ca6930e0d25e96c74fd4b371a523eb9b90f537ee
[linux-2.6-microblaze.git] / kernel / trace / ring_buffer.c
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5  */
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/sched/clock.h>
10 #include <linux/trace_seq.h>
11 #include <linux/spinlock.h>
12 #include <linux/irq_work.h>
13 #include <linux/uaccess.h>
14 #include <linux/hardirq.h>
15 #include <linux/kthread.h>      /* for self test */
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25
26 #include <asm/local.h>
27
28 static void update_pages_handler(struct work_struct *work);
29
30 /*
31  * The ring buffer header is special. We must manually up keep it.
32  */
33 int ring_buffer_print_entry_header(struct trace_seq *s)
34 {
35         trace_seq_puts(s, "# compressed entry header\n");
36         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
37         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
38         trace_seq_puts(s, "\tarray       :   32 bits\n");
39         trace_seq_putc(s, '\n');
40         trace_seq_printf(s, "\tpadding     : type == %d\n",
41                          RINGBUF_TYPE_PADDING);
42         trace_seq_printf(s, "\ttime_extend : type == %d\n",
43                          RINGBUF_TYPE_TIME_EXTEND);
44         trace_seq_printf(s, "\tdata max type_len  == %d\n",
45                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
46
47         return !trace_seq_has_overflowed(s);
48 }
49
50 /*
51  * The ring buffer is made up of a list of pages. A separate list of pages is
52  * allocated for each CPU. A writer may only write to a buffer that is
53  * associated with the CPU it is currently executing on.  A reader may read
54  * from any per cpu buffer.
55  *
56  * The reader is special. For each per cpu buffer, the reader has its own
57  * reader page. When a reader has read the entire reader page, this reader
58  * page is swapped with another page in the ring buffer.
59  *
60  * Now, as long as the writer is off the reader page, the reader can do what
61  * ever it wants with that page. The writer will never write to that page
62  * again (as long as it is out of the ring buffer).
63  *
64  * Here's some silly ASCII art.
65  *
66  *   +------+
67  *   |reader|          RING BUFFER
68  *   |page  |
69  *   +------+        +---+   +---+   +---+
70  *                   |   |-->|   |-->|   |
71  *                   +---+   +---+   +---+
72  *                     ^               |
73  *                     |               |
74  *                     +---------------+
75  *
76  *
77  *   +------+
78  *   |reader|          RING BUFFER
79  *   |page  |------------------v
80  *   +------+        +---+   +---+   +---+
81  *                   |   |-->|   |-->|   |
82  *                   +---+   +---+   +---+
83  *                     ^               |
84  *                     |               |
85  *                     +---------------+
86  *
87  *
88  *   +------+
89  *   |reader|          RING BUFFER
90  *   |page  |------------------v
91  *   +------+        +---+   +---+   +---+
92  *      ^            |   |-->|   |-->|   |
93  *      |            +---+   +---+   +---+
94  *      |                              |
95  *      |                              |
96  *      +------------------------------+
97  *
98  *
99  *   +------+
100  *   |buffer|          RING BUFFER
101  *   |page  |------------------v
102  *   +------+        +---+   +---+   +---+
103  *      ^            |   |   |   |-->|   |
104  *      |   New      +---+   +---+   +---+
105  *      |  Reader------^               |
106  *      |   page                       |
107  *      +------------------------------+
108  *
109  *
110  * After we make this swap, the reader can hand this page off to the splice
111  * code and be done with it. It can even allocate a new page if it needs to
112  * and swap that into the ring buffer.
113  *
114  * We will be using cmpxchg soon to make all this lockless.
115  *
116  */
117
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF           (1 << 20)
120
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
122
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT            4U
125 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
127
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT       0
130 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
131 #else
132 # define RB_FORCE_8BYTE_ALIGNMENT       1
133 # define RB_ARCH_ALIGNMENT              8U
134 #endif
135
136 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
137
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
140
141 enum {
142         RB_LEN_TIME_EXTEND = 8,
143         RB_LEN_TIME_STAMP = 16,
144 };
145
146 #define skip_time_extend(event) \
147         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
148
149 static inline int rb_null_event(struct ring_buffer_event *event)
150 {
151         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
152 }
153
154 static void rb_event_set_padding(struct ring_buffer_event *event)
155 {
156         /* padding has a NULL time_delta */
157         event->type_len = RINGBUF_TYPE_PADDING;
158         event->time_delta = 0;
159 }
160
161 static unsigned
162 rb_event_data_length(struct ring_buffer_event *event)
163 {
164         unsigned length;
165
166         if (event->type_len)
167                 length = event->type_len * RB_ALIGNMENT;
168         else
169                 length = event->array[0];
170         return length + RB_EVNT_HDR_SIZE;
171 }
172
173 /*
174  * Return the length of the given event. Will return
175  * the length of the time extend if the event is a
176  * time extend.
177  */
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event *event)
180 {
181         switch (event->type_len) {
182         case RINGBUF_TYPE_PADDING:
183                 if (rb_null_event(event))
184                         /* undefined */
185                         return -1;
186                 return  event->array[0] + RB_EVNT_HDR_SIZE;
187
188         case RINGBUF_TYPE_TIME_EXTEND:
189                 return RB_LEN_TIME_EXTEND;
190
191         case RINGBUF_TYPE_TIME_STAMP:
192                 return RB_LEN_TIME_STAMP;
193
194         case RINGBUF_TYPE_DATA:
195                 return rb_event_data_length(event);
196         default:
197                 BUG();
198         }
199         /* not hit */
200         return 0;
201 }
202
203 /*
204  * Return total length of time extend and data,
205  *   or just the event length for all other events.
206  */
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event *event)
209 {
210         unsigned len = 0;
211
212         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
213                 /* time extends include the data event after it */
214                 len = RB_LEN_TIME_EXTEND;
215                 event = skip_time_extend(event);
216         }
217         return len + rb_event_length(event);
218 }
219
220 /**
221  * ring_buffer_event_length - return the length of the event
222  * @event: the event to get the length of
223  *
224  * Returns the size of the data load of a data event.
225  * If the event is something other than a data event, it
226  * returns the size of the event itself. With the exception
227  * of a TIME EXTEND, where it still returns the size of the
228  * data load of the data event after it.
229  */
230 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
231 {
232         unsigned length;
233
234         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
235                 event = skip_time_extend(event);
236
237         length = rb_event_length(event);
238         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
239                 return length;
240         length -= RB_EVNT_HDR_SIZE;
241         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
242                 length -= sizeof(event->array[0]);
243         return length;
244 }
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
246
247 /* inline for ring buffer fast paths */
248 static __always_inline void *
249 rb_event_data(struct ring_buffer_event *event)
250 {
251         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
252                 event = skip_time_extend(event);
253         BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
254         /* If length is in len field, then array[0] has the data */
255         if (event->type_len)
256                 return (void *)&event->array[0];
257         /* Otherwise length is in array[0] and array[1] has the data */
258         return (void *)&event->array[1];
259 }
260
261 /**
262  * ring_buffer_event_data - return the data of the event
263  * @event: the event to get the data from
264  */
265 void *ring_buffer_event_data(struct ring_buffer_event *event)
266 {
267         return rb_event_data(event);
268 }
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
270
271 #define for_each_buffer_cpu(buffer, cpu)                \
272         for_each_cpu(cpu, buffer->cpumask)
273
274 #define TS_SHIFT        27
275 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST   (~TS_MASK)
277
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS        (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED        (1 << 30)
282
283 #define RB_MISSED_FLAGS         (RB_MISSED_EVENTS|RB_MISSED_STORED)
284
285 struct buffer_data_page {
286         u64              time_stamp;    /* page time stamp */
287         local_t          commit;        /* write committed index */
288         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
289 };
290
291 /*
292  * Note, the buffer_page list must be first. The buffer pages
293  * are allocated in cache lines, which means that each buffer
294  * page will be at the beginning of a cache line, and thus
295  * the least significant bits will be zero. We use this to
296  * add flags in the list struct pointers, to make the ring buffer
297  * lockless.
298  */
299 struct buffer_page {
300         struct list_head list;          /* list of buffer pages */
301         local_t          write;         /* index for next write */
302         unsigned         read;          /* index for next read */
303         local_t          entries;       /* entries on this page */
304         unsigned long    real_end;      /* real end of data */
305         struct buffer_data_page *page;  /* Actual data page */
306 };
307
308 /*
309  * The buffer page counters, write and entries, must be reset
310  * atomically when crossing page boundaries. To synchronize this
311  * update, two counters are inserted into the number. One is
312  * the actual counter for the write position or count on the page.
313  *
314  * The other is a counter of updaters. Before an update happens
315  * the update partition of the counter is incremented. This will
316  * allow the updater to update the counter atomically.
317  *
318  * The counter is 20 bits, and the state data is 12.
