buffer_event *)(bpage->data + e);
3451
3452                 switch (event->type_len) {
3453
3454                 case RINGBUF_TYPE_TIME_EXTEND:
3455                         delta = rb_event_time_stamp(event);
3456                         ts += delta;
3457                         break;
3458
3459                 case RINGBUF_TYPE_TIME_STAMP:
3460                         delta = rb_event_time_stamp(event);
3461                         delta = rb_fix_abs_ts(delta, ts);
3462                         if (delta < ts) {
3463                                 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
3464                                                    cpu_buffer->cpu, ts, delta);
3465                         }
3466                         ts = delta;
3467                         break;
3468
3469                 case RINGBUF_TYPE_PADDING:
3470                         if (event->time_delta == 1)
3471                                 break;
3472                         fallthrough;
3473                 case RINGBUF_TYPE_DATA:
3474                         ts += event->time_delta;
3475                         break;
3476
3477                 default:
3478                         RB_WARN_ON(cpu_buffer, 1);
3479                 }
3480         }
3481         if ((full && ts > info->ts) ||
3482             (!full && ts + info->delta != info->ts)) {
3483                 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
3484                                    cpu_buffer->cpu,
3485                                    ts + info->delta, info->ts, info->delta,
3486                                    info->before, info->after,
3487                                    full ? " (full)" : "", show_interrupt_level());
3488         }
3489 out:
3490         atomic_dec(this_cpu_ptr(&checking));
3491 }
3492 #else
3493 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3494                          struct rb_event_info *info,
3495                          unsigned long tail)
3496 {
3497 }
3498 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3499
3500 static struct ring_buffer_event *
3501 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3502                   struct rb_event_info *info)
3503 {
3504         struct ring_buffer_event *event;
3505         struct buffer_page *tail_page;
3506         unsigned long tail, write, w;
3507
3508         /* Don't let the compiler play games with cpu_buffer->tail_page */
3509         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3510
3511  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3512         barrier();
3513         rb_time_read(&cpu_buffer->before_stamp, &info->before);
3514         rb_time_read(&cpu_buffer->write_stamp, &info->after);
3515         barrier();
3516         info->ts = rb_time_stamp(cpu_buffer->buffer);
3517
3518         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3519                 info->delta = info->ts;
3520         } else {
3521                 /*
3522                  * If interrupting an event time update, we may need an
3523                  * absolute timestamp.
3524                  * Don't bother if this is the start of a new page (w == 0).
3525                  */
3526                 if (!w) {
3527                         /* Use the sub-buffer timestamp */
3528                         info->delta = 0;
3529                 } else if (unlikely(info->before != info->after)) {
3530                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3531                         info->length += RB_LEN_TIME_EXTEND;
3532                 } else {
3533                         info->delta = info->ts - info->after;
3534                         if (unlikely(test_time_stamp(info->delta))) {
3535                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3536                                 info->length += RB_LEN_TIME_EXTEND;
3537                         }
3538                 }
3539         }
3540
3541  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3542
3543  /*C*/  write = local_add_return(info->length, &tail_page->write);
3544
3545         /* set write to only the index of the write */
3546         write &= RB_WRITE_MASK;
3547
3548         tail = write - info->length;
3549
3550         /* See if we shot pass the end of this buffer page */
3551         if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
3552                 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3553                 return rb_move_tail(cpu_buffer, tail, info);
3554         }
3555
3556         if (likely(tail == w)) {
3557                 /* Nothing interrupted us between A and C */
3558  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3559                 /*
3560                  * If something came in between C and D, the write stamp
3561                  * may now not be in sync. But that's fine as the before_stamp
3562                  * will be different and then next event will just be forced
3563                  * to use an absolute timestamp.
3564                  */
3565                 if (likely(!(info->add_timestamp &
3566                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3567                         /* This did not interrupt any time update */
3568                         info->delta = info->ts - info->after;
3569                 else
3570                         /* Just use full timestamp for interrupting event */
3571                         info->delta = info->ts;
3572                 check_buffer(cpu_buffer, info, tail);
3573         } else {
3574                 u64 ts;
3575                 /* SLOW PATH - Interrupted between A and C */
3576
3577                 /* Save the old before_stamp */
3578                 rb_time_read(&cpu_buffer->before_stamp, &info->before);
3579
3580                 /*
3581                  * Read a new timestamp and update the before_stamp to make
3582                  * the next event after this one force using an absolute
3583                  * timestamp. This is in case an interrupt were to come in
3584                  * between E and F.
3585                  */
3586                 ts = rb_time_stamp(cpu_buffer->buffer);
3587                 rb_time_set(&cpu_buffer->before_stamp, ts);
3588
3589                 barrier();
3590  /*E*/          rb_time_read(&cpu_buffer->write_stamp, &info->after);
3591                 barrier();
3592  /*F*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3593                     info->after == info->before && info->after < ts) {
3594                         /*
3595                          * Nothing came after this event between C and F, it is
3596                          * safe to use info->after for the delta as it
3597                          * matched info->before and is still valid.
3598                          */
3599                         info->delta = ts - info->after;
3600                 } else {
3601                         /*
3602                          * Interrupted between C and F:
3603                          * Lost the previous events time stamp. Just set the
3604                          * delta to zero, and this will be the same time as
3605                          * the event this event interrupted. And the events that
3606                          * came after this will still be correct (as they would
3607                          * have built their delta on the previous event.
3608                          */
3609                         info->delta = 0;
3610                 }
3611                 info->ts = ts;
3612                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3613         }
3614
3615         /*
3616          * If this is the first commit on the page, then it has the same
3617          * timestamp as the page itself.
3618          */
3619         if (unlikely(!tail && !(info->add_timestamp &
3620                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3621                 info->delta = 0;
3622
3623         /* We reserved something on the buffer */
3624
3625         event = __rb_page_index(tail_page, tail);
3626         rb_update_event(cpu_buffer, event, info);
3627
3628         local_inc(&tail_page->entries);
3629
3630         /*
3631          * If this is the first commit on the page, then update
3632          * its timestamp.
3633          */
3634         if (unlikely(!tail))
3635                 tail_page->page->time_stamp = info->ts;
3636
3637         /* account for these added bytes */
3638         local_add(info->length, &cpu_buffer->entries_bytes);
3639
3640         return event;
3641 }
3642
3643 static __always_inline struct ring_buffer_event *
3644 rb_reserve_next_event(struct trace_buffer *buffer,
3645                       struct ring_buffer_per_cpu *cpu_buffer,
3646                       unsigned long length)
3647 {
3648         struct ring_buffer_event *event;
3649         struct rb_event_info info;
3650         int nr_loops = 0;
3651         int add_ts_default;
3652
3653         /* ring buffer does cmpxchg, make sure it is safe in NMI context */
3654         if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3655             (unlikely(in_nmi()))) {
3656                 return NULL;
3657         }
3658
3659         rb_start_commit(cpu_buffer);
3660         /* The commit page can not change after this */
3661
3662 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3663         /*
3664          * Due to the ability to swap a cpu buffer from a buffer
3665          * it is possible it was swapped before we committed.
3666          * (committing stops a swap). We check for it here and
3667          * if it happened, we have to fail the write.
3668          */
3669         barrier();
3670         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3671                 local_dec(&cpu_buffer->committing);
3672                 local_dec(&cpu_buffer->commits);
3673                 return NULL;
3674         }
3675 #endif
3676
3677         info.length = rb_calculate_event_length(length);
3678
3679         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3680                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3681                 info.length += RB_LEN_TIME_EXTEND;
3682                 if (info.length > cpu_buffer->buffer->max_data_size)
3683                         goto out_fail;
3684         } else {
3685                 add_ts_default = RB_ADD_STAMP_NONE;
3686         }
3687
3688  again:
3689         info.add_timestamp = add_ts_default;
3690         info.delta = 0;
3691
3692         /*
3693          * We allow for interrupts to reenter here and do a trace.
3694          * If one does, it will cause this original code to loop
3695          * back here. Even with heavy interrupts happening, this
3696          * should only happen a few times in a row. If this happens
3697          * 1000 times in a row, there must be either an interrupt
3698          * storm or we have something buggy.
3699          * Bail!
3700          */
3701         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3702                 goto out_fail;
3703
3704         event = __rb_reserve_next(cpu_buffer, &info);
3705
3706         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3707                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3708                         info.length -= RB_LEN_TIME_EXTEND;
3709                 goto again;
3710         }
3711
3712         if (likely(event))
3713                 return event;
3714  out_fail:
3715         rb_end_commit(cpu_buffer);
3716         return NULL;
3717 }
3718
3719 /**
3720  * ring_buffer_lock_reserve - reserve a part of the buffer
3721  * @buffer: the ring buffer to reserve from
3722  * @length: the length of the data to reserve (excluding event header)
3723  *
3724  * Returns a reserved event on the ring buffer to copy directly to.
3725  * The user of this interface will need to get the body to write into
3726  * and can use the ring_buffer_event_data() interface.
3727  *
3728  * The length is the length of the data needed, not the event length
3729  * which also includes the event header.
3730  *
3731  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3732  * If NULL is returned, then nothing has been allocated or locked.
3733  */
3734 struct ring_buffer_event *
3735 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3736 {
3737         struct ring_buffer_per_cpu *cpu_buffer;
3738         struct ring_buffer_event *event;
3739         int cpu;
3740
3741         /* If we are tracing schedule, we don't want to recurse */
3742         preempt_disable_notrace();
3743
3744         if (unlikely(atomic_read(&buffer->record_disabled)))
3745                 goto out;
3746
3747         cpu = raw_smp_processor_id();
3748
3749         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3750                 goto out;
3751
3752         cpu_buffer = buffer->buffers[cpu];
3753
3754         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3755                 goto out;
3756
3757         if (unlikely(length > buffer->max_data_size))
3758                 goto out;
3759
3760         if (unlikely(trace_recursive_lock(cpu_buffer)))
3761                 goto out;
3762
3763         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3764         if (!event)
3765                 goto out_unlock;
3766
3767         return event;
3768
3769  out_unlock:
3770         trace_recursive_unlock(cpu_buffer);
3771  out:
3772         preempt_enable_notrace();
3773         return NULL;
3774 }
3775 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3776
3777 /*
3778  * Decrement the entries to the page that an event is on.
3779  * The event does not even need to exist, only the pointer
3780  * to the page it is on. This may only be called before the commit
3781  * takes place.
3782  */
3783 static inline void
3784 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3785                    struct ring_buffer_event *event)
3786 {
3787         unsigned long addr = (unsigned long)event;
3788         struct buffer_page *bpage = cpu_buffer->commit_page;
3789         struct buffer_page *start;
3790
3791         addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3792
3793         /* Do the likely case first */
3794         if (likely(bpage->page == (void *)addr)) {
3795                 local_dec(&bpage->entries);
3796                 return;
3797         }
3798
3799         /*
3800          * Because the commit page may be on the reader page we
3801          * start with the next page and check the end loop there.
3802          */
3803         rb_inc_page(&bpage);
3804         start = bpage;
3805         do {
3806                 if (bpage->page == (void *)addr) {
3807                         local_dec(&bpage->entries);
3808                         return;
3809                 }
3810                 rb_inc_page(&bpage);
3811         } while (bpage != start);
3812
3813         /* commit not part of this buffer?? */
3814         RB_WARN_ON(cpu_buffer, 1);
3815 }
3816
3817 /**
3818  * ring_buffer_discard_commit - discard an event that has not been committed
3819  * @buffer: the ring buffer
3820  * @event: non committed event to discard
3821  *
3822  * Sometimes an event that is in the ring buffer needs to be ignored.