319  */
320 #define RB_WRITE_MASK           0xfffff
321 #define RB_WRITE_INTCNT         (1 << 20)
322
323 static void rb_init_page(struct buffer_data_page *bpage)
324 {
325         local_set(&bpage->commit, 0);
326 }
327
328 /**
329  * ring_buffer_page_len - the size of data on the page.
330  * @page: The page to read
331  *
332  * Returns the amount of data on the page, including buffer page header.
333  */
334 size_t ring_buffer_page_len(void *page)
335 {
336         struct buffer_data_page *bpage = page;
337
338         return (local_read(&bpage->commit) & ~RB_MISSED_FLAGS)
339                 + BUF_PAGE_HDR_SIZE;
340 }
341
342 /*
343  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
344  * this issue out.
345  */
346 static void free_buffer_page(struct buffer_page *bpage)
347 {
348         free_page((unsigned long)bpage->page);
349         kfree(bpage);
350 }
351
352 /*
353  * We need to fit the time_stamp delta into 27 bits.
354  */
355 static inline int test_time_stamp(u64 delta)
356 {
357         if (delta & TS_DELTA_TEST)
358                 return 1;
359         return 0;
360 }
361
362 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
363
364 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
365 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
366
367 int ring_buffer_print_page_header(struct trace_seq *s)
368 {
369         struct buffer_data_page field;
370
371         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
372                          "offset:0;\tsize:%u;\tsigned:%u;\n",
373                          (unsigned int)sizeof(field.time_stamp),
374                          (unsigned int)is_signed_type(u64));
375
376         trace_seq_printf(s, "\tfield: local_t commit;\t"
377                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
378                          (unsigned int)offsetof(typeof(field), commit),
379                          (unsigned int)sizeof(field.commit),
380                          (unsigned int)is_signed_type(long));
381
382         trace_seq_printf(s, "\tfield: int overwrite;\t"
383                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
384                          (unsigned int)offsetof(typeof(field), commit),
385                          1,
386                          (unsigned int)is_signed_type(long));
387
388         trace_seq_printf(s, "\tfield: char data;\t"
389                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
390                          (unsigned int)offsetof(typeof(field), data),
391                          (unsigned int)BUF_PAGE_SIZE,
392                          (unsigned int)is_signed_type(char));
393
394         return !trace_seq_has_overflowed(s);
395 }
396
397 struct rb_irq_work {
398         struct irq_work                 work;
399         wait_queue_head_t               waiters;
400         wait_queue_head_t               full_waiters;
401         bool                            waiters_pending;
402         bool                            full_waiters_pending;
403         bool                            wakeup_full;
404 };
405
406 /*
407  * Structure to hold event state and handle nested events.
408  */
409 struct rb_event_info {
410         u64                     ts;
411         u64                     delta;
412         unsigned long           length;
413         struct buffer_page      *tail_page;
414         int                     add_timestamp;
415 };
416
417 /*
418  * Used for which event context the event is in.
419  *  NMI     = 0
420  *  IRQ     = 1
421  *  SOFTIRQ = 2
422  *  NORMAL  = 3
423  *
424  * See trace_recursive_lock() comment below for more details.
425  */
426 enum {
427         RB_CTX_NMI,
428         RB_CTX_IRQ,
429         RB_CTX_SOFTIRQ,
430         RB_CTX_NORMAL,
431         RB_CTX_MAX
432 };
433
434 /*
435  * head_page == tail_page && head == tail then buffer is empty.
436  */
437 struct ring_buffer_per_cpu {
438         int                             cpu;
439         atomic_t                        record_disabled;
440         struct ring_buffer              *buffer;
441         raw_spinlock_t                  reader_lock;    /* serialize readers */
442         arch_spinlock_t                 lock;
443         struct lock_class_key           lock_key;
444         struct buffer_data_page         *free_page;
445         unsigned long                   nr_pages;
446         unsigned int                    current_context;
447         struct list_head                *pages;
448         struct buffer_page              *head_page;     /* read from head */
449         struct buffer_page              *tail_page;     /* write to tail */
450         struct buffer_page              *commit_page;   /* committed pages */
451         struct buffer_page              *reader_page;
452         unsigned long                   lost_events;
453         unsigned long                   last_overrun;
454         local_t                         entries_bytes;
455         local_t                         entries;
456         local_t                         overrun;
457         local_t                         commit_overrun;
458         local_t                         dropped_events;
459         local_t                         committing;
460         local_t                         commits;
461         unsigned long                   read;
462         unsigned long                   read_bytes;
463         u64                             write_stamp;
464         u64                             read_stamp;
465         /* ring buffer pages to update, > 0 to add, < 0 to remove */
466         long                            nr_pages_to_update;
467         struct list_head                new_pages; /* new pages to add */
468         struct work_struct              update_pages_work;
469         struct completion               update_done;
470
471         struct rb_irq_work              irq_work;
472 };
473
474 struct ring_buffer {
475         unsigned                        flags;
476         int                             cpus;
477         atomic_t                        record_disabled;
478         atomic_t                        resize_disabled;
479         cpumask_var_t                   cpumask;
480
481         struct lock_class_key           *reader_lock_key;
482
483         struct mutex                    mutex;
484
485         struct ring_buffer_per_cpu      **buffers;
486
487         struct hlist_node               node;
488         u64                             (*clock)(void);
489
490         struct rb_irq_work              irq_work;
491 };
492
493 struct ring_buffer_iter {
494         struct ring_buffer_per_cpu      *cpu_buffer;
495         unsigned long                   head;
496         struct buffer_page              *head_page;
497         struct buffer_page              *cache_reader_page;
498         unsigned long                   cache_read;
499         u64                             read_stamp;
500 };
501
502 /*
503  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
504  *
505  * Schedules a delayed work to wake up any task that is blocked on the
506  * ring buffer waiters queue.
507  */
508 static void rb_wake_up_waiters(struct irq_work *work)
509 {
510         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
511
512         wake_up_all(&rbwork->waiters);
513         if (rbwork->wakeup_full) {
514                 rbwork->wakeup_full = false;
515                 wake_up_all(&rbwork->full_waiters);
516         }
517 }
518
519 /**
520  * ring_buffer_wait - wait for input to the ring buffer
521  * @buffer: buffer to wait on
522  * @cpu: the cpu buffer to wait on
523  * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
524  *
525  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
526  * as data is added to any of the @buffer's cpu buffers. Otherwise
527  * it will wait for data to be added to a specific cpu buffer.
528  */
529 int ring_buffer_wait(struct ring_buffer *buffer, int cpu, bool full)
530 {
531         struct ring_buffer_per_cpu *uninitialized_var(cpu_buffer);
532         DEFINE_WAIT(wait);
533         struct rb_irq_work *work;
534         int ret = 0;
535
536         /*
537          * Depending on what the caller is waiting for, either any
538          * data in any cpu buffer, or a specific buffer, put the
539          * caller on the appropriate wait queue.
540          */
541         if (cpu == RING_BUFFER_ALL_CPUS) {
542                 work = &buffer->irq_work;
543                 /* Full only makes sense on per cpu reads */
544                 full = false;
545         } else {
546                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
547                         return -ENODEV;
548                 cpu_buffer = buffer->buffers[cpu];
549                 work = &cpu_buffer->irq_work;
550         }
551
552
553         while (true) {
554                 if (full)
555                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
556                 else
557                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
558
559                 /*
560                  * The events can happen in critical sections where
561                  * checking a work queue can cause deadlocks.
562                  * After adding a task to the queue, this flag is set
563                  * only to notify events to try to wake up the queue
564                  * using irq_work.
565                  *
566                  * We don't clear it even if the buffer is no longer
567                  * empty. The flag only causes the next event to run
568                  * irq_work to do the work queue wake up. The worse
569                  * that can happen if we race with !trace_empty() is that
570                  * an event will cause an irq_work to try to wake up
571                  * an empty queue.
572                  *
573                  * There's no reason to protect this flag either, as
574                  * the work queue and irq_work logic will do the necessary
575                  * synchronization for the wake ups. The only thing
576                  * that is necessary is that the wake up happens after
577                  * a task has been queued. It's OK for spurious wake ups.
578                  */
579                 if (full)
580                         work->full_waiters_pending = true;
581                 else
582                         work->waiters_pending = true;
583
584                 if (signal_pending(current)) {
585                         ret = -EINTR;
586                         break;
587                 }
588
589                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
590                         break;
591
592                 if (cpu != RING_BUFFER_ALL_CPUS &&
593                     !ring_buffer_empty_cpu(buffer, cpu)) {
594                         unsigned long flags;
595                         bool pagebusy;
596
597                         if (!full)
598                                 break;
599
600                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
601                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
602                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
603
604                         if (!pagebusy)
605                                 break;
606                 }
607
608                 schedule();
609         }
610
611         if (full)
612                 finish_wait(&work->full_waiters, &wait);
613         else
614                 finish_wait(&work->waiters, &wait);
615
616         return ret;
617 }
618
619 /**
620  * ring_buffer_poll_wait - poll on buffer input
621  * @buffer: buffer to wait on
622  * @cpu: the cpu buffer to wait on
623  * @filp: the file descriptor
624  * @poll_table: The poll descriptor
625  *
626  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
627  * as data is added to any of the @buffer's cpu buffers. Otherwise
628  * it will wait for data to be added to a specific cpu buffer.