3823  * This function lets the user discard an event in the ring buffer
3824  * and then that event will not be read later.
3825  *
3826  * This function only works if it is called before the item has been
3827  * committed. It will try to free the event from the ring buffer
3828  * if another event has not been added behind it.
3829  *
3830  * If another event has been added behind it, it will set the event
3831  * up as discarded, and perform the commit.
3832  *
3833  * If this function is called, do not call ring_buffer_unlock_commit on
3834  * the event.
3835  */
3836 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3837                                 struct ring_buffer_event *event)
3838 {
3839         struct ring_buffer_per_cpu *cpu_buffer;
3840         int cpu;
3841
3842         /* The event is discarded regardless */
3843         rb_event_discard(event);
3844
3845         cpu = smp_processor_id();
3846         cpu_buffer = buffer->buffers[cpu];
3847
3848         /*
3849          * This must only be called if the event has not been
3850          * committed yet. Thus we can assume that preemption
3851          * is still disabled.
3852          */
3853         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3854
3855         rb_decrement_entry(cpu_buffer, event);
3856         if (rb_try_to_discard(cpu_buffer, event))
3857                 goto out;
3858
3859  out:
3860         rb_end_commit(cpu_buffer);
3861
3862         trace_recursive_unlock(cpu_buffer);
3863
3864         preempt_enable_notrace();
3865
3866 }
3867 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3868
3869 /**
3870  * ring_buffer_write - write data to the buffer without reserving
3871  * @buffer: The ring buffer to write to.
3872  * @length: The length of the data being written (excluding the event header)
3873  * @data: The data to write to the buffer.
3874  *
3875  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3876  * one function. If you already have the data to write to the buffer, it
3877  * may be easier to simply call this function.
3878  *
3879  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3880  * and not the length of the event which would hold the header.
3881  */
3882 int ring_buffer_write(struct trace_buffer *buffer,
3883                       unsigned long length,
3884                       void *data)
3885 {
3886         struct ring_buffer_per_cpu *cpu_buffer;
3887         struct ring_buffer_event *event;
3888         void *body;
3889         int ret = -EBUSY;
3890         int cpu;
3891
3892         preempt_disable_notrace();
3893
3894         if (atomic_read(&buffer->record_disabled))
3895                 goto out;
3896
3897         cpu = raw_smp_processor_id();
3898
3899         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3900                 goto out;
3901
3902         cpu_buffer = buffer->buffers[cpu];
3903
3904         if (atomic_read(&cpu_buffer->record_disabled))
3905                 goto out;
3906
3907         if (length > buffer->max_data_size)
3908                 goto out;
3909
3910         if (unlikely(trace_recursive_lock(cpu_buffer)))
3911                 goto out;
3912
3913         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3914         if (!event)
3915                 goto out_unlock;
3916
3917         body = rb_event_data(event);
3918
3919         memcpy(body, data, length);
3920
3921         rb_commit(cpu_buffer);
3922
3923         rb_wakeups(buffer, cpu_buffer);
3924
3925         ret = 0;
3926
3927  out_unlock:
3928         trace_recursive_unlock(cpu_buffer);
3929
3930  out:
3931         preempt_enable_notrace();
3932
3933         return ret;
3934 }
3935 EXPORT_SYMBOL_GPL(ring_buffer_write);
3936
3937 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3938 {
3939         struct buffer_page *reader = cpu_buffer->reader_page;
3940         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3941         struct buffer_page *commit = cpu_buffer->commit_page;
3942
3943         /* In case of error, head will be NULL */
3944         if (unlikely(!head))
3945                 return true;
3946
3947         /* Reader should exhaust content in reader page */
3948         if (reader->read != rb_page_commit(reader))
3949                 return false;
3950
3951         /*
3952          * If writers are committing on the reader page, knowing all
3953          * committed content has been read, the ring buffer is empty.
3954          */
3955         if (commit == reader)
3956                 return true;
3957
3958         /*
3959          * If writers are committing on a page other than reader page
3960          * and head page, there should always be content to read.
3961          */
3962         if (commit != head)
3963                 return false;
3964
3965         /*
3966          * Writers are committing on the head page, we just need
3967          * to care about there're committed data, and the reader will
3968          * swap reader page with head page when it is to read data.
3969          */
3970         return rb_page_commit(commit) == 0;
3971 }
3972
3973 /**
3974  * ring_buffer_record_disable - stop all writes into the buffer
3975  * @buffer: The ring buffer to stop writes to.
3976  *
3977  * This prevents all writes to the buffer. Any attempt to write
3978  * to the buffer after this will fail and return NULL.
3979  *
3980  * The caller should call synchronize_rcu() after this.
3981  */
3982 void ring_buffer_record_disable(struct trace_buffer *buffer)
3983 {
3984         atomic_inc(&buffer->record_disabled);
3985 }
3986 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3987
3988 /**
3989  * ring_buffer_record_enable - enable writes to the buffer
3990  * @buffer: The ring buffer to enable writes
3991  *
3992  * Note, multiple disables will need the same number of enables
3993  * to truly enable the writing (much like preempt_disable).
3994  */
3995 void ring_buffer_record_enable(struct trace_buffer *buffer)
3996 {
3997         atomic_dec(&buffer->record_disabled);
3998 }
3999 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4000
4001 /**
4002  * ring_buffer_record_off - stop all writes into the buffer
4003  * @buffer: The ring buffer to stop writes to.
4004  *
4005  * This prevents all writes to the buffer. Any attempt to write
4006  * to the buffer after this will fail and return NULL.
4007  *
4008  * This is different than ring_buffer_record_disable() as
4009  * it works like an on/off switch, where as the disable() version
4010  * must be paired with a enable().
4011  */
4012 void ring_buffer_record_off(struct trace_buffer *buffer)
4013 {
4014         unsigned int rd;
4015         unsigned int new_rd;
4016
4017         rd = atomic_read(&buffer->record_disabled);
4018         do {
4019                 new_rd = rd | RB_BUFFER_OFF;
4020         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4021 }
4022 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4023
4024 /**
4025  * ring_buffer_record_on - restart writes into the buffer
4026  * @buffer: The ring buffer to start writes to.
4027  *
4028  * This enables all writes to the buffer that was disabled by
4029  * ring_buffer_record_off().
4030  *
4031  * This is different than ring_buffer_record_enable() as
4032  * it works like an on/off switch, where as the enable() version
4033  * must be paired with a disable().
4034  */
4035 void ring_buffer_record_on(struct trace_buffer *buffer)
4036 {
4037         unsigned int rd;
4038         unsigned int new_rd;
4039
4040         rd = atomic_read(&buffer->record_disabled);
4041         do {
4042                 new_rd = rd & ~RB_BUFFER_OFF;
4043         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4044 }
4045 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4046
4047 /**
4048  * ring_buffer_record_is_on - return true if the ring buffer can write
4049  * @buffer: The ring buffer to see if write is enabled
4050  *
4051  * Returns true if the ring buffer is in a state that it accepts writes.
4052  */
4053 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4054 {
4055         return !atomic_read(&buffer->record_disabled);
4056 }
4057
4058 /**
4059  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4060  * @buffer: The ring buffer to see if write is set enabled
4061  *
4062  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4063  * Note that this does NOT mean it is in a writable state.
4064  *
4065  * It may return true when the ring buffer has been disabled by
4066  * ring_buffer_record_disable(), as that is a temporary disabling of
4067  * the ring buffer.
4068  */
4069 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4070 {
4071         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4072 }
4073
4074 /**
4075  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4076  * @buffer: The ring buffer to stop writes to.
4077  * @cpu: The CPU buffer to stop
4078  *
4079  * This prevents all writes to the buffer. Any attempt to write
4080  * to the buffer after this will fail and return NULL.
4081  *
4082  * The caller should call synchronize_rcu() after this.
4083  */
4084 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4085 {
4086         struct ring_buffer_per_cpu *cpu_buffer;
4087
4088         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4089                 return;
4090
4091         cpu_buffer = buffer->buffers[cpu];
4092         atomic_inc(&cpu_buffer->record_disabled);
4093 }
4094 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4095
4096 /**
4097  * ring_buffer_record_enable_cpu - enable writes to the buffer
4098  * @buffer: The ring buffer to enable writes
4099  * @cpu: The CPU to enable.
4100  *
4101  * Note, multiple disables will need the same number of enables
4102  * to truly enable the writing (much like preempt_disable).
4103  */
4104 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4105 {
4106         struct ring_buffer_per_cpu *cpu_buffer;
4107
4108         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4109                 return;
4110
4111         cpu_buffer = buffer->buffers[cpu];
4112         atomic_dec(&cpu_buffer->record_disabled);
4113 }
4114 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4115
4116 /*
4117  * The total entries in the ring buffer is the running counter
4118  * of entries entered into the ring buffer, minus the sum of
4119  * the entries read from the ring buffer and the number of
4120  * entries that were overwritten.
4121  */
4122 static inline unsigned long
4123 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4124 {
4125         return local_read(&cpu_buffer->entries) -
4126                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4127 }
4128
4129 /**
4130  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4131  * @buffer: The ring buffer
4132  * @cpu: The per CPU buffer to read from.
4133  */
4134 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4135 {
4136         unsigned long flags;
4137         struct ring_buffer_per_cpu *cpu_buffer;
4138         struct buffer_page *bpage;
4139         u64 ret = 0;
4140
4141         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4142                 return 0;
4143
4144         cpu_buffer = buffer->buffers[cpu];
4145         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4146         /*
4147          * if the tail is on reader_page, oldest time stamp is on the reader
4148          * page
4149          */
4150         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4151                 bpage = cpu_buffer->reader_page;
4152         else
4153                 bpage = rb_set_head_page(cpu_buffer);
4154         if (bpage)
4155                 ret = bpage->page->time_stamp;
4156         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4157
4158         return ret;
4159 }
4160 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4161
4162 /**
4163  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4164  * @buffer: The ring buffer
4165  * @cpu: The per CPU buffer to read from.
4166  */
4167 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4168 {
4169         struct ring_buffer_per_cpu *cpu_buffer;
4170         unsigned long ret;
4171
4172         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4173                 return 0;
4174
4175         cpu_buffer = buffer->buffers[cpu];
4176         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4177
4178         return ret;
4179 }
4180 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4181
4182 /**
4183  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4184  * @buffer: The ring buffer
4185  * @cpu: The per CPU buffer to get the entries from.
4186  */
4187 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4188 {
4189         struct ring_buffer_per_cpu *cpu_buffer;
4190
4191         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4192                 return 0;
4193
4194         cpu_buffer = buffer->buffers[cpu];
4195
4196         return rb_num_of_entries(cpu_buffer);
4197 }
4198 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4199
4200 /**
4201  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4202  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4203  * @buffer: The ring buffer
4204  * @cpu: The per CPU buffer to get the number of overruns from
4205  */
4206 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4207 {
4208         struct ring_buffer_per_cpu *cpu_buffer;
4209         unsigned long ret;
4210
4211         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4212                 return 0;
4213
4214         cpu_buffer = buffer->buffers[cpu];
4215         ret = local_read(&cpu_buffer->overrun);
4216
4217         return ret;
4218 }
4219 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4220
4221 /**
4222  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4223  * commits failing due to the buffer wrapping around while there are uncommitted
4224  * events, such as during an interrupt storm.
4225  * @buffer: The ring buffer
4226  * @cpu: The per CPU buffer to get the number of overruns from
4227  */
4228 unsigned long
4229 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4230 {
4231         struct ring_buffer_per_cpu *cpu_buffer;
4232         unsigned long ret;
4233
4234         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4235                 return 0;
4236
4237         cpu_buffer = buffer->buffers[cpu];
4238         ret = local_read(&cpu_buffer->commit_overrun);
4239
4240         return ret;
4241 }
4242 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4243
4244 /**
4245  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4246  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4247  * @buffer: The ring buffer
4248  * @cpu: The per CPU buffer to get the number of overruns from
4249  */
4250 unsigned long
4251 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4252 {
4253         struct ring_buffer_per_cpu *cpu_buffer;
4254         unsigned long ret;
4255
4256         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4257                 return 0;
4258
4259         cpu_buffer = buffer->buffers[cpu];
4260         ret = local_read(&cpu_buffer->dropped_events);
4261
4262         return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4265
4266 /**
4267  * ring_buffer_read_events_cpu - get the number of events successfully read
4268  * @buffer: The ring buffer
4269  * @cpu: The per CPU buffer to get the number of events read
4270  */
4271 unsigned long
4272 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4273 {
4274         struct ring_buffer_per_cpu *cpu_buffer;
4275
4276         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4277                 return 0;
4278
4279         cpu_buffer = buffer->buffers[cpu];
4280         return cpu_buffer->read;
4281 }
4282 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4283
4284 /**
4285  * ring_buffer_entries - get the number of entries in a buffer
4286  * @buffer: The ring buffer
4287  *
4288  * Returns the total number of entries in the ring buffer
4289  * (all CPU entries)
4290  */
4291 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4292 {
4293         struct ring_buffer_per_cpu *cpu_buffer;
4294         unsigned long entries = 0;
4295         int cpu;
4296
4297         /* if you care about this being correct, lock the buffer */
4298         for_each_buffer_cpu(buffer, cpu) {
4299                 cpu_buffer = buffer->buffers[cpu];
4300                 entries += rb_num_of_entries(cpu_buffer);
4301         }
4302
4303         return entries;
4304 }
4305 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4306
4307 /**
4308  * ring_buffer_overruns - get the number of overruns in buffer
4309  * @buffer: The ring buffer
4310  *
4311  * Returns the total number of overruns in the ring buffer
4312  * (all CPU entries)
4313  */
4314 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4315 {
4316         struct ring_buffer_per_cpu *cpu_buffer;
4317         unsigned long overruns = 0;
4318         int cpu;
4319
4320         /* if you care about this being correct, lock the buffer */
4321         for_each_buffer_cpu(buffer, cpu) {
4322                 cpu_buffer = buffer->buffers[cpu];
4323                 overruns += local_read(&cpu_buffer->overrun);
4324         }
4325
4326         return overruns;
4327 }
4328 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4329
4330 static void rb_iter_reset(struct ring_buffer_iter *iter)
4331 {
4332         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4333
4334         /* Iterator usage is expected to have record disabled */
4335         iter->head_page = cpu_buffer->reader_page;
4336         iter->head = cpu_buffer->reader_page->read;
4337         iter->next_event = iter->head;
4338
4339         iter->cache_reader_page = iter->head_page;
4340         iter->cache_read = cpu_buffer->read;
4341         iter->cache_pages_removed = cpu_buffer->pages_removed;
4342
4343         if (iter->head) {
4344                 iter->read_stamp = cpu_buffer->read_stamp;
4345                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4346         } else {
4347                 iter->read_stamp = iter->head_page->page->time_stamp;
4348                 iter->page_stamp = iter->read_stamp;
4349         }
4350 }
4351
4352 /**
4353  * ring_buffer_iter_reset - reset an iterator
4354  * @iter: The iterator to reset
4355  *
4356  * Resets the iterator, so that it will start from the beginning
4357  * again.
4358  */
4359 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4360 {
4361         struct ring_buffer_per_cpu *cpu_buffer;
4362         unsigned long flags;
4363
4364         if (!iter)
4365                 return;
4366
4367         cpu_buffer = iter->cpu_buffer;
4368
4369         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4370         rb_iter_reset(iter);
4371         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4372 }
4373 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4374
4375 /**
4376  * ring_buffer_iter_empty - check if an iterator has no more to read
4377  * @iter: The iterator to check
4378  */
4379 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4380 {
4381         struct ring_buffer_per_cpu *cpu_buffer;
4382         struct buffer_page *reader;
4383         struct buffer_page *head_page;
4384         struct buffer_page *commit_page;
4385         struct buffer_page *curr_commit_page;
4386         unsigned commit;
4387         u64 curr_commit_ts;
4388         u64 commit_ts;
4389
4390         cpu_buffer = iter->cpu_buffer;
4391         reader = cpu_buffer->reader_page;
4392         head_page = cpu_buffer->head_page;
4393         commit_page = READ_ONCE(cpu_buffer->commit_page);
4394         commit_ts = commit_page->page->time_stamp;
4395
4396         /*
4397          * When the writer goes across pages, it issues a cmpxchg which
4398          * is a mb(), which will synchronize with the rmb here.
4399          * (see rb_tail_page_update())
4400          */
4401         smp_rmb();
4402         commit = rb_page_commit(commit_page);
4403         /* We want to make sure that the commit page doesn't change */
4404         smp_rmb();
4405
4406         /* Make sure commit page didn't change */
4407         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4408         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4409
4410         /* If the commit page changed, then there's more data */
4411         if (curr_commit_page != commit_page ||
4412             curr_commit_ts != commit_ts)
4413                 return 0;
4414
4415         /* Still racy, as it may return a false positive, but that's OK */
4416         return ((iter->head_page == commit_page && iter->head >= commit) ||
4417                 (iter->head_page == reader && commit_page == head_page &&
4418                  head_page->read == commit &&
4419                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4420 }
4421 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4422
4423 static void
4424 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4425                      struct ring_buffer_event *event)
4426 {
4427         u64 delta;
4428
4429         switch (event->type_len) {
4430         case RINGBUF_TYPE_PADDING:
4431                 return;
4432
4433         case RINGBUF_TYPE_TIME_EXTEND:
4434                 delta = rb_event_time_stamp(event);
4435                 cpu_buffer->read_stamp += delta;
4436                 return;
4437
4438         case RINGBUF_TYPE_TIME_STAMP:
4439                 delta = rb_event_time_stamp(event);
4440                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4441                 cpu_buffer->read_stamp = delta;
4442                 return;
4443
4444         case RINGBUF_TYPE_DATA:
4445                 cpu_buffer->read_stamp += event->time_delta;
4446                 return;
4447
4448         default:
4449                 RB_WARN_ON(cpu_buffer, 1);
4450         }
4451 }
4452
4453 static void
4454 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4455                           struct ring_buffer_event *event)
4456 {
4457         u64 delta;
4458
4459         switch (event->type_len) {
4460         case RINGBUF_TYPE_PADDING:
4461                 return;
4462
4463         case RINGBUF_TYPE_TIME_EXTEND:
4464                 delta = rb_event_time_stamp(event);
4465                 iter->read_stamp += delta;
4466                 return;
4467
4468         case RINGBUF_TYPE_TIME_STAMP:
4469                 delta = rb_event_time_stamp(event);
4470                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4471                 iter->read_stamp = delta;
4472                 return;
4473
4474         case RINGBUF_TYPE_DATA:
4475                 iter->read_stamp += event->time_delta;
4476                 return;
4477
4478         default:
4479                 RB_WARN_ON(iter->cpu_buffer, 1);
4480         }
4481 }
4482
4483 static struct buffer_page *
4484 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4485 {
4486         struct buffer_page *reader = NULL;
4487         unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
4488         unsigned long overwrite;
4489         unsigned long flags;
4490         int nr_loops = 0;
4491         bool ret;
4492
4493         local_irq_save(flags);
4494         arch_spin_lock(&cpu_buffer->lock);
4495
4496  again:
4497         /*
4498          * This should normally only loop twice. But because the
4499          * start of the reader inserts an empty page, it causes
4500          * a case where we will loop three times. There should be no
4501          * reason to loop four times (that I know of).
4502          */
4503         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4504                 reader = NULL;
4505                 goto out;
4506         }
4507
4508         reader = cpu_buffer->reader_page;
4509
4510         /* If there's more to read, return this page */
4511         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4512                 goto out;
4513
4514         /* Never should we have an index greater than the size */
4515         if (RB_WARN_ON(cpu_buffer,
4516                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4517                 goto out;
4518
4519         /* check if we caught up to the tail */
4520         reader = NULL;
4521         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4522                 goto out;
4523
4524         /* Don't bother swapping if the ring buffer is empty */
4525         if (rb_num_of_entries(cpu_buffer) == 0)
4526                 goto out;
4527
4528         /*
4529          * Reset the reader page to size zero.
4530          */
4531         local_set(&cpu_buffer->reader_page->write, 0);
4532         local_set(&cpu_buffer->reader_page->entries, 0);
4533         local_set(&cpu_buffer->reader_page->page->commit, 0);
4534         cpu_buffer->reader_page->real_end = 0;
4535
4536  spin:
4537         /*
4538          * Splice the empty reader page into the list around the head.
4539          */
4540         reader = rb_set_head_page(cpu_buffer);
4541         if (!reader)
4542                 goto out;
4543         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4544         cpu_buffer->reader_page->list.prev = reader->list.prev;
4545
4546         /*
4547          * cpu_buffer->pages just needs to point to the buffer, it
4548          *  has no specific buffer page to point to. Lets move it out
4549          *  of our way so we don't accidentally swap it.
4550          */
4551         cpu_buffer->pages = reader->list.prev;
4552
4553         /* The reader page will be pointing to the new head */
4554         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4555
4556         /*
4557          * We want to make sure we read the overruns after we set up our
4558          * pointers to the next object. The writer side does a
4559          * cmpxchg to cross pages which acts as the mb on the writer
4560          * side. Note, the reader will constantly fail the swap
4561          * while the writer is updating the pointers, so this
4562          * guarantees that the overwrite recorded here is the one we
4563          * want to compare with the last_overrun.
4564          */
4565         smp_mb();
4566         overwrite = local_read(&(cpu_buffer->overrun));
4567
4568         /*
4569          * Here's the tricky part.
4570          *
4571          * We need to move the pointer past the header page.
4572          * But we can only do that if a writer is not currently
4573          * moving it. The page before the header page has the
4574          * flag bit '1' set if it is pointing to the page we want.
4575          * but if the writer is in the process of moving it
4576          * than it will be '2' or already moved '0'.
4577          */
4578
4579         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4580
4581         /*
4582          * If we did not convert it, then we must try again.
4583          */
4584         if (!ret)
4585                 goto spin;
4586
4587         /*
4588          * Yay! We succeeded in replacing the page.
4589          *
4590          * Now make the new head point back to the reader page.