629  *
630  * Returns POLLIN | POLLRDNORM if data exists in the buffers,
631  * zero otherwise.
632  */
633 __poll_t ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
634                           struct file *filp, poll_table *poll_table)
635 {
636         struct ring_buffer_per_cpu *cpu_buffer;
637         struct rb_irq_work *work;
638
639         if (cpu == RING_BUFFER_ALL_CPUS)
640                 work = &buffer->irq_work;
641         else {
642                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
643                         return -EINVAL;
644
645                 cpu_buffer = buffer->buffers[cpu];
646                 work = &cpu_buffer->irq_work;
647         }
648
649         poll_wait(filp, &work->waiters, poll_table);
650         work->waiters_pending = true;
651         /*
652          * There's a tight race between setting the waiters_pending and
653          * checking if the ring buffer is empty.  Once the waiters_pending bit
654          * is set, the next event will wake the task up, but we can get stuck
655          * if there's only a single event in.
656          *
657          * FIXME: Ideally, we need a memory barrier on the writer side as well,
658          * but adding a memory barrier to all events will cause too much of a
659          * performance hit in the fast path.  We only need a memory barrier when
660          * the buffer goes from empty to having content.  But as this race is
661          * extremely small, and it's not a problem if another event comes in, we
662          * will fix it later.
663          */
664         smp_mb();
665
666         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
667             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
668                 return POLLIN | POLLRDNORM;
669         return 0;
670 }
671
672 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
673 #define RB_WARN_ON(b, cond)                                             \
674         ({                                                              \
675                 int _____ret = unlikely(cond);                          \
676                 if (_____ret) {                                         \
677                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
678                                 struct ring_buffer_per_cpu *__b =       \
679                                         (void *)b;                      \
680                                 atomic_inc(&__b->buffer->record_disabled); \
681                         } else                                          \
682                                 atomic_inc(&b->record_disabled);        \
683                         WARN_ON(1);                                     \
684                 }                                                       \
685                 _____ret;                                               \
686         })
687
688 /* Up this if you want to test the TIME_EXTENTS and normalization */
689 #define DEBUG_SHIFT 0
690
691 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
692 {
693         /* shift to debug/test normalization and TIME_EXTENTS */
694         return buffer->clock() << DEBUG_SHIFT;
695 }
696
697 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
698 {
699         u64 time;
700
701         preempt_disable_notrace();
702         time = rb_time_stamp(buffer);
703         preempt_enable_no_resched_notrace();
704
705         return time;
706 }
707 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
708
709 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
710                                       int cpu, u64 *ts)
711 {
712         /* Just stupid testing the normalize function and deltas */
713         *ts >>= DEBUG_SHIFT;
714 }
715 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
716
717 /*
718  * Making the ring buffer lockless makes things tricky.
719  * Although writes only happen on the CPU that they are on,
720  * and they only need to worry about interrupts. Reads can
721  * happen on any CPU.
722  *
723  * The reader page is always off the ring buffer, but when the
724  * reader finishes with a page, it needs to swap its page with
725  * a new one from the buffer. The reader needs to take from
726  * the head (writes go to the tail). But if a writer is in overwrite
727  * mode and wraps, it must push the head page forward.
728  *
729  * Here lies the problem.
730  *
731  * The reader must be careful to replace only the head page, and
732  * not another one. As described at the top of the file in the
733  * ASCII art, the reader sets its old page to point to the next
734  * page after head. It then sets the page after head to point to
735  * the old reader page. But if the writer moves the head page
736  * during this operation, the reader could end up with the tail.
737  *
738  * We use cmpxchg to help prevent this race. We also do something
739  * special with the page before head. We set the LSB to 1.
740  *
741  * When the writer must push the page forward, it will clear the
742  * bit that points to the head page, move the head, and then set
743  * the bit that points to the new head page.
744  *
745  * We also don't want an interrupt coming in and moving the head
746  * page on another writer. Thus we use the second LSB to catch
747  * that too. Thus:
748  *
749  * head->list->prev->next        bit 1          bit 0
750  *                              -------        -------
751  * Normal page                     0              0
752  * Points to head page             0              1
753  * New head page                   1              0
754  *
755  * Note we can not trust the prev pointer of the head page, because:
756  *
757  * +----+       +-----+        +-----+
758  * |    |------>|  T  |---X--->|  N  |
759  * |    |<------|     |        |     |
760  * +----+       +-----+        +-----+
761  *   ^                           ^ |
762  *   |          +-----+          | |
763  *   +----------|  R  |----------+ |
764  *              |     |<-----------+
765  *              +-----+
766  *
767  * Key:  ---X-->  HEAD flag set in pointer
768  *         T      Tail page
769  *         R      Reader page
770  *         N      Next page
771  *
772  * (see __rb_reserve_next() to see where this happens)
773  *
774  *  What the above shows is that the reader just swapped out
775  *  the reader page with a page in the buffer, but before it
776  *  could make the new header point back to the new page added
777  *  it was preempted by a writer. The writer moved forward onto
778  *  the new page added by the reader and is about to move forward
779  *  again.
780  *
781  *  You can see, it is legitimate for the previous pointer of
782  *  the head (or any page) not to point back to itself. But only
783  *  temporarially.
784  */
785
786 #define RB_PAGE_NORMAL          0UL
787 #define RB_PAGE_HEAD            1UL
788 #define RB_PAGE_UPDATE          2UL
789
790
791 #define RB_FLAG_MASK            3UL
792
793 /* PAGE_MOVED is not part of the mask */
794 #define RB_PAGE_MOVED           4UL
795
796 /*
797  * rb_list_head - remove any bit
798  */
799 static struct list_head *rb_list_head(struct list_head *list)
800 {
801         unsigned long val = (unsigned long)list;
802
803         return (struct list_head *)(val & ~RB_FLAG_MASK);
804 }
805
806 /*
807  * rb_is_head_page - test if the given page is the head page
808  *
809  * Because the reader may move the head_page pointer, we can
810  * not trust what the head page is (it may be pointing to
811  * the reader page). But if the next page is a header page,
812  * its flags will be non zero.
813  */
814 static inline int
815 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
816                 struct buffer_page *page, struct list_head *list)
817 {
818         unsigned long val;
819
820         val = (unsigned long)list->next;
821
822         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
823                 return RB_PAGE_MOVED;
824
825         return val & RB_FLAG_MASK;
826 }
827
828 /*
829  * rb_is_reader_page
830  *
831  * The unique thing about the reader page, is that, if the
832  * writer is ever on it, the previous pointer never points
833  * back to the reader page.
834  */
835 static bool rb_is_reader_page(struct buffer_page *page)
836 {
837         struct list_head *list = page->list.prev;
838
839         return rb_list_head(list->next) != &page->list;
840 }
841
842 /*
843  * rb_set_list_to_head - set a list_head to be pointing to head.
844  */
845 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
846                                 struct list_head *list)
847 {
848         unsigned long *ptr;
849
850         ptr = (unsigned long *)&list->next;
851         *ptr |= RB_PAGE_HEAD;
852         *ptr &= ~RB_PAGE_UPDATE;
853 }
854
855 /*
856  * rb_head_page_activate - sets up head page
857  */
858 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
859 {
860         struct buffer_page *head;
861
862         head = cpu_buffer->head_page;
863         if (!head)
864                 return;
865
866         /*
867          * Set the previous list pointer to have the HEAD flag.