4591          */
4592         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4593         rb_inc_page(&cpu_buffer->head_page);
4594
4595         local_inc(&cpu_buffer->pages_read);
4596
4597         /* Finally update the reader page to the new head */
4598         cpu_buffer->reader_page = reader;
4599         cpu_buffer->reader_page->read = 0;
4600
4601         if (overwrite != cpu_buffer->last_overrun) {
4602                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4603                 cpu_buffer->last_overrun = overwrite;
4604         }
4605
4606         goto again;
4607
4608  out:
4609         /* Update the read_stamp on the first event */
4610         if (reader && reader->read == 0)
4611                 cpu_buffer->read_stamp = reader->page->time_stamp;
4612
4613         arch_spin_unlock(&cpu_buffer->lock);
4614         local_irq_restore(flags);
4615
4616         /*
4617          * The writer has preempt disable, wait for it. But not forever
4618          * Although, 1 second is pretty much "forever"
4619          */
4620 #define USECS_WAIT      1000000
4621         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4622                 /* If the write is past the end of page, a writer is still updating it */
4623                 if (likely(!reader || rb_page_write(reader) <= bsize))
4624                         break;
4625
4626                 udelay(1);
4627
4628                 /* Get the latest version of the reader write value */
4629                 smp_rmb();
4630         }
4631
4632         /* The writer is not moving forward? Something is wrong */
4633         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4634                 reader = NULL;
4635
4636         /*
4637          * Make sure we see any padding after the write update
4638          * (see rb_reset_tail()).
4639          *
4640          * In addition, a writer may be writing on the reader page
4641          * if the page has not been fully filled, so the read barrier
4642          * is also needed to make sure we see the content of what is
4643          * committed by the writer (see rb_set_commit_to_write()).
4644          */
4645         smp_rmb();
4646
4647
4648         return reader;
4649 }
4650
4651 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4652 {
4653         struct ring_buffer_event *event;
4654         struct buffer_page *reader;
4655         unsigned length;
4656
4657         reader = rb_get_reader_page(cpu_buffer);
4658
4659         /* This function should not be called when buffer is empty */
4660         if (RB_WARN_ON(cpu_buffer, !reader))
4661                 return;
4662
4663         event = rb_reader_event(cpu_buffer);
4664
4665         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4666                 cpu_buffer->read++;
4667
4668         rb_update_read_stamp(cpu_buffer, event);
4669
4670         length = rb_event_length(event);
4671         cpu_buffer->reader_page->read += length;
4672         cpu_buffer->read_bytes += length;
4673 }
4674
4675 static void rb_advance_iter(struct ring_buffer_iter *iter)
4676 {
4677         struct ring_buffer_per_cpu *cpu_buffer;
4678
4679         cpu_buffer = iter->cpu_buffer;
4680
4681         /* If head == next_event then we need to jump to the next event */
4682         if (iter->head == iter->next_event) {
4683                 /* If the event gets overwritten again, there's nothing to do */
4684                 if (rb_iter_head_event(iter) == NULL)
4685                         return;
4686         }
4687
4688         iter->head = iter->next_event;
4689
4690         /*
4691          * Check if we are at the end of the buffer.
4692          */
4693         if (iter->next_event >= rb_page_size(iter->head_page)) {
4694                 /* discarded commits can make the page empty */
4695                 if (iter->head_page == cpu_buffer->commit_page)
4696                         return;
4697                 rb_inc_iter(iter);
4698                 return;
4699         }
4700
4701         rb_update_iter_read_stamp(iter, iter->event);
4702 }
4703
4704 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4705 {
4706         return cpu_buffer->lost_events;
4707 }
4708
4709 static struct ring_buffer_event *
4710 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4711                unsigned long *lost_events)
4712 {
4713         struct ring_buffer_event *event;
4714         struct buffer_page *reader;
4715         int nr_loops = 0;
4716
4717         if (ts)
4718                 *ts = 0;
4719  again:
4720         /*
4721          * We repeat when a time extend is encountered.
4722          * Since the time extend is always attached to a data event,
4723          * we should never loop more than once.
4724          * (We never hit the following condition more than twice).
4725          */
4726         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4727                 return NULL;
4728
4729         reader = rb_get_reader_page(cpu_buffer);
4730         if (!reader)
4731                 return NULL;
4732
4733         event = rb_reader_event(cpu_buffer);
4734
4735         switch (event->type_len) {
4736         case RINGBUF_TYPE_PADDING:
4737                 if (rb_null_event(event))
4738                         RB_WARN_ON(cpu_buffer, 1);
4739                 /*
4740                  * Because the writer could be discarding every
4741                  * event it creates (which would probably be bad)
4742                  * if we were to go back to "again" then we may never
4743                  * catch up, and will trigger the warn on, or lock
4744                  * the box. Return the padding, and we will release
4745                  * the current locks, and try again.
4746                  */
4747                 return event;
4748
4749         case RINGBUF_TYPE_TIME_EXTEND:
4750                 /* Internal data, OK to advance */
4751                 rb_advance_reader(cpu_buffer);
4752                 goto again;
4753
4754         case RINGBUF_TYPE_TIME_STAMP:
4755                 if (ts) {
4756                         *ts = rb_event_time_stamp(event);
4757                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4758                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4759                                                          cpu_buffer->cpu, ts);
4760                 }
4761                 /* Internal data, OK to advance */
4762                 rb_advance_reader(cpu_buffer);
4763                 goto again;
4764
4765         case RINGBUF_TYPE_DATA:
4766                 if (ts && !(*ts)) {
4767                         *ts = cpu_buffer->read_stamp + event->time_delta;
4768                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4769                                                          cpu_buffer->cpu, ts);
4770                 }
4771                 if (lost_events)
4772                         *lost_events = rb_lost_events(cpu_buffer);
4773                 return event;
4774
4775         default:
4776                 RB_WARN_ON(cpu_buffer, 1);
4777         }
4778
4779         return NULL;
4780 }
4781 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4782
4783 static struct ring_buffer_event *
4784 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4785 {
4786         struct trace_buffer *buffer;
4787         struct ring_buffer_per_cpu *cpu_buffer;
4788         struct ring_buffer_event *event;
4789         int nr_loops = 0;
4790
4791         if (ts)
4792                 *ts = 0;
4793
4794         cpu_buffer = iter->cpu_buffer;
4795         buffer = cpu_buffer->buffer;
4796
4797         /*
4798          * Check if someone performed a consuming read to the buffer
4799          * or removed some pages from the buffer. In these cases,
4800          * iterator was invalidated and we need to reset it.
4801          */
4802         if (unlikely(iter->cache_read != cpu_buffer->read ||
4803                      iter->cache_reader_page != cpu_buffer->reader_page ||
4804                      iter->cache_pages_removed != cpu_buffer->pages_removed))
4805                 rb_iter_reset(iter);
4806
4807  again:
4808         if (ring_buffer_iter_empty(iter))
4809                 return NULL;
4810
4811         /*
4812          * As the writer can mess with what the iterator is trying
4813          * to read, just give up if we fail to get an event after
4814          * three tries. The iterator is not as reliable when reading
4815          * the ring buffer with an active write as the consumer is.
4816          * Do not warn if the three failures is reached.
4817          */
4818         if (++nr_loops > 3)
4819                 return NULL;
4820
4821         if (rb_per_cpu_empty(cpu_buffer))
4822                 return NULL;
4823
4824         if (iter->head >= rb_page_size(iter->head_page)) {
4825                 rb_inc_iter(iter);
4826                 goto again;
4827         }
4828
4829         event = rb_iter_head_event(iter);
4830         if (!event)
4831                 goto again;
4832
4833         switch (event->type_len) {
4834         case RINGBUF_TYPE_PADDING:
4835                 if (rb_null_event(event)) {
4836                         rb_inc_iter(iter);
4837                         goto again;
4838                 }
4839                 rb_advance_iter(iter);
4840                 return event;
4841
4842         case RINGBUF_TYPE_TIME_EXTEND:
4843                 /* Internal data, OK to advance */
4844                 rb_advance_iter(iter);
4845                 goto again;
4846
4847         case RINGBUF_TYPE_TIME_STAMP:
4848                 if (ts) {
4849                         *ts = rb_event_time_stamp(event);
4850                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4851                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4852                                                          cpu_buffer->cpu, ts);
4853                 }
4854                 /* Internal data, OK to advance */
4855                 rb_advance_iter(iter);
4856                 goto again;
4857
4858         case RINGBUF_TYPE_DATA:
4859                 if (ts && !(*ts)) {
4860                         *ts = iter->read_stamp + event->time_delta;
4861                         ring_buffer_normalize_time_stamp(buffer,
4862                                                          cpu_buffer->cpu, ts);
4863                 }
4864                 return event;
4865
4866         default:
4867                 RB_WARN_ON(cpu_buffer, 1);
4868         }
4869
4870         return NULL;
4871 }
4872 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4873
4874 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4875 {
4876         if (likely(!in_nmi())) {
4877                 raw_spin_lock(&cpu_buffer->reader_lock);
4878                 return true;
4879         }
4880
4881         /*
4882          * If an NMI die dumps out the content of the ring buffer
4883          * trylock must be used to prevent a deadlock if the NMI
4884          * preempted a task that holds the ring buffer locks. If
4885          * we get the lock then all is fine, if not, then continue
4886          * to do the read, but this can corrupt the ring buffer,
4887          * so it must be permanently disabled from future writes.
4888          * Reading from NMI is a oneshot deal.
4889          */
4890         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4891                 return true;
4892
4893         /* Continue without locking, but disable the ring buffer */
4894         atomic_inc(&cpu_buffer->record_disabled);
4895         return false;
4896 }
4897
4898 static inline void
4899 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4900 {
4901         if (likely(locked))
4902                 raw_spin_unlock(&cpu_buffer->reader_lock);
4903 }
4904
4905 /**
4906  * ring_buffer_peek - peek at the next event to be read
4907  * @buffer: The ring buffer to read
4908  * @cpu: The cpu to peak at
4909  * @ts: The timestamp counter of this event.
4910  * @lost_events: a variable to store if events were lost (may be NULL)
4911  *
4912  * This will return the event that will be read next, but does
4913  * not consume the data.
4914  */
4915 struct ring_buffer_event *
4916 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4917                  unsigned long *lost_events)
4918 {
4919         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4920         struct ring_buffer_event *event;
4921         unsigned long flags;
4922         bool dolock;
4923
4924         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4925                 return NULL;
4926
4927  again:
4928         local_irq_save(flags);
4929         dolock = rb_reader_lock(cpu_buffer);
4930         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4931         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4932                 rb_advance_reader(cpu_buffer);
4933         rb_reader_unlock(cpu_buffer, dolock);
4934         local_irq_restore(flags);
4935
4936         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4937                 goto again;
4938
4939         return event;
4940 }
4941
4942 /** ring_buffer_iter_dropped - report if there are dropped events
4943  * @iter: The ring buffer iterator
4944  *
4945  * Returns true if there was dropped events since the last peek.
4946  */
4947 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4948 {
4949         bool ret = iter->missed_events != 0;
4950
4951         iter->missed_events = 0;
4952         return ret;
4953 }
4954 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4955
4956 /**
4957  * ring_buffer_iter_peek - peek at the next event to be read
4958  * @iter: The ring buffer iterator
4959  * @ts: The timestamp counter of this event.
4960  *
4961  * This will return the event that will be read next, but does
4962  * not increment the iterator.
4963  */
4964 struct ring_buffer_event *
4965 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4966 {
4967         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4968         struct ring_buffer_event *event;
4969         unsigned long flags;
4970
4971  again:
4972         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4973         event = rb_iter_peek(iter, ts);
4974         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4975
4976         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4977                 goto again;
4978
4979         return event;
4980 }
4981
4982 /**
4983  * ring_buffer_consume - return an event and consume it
4984  * @buffer: The ring buffer to get the next event from
4985  * @cpu: the cpu to read the buffer from
4986  * @ts: a variable to store the timestamp (may be NULL)
4987  * @lost_events: a variable to store if events were lost (may be NULL)
4988  *
4989  * Returns the next event in the ring buffer, and that event is consumed.
4990  * Meaning, that sequential reads will keep returning a different event,
4991  * and eventually empty the ring buffer if the producer is slower.
4992  */
4993 struct ring_buffer_event *
4994 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4995                     unsigned long *lost_events)
4996 {
4997         struct ring_buffer_per_cpu *cpu_buffer;
4998         struct ring_buffer_event *event = NULL;
4999         unsigned long flags;
5000         bool dolock;
5001
5002  again:
5003         /* might be called in atomic */
5004         preempt_disable();
5005
5006         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5007                 goto out;
5008
5009         cpu_buffer = buffer->buffers[cpu];
5010         local_irq_save(flags);
5011         dolock = rb_reader_lock(cpu_buffer);
5012
5013         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5014         if (event) {
5015                 cpu_buffer->lost_events = 0;
5016                 rb_advance_reader(cpu_buffer);
5017         }
5018
5019         rb_reader_unlock(cpu_buffer, dolock);
5020         local_irq_restore(flags);
5021
5022  out:
5023         preempt_enable();
5024
5025         if (event && event->type_len == RINGBUF_TYPE_PADDING)
5026                 goto again;
5027
5028         return event;
5029 }
5030 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5031
5032 /**
5033  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5034  * @buffer: The ring buffer to read from
5035  * @cpu: The cpu buffer to iterate over
5036  * @flags: gfp flags to use for memory allocation
5037  *
5038  * This performs the initial preparations necessary to iterate
5039  * through the buffer.  Memory is allocated, buffer recording
5040  * is disabled, and the iterator pointer is returned to the caller.
5041  *
5042  * Disabling buffer recording prevents the reading from being
5043  * corrupted. This is not a consuming read, so a producer is not
5044  * expected.
5045  *
5046  * After a sequence of ring_buffer_read_prepare calls, the user is
5047  * expected to make at least one call to ring_buffer_read_prepare_sync.
5048  * Afterwards, ring_buffer_read_start is invoked to get things going
5049  * for real.
5050  *
5051  * This overall must be paired with ring_buffer_read_finish.
5052  */
5053 struct ring_buffer_iter *
5054 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5055 {
5056         struct ring_buffer_per_cpu *cpu_buffer;
5057         struct ring_buffer_iter *iter;
5058
5059         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5060                 return NULL;
5061
5062         iter = kzalloc(sizeof(*iter), flags);
5063         if (!iter)
5064                 return NULL;
5065
5066         /* Holds the entire event: data and meta data */
5067         iter->event_size = buffer->subbuf_size;
5068         iter->event = kmalloc(iter->event_size, flags);
5069         if (!iter->event) {
5070                 kfree(iter);
5071                 return NULL;
5072         }
5073
5074         cpu_buffer = buffer->buffers[cpu];
5075
5076         iter->cpu_buffer = cpu_buffer;
5077
5078         atomic_inc(&cpu_buffer->resize_disabled);
5079
5080         return iter;
5081 }
5082 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5083
5084 /**
5085  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5086  *
5087  * All previously invoked ring_buffer_read_prepare calls to prepare
5088  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5089  * calls on those iterators are allowed.
5090  */
5091 void
5092 ring_buffer_read_prepare_sync(void)
5093 {
5094         synchronize_rcu();
5095 }
5096 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5097
5098 /**
5099  * ring_buffer_read_start - start a non consuming read of the buffer
5100  * @iter: The iterator returned by ring_buffer_read_prepare
5101  *
5102  * This finalizes the startup of an iteration through the buffer.
5103  * The iterator comes from a call to ring_buffer_read_prepare and
5104  * an intervening ring_buffer_read_prepare_sync must have been
5105  * performed.
5106  *
5107  * Must be paired with ring_buffer_read_finish.
5108  */
5109 void
5110 ring_buffer_read_start(struct ring_buffer_iter *iter)
5111 {
5112         struct ring_buffer_per_cpu *cpu_buffer;
5113         unsigned long flags;
5114
5115         if (!iter)
5116                 return;
5117
5118         cpu_buffer = iter->cpu_buffer;
5119
5120         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5121         arch_spin_lock(&cpu_buffer->lock);
5122         rb_iter_reset(iter);
5123         arch_spin_unlock(&cpu_buffer->lock);
5124         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5125 }
5126 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5127
5128 /**
5129  * ring_buffer_read_finish - finish reading the iterator of the buffer
5130  * @iter: The iterator retrieved by ring_buffer_start
5131  *
5132  * This re-enables the recording to the buffer, and frees the
5133  * iterator.
5134  */
5135 void
5136 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5137 {
5138         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5139         unsigned long flags;
5140
5141         /*
5142          * Ring buffer is disabled from recording, here's a good place
5143          * to check the integrity of the ring buffer.
5144          * Must prevent readers from trying to read, as the check
5145          * clears the HEAD page and readers require it.
5146          */
5147         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5148         rb_check_pages(cpu_buffer);
5149         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5150
5151         atomic_dec(&cpu_buffer->resize_disabled);
5152         kfree(iter->event);
5153         kfree(iter);
5154 }
5155 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5156
5157 /**
5158  * ring_buffer_iter_advance - advance the iterator to the next location
5159  * @iter: The ring buffer iterator
5160  *
5161  * Move the location of the iterator such that the next read will
5162  * be the next location of the iterator.
5163  */
5164 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5165 {
5166         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5167         unsigned long flags;
5168
5169         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5170
5171         rb_advance_iter(iter);
5172
5173         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5174 }
5175 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5176
5177 /**
5178  * ring_buffer_size - return the size of the ring buffer (in bytes)
5179  * @buffer: The ring buffer.
5180  * @cpu: The CPU to get ring buffer size from.
5181  */
5182 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5183 {
5184         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5185                 return 0;
5186
5187         return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5188 }
5189 EXPORT_SYMBOL_GPL(ring_buffer_size);
5190
5191 /**
5192  * ring_buffer_max_event_size - return the max data size of an event
5193  * @buffer: The ring buffer.
5194  *
5195  * Returns the maximum size an event can be.
5196  */
5197 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5198 {
5199         /* If abs timestamp is requested, events have a timestamp too */
5200         if (ring_buffer_time_stamp_abs(buffer))
5201                 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5202         return buffer->max_data_size;
5203 }
5204 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5205
5206 static void rb_clear_buffer_page(struct buffer_page *page)
5207 {
5208         local_set(&page->write, 0);
5209         local_set(&page->entries, 0);
5210         rb_init_page(page->page);
5211         page->read = 0;
5212 }
5213
5214 static void
5215 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5216 {
5217         struct buffer_page *page;
5218
5219         rb_head_page_deactivate(cpu_buffer);
5220
5221         cpu_buffer->head_page
5222                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5223         rb_clear_buffer_page(cpu_buffer->head_page);
5224         list_for_each_entry(page, cpu_buffer->pages, list) {
5225                 rb_clear_buffer_page(page);
5226         }
5227
5228         cpu_buffer->tail_page = cpu_buffer->head_page;
5229         cpu_buffer->commit_page = cpu_buffer->head_page;
5230
5231         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5232         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5233         rb_clear_buffer_page(cpu_buffer->reader_page);
5234
5235         local_set(&cpu_buffer->entries_bytes, 0);
5236         local_set(&cpu_buffer->overrun, 0);
5237         local_set(&cpu_buffer->commit_overrun, 0);
5238         local_set(&cpu_buffer->dropped_events, 0);
5239         local_set(&cpu_buffer->entries, 0);
5240         local_set(&cpu_buffer->committing, 0);
5241         local_set(&cpu_buffer->commits, 0);
5242         local_set(&cpu_buffer->pages_touched, 0);
5243         local_set(&cpu_buffer->pages_lost, 0);
5244         local_set(&cpu_buffer->pages_read, 0);
5245         cpu_buffer->last_pages_touch = 0;
5246         cpu_buffer->shortest_full = 0;
5247         cpu_buffer->read = 0;
5248         cpu_buffer->read_bytes = 0;
5249
5250         rb_time_set(&cpu_buffer->write_stamp, 0);
5251         rb_time_set(&cpu_buffer->before_stamp, 0);
5252
5253         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5254
5255         cpu_buffer->lost_events = 0;
5256         cpu_buffer->last_overrun = 0;
5257
5258         rb_head_page_activate(cpu_buffer);
5259         cpu_buffer->pages_removed = 0;
5260 }
5261
5262 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5263 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5264 {
5265         unsigned long flags;
5266
5267         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5268
5269         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5270                 goto out;
5271
5272         arch_spin_lock(&cpu_buffer->lock);
5273
5274         rb_reset_cpu(cpu_buffer);
5275
5276         arch_spin_unlock(&cpu_buffer->lock);
5277
5278  out:
5279         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5280 }
5281
5282 /**
5283  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5284  * @buffer: The ring buffer to reset a per cpu buffer of
5285  * @cpu: The CPU buffer to be reset
5286  */
5287 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5288 {
5289         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5290
5291         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5292                 return;
5293
5294         /* prevent another thread from changing buffer sizes */
5295         mutex_lock(&buffer->mutex);
5296
5297         atomic_inc(&cpu_buffer->resize_disabled);
5298         atomic_inc(&cpu_buffer->record_disabled);
5299
5300         /* Make sure all commits have finished */
5301         synchronize_rcu();
5302
5303         reset_disabled_cpu_buffer(cpu_buffer);
5304
5305         atomic_dec(&cpu_buffer->record_disabled);
5306         atomic_dec(&cpu_buffer->resize_disabled);
5307
5308         mutex_unlock(&buffer->mutex);
5309 }
5310 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5311
5312 /* Flag to ensure proper resetting of atomic variables */
5313 #define RESET_BIT       (1 << 30)
5314
5315 /**
5316  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5317  * @buffer: The ring buffer to reset a per cpu buffer of
5318  */
5319 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5320 {
5321         struct ring_buffer_per_cpu *cpu_buffer;
5322         int cpu;
5323
5324         /* prevent another thread from changing buffer sizes */
5325         mutex_lock(&buffer->mutex);
5326
5327         for_each_online_buffer_cpu(buffer, cpu) {
5328                 cpu_buffer = buffer->buffers[cpu];
5329
5330                 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5331                 atomic_inc(&cpu_buffer->record_disabled);
5332         }
5333
5334         /* Make sure all commits have finished */
5335         synchronize_rcu();
5336
5337         for_each_buffer_cpu(buffer, cpu) {
5338                 cpu_buffer = buffer->buffers[cpu];
5339
5340                 /*
5341                  * If a CPU came online during the synchronize_rcu(), then
5342                  * ignore it.