868          */
869         rb_set_list_to_head(cpu_buffer, head->list.prev);
870 }
871
872 static void rb_list_head_clear(struct list_head *list)
873 {
874         unsigned long *ptr = (unsigned long *)&list->next;
875
876         *ptr &= ~RB_FLAG_MASK;
877 }
878
879 /*
880  * rb_head_page_dactivate - clears head page ptr (for free list)
881  */
882 static void
883 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
884 {
885         struct list_head *hd;
886
887         /* Go through the whole list and clear any pointers found. */
888         rb_list_head_clear(cpu_buffer->pages);
889
890         list_for_each(hd, cpu_buffer->pages)
891                 rb_list_head_clear(hd);
892 }
893
894 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
895                             struct buffer_page *head,
896                             struct buffer_page *prev,
897                             int old_flag, int new_flag)
898 {
899         struct list_head *list;
900         unsigned long val = (unsigned long)&head->list;
901         unsigned long ret;
902
903         list = &prev->list;
904
905         val &= ~RB_FLAG_MASK;
906
907         ret = cmpxchg((unsigned long *)&list->next,
908                       val | old_flag, val | new_flag);
909
910         /* check if the reader took the page */
911         if ((ret & ~RB_FLAG_MASK) != val)
912                 return RB_PAGE_MOVED;
913
914         return ret & RB_FLAG_MASK;
915 }
916
917 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
918                                    struct buffer_page *head,
919                                    struct buffer_page *prev,
920                                    int old_flag)
921 {
922         return rb_head_page_set(cpu_buffer, head, prev,
923                                 old_flag, RB_PAGE_UPDATE);
924 }
925
926 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
927                                  struct buffer_page *head,
928                                  struct buffer_page *prev,
929                                  int old_flag)
930 {
931         return rb_head_page_set(cpu_buffer, head, prev,
932                                 old_flag, RB_PAGE_HEAD);
933 }
934
935 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
936                                    struct buffer_page *head,
937                                    struct buffer_page *prev,
938                                    int old_flag)
939 {
940         return rb_head_page_set(cpu_buffer, head, prev,
941                                 old_flag, RB_PAGE_NORMAL);
942 }
943
944 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
945                                struct buffer_page **bpage)
946 {
947         struct list_head *p = rb_list_head((*bpage)->list.next);
948
949         *bpage = list_entry(p, struct buffer_page, list);
950 }
951
952 static struct buffer_page *
953 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
954 {
955         struct buffer_page *head;
956         struct buffer_page *page;
957         struct list_head *list;
958         int i;
959
960         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
961                 return NULL;
962
963         /* sanity check */
964         list = cpu_buffer->pages;
965         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
966                 return NULL;
967
968         page = head = cpu_buffer->head_page;
969         /*
970          * It is possible that the writer moves the header behind
971          * where we started, and we miss in one loop.
972          * A second loop should grab the header, but we'll do
973          * three loops just because I'm paranoid.
974          */
975         for (i = 0; i < 3; i++) {
976                 do {
977                         if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
978                                 cpu_buffer->head_page = page;
979                                 return page;
980                         }
981                         rb_inc_page(cpu_buffer, &page);
982                 } while (page != head);
983         }
984
985         RB_WARN_ON(cpu_buffer, 1);
986
987         return NULL;
988 }
989
990 static int rb_head_page_replace(struct buffer_page *old,
991                                 struct buffer_page *new)
992 {
993         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
994         unsigned long val;
995         unsigned long ret;
996
997         val = *ptr & ~RB_FLAG_MASK;
998         val |= RB_PAGE_HEAD;
999
1000         ret = cmpxchg(ptr, val, (unsigned long)&new->list);
1001
1002         return ret == val;
1003 }
1004
1005 /*
1006  * rb_tail_page_update - move the tail page forward
1007  */
1008 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1009                                struct buffer_page *tail_page,
1010                                struct buffer_page *next_page)
1011 {
1012         unsigned long old_entries;
1013         unsigned long old_write;
1014
1015         /*
1016          * The tail page now needs to be moved forward.
1017          *
1018          * We need to reset the tail page, but without messing
1019          * with possible erasing of data brought in by interrupts
1020          * that have moved the tail page and are currently on it.
1021          *
1022          * We add a counter to the write field to denote this.
1023          */
1024         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1025         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1026
1027         /*
1028          * Just make sure we have seen our old_write and synchronize
1029          * with any interrupts that come in.
1030          */
1031         barrier();
1032
1033         /*
1034          * If the tail page is still the same as what we think
1035          * it is, then it is up to us to update the tail
1036          * pointer.
1037          */
1038         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1039                 /* Zero the write counter */
1040                 unsigned long val = old_write & ~RB_WRITE_MASK;
1041                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1042
1043                 /*
1044                  * This will only succeed if an interrupt did
1045                  * not come in and change it. In which case, we
1046                  * do not want to modify it.
1047                  *
1048                  * We add (void) to let the compiler know that we do not care
1049                  * about the return value of these functions. We use the
1050                  * cmpxchg to only update if an interrupt did not already
1051                  * do it for us. If the cmpxchg fails, we don't care.
1052                  */
1053                 (void)local_cmpxchg(&next_page->write, old_write, val);
1054                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1055
1056                 /*
1057                  * No need to worry about races with clearing out the commit.
1058                  * it only can increment when a commit takes place. But that
1059                  * only happens in the outer most nested commit.
1060                  */
1061                 local_set(&next_page->page->commit, 0);
1062
1063                 /* Again, either we update tail_page or an interrupt does */
1064                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1065         }
1066 }
1067
1068 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1069                           struct buffer_page *bpage)
1070 {
1071         unsigned long val = (unsigned long)bpage;
1072
1073         if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1074                 return 1;
1075
1076         return 0;
1077 }
1078
1079 /**
1080  * rb_check_list - make sure a pointer to a list has the last bits zero
1081  */
1082 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1083                          struct list_head *list)
1084 {
1085         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1086                 return 1;
1087         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1088                 return 1;
1089         return 0;
1090 }
1091
1092 /**
1093  * rb_check_pages - integrity check of buffer pages
1094  * @cpu_buffer: CPU buffer with pages to test
1095  *
1096  * As a safety measure we check to make sure the data pages have not
1097  * been corrupted.
1098  */
1099 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1100 {
1101         struct list_head *head = cpu_buffer->pages;
1102         struct buffer_page *bpage, *tmp;
1103
1104         /* Reset the head page if it exists */
1105         if (cpu_buffer->head_page)
1106                 rb_set_head_page(cpu_buffer);
1107
1108         rb_head_page_deactivate(cpu_buffer);
1109
1110         if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1111                 return -1;
1112         if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1113                 return -1;
1114
1115         if (rb_check_list(cpu_buffer, head))
1116                 return -1;
1117
1118         list_for_each_entry_safe(bpage, tmp, head, list) {
1119                 if (RB_WARN_ON(cpu_buffer,
1120                                bpage->list.next->prev != &bpage->list))
1121                         return -1;
1122                 if (RB_WARN_ON(cpu_buffer,
1123                                bpage->list.prev->next != &bpage->list))
1124                         return -1;
1125                 if (rb_check_list(cpu_buffer, &bpage->list))
1126                         return -1;
1127         }
1128
1129         rb_head_page_activate(cpu_buffer);
1130
1131         return 0;
1132 }
1133
1134 static int __rb_allocate_pages(long nr_pages, struct list_head *pages, int cpu)
1135 {
1136         struct buffer_page *bpage, *tmp;
1137         long i;
1138
1139         for (i = 0; i < nr_pages; i++) {
1140                 struct page *page;
1141                 /*
1142                  * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1143                  * gracefully without invoking oom-killer and the system is not
1144                  * destabilized.
1145                  */
1146                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1147                                     GFP_KERNEL | __GFP_RETRY_MAYFAIL,
1148                                     cpu_to_node(cpu));
1149                 if (!bpage)
1150                         goto free_pages;
1151
1152                 list_add(&bpage->list, pages);
1153
1154                 page = alloc_pages_node(cpu_to_node(cpu),
1155                                         GFP_KERNEL | __GFP_RETRY_MAYFAIL, 0);
1156                 if (!page)
1157                         goto free_pages;
1158                 bpage->page = page_address(page);
1159                 rb_init_page(bpage->page);
1160         }
1161
1162         return 0;
1163
1164 free_pages:
1165         list_for_each_entry_safe(bpage, tmp, pages, list) {
1166                 list_del_init(&bpage->list);
1167                 free_buffer_page(bpage);
1168         }
1169
1170         return -ENOMEM;
1171 }
1172
1173 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1174                              unsigned long nr_pages)
1175 {
1176         LIST_HEAD(pages);
1177
1178         WARN_ON(!nr_pages);
1179
1180         if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1181                 return -ENOMEM;
1182
1183         /*
1184          * The ring buffer page list is a circular list that does not
1185          * start and end with a list head. All page list items point to
1186          * other pages.
1187          */
1188         cpu_buffer->pages = pages.next;
1189         list_del(&pages);
1190
1191         cpu_buffer->nr_pages = nr_pages;
1192
1193         rb_check_pages(cpu_buffer);
1194
1195         return 0;
1196 }
1197
1198 static struct ring_buffer_per_cpu *
1199 rb_allocate_cpu_buffer(struct ring_buffer *buffer, long nr_pages, int cpu)
1200 {
1201         struct ring_buffer_per_cpu *cpu_buffer;
1202         struct buffer_page *bpage;
1203         struct page *page;
1204         int ret;
1205
1206         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1207                                   GFP_KERNEL, cpu_to_node(cpu));
1208         if (!cpu_buffer)
1209                 return NULL;
1210
1211         cpu_buffer->cpu = cpu;
1212         cpu_buffer->buffer = buffer;
1213         raw_spin_lock_init(&cpu_buffer->reader_lock);
1214         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1215         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1216         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1217         init_completion(&cpu_buffer->update_done);
1218         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1219         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1220         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1221
1222         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1223                             GFP_KERNEL, cpu_to_node(cpu));
1224         if (!bpage)
1225                 goto fail_free_buffer;
1226
1227         rb_check_bpage(cpu_buffer, bpage);
1228
1229         cpu_buffer->reader_page = bpage;
1230         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1231         if (!page)
1232                 goto fail_free_reader;
1233         bpage->page = page_address(page);
1234         rb_init_page(bpage->page);
1235
1236         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1237         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1238
1239         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1240         if (ret < 0)
1241                 goto fail_free_reader;
1242
1243         cpu_buffer->head_page
1244                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1245         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1246
1247         rb_head_page_activate(cpu_buffer);
1248
1249         return cpu_buffer;
1250
1251  fail_free_reader:
1252         free_buffer_page(cpu_buffer->reader_page);
1253
1254  fail_free_buffer:
1255         kfree(cpu_buffer);
1256         return NULL;
1257 }
1258
1259 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1260 {
1261         struct list_head *head = cpu_buffer->pages;
1262         struct buffer_page *bpage, *tmp;
1263
1264         free_buffer_page(cpu_buffer->reader_page);
1265
1266         rb_head_page_deactivate(cpu_buffer);
1267
1268         if (head) {
1269                 list_for_each_entry_safe(bpage, tmp, head, list) {
1270                         list_del_init(&bpage->list);
1271                         free_buffer_page(bpage);
1272                 }
1273                 bpage = list_entry(head, struct buffer_page, list);
1274                 free_buffer_page(bpage);
1275         }
1276
1277         kfree(cpu_buffer);
1278 }
1279
1280 /**
1281  * __ring_buffer_alloc - allocate a new ring_buffer
1282  * @size: the size in bytes per cpu that is needed.
1283  * @flags: attributes to set for the ring buffer.
1284  *
1285  * Currently the only flag that is available is the RB_FL_OVERWRITE
1286  * flag. This flag means that the buffer will overwrite old data
1287  * when the buffer wraps. If this flag is not set, the buffer will
1288  * drop data when the tail hits the head.
1289  */
1290 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1291                                         struct lock_class_key *key)
1292 {
1293         struct ring_buffer *buffer;
1294         long nr_pages;
1295         int bsize;
1296         int cpu;
1297         int ret;
1298
1299         /* keep it in its own cache line */
1300         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1301                          GFP_KERNEL);
1302         if (!buffer)
1303                 return NULL;
1304
1305         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1306                 goto fail_free_buffer;
1307
1308         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1309         buffer->flags = flags;
1310         buffer->clock = trace_clock_local;
1311         buffer->reader_lock_key = key;
1312
1313         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1314         init_waitqueue_head(&buffer->irq_work.waiters);
1315
1316         /* need at least two pages */
1317         if (nr_pages < 2)
1318                 nr_pages = 2;
1319
1320         buffer->cpus = nr_cpu_ids;
1321
1322         bsize = sizeof(void *) * nr_cpu_ids;
1323         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1324                                   GFP_KERNEL);
1325         if (!buffer->buffers)
1326                 goto fail_free_cpumask;
1327
1328         cpu = raw_smp_processor_id();
1329         cpumask_set_cpu(cpu, buffer->cpumask);
1330         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1331         if (!buffer->buffers[cpu])
1332                 goto fail_free_buffers;
1333
1334         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1335         if (ret < 0)
1336                 goto fail_free_buffers;
1337
1338         mutex_init(&buffer->mutex);
1339
1340         return buffer;
1341
1342  fail_free_buffers:
1343         for_each_buffer_cpu(buffer, cpu) {
1344                 if (buffer->buffers[cpu])
1345                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1346         }
1347         kfree(buffer->buffers);
1348
1349  fail_free_cpumask:
1350         free_cpumask_var(buffer->cpumask);
1351
1352  fail_free_buffer:
1353         kfree(buffer);
1354         return NULL;
1355 }
1356 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1357
1358 /**
1359  * ring_buffer_free - free a ring buffer.
1360  * @buffer: the buffer to free.
1361  */
1362 void
1363 ring_buffer_free(struct ring_buffer *buffer)
1364 {
1365         int cpu;
1366
1367         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1368
1369         for_each_buffer_cpu(buffer, cpu)
1370                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1371
1372         kfree(buffer->buffers);
1373         free_cpumask_var(buffer->cpumask);
1374
1375         kfree(buffer);
1376 }
1377 EXPORT_SYMBOL_GPL(ring_buffer_free);
1378
1379 void ring_buffer_set_clock(struct ring_buffer *buffer,
1380                            u64 (*clock)(void))
1381 {
1382         buffer->clock = clock;
1383 }
1384
1385 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386
1387 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388 {
1389         return local_read(&bpage->entries) & RB_WRITE_MASK;
1390 }
1391
1392 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393 {
1394         return local_read(&bpage->write) & RB_WRITE_MASK;
1395 }
1396
1397 static int
1398 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1399 {
1400         struct list_head *tail_page, *to_remove, *next_page;
1401         struct buffer_page *to_remove_page, *tmp_iter_page;
1402         struct buffer_page *last_page, *first_page;
1403         unsigned long nr_removed;
1404         unsigned long head_bit;
1405         int page_entries;
1406
1407         head_bit = 0;
1408
1409         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1410         atomic_inc(&cpu_buffer->record_disabled);
1411         /*
1412          * We don't race with the readers since we have acquired the reader
1413          * lock. We also don't race with writers after disabling recording.
1414          * This makes it easy to figure out the first and the last page to be
1415          * removed from the list. We unlink all the pages in between including
1416          * the first and last pages. This is done in a busy loop so that we
1417          * lose the least number of traces.
1418          * The pages are freed after we restart recording and unlock readers.
1419          */
1420         tail_page = &cpu_buffer->tail_page->list;
1421
1422         /*
1423          * tail page might be on reader page, we remove the next page
1424          * from the ring buffer
1425          */
1426         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427                 tail_page = rb_list_head(tail_page->next);
1428         to_remove = tail_page;
1429
1430         /* start of pages to remove */
1431         first_page = list_entry(rb_list_head(to_remove->next),
1432                                 struct buffer_page, list);
1433
1434         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435                 to_remove = rb_list_head(to_remove)->next;
1436                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1437         }
1438
1439         next_page = rb_list_head(to_remove)->next;
1440
1441         /*
1442          * Now we remove all pages between tail_page and next_page.
1443          * Make sure that we have head_bit value preserved for the
1444          * next page
1445          */
1446         tail_page->next = (struct list_head *)((unsigned long)next_page |
1447                                                 head_bit);
1448         next_page = rb_list_head(next_page);
1449         next_page->prev = tail_page;
1450
1451         /* make sure pages points to a valid page in the ring buffer */
1452         cpu_buffer->pages = next_page;
1453
1454         /* update head page */
1455         if (head_bit)
1456                 cpu_buffer->head_page = list_entry(next_page,
1457                                                 struct buffer_page, list);
1458
1459         /*
1460          * change read pointer to make sure any read iterators reset
1461          * themselves
1462          */
1463         cpu_buffer->read = 0;
1464
1465         /* pages are removed, resume tracing and then free the pages */
1466         atomic_dec(&cpu_buffer->record_disabled);
1467         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1468
1469         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470
1471         /* last buffer page to remove */
1472         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473                                 list);
1474         tmp_iter_page = first_page;
1475
1476         do {
1477                 to_remove_page = tmp_iter_page;
1478                 rb_inc_page(cpu_buffer, &tmp_iter_page);
1479
1480                 /* update the counters */
1481                 page_entries = rb_page_entries(to_remove_page);
1482                 if (page_entries) {
1483                         /*
1484                          * If something was added to this page, it was full
1485                          * since it is not the tail page. So we deduct the
1486                          * bytes consumed in ring buffer from here.
1487                          * Increment overrun to account for the lost events.
1488                          */
1489                         local_add(page_entries, &cpu_buffer->overrun);
1490                         local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491                 }
1492
1493                 /*
1494                  * We have already removed references to this list item, just
1495                  * free up the buffer_page and its page
1496                  */
1497                 free_buffer_page(to_remove_page);
1498                 nr_removed--;
1499
1500         } while (to_remove_page != last_page);
1501
1502         RB_WARN_ON(cpu_buffer, nr_removed);
1503
1504         return nr_removed == 0;
1505 }
1506
1507 static int
1508 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1509 {
1510         struct list_head *pages = &cpu_buffer->new_pages;
1511         int retries, success;
1512
1513         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1514         /*
1515          * We are holding the reader lock, so the reader page won't be swapped
1516          * in the ring buffer. Now we are racing with the writer trying to
1517          * move head page and the tail page.
1518          * We are going to adapt the reader page update process where:
1519          * 1. We first splice the start and end of list of new pages between
1520          *    the head page and its previous page.
1521          * 2. We cmpxchg the prev_page->next to point from head page to the
1522          *    start of new pages list.
1523          * 3. Finally, we update the head->prev to the end of new list.
1524          *
1525          * We will try this process 10 times, to make sure that we don't keep
1526          * spinning.