5343                  */
5344                 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5345                         continue;
5346
5347                 reset_disabled_cpu_buffer(cpu_buffer);
5348
5349                 atomic_dec(&cpu_buffer->record_disabled);
5350                 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5351         }
5352
5353         mutex_unlock(&buffer->mutex);
5354 }
5355
5356 /**
5357  * ring_buffer_reset - reset a ring buffer
5358  * @buffer: The ring buffer to reset all cpu buffers
5359  */
5360 void ring_buffer_reset(struct trace_buffer *buffer)
5361 {
5362         struct ring_buffer_per_cpu *cpu_buffer;
5363         int cpu;
5364
5365         /* prevent another thread from changing buffer sizes */
5366         mutex_lock(&buffer->mutex);
5367
5368         for_each_buffer_cpu(buffer, cpu) {
5369                 cpu_buffer = buffer->buffers[cpu];
5370
5371                 atomic_inc(&cpu_buffer->resize_disabled);
5372                 atomic_inc(&cpu_buffer->record_disabled);
5373         }
5374
5375         /* Make sure all commits have finished */
5376         synchronize_rcu();
5377
5378         for_each_buffer_cpu(buffer, cpu) {
5379                 cpu_buffer = buffer->buffers[cpu];
5380
5381                 reset_disabled_cpu_buffer(cpu_buffer);
5382
5383                 atomic_dec(&cpu_buffer->record_disabled);
5384                 atomic_dec(&cpu_buffer->resize_disabled);
5385         }
5386
5387         mutex_unlock(&buffer->mutex);
5388 }
5389 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5390
5391 /**
5392  * ring_buffer_empty - is the ring buffer empty?
5393  * @buffer: The ring buffer to test
5394  */
5395 bool ring_buffer_empty(struct trace_buffer *buffer)
5396 {
5397         struct ring_buffer_per_cpu *cpu_buffer;
5398         unsigned long flags;
5399         bool dolock;
5400         bool ret;
5401         int cpu;
5402
5403         /* yes this is racy, but if you don't like the race, lock the buffer */
5404         for_each_buffer_cpu(buffer, cpu) {
5405                 cpu_buffer = buffer->buffers[cpu];
5406                 local_irq_save(flags);
5407                 dolock = rb_reader_lock(cpu_buffer);
5408                 ret = rb_per_cpu_empty(cpu_buffer);
5409                 rb_reader_unlock(cpu_buffer, dolock);
5410                 local_irq_restore(flags);
5411
5412                 if (!ret)
5413                         return false;
5414         }
5415
5416         return true;
5417 }
5418 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5419
5420 /**
5421  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5422  * @buffer: The ring buffer
5423  * @cpu: The CPU buffer to test
5424  */
5425 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5426 {
5427         struct ring_buffer_per_cpu *cpu_buffer;
5428         unsigned long flags;
5429         bool dolock;
5430         bool ret;
5431
5432         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5433                 return true;
5434
5435         cpu_buffer = buffer->buffers[cpu];
5436         local_irq_save(flags);
5437         dolock = rb_reader_lock(cpu_buffer);
5438         ret = rb_per_cpu_empty(cpu_buffer);
5439         rb_reader_unlock(cpu_buffer, dolock);
5440         local_irq_restore(flags);
5441
5442         return ret;
5443 }
5444 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5445
5446 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5447 /**
5448  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5449  * @buffer_a: One buffer to swap with
5450  * @buffer_b: The other buffer to swap with
5451  * @cpu: the CPU of the buffers to swap
5452  *
5453  * This function is useful for tracers that want to take a "snapshot"
5454  * of a CPU buffer and has another back up buffer lying around.
5455  * it is expected that the tracer handles the cpu buffer not being
5456  * used at the moment.
5457  */
5458 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5459                          struct trace_buffer *buffer_b, int cpu)
5460 {
5461         struct ring_buffer_per_cpu *cpu_buffer_a;
5462         struct ring_buffer_per_cpu *cpu_buffer_b;
5463         int ret = -EINVAL;
5464
5465         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5466             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5467                 goto out;
5468
5469         cpu_buffer_a = buffer_a->buffers[cpu];
5470         cpu_buffer_b = buffer_b->buffers[cpu];
5471
5472         /* At least make sure the two buffers are somewhat the same */
5473         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5474                 goto out;
5475
5476         if (buffer_a->subbuf_order != buffer_b->subbuf_order)
5477                 goto out;
5478
5479         ret = -EAGAIN;
5480
5481         if (atomic_read(&buffer_a->record_disabled))
5482                 goto out;
5483
5484         if (atomic_read(&buffer_b->record_disabled))
5485                 goto out;
5486
5487         if (atomic_read(&cpu_buffer_a->record_disabled))
5488                 goto out;
5489
5490         if (atomic_read(&cpu_buffer_b->record_disabled))
5491                 goto out;
5492
5493         /*
5494          * We can't do a synchronize_rcu here because this
5495          * function can be called in atomic context.
5496          * Normally this will be called from the same CPU as cpu.
5497          * If not it's up to the caller to protect this.
5498          */
5499         atomic_inc(&cpu_buffer_a->record_disabled);
5500         atomic_inc(&cpu_buffer_b->record_disabled);
5501
5502         ret = -EBUSY;
5503         if (local_read(&cpu_buffer_a->committing))
5504                 goto out_dec;
5505         if (local_read(&cpu_buffer_b->committing))
5506                 goto out_dec;
5507
5508         /*
5509          * When resize is in progress, we cannot swap it because
5510          * it will mess the state of the cpu buffer.
5511          */
5512         if (atomic_read(&buffer_a->resizing))
5513                 goto out_dec;
5514         if (atomic_read(&buffer_b->resizing))
5515                 goto out_dec;
5516
5517         buffer_a->buffers[cpu] = cpu_buffer_b;
5518         buffer_b->buffers[cpu] = cpu_buffer_a;
5519
5520         cpu_buffer_b->buffer = buffer_a;
5521         cpu_buffer_a->buffer = buffer_b;
5522
5523         ret = 0;
5524
5525 out_dec:
5526         atomic_dec(&cpu_buffer_a->record_disabled);
5527         atomic_dec(&cpu_buffer_b->record_disabled);
5528 out:
5529         return ret;
5530 }
5531 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5532 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5533
5534 /**
5535  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5536  * @buffer: the buffer to allocate for.
5537  * @cpu: the cpu buffer to allocate.
5538  *
5539  * This function is used in conjunction with ring_buffer_read_page.
5540  * When reading a full page from the ring buffer, these functions
5541  * can be used to speed up the process. The calling function should
5542  * allocate a few pages first with this function. Then when it
5543  * needs to get pages from the ring buffer, it passes the result
5544  * of this function into ring_buffer_read_page, which will swap
5545  * the page that was allocated, with the read page of the buffer.
5546  *
5547  * Returns:
5548  *  The page allocated, or ERR_PTR
5549  */
5550 struct buffer_data_read_page *
5551 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5552 {
5553         struct ring_buffer_per_cpu *cpu_buffer;
5554         struct buffer_data_read_page *bpage = NULL;
5555         unsigned long flags;
5556         struct page *page;
5557
5558         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5559                 return ERR_PTR(-ENODEV);
5560
5561         bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
5562         if (!bpage)
5563                 return ERR_PTR(-ENOMEM);
5564
5565         bpage->order = buffer->subbuf_order;
5566         cpu_buffer = buffer->buffers[cpu];
5567         local_irq_save(flags);
5568         arch_spin_lock(&cpu_buffer->lock);
5569
5570         if (cpu_buffer->free_page) {
5571                 bpage->data = cpu_buffer->free_page;
5572                 cpu_buffer->free_page = NULL;
5573         }
5574
5575         arch_spin_unlock(&cpu_buffer->lock);
5576         local_irq_restore(flags);
5577
5578         if (bpage->data)
5579                 goto out;
5580
5581         page = alloc_pages_node(cpu_to_node(cpu),
5582                                 GFP_KERNEL | __GFP_NORETRY | __GFP_ZERO,
5583                                 cpu_buffer->buffer->subbuf_order);
5584         if (!page) {
5585                 kfree(bpage);
5586                 return ERR_PTR(-ENOMEM);
5587         }
5588
5589         bpage->data = page_address(page);
5590
5591  out:
5592         rb_init_page(bpage->data);
5593
5594         return bpage;
5595 }
5596 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5597
5598 /**
5599  * ring_buffer_free_read_page - free an allocated read page
5600  * @buffer: the buffer the page was allocate for
5601  * @cpu: the cpu buffer the page came from
5602  * @data_page: the page to free
5603  *
5604  * Free a page allocated from ring_buffer_alloc_read_page.
5605  */
5606 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
5607                                 struct buffer_data_read_page *data_page)
5608 {
5609         struct ring_buffer_per_cpu *cpu_buffer;
5610         struct buffer_data_page *bpage = data_page->data;
5611         struct page *page = virt_to_page(bpage);
5612         unsigned long flags;
5613
5614         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5615                 return;
5616
5617         cpu_buffer = buffer->buffers[cpu];
5618
5619         /*
5620          * If the page is still in use someplace else, or order of the page
5621          * is different from the subbuffer order of the buffer -
5622          * we can't reuse it
5623          */
5624         if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
5625                 goto out;
5626
5627         local_irq_save(flags);
5628         arch_spin_lock(&cpu_buffer->lock);
5629
5630         if (!cpu_buffer->free_page) {
5631                 cpu_buffer->free_page = bpage;
5632                 bpage = NULL;
5633         }
5634
5635         arch_spin_unlock(&cpu_buffer->lock);
5636         local_irq_restore(flags);
5637
5638  out:
5639         free_pages((unsigned long)bpage, data_page->order);
5640         kfree(data_page);
5641 }
5642 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5643
5644 /**
5645  * ring_buffer_read_page - extract a page from the ring buffer
5646  * @buffer: buffer to extract from
5647  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5648  * @len: amount to extract
5649  * @cpu: the cpu of the buffer to extract
5650  * @full: should the extraction only happen when the page is full.
5651  *
5652  * This function will pull out a page from the ring buffer and consume it.
5653  * @data_page must be the address of the variable that was returned
5654  * from ring_buffer_alloc_read_page. This is because the page might be used
5655  * to swap with a page in the ring buffer.
5656  *
5657  * for example:
5658  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5659  *      if (IS_ERR(rpage))
5660  *              return PTR_ERR(rpage);
5661  *      ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
5662  *      if (ret >= 0)
5663  *              process_page(ring_buffer_read_page_data(rpage), ret);
5664  *      ring_buffer_free_read_page(buffer, cpu, rpage);
5665  *
5666  * When @full is set, the function will not return true unless
5667  * the writer is off the reader page.
5668  *
5669  * Note: it is up to the calling functions to handle sleeps and wakeups.
5670  *  The ring buffer can be used anywhere in the kernel and can not
5671  *  blindly call wake_up. The layer that uses the ring buffer must be
5672  *  responsible for that.
5673  *
5674  * Returns:
5675  *  >=0 if data has been transferred, returns the offset of consumed data.
5676  *  <0 if no data has been transferred.
5677  */
5678 int ring_buffer_read_page(struct trace_buffer *buffer,
5679                           struct buffer_data_read_page *data_page,
5680                           size_t len, int cpu, int full)
5681 {
5682         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5683         struct ring_buffer_event *event;
5684         struct buffer_data_page *bpage;
5685         struct buffer_page *reader;
5686         unsigned long missed_events;
5687         unsigned long flags;
5688         unsigned int commit;
5689         unsigned int read;
5690         u64 save_timestamp;
5691         int ret = -1;
5692
5693         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5694                 goto out;
5695
5696         /*
5697          * If len is not big enough to hold the page header, then
5698          * we can not copy anything.