1527          */
1528         retries = 10;
1529         success = 0;
1530         while (retries--) {
1531                 struct list_head *head_page, *prev_page, *r;
1532                 struct list_head *last_page, *first_page;
1533                 struct list_head *head_page_with_bit;
1534
1535                 head_page = &rb_set_head_page(cpu_buffer)->list;
1536                 if (!head_page)
1537                         break;
1538                 prev_page = head_page->prev;
1539
1540                 first_page = pages->next;
1541                 last_page  = pages->prev;
1542
1543                 head_page_with_bit = (struct list_head *)
1544                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1545
1546                 last_page->next = head_page_with_bit;
1547                 first_page->prev = prev_page;
1548
1549                 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550
1551                 if (r == head_page_with_bit) {
1552                         /*
1553                          * yay, we replaced the page pointer to our new list,
1554                          * now, we just have to update to head page's prev
1555                          * pointer to point to end of list
1556                          */
1557                         head_page->prev = last_page;
1558                         success = 1;
1559                         break;
1560                 }
1561         }
1562
1563         if (success)
1564                 INIT_LIST_HEAD(pages);
1565         /*
1566          * If we weren't successful in adding in new pages, warn and stop
1567          * tracing
1568          */
1569         RB_WARN_ON(cpu_buffer, !success);
1570         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1571
1572         /* free pages if they weren't inserted */
1573         if (!success) {
1574                 struct buffer_page *bpage, *tmp;
1575                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576                                          list) {
1577                         list_del_init(&bpage->list);
1578                         free_buffer_page(bpage);
1579                 }
1580         }
1581         return success;
1582 }
1583
1584 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1585 {
1586         int success;
1587
1588         if (cpu_buffer->nr_pages_to_update > 0)
1589                 success = rb_insert_pages(cpu_buffer);
1590         else
1591                 success = rb_remove_pages(cpu_buffer,
1592                                         -cpu_buffer->nr_pages_to_update);
1593
1594         if (success)
1595                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1596 }
1597
1598 static void update_pages_handler(struct work_struct *work)
1599 {
1600         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601                         struct ring_buffer_per_cpu, update_pages_work);
1602         rb_update_pages(cpu_buffer);
1603         complete(&cpu_buffer->update_done);
1604 }
1605
1606 /**
1607  * ring_buffer_resize - resize the ring buffer
1608  * @buffer: the buffer to resize.
1609  * @size: the new size.
1610  * @cpu_id: the cpu buffer to resize
1611  *
1612  * Minimum size is 2 * BUF_PAGE_SIZE.
1613  *
1614  * Returns 0 on success and < 0 on failure.
1615  */
1616 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1617                         int cpu_id)
1618 {
1619         struct ring_buffer_per_cpu *cpu_buffer;
1620         unsigned long nr_pages;
1621         int cpu, err = 0;
1622
1623         /*
1624          * Always succeed at resizing a non-existent buffer:
1625          */
1626         if (!buffer)
1627                 return size;
1628
1629         /* Make sure the requested buffer exists */
1630         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1631             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1632                 return size;
1633
1634         nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1635
1636         /* we need a minimum of two pages */
1637         if (nr_pages < 2)
1638                 nr_pages = 2;
1639
1640         size = nr_pages * BUF_PAGE_SIZE;
1641
1642         /*
1643          * Don't succeed if resizing is disabled, as a reader might be
1644          * manipulating the ring buffer and is expecting a sane state while
1645          * this is true.
1646          */
1647         if (atomic_read(&buffer->resize_disabled))
1648                 return -EBUSY;
1649
1650         /* prevent another thread from changing buffer sizes */
1651         mutex_lock(&buffer->mutex);
1652
1653         if (cpu_id == RING_BUFFER_ALL_CPUS) {
1654                 /* calculate the pages to update */
1655                 for_each_buffer_cpu(buffer, cpu) {
1656                         cpu_buffer = buffer->buffers[cpu];
1657
1658                         cpu_buffer->nr_pages_to_update = nr_pages -
1659                                                         cpu_buffer->nr_pages;
1660                         /*
1661                          * nothing more to do for removing pages or no update
1662                          */
1663                         if (cpu_buffer->nr_pages_to_update <= 0)
1664                                 continue;
1665                         /*
1666                          * to add pages, make sure all new pages can be
1667                          * allocated without receiving ENOMEM
1668                          */
1669                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1670                         if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1671                                                 &cpu_buffer->new_pages, cpu)) {
1672                                 /* not enough memory for new pages */
1673                                 err = -ENOMEM;
1674                                 goto out_err;
1675                         }
1676                 }
1677
1678                 get_online_cpus();
1679                 /*
1680                  * Fire off all the required work handlers
1681                  * We can't schedule on offline CPUs, but it's not necessary
1682                  * since we can change their buffer sizes without any race.
1683                  */
1684                 for_each_buffer_cpu(buffer, cpu) {
1685                         cpu_buffer = buffer->buffers[cpu];
1686                         if (!cpu_buffer->nr_pages_to_update)
1687                                 continue;
1688
1689                         /* Can't run something on an offline CPU. */
1690                         if (!cpu_online(cpu)) {
1691                                 rb_update_pages(cpu_buffer);
1692                                 cpu_buffer->nr_pages_to_update = 0;
1693                         } else {
1694                                 schedule_work_on(cpu,
1695                                                 &cpu_buffer->update_pages_work);
1696                         }
1697                 }
1698
1699                 /* wait for all the updates to complete */
1700                 for_each_buffer_cpu(buffer, cpu) {
1701                         cpu_buffer = buffer->buffers[cpu];
1702                         if (!cpu_buffer->nr_pages_to_update)
1703                                 continue;
1704
1705                         if (cpu_online(cpu))
1706                                 wait_for_completion(&cpu_buffer->update_done);
1707                         cpu_buffer->nr_pages_to_update = 0;
1708                 }
1709
1710                 put_online_cpus();
1711         } else {
1712                 /* Make sure this CPU has been intitialized */
1713                 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1714                         goto out;
1715
1716                 cpu_buffer = buffer->buffers[cpu_id];
1717
1718                 if (nr_pages == cpu_buffer->nr_pages)
1719                         goto out;
1720
1721                 cpu_buffer->nr_pages_to_update = nr_pages -
1722                                                 cpu_buffer->nr_pages;
1723
1724                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1725                 if (cpu_buffer->nr_pages_to_update > 0 &&
1726                         __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
1727                                             &cpu_buffer->new_pages, cpu_id)) {
1728                         err = -ENOMEM;
1729                         goto out_err;
1730                 }
1731
1732                 get_online_cpus();
1733
1734                 /* Can't run something on an offline CPU. */
1735                 if (!cpu_online(cpu_id))
1736                         rb_update_pages(cpu_buffer);
1737                 else {
1738                         schedule_work_on(cpu_id,
1739                                          &cpu_buffer->update_pages_work);
1740                         wait_for_completion(&cpu_buffer->update_done);
1741                 }
1742
1743                 cpu_buffer->nr_pages_to_update = 0;
1744                 put_online_cpus();
1745         }
1746
1747  out:
1748         /*
1749          * The ring buffer resize can happen with the ring buffer
1750          * enabled, so that the update disturbs the tracing as little
1751          * as possible. But if the buffer is disabled, we do not need
1752          * to worry about that, and we can take the time to verify
1753          * that the buffer is not corrupt.
1754          */
1755         if (atomic_read(&buffer->record_disabled)) {
1756                 atomic_inc(&buffer->record_disabled);
1757                 /*
1758                  * Even though the buffer was disabled, we must make sure
1759                  * that it is truly disabled before calling rb_check_pages.
1760                  * There could have been a race between checking
1761                  * record_disable and incrementing it.
1762                  */
1763                 synchronize_sched();
1764                 for_each_buffer_cpu(buffer, cpu) {
1765                         cpu_buffer = buffer->buffers[cpu];
1766                         rb_check_pages(cpu_buffer);
1767                 }
1768                 atomic_dec(&buffer->record_disabled);
1769         }
1770
1771         mutex_unlock(&buffer->mutex);
1772         return size;
1773
1774  out_err:
1775         for_each_buffer_cpu(buffer, cpu) {
1776                 struct buffer_page *bpage, *tmp;
1777
1778                 cpu_buffer = buffer->buffers[cpu];
1779                 cpu_buffer->nr_pages_to_update = 0;
1780
1781                 if (list_empty(&cpu_buffer->new_pages))
1782                         continue;
1783
1784                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1785                                         list) {
1786                         list_del_init(&bpage->list);
1787                         free_buffer_page(bpage);
1788                 }
1789         }
1790         mutex_unlock(&buffer->mutex);
1791         return err;
1792 }
1793 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1794
1795 void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1796 {
1797         mutex_lock(&buffer->mutex);
1798         if (val)
1799                 buffer->flags |= RB_FL_OVERWRITE;
1800         else
1801                 buffer->flags &= ~RB_FL_OVERWRITE;
1802         mutex_unlock(&buffer->mutex);
1803 }
1804 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1805
1806 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1807 {
1808         return bpage->page->data + index;
1809 }
1810
1811 static __always_inline struct ring_buffer_event *
1812 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1813 {
1814         return __rb_page_index(cpu_buffer->reader_page,
1815                                cpu_buffer->reader_page->read);
1816 }
1817
1818 static __always_inline struct ring_buffer_event *
1819 rb_iter_head_event(struct ring_buffer_iter *iter)
1820 {
1821         return __rb_page_index(iter->head_page, iter->head);
1822 }
1823
1824 static __always_inline unsigned rb_page_commit(struct buffer_page *bpage)
1825 {
1826         return local_read(&bpage->page->commit);
1827 }
1828
1829 /* Size is determined by what has been committed */
1830 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
1831 {
1832         return rb_page_commit(bpage);
1833 }
1834
1835 static __always_inline unsigned
1836 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1837 {
1838         return rb_page_commit(cpu_buffer->commit_page);
1839 }
1840
1841 static __always_inline unsigned
1842 rb_event_index(struct ring_buffer_event *event)
1843 {
1844         unsigned long addr = (unsigned long)event;
1845
1846         return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1847 }
1848
1849 static void rb_inc_iter(struct ring_buffer_iter *iter)
1850 {
1851         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1852
1853         /*
1854          * The iterator could be on the reader page (it starts there).
1855          * But the head could have moved, since the reader was
1856          * found. Check for this case and assign the iterator
1857          * to the head page instead of next.
1858          */
1859         if (iter->head_page == cpu_buffer->reader_page)
1860                 iter->head_page = rb_set_head_page(cpu_buffer);
1861         else
1862                 rb_inc_page(cpu_buffer, &iter->head_page);
1863
1864         iter->read_stamp = iter->head_page->page->time_stamp;
1865         iter->head = 0;
1866 }
1867
1868 /*
1869  * rb_handle_head_page - writer hit the head page
1870  *
1871  * Returns: +1 to retry page
1872  *           0 to continue
1873  *          -1 on error
1874  */
1875 static int
1876 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1877                     struct buffer_page *tail_page,
1878                     struct buffer_page *next_page)
1879 {
1880         struct buffer_page *new_head;
1881         int entries;
1882         int type;
1883         int ret;
1884
1885         entries = rb_page_entries(next_page);
1886
1887         /*
1888          * The hard part is here. We need to move the head
1889          * forward, and protect against both readers on
1890          * other CPUs and writers coming in via interrupts.
1891          */
1892         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1893                                        RB_PAGE_HEAD);
1894
1895         /*
1896          * type can be one of four:
1897          *  NORMAL - an interrupt already moved it for us
1898          *  HEAD   - we are the first to get here.
1899          *  UPDATE - we are the interrupt interrupting
1900          *           a current move.
1901          *  MOVED  - a reader on another CPU moved the next
1902          *           pointer to its reader page. Give up
1903          *           and try again.
1904          */
1905
1906         switch (type) {
1907         case RB_PAGE_HEAD:
1908                 /*
1909                  * We changed the head to UPDATE, thus
1910                  * it is our responsibility to update
1911                  * the counters.
1912                  */
1913                 local_add(entries, &cpu_buffer->overrun);
1914                 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1915
1916                 /*
1917                  * The entries will be zeroed out when we move the
1918                  * tail page.
1919                  */
1920
1921                 /* still more to do */
1922                 break;
1923
1924         case RB_PAGE_UPDATE:
1925                 /*
1926                  * This is an interrupt that interrupt the
1927                  * previous update. Still more to do.
1928                  */
1929                 break;
1930         case RB_PAGE_NORMAL:
1931                 /*
1932                  * An interrupt came in before the update
1933                  * and processed this for us.
1934                  * Nothing left to do.
1935                  */
1936                 return 1;
1937         case RB_PAGE_MOVED:
1938                 /*
1939                  * The reader is on another CPU and just did
1940                  * a swap with our next_page.
1941                  * Try again.
1942                  */
1943                 return 1;
1944         default:
1945                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1946                 return -1;
1947         }
1948
1949         /*
1950          * Now that we are here, the old head pointer is
1951          * set to UPDATE. This will keep the reader from
1952          * swapping the head page with the reader page.
1953          * The reader (on another CPU) will spin till
1954          * we are finished.
1955          *
1956          * We just need to protect against interrupts
1957          * doing the job. We will set the next pointer
1958          * to HEAD. After that, we set the old pointer
1959          * to NORMAL, but only if it was HEAD before.
1960          * otherwise we are an interrupt, and only
1961          * want the outer most commit to reset it.
1962          */
1963         new_head = next_page;
1964         rb_inc_page(cpu_buffer, &new_head);
1965
1966         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1967                                     RB_PAGE_NORMAL);
1968
1969         /*
1970          * Valid returns are:
1971          *  HEAD   - an interrupt came in and already set it.
1972          *  NORMAL - One of two things:
1973          *            1) We really set it.
1974          *            2) A bunch of interrupts came in and moved
1975          *               the page forward again.
1976          */
1977         switch (ret) {
1978         case RB_PAGE_HEAD:
1979         case RB_PAGE_NORMAL:
1980                 /* OK */
1981                 break;
1982         default:
1983                 RB_WARN_ON(cpu_buffer, 1);
1984                 return -1;
1985         }
1986
1987         /*
1988          * It is possible that an interrupt came in,
1989          * set the head up, then more interrupts came in
1990          * and moved it again. When we get back here,
1991          * the page would have been set to NORMAL but we
1992          * just set it back to HEAD.
1993          *
1994          * How do you detect this? Well, if that happened
1995          * the tail page would have moved.
1996          */
1997         if (ret == RB_PAGE_NORMAL) {
1998                 struct buffer_page *buffer_tail_page;
1999
2000                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2001                 /*
2002                  * If the tail had moved passed next, then we need
2003                  * to reset the pointer.
2004                  */
2005                 if (buffer_tail_page != tail_page &&
2006                     buffer_tail_page != next_page)
2007                         rb_head_page_set_normal(cpu_buffer, new_head,
2008                                                 next_page,
2009                                                 RB_PAGE_HEAD);
2010         }
2011
2012         /*
2013          * If this was the outer most commit (the one that
2014          * changed the original pointer from HEAD to UPDATE),
2015          * then it is up to us to reset it to NORMAL.
2016          */
2017         if (type == RB_PAGE_HEAD) {
2018                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2019                                               tail_page,
2020                                               RB_PAGE_UPDATE);
2021                 if (RB_WARN_ON(cpu_buffer,
2022                                ret != RB_PAGE_UPDATE))
2023                         return -1;
2024         }
2025
2026         return 0;
2027 }
2028
2029 static inline void
2030 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2031               unsigned long tail, struct rb_event_info *info)
2032 {
2033         struct buffer_page *tail_page = info->tail_page;
2034         struct ring_buffer_event *event;
2035         unsigned long length = info->length;
2036
2037         /*
2038          * Only the event that crossed the page boundary
2039          * must fill the old tail_page with padding.
2040          */
2041         if (tail >= BUF_PAGE_SIZE) {
2042                 /*
2043                  * If the page was filled, then we still need
2044                  * to update the real_end. Reset it to zero
2045                  * and the reader will ignore it.
2046                  */
2047                 if (tail == BUF_PAGE_SIZE)
2048                         tail_page->real_end = 0;
2049
2050                 local_sub(length, &tail_page->write);
2051                 return;
2052         }
2053
2054         event = __rb_page_index(tail_page, tail);
2055
2056         /* account for padding bytes */
2057         local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2058
2059         /*
2060          * Save the original length to the meta data.
2061          * This will be used by the reader to add lost event
2062          * counter.
2063          */
2064         tail_page->real_end = tail;
2065
2066         /*
2067          * If this event is bigger than the minimum size, then
2068          * we need to be careful that we don't subtract the
2069          * write counter enough to allow another writer to slip
2070          * in on this page.
2071          * We put in a discarded commit instead, to make sure
2072          * that this space is not used again.
2073          *
2074          * If we are less than the minimum size, we don't need to
2075          * worry about it.
2076          */
2077         if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2078                 /* No room for any events */
2079
2080                 /* Mark the rest of the page with padding */
2081                 rb_event_set_padding(event);
2082
2083                 /* Set the write back to the previous setting */
2084                 local_sub(length, &tail_page->write);
2085                 return;
2086         }
2087
2088         /* Put in a discarded event */
2089         event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2090         event->type_len = RINGBUF_TYPE_PADDING;
2091         /* time delta must be non zero */
2092         event->time_delta = 1;
2093
2094         /* Set write to end of buffer */
2095         length = (tail + length) - BUF_PAGE_SIZE;
2096         local_sub(length, &tail_page->write);
2097 }
2098
2099 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2100
2101 /*
2102  * This is the slow path, force gcc not to inline it.
2103  */
2104 static noinline struct ring_buffer_event *
2105 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2106              unsigned long tail, struct rb_event_info *info)
2107 {
2108         struct buffer_page *tail_page = info->tail_page;
2109         struct buffer_page *commit_page = cpu_buffer->commit_page;
2110         struct ring_buffer *buffer = cpu_buffer->buffer;
2111         struct buffer_page *next_page;
2112         int ret;
2113
2114         next_page = tail_page;
2115
2116         rb_inc_page(cpu_buffer, &next_page);
2117
2118         /*
2119          * If for some reason, we had an interrupt storm that made
2120          * it all the way around the buffer, bail, and warn
2121          * about it.