5699          */
5700         if (len <= BUF_PAGE_HDR_SIZE)
5701                 goto out;
5702
5703         len -= BUF_PAGE_HDR_SIZE;
5704
5705         if (!data_page || !data_page->data)
5706                 goto out;
5707         if (data_page->order != buffer->subbuf_order)
5708                 goto out;
5709
5710         bpage = data_page->data;
5711         if (!bpage)
5712                 goto out;
5713
5714         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5715
5716         reader = rb_get_reader_page(cpu_buffer);
5717         if (!reader)
5718                 goto out_unlock;
5719
5720         event = rb_reader_event(cpu_buffer);
5721
5722         read = reader->read;
5723         commit = rb_page_commit(reader);
5724
5725         /* Check if any events were dropped */
5726         missed_events = cpu_buffer->lost_events;
5727
5728         /*
5729          * If this page has been partially read or
5730          * if len is not big enough to read the rest of the page or
5731          * a writer is still on the page, then
5732          * we must copy the data from the page to the buffer.
5733          * Otherwise, we can simply swap the page with the one passed in.
5734          */
5735         if (read || (len < (commit - read)) ||
5736             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5737                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5738                 unsigned int rpos = read;
5739                 unsigned int pos = 0;
5740                 unsigned int size;
5741
5742                 /*
5743                  * If a full page is expected, this can still be returned
5744                  * if there's been a previous partial read and the
5745                  * rest of the page can be read and the commit page is off
5746                  * the reader page.
5747                  */
5748                 if (full &&
5749                     (!read || (len < (commit - read)) ||
5750                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5751                         goto out_unlock;
5752
5753                 if (len > (commit - read))
5754                         len = (commit - read);
5755
5756                 /* Always keep the time extend and data together */
5757                 size = rb_event_ts_length(event);
5758
5759                 if (len < size)
5760                         goto out_unlock;
5761
5762                 /* save the current timestamp, since the user will need it */
5763                 save_timestamp = cpu_buffer->read_stamp;
5764
5765                 /* Need to copy one event at a time */
5766                 do {
5767                         /* We need the size of one event, because
5768                          * rb_advance_reader only advances by one event,
5769                          * whereas rb_event_ts_length may include the size of
5770                          * one or two events.
5771                          * We have already ensured there's enough space if this
5772                          * is a time extend. */
5773                         size = rb_event_length(event);
5774                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5775
5776                         len -= size;
5777
5778                         rb_advance_reader(cpu_buffer);
5779                         rpos = reader->read;
5780                         pos += size;
5781
5782                         if (rpos >= commit)
5783                                 break;
5784
5785                         event = rb_reader_event(cpu_buffer);
5786                         /* Always keep the time extend and data together */
5787                         size = rb_event_ts_length(event);
5788                 } while (len >= size);
5789
5790                 /* update bpage */
5791                 local_set(&bpage->commit, pos);
5792                 bpage->time_stamp = save_timestamp;
5793
5794                 /* we copied everything to the beginning */
5795                 read = 0;
5796         } else {
5797                 /* update the entry counter */
5798                 cpu_buffer->read += rb_page_entries(reader);
5799                 cpu_buffer->read_bytes += rb_page_commit(reader);
5800
5801                 /* swap the pages */
5802                 rb_init_page(bpage);
5803                 bpage = reader->page;
5804                 reader->page = data_page->data;
5805                 local_set(&reader->write, 0);
5806                 local_set(&reader->entries, 0);
5807                 reader->read = 0;
5808                 data_page->data = bpage;
5809
5810                 /*
5811                  * Use the real_end for the data size,
5812                  * This gives us a chance to store the lost events
5813                  * on the page.
5814                  */
5815                 if (reader->real_end)
5816                         local_set(&bpage->commit, reader->real_end);
5817         }
5818         ret = read;
5819
5820         cpu_buffer->lost_events = 0;
5821
5822         commit = local_read(&bpage->commit);
5823         /*
5824          * Set a flag in the commit field if we lost events
5825          */
5826         if (missed_events) {
5827                 /* If there is room at the end of the page to save the
5828                  * missed events, then record it there.
5829                  */
5830                 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
5831                         memcpy(&bpage->data[commit], &missed_events,
5832                                sizeof(missed_events));
5833                         local_add(RB_MISSED_STORED, &bpage->commit);
5834                         commit += sizeof(missed_events);
5835                 }
5836                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5837         }
5838
5839         /*
5840          * This page may be off to user land. Zero it out here.
5841          */
5842         if (commit < buffer->subbuf_size)
5843                 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
5844
5845  out_unlock:
5846         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5847
5848  out:
5849         return ret;
5850 }
5851 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5852
5853 /**
5854  * ring_buffer_read_page_data - get pointer to the data in the page.
5855  * @page:  the page to get the data from
5856  *
5857  * Returns pointer to the actual data in this page.
5858  */
5859 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
5860 {
5861         return page->data;
5862 }
5863 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
5864
5865 /**
5866  * ring_buffer_subbuf_size_get - get size of the sub buffer.
5867  * @buffer: the buffer to get the sub buffer size from
5868  *
5869  * Returns size of the sub buffer, in bytes.
5870  */
5871 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
5872 {
5873         return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
5874 }
5875 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
5876
5877 /**
5878  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
5879  * @buffer: The ring_buffer to get the system sub page order from
5880  *
5881  * By default, one ring buffer sub page equals to one system page. This parameter
5882  * is configurable, per ring buffer. The size of the ring buffer sub page can be
5883  * extended, but must be an order of system page size.
5884  *
5885  * Returns the order of buffer sub page size, in system pages:
5886  * 0 means the sub buffer size is 1 system page and so forth.
5887  * In case of an error < 0 is returned.
5888  */
5889 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
5890 {
5891         if (!buffer)
5892                 return -EINVAL;
5893
5894         return buffer->subbuf_order;
5895 }
5896 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
5897
5898 /**
5899  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
5900  * @buffer: The ring_buffer to set the new page size.
5901  * @order: Order of the system pages in one sub buffer page
5902  *
5903  * By default, one ring buffer pages equals to one system page. This API can be
5904  * used to set new size of the ring buffer page. The size must be order of
5905  * system page size, that's why the input parameter @order is the order of
5906  * system pages that are allocated for one ring buffer page:
5907  *  0 - 1 system page
5908  *  1 - 2 system pages
5909  *  3 - 4 system pages
5910  *  ...
5911  *
5912  * Returns 0 on success or < 0 in case of an error.
5913  */
5914 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
5915 {
5916         struct ring_buffer_per_cpu *cpu_buffer;
5917         struct buffer_page *bpage, *tmp;
5918         int old_order, old_size;
5919         int nr_pages;
5920         int psize;
5921         int err;
5922         int cpu;
5923
5924         if (!buffer || order < 0)
5925                 return -EINVAL;
5926
5927         if (buffer->subbuf_order == order)
5928                 return 0;
5929
5930         psize = (1 << order) * PAGE_SIZE;
5931         if (psize <= BUF_PAGE_HDR_SIZE)
5932                 return -EINVAL;
5933
5934         /* Size of a subbuf cannot be greater than the write counter */
5935         if (psize > RB_WRITE_MASK + 1)
5936                 return -EINVAL;
5937
5938         old_order = buffer->subbuf_order;
5939         old_size = buffer->subbuf_size;
5940
5941         /* prevent another thread from changing buffer sizes */
5942         mutex_lock(&buffer->mutex);
5943         atomic_inc(&buffer->record_disabled);
5944
5945         /* Make sure all commits have finished */
5946         synchronize_rcu();
5947
5948         buffer->subbuf_order = order;
5949         buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
5950
5951         /* Make sure all new buffers are allocated, before deleting the old ones */
5952         for_each_buffer_cpu(buffer, cpu) {
5953
5954                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5955                         continue;
5956
5957                 cpu_buffer = buffer->buffers[cpu];
5958
5959                 /* Update the number of pages to match the new size */
5960                 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
5961                 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
5962
5963                 /* we need a minimum of two pages */
5964                 if (nr_pages < 2)
5965                         nr_pages = 2;
5966
5967                 cpu_buffer->nr_pages_to_update = nr_pages;
5968
5969                 /* Include the reader page */
5970                 nr_pages++;
5971
5972                 /* Allocate the new size buffer */
5973                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5974                 if (__rb_allocate_pages(cpu_buffer, nr_pages,
5975                                         &cpu_buffer->new_pages)) {
5976                         /* not enough memory for new pages */
5977                         err = -ENOMEM;
5978                         goto error;
5979                 }
5980         }
5981
5982         for_each_buffer_cpu(buffer, cpu) {
5983
5984                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5985                         continue;
5986
5987                 cpu_buffer = buffer->buffers[cpu];
5988
5989                 /* Clear the head bit to make the link list normal to read */
5990                 rb_head_page_deactivate(cpu_buffer);
5991
5992                 /* Now walk the list and free all the old sub buffers */
5993                 list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) {
5994                         list_del_init(&bpage->list);
5995                         free_buffer_page(bpage);
5996                 }
5997                 /* The above loop stopped an the last page needing to be freed */
5998                 bpage = list_entry(cpu_buffer->pages, struct buffer_page, list);
5999                 free_buffer_page(bpage);
6000
6001                 /* Free the current reader page */
6002                 free_buffer_page(cpu_buffer->reader_page);
6003
6004                 /* One page was allocated for the reader page */
6005                 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6006                                                      struct buffer_page, list);
6007                 list_del_init(&cpu_buffer->reader_page->list);
6008
6009                 /* The cpu_buffer pages are a link list with no head */
6010                 cpu_buffer->pages = cpu_buffer->new_pages.next;
6011                 cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev;
6012                 cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next;
6013
6014                 /* Clear the new_pages list */
6015                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
6016
6017                 cpu_buffer->head_page
6018                         = list_entry(cpu_buffer->pages, struct buffer_page, list);
6019                 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6020
6021                 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6022                 cpu_buffer->nr_pages_to_update = 0;
6023
6024                 free_pages((unsigned long)cpu_buffer->free_page, old_order);
6025                 cpu_buffer->free_page = NULL;
6026
6027                 rb_head_page_activate(cpu_buffer);
6028
6029                 rb_check_pages(cpu_buffer);
6030         }
6031
6032         atomic_dec(&buffer->record_disabled);
6033         mutex_unlock(&buffer->mutex);
6034
6035         return 0;
6036
6037 error:
6038         buffer->subbuf_order = old_order;
6039         buffer->subbuf_size = old_size;
6040
6041         atomic_dec(&buffer->record_disabled);
6042         mutex_unlock(&buffer->mutex);
6043
6044         for_each_buffer_cpu(buffer, cpu) {
6045                 cpu_buffer = buffer->buffers[cpu];
6046
6047                 if (!cpu_buffer->nr_pages_to_update)
6048                         continue;
6049
6050                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6051                         list_del_init(&bpage->list);
6052                         free_buffer_page(bpage);
6053                 }
6054         }
6055
6056         return err;
6057 }
6058 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6059
6060 /*
6061  * We only allocate new buffers, never free them if the CPU goes down.