2122          */
2123         if (unlikely(next_page == commit_page)) {
2124                 local_inc(&cpu_buffer->commit_overrun);
2125                 goto out_reset;
2126         }
2127
2128         /*
2129          * This is where the fun begins!
2130          *
2131          * We are fighting against races between a reader that
2132          * could be on another CPU trying to swap its reader
2133          * page with the buffer head.
2134          *
2135          * We are also fighting against interrupts coming in and
2136          * moving the head or tail on us as well.
2137          *
2138          * If the next page is the head page then we have filled
2139          * the buffer, unless the commit page is still on the
2140          * reader page.
2141          */
2142         if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
2143
2144                 /*
2145                  * If the commit is not on the reader page, then
2146                  * move the header page.
2147                  */
2148                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2149                         /*
2150                          * If we are not in overwrite mode,
2151                          * this is easy, just stop here.
2152                          */
2153                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2154                                 local_inc(&cpu_buffer->dropped_events);
2155                                 goto out_reset;
2156                         }
2157
2158                         ret = rb_handle_head_page(cpu_buffer,
2159                                                   tail_page,
2160                                                   next_page);
2161                         if (ret < 0)
2162                                 goto out_reset;
2163                         if (ret)
2164                                 goto out_again;
2165                 } else {
2166                         /*
2167                          * We need to be careful here too. The
2168                          * commit page could still be on the reader
2169                          * page. We could have a small buffer, and
2170                          * have filled up the buffer with events
2171                          * from interrupts and such, and wrapped.
2172                          *
2173                          * Note, if the tail page is also the on the
2174                          * reader_page, we let it move out.
2175                          */
2176                         if (unlikely((cpu_buffer->commit_page !=
2177                                       cpu_buffer->tail_page) &&
2178                                      (cpu_buffer->commit_page ==
2179                                       cpu_buffer->reader_page))) {
2180                                 local_inc(&cpu_buffer->commit_overrun);
2181                                 goto out_reset;
2182                         }
2183                 }
2184         }
2185
2186         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2187
2188  out_again:
2189
2190         rb_reset_tail(cpu_buffer, tail, info);
2191
2192         /* Commit what we have for now. */
2193         rb_end_commit(cpu_buffer);
2194         /* rb_end_commit() decs committing */
2195         local_inc(&cpu_buffer->committing);
2196
2197         /* fail and let the caller try again */
2198         return ERR_PTR(-EAGAIN);
2199
2200  out_reset:
2201         /* reset write */
2202         rb_reset_tail(cpu_buffer, tail, info);
2203
2204         return NULL;
2205 }
2206
2207 /* Slow path, do not inline */
2208 static noinline struct ring_buffer_event *
2209 rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2210 {
2211         event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2212
2213         /* Not the first event on the page? */
2214         if (rb_event_index(event)) {
2215                 event->time_delta = delta & TS_MASK;
2216                 event->array[0] = delta >> TS_SHIFT;
2217         } else {
2218                 /* nope, just zero it */
2219                 event->time_delta = 0;
2220                 event->array[0] = 0;
2221         }
2222
2223         return skip_time_extend(event);
2224 }
2225
2226 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2227                                      struct ring_buffer_event *event);
2228
2229 /**
2230  * rb_update_event - update event type and data
2231  * @event: the event to update
2232  * @type: the type of event
2233  * @length: the size of the event field in the ring buffer
2234  *
2235  * Update the type and data fields of the event. The length
2236  * is the actual size that is written to the ring buffer,
2237  * and with this, we can determine what to place into the
2238  * data field.
2239  */
2240 static void
2241 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2242                 struct ring_buffer_event *event,
2243                 struct rb_event_info *info)
2244 {
2245         unsigned length = info->length;
2246         u64 delta = info->delta;
2247
2248         /* Only a commit updates the timestamp */
2249         if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2250                 delta = 0;
2251
2252         /*
2253          * If we need to add a timestamp, then we
2254          * add it to the start of the resevered space.
2255          */
2256         if (unlikely(info->add_timestamp)) {
2257                 event = rb_add_time_stamp(event, delta);
2258                 length -= RB_LEN_TIME_EXTEND;
2259                 delta = 0;
2260         }
2261
2262         event->time_delta = delta;
2263         length -= RB_EVNT_HDR_SIZE;
2264         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2265                 event->type_len = 0;
2266                 event->array[0] = length;
2267         } else
2268                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2269 }
2270
2271 static unsigned rb_calculate_event_length(unsigned length)
2272 {
2273         struct ring_buffer_event event; /* Used only for sizeof array */
2274
2275         /* zero length can cause confusions */
2276         if (!length)
2277                 length++;
2278
2279         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2280                 length += sizeof(event.array[0]);
2281
2282         length += RB_EVNT_HDR_SIZE;
2283         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2284
2285         /*
2286          * In case the time delta is larger than the 27 bits for it
2287          * in the header, we need to add a timestamp. If another
2288          * event comes in when trying to discard this one to increase
2289          * the length, then the timestamp will be added in the allocated
2290          * space of this event. If length is bigger than the size needed
2291          * for the TIME_EXTEND, then padding has to be used. The events
2292          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2293          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2294          * As length is a multiple of 4, we only need to worry if it
2295          * is 12 (RB_LEN_TIME_EXTEND + 4).
2296          */
2297         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2298                 length += RB_ALIGNMENT;
2299
2300         return length;
2301 }
2302
2303 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2304 static inline bool sched_clock_stable(void)
2305 {
2306         return true;
2307 }
2308 #endif
2309
2310 static inline int
2311 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2312                   struct ring_buffer_event *event)
2313 {
2314         unsigned long new_index, old_index;
2315         struct buffer_page *bpage;
2316         unsigned long index;
2317         unsigned long addr;
2318
2319         new_index = rb_event_index(event);
2320         old_index = new_index + rb_event_ts_length(event);
2321         addr = (unsigned long)event;
2322         addr &= PAGE_MASK;
2323
2324         bpage = READ_ONCE(cpu_buffer->tail_page);
2325
2326         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2327                 unsigned long write_mask =
2328                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2329                 unsigned long event_length = rb_event_length(event);
2330                 /*
2331                  * This is on the tail page. It is possible that
2332                  * a write could come in and move the tail page
2333                  * and write to the next page. That is fine
2334                  * because we just shorten what is on this page.
2335                  */
2336                 old_index += write_mask;
2337                 new_index += write_mask;
2338                 index = local_cmpxchg(&bpage->write, old_index, new_index);
2339                 if (index == old_index) {
2340                         /* update counters */
2341                         local_sub(event_length, &cpu_buffer->entries_bytes);
2342                         return 1;
2343                 }
2344         }
2345
2346         /* could not discard */
2347         return 0;
2348 }
2349
2350 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2351 {
2352         local_inc(&cpu_buffer->committing);
2353         local_inc(&cpu_buffer->commits);
2354 }
2355
2356 static __always_inline void
2357 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2358 {
2359         unsigned long max_count;
2360
2361         /*
2362          * We only race with interrupts and NMIs on this CPU.
2363          * If we own the commit event, then we can commit
2364          * all others that interrupted us, since the interruptions
2365          * are in stack format (they finish before they come
2366          * back to us). This allows us to do a simple loop to
2367          * assign the commit to the tail.
2368          */
2369  again:
2370         max_count = cpu_buffer->nr_pages * 100;
2371
2372         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2373                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2374                         return;
2375                 if (RB_WARN_ON(cpu_buffer,
2376                                rb_is_reader_page(cpu_buffer->tail_page)))
2377                         return;
2378                 local_set(&cpu_buffer->commit_page->page->commit,
2379                           rb_page_write(cpu_buffer->commit_page));
2380                 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
2381                 /* Only update the write stamp if the page has an event */
2382                 if (rb_page_write(cpu_buffer->commit_page))
2383                         cpu_buffer->write_stamp =
2384                                 cpu_buffer->commit_page->page->time_stamp;
2385                 /* add barrier to keep gcc from optimizing too much */
2386                 barrier();
2387         }
2388         while (rb_commit_index(cpu_buffer) !=
2389                rb_page_write(cpu_buffer->commit_page)) {
2390
2391                 local_set(&cpu_buffer->commit_page->page->commit,
2392                           rb_page_write(cpu_buffer->commit_page));
2393                 RB_WARN_ON(cpu_buffer,
2394                            local_read(&cpu_buffer->commit_page->page->commit) &
2395                            ~RB_WRITE_MASK);
2396                 barrier();
2397         }
2398
2399         /* again, keep gcc from optimizing */
2400         barrier();
2401
2402         /*
2403          * If an interrupt came in just after the first while loop
2404          * and pushed the tail page forward, we will be left with
2405          