6062  * If we were to free the buffer, then the user would lose any trace that was in
6063  * the buffer.
6064  */
6065 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
6066 {
6067         struct trace_buffer *buffer;
6068         long nr_pages_same;
6069         int cpu_i;
6070         unsigned long nr_pages;
6071
6072         buffer = container_of(node, struct trace_buffer, node);
6073         if (cpumask_test_cpu(cpu, buffer->cpumask))
6074                 return 0;
6075
6076         nr_pages = 0;
6077         nr_pages_same = 1;
6078         /* check if all cpu sizes are same */
6079         for_each_buffer_cpu(buffer, cpu_i) {
6080                 /* fill in the size from first enabled cpu */
6081                 if (nr_pages == 0)
6082                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
6083                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
6084                         nr_pages_same = 0;
6085                         break;
6086                 }
6087         }
6088         /* allocate minimum pages, user can later expand it */
6089         if (!nr_pages_same)
6090                 nr_pages = 2;
6091         buffer->buffers[cpu] =
6092                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
6093         if (!buffer->buffers[cpu]) {
6094                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
6095                      cpu);
6096                 return -ENOMEM;
6097         }
6098         smp_wmb();
6099         cpumask_set_cpu(cpu, buffer->cpumask);
6100         return 0;
6101 }
6102
6103 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
6104 /*
6105  * This is a basic integrity check of the ring buffer.
6106  * Late in the boot cycle this test will run when configured in.
6107  * It will kick off a thread per CPU that will go into a loop
6108  * writing to the per cpu ring buffer various sizes of data.
6109  * Some of the data will be large items, some small.
6110  *
6111  * Another thread is created that goes into a spin, sending out
6112  * IPIs to the other CPUs to also write into the ring buffer.
6113  * this is to test the nesting ability of the buffer.
6114  *
6115  * Basic stats are recorded and reported. If something in the
6116  * ring buffer should happen that's not expected, a big warning
6117  * is displayed and all ring buffers are disabled.
6118  */
6119 static struct task_struct *rb_threads[NR_CPUS] __initdata;
6120
6121 struct rb_test_data {
6122         struct trace_buffer *buffer;
6123         unsigned long           events;
6124         unsigned long           bytes_written;
6125         unsigned long           bytes_alloc;
6126         unsigned long           bytes_dropped;
6127         unsigned long           events_nested;
6128         unsigned long           bytes_written_nested;
6129         unsigned long           bytes_alloc_nested;
6130         unsigned long           bytes_dropped_nested;
6131         int                     min_size_nested;
6132         int                     max_size_nested;
6133         int                     max_size;
6134         int                     min_size;
6135         int                     cpu;
6136         int                     cnt;
6137 };
6138
6139 static struct rb_test_data rb_data[NR_CPUS] __initdata;
6140
6141 /* 1 meg per cpu */
6142 #define RB_TEST_BUFFER_SIZE     1048576
6143
6144 static char rb_string[] __initdata =
6145         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
6146         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
6147         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
6148
6149 static bool rb_test_started __initdata;
6150
6151 struct rb_item {
6152         int size;
6153         char str[];
6154 };
6155
6156 static __init int rb_write_something(struct rb_test_data *data, bool nested)
6157 {
6158         struct ring_buffer_event *event;
6159         struct rb_item *item;
6160         bool started;
6161         int event_len;
6162         int size;
6163         int len;
6164         int cnt;
6165
6166         /* Have nested writes different that what is written */
6167         cnt = data->cnt + (nested ? 27 : 0);
6168
6169         /* Multiply cnt by ~e, to make some unique increment */
6170         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6171
6172         len = size + sizeof(struct rb_item);
6173
6174         started = rb_test_started;
6175         /* read rb_test_started before checking buffer enabled */
6176         smp_rmb();
6177
6178         event = ring_buffer_lock_reserve(data->buffer, len);
6179         if (!event) {
6180                 /* Ignore dropped events before test starts. */
6181                 if (started) {
6182                         if (nested)
6183                                 data->bytes_dropped += len;
6184                         else
6185                                 data->bytes_dropped_nested += len;
6186                 }
6187                 return len;
6188         }
6189
6190         event_len = ring_buffer_event_length(event);
6191
6192         if (RB_WARN_ON(data->buffer, event_len < len))
6193                 goto out;
6194
6195         item = ring_buffer_event_data(event);
6196         item->size = size;
6197         memcpy(item->str, rb_string, size);
6198
6199         if (nested) {
6200                 data->bytes_alloc_nested += event_len;
6201                 data->bytes_written_nested += len;
6202                 data->events_nested++;
6203                 if (!data->min_size_nested || len < data->min_size_nested)
6204                         data->min_size_nested = len;
6205                 if (len > data->max_size_nested)
6206                         data->max_size_nested = len;
6207         } else {
6208                 data->bytes_alloc += event_len;
6209                 data->bytes_written += len;
6210                 data->events++;
6211                 if (!data->min_size || len < data->min_size)
6212                         data->max_size = len;
6213                 if (len > data->max_size)
6214                         data->max_size = len;
6215         }
6216
6217  out:
6218         ring_buffer_unlock_commit(data->buffer);
6219
6220         return 0;
6221 }
6222
6223 static __init int rb_test(void *arg)
6224 {
6225         struct rb_test_data *data = arg;
6226
6227         while (!kthread_should_stop()) {
6228                 rb_write_something(data, false);
6229                 data->cnt++;
6230
6231                 set_current_state(TASK_INTERRUPTIBLE);
6232                 /* Now sleep between a min of 100-300us and a max of 1ms */
6233                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6234         }
6235
6236         return 0;
6237 }
6238
6239 static __init void rb_ipi(void *ignore)
6240 {
6241         struct rb_test_data *data;
6242         int cpu = smp_processor_id();
6243
6244         data = &rb_data[cpu];
6245         rb_write_something(data, true);
6246 }
6247
6248 static __init int rb_hammer_test(void *arg)
6249 {
6250         while (!kthread_should_stop()) {
6251
6252                 /* Send an IPI to all cpus to write data! */
6253                 smp_call_function(rb_ipi, NULL, 1);
6254                 /* No sleep, but for non preempt, let others run */
6255                 schedule();
6256         }
6257
6258         return 0;
6259 }
6260
6261 static __init int test_ringbuffer(void)
6262 {
6263         struct task_struct *rb_hammer;
6264         struct trace_buffer *buffer;
6265         int cpu;
6266         int ret = 0;
6267
6268         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6269                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6270                 return 0;
6271         }
6272
6273         pr_info("Running ring buffer tests...\n");
6274
6275         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6276         if (WARN_ON(!buffer))
6277                 return 0;
6278
6279         /* Disable buffer so that threads can't write to it yet */
6280         ring_buffer_record_off(buffer);
6281
6282         for_each_online_cpu(cpu) {
6283                 rb_data[cpu].buffer = buffer;
6284                 rb_data[cpu].cpu = cpu;
6285                 rb_data[cpu].cnt = cpu;
6286                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6287                                                      cpu, "rbtester/%u");
6288                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6289                         pr_cont("FAILED\n");
6290                         ret = PTR_ERR(rb_threads[cpu]);
6291                         goto out_free;
6292                 }
6293         }
6294
6295         /* Now create the rb hammer! */
6296         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6297         if (WARN_ON(IS_ERR(rb_hammer))) {
6298                 pr_cont("FAILED\n");
6299                 ret = PTR_ERR(rb_hammer);
6300                 goto out_free;
6301         }
6302
6303         ring_buffer_record_on(buffer);
6304         /*
6305          * Show buffer is enabled before setting rb_test_started.
6306          * Yes there's a small race window where events could be
6307          * dropped and the thread wont catch it. But when a ring
6308          * buffer gets enabled, there will always be some kind of
6309          * delay before other CPUs see it. Thus, we don't care about
6310          * those dropped events. We care about events dropped after
6311          * the threads see that the buffer is active.
6312          */
6313         smp_wmb();
6314         rb_test_started = true;
6315
6316         set_current_state(TASK_INTERRUPTIBLE);
6317         /* Just run for 10 seconds */;
6318         schedule_timeout(10 * HZ);
6319
6320         kthread_stop(rb_hammer);
6321
6322  out_free:
6323         for_each_online_cpu(cpu) {
6324                 if (!rb_threads[cpu])
6325                         break;
6326                 kthread_stop(rb_threads[cpu]);
6327         }
6328         if (ret) {
6329                 ring_buffer_free(buffer);
6330                 return ret;
6331         }
6332
6333         /* Report! */
6334         pr_info("finished\n");
6335         for_each_online_cpu(cpu) {
6336                 struct ring_buffer_event *event;
6337                 struct rb_test_data *data = &rb_data[cpu];
6338                 struct rb_item *item;
6339                 unsigned long total_events;
6340                 unsigned long total_dropped;
6341                 unsigned long total_written;
6342                 unsigned long total_alloc;
6343                 unsigned long total_read = 0;
6344                 unsigned long total_size = 0;
6345                 unsigned long total_len = 0;
6346                 unsigned long total_lost = 0;
6347                 unsigned long lost;
6348                 int big_event_size;
6349                 int small_event_size;
6350
6351                 ret = -1;
6352
6353                 total_events = data->events + data->events_nested;
6354                 total_written = data->bytes_written + data->bytes_written_nested;
6355                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6356                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6357
6358                 big_event_size = data->max_size + data->max_size_nested;
6359                 small_event_size = data->min_size + data->min_size_nested;
6360
6361                 pr_info("CPU %d:\n", cpu);
6362                 pr_info("              events:    %ld\n", total_events);
6363                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6364                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6365                 pr_info("       written bytes:    %ld\n", total_written);
6366                 pr_info("       biggest event:    %d\n", big_event_size);
6367                 pr_info("      smallest event:    %d\n", small_event_size);
6368
6369                 if (RB_WARN_ON(buffer, total_dropped))
6370                         break;
6371
6372                 ret = 0;
6373
6374                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6375                         total_lost += lost;
6376                         item = ring_buffer_event_data(event);
6377                         total_len += ring_buffer_event_length(event);
6378                         total_size += item->size + sizeof(struct rb_item);
6379                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6380                                 pr_info("FAILED!\n");
6381                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6382                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6383                                 RB_WARN_ON(buffer, 1);
6384                                 ret = -1;
6385                                 break;
6386                         }
6387                         total_read++;
6388                 }
6389                 if (ret)
6390                         break;
6391
6392                 ret = -1;
6393
6394                 pr_info("         read events:   %ld\n", total_read);
6395                 pr_info("         lost events:   %ld\n", total_lost);
6396                 pr_info("        total events:   %ld\n", total_lost + total_read);
6397                 pr_info("  recorded len bytes:   %ld\n", total_len);
6398                 pr_info(" recorded size bytes:   %ld\n", total_size);
6399                 if (total_lost) {
6400                         pr_info(" With dropped events, record len and size may not match\n"
6401                                 " alloced and written from above\n");
6402                 } else {
6403                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6404                                        total_size != total_written))
6405                                 break;
6406                 }
6407                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6408                         break;
6409
6410                 ret = 0;
6411         }
6412         if (!ret)
6413                 pr_info("Ring buffer PASSED!\n");
6414
6415         ring_buffer_free(buffer);
6416         return 0;
6417 }
6418
6419 late_initcall(test_ringbuffer);
6420 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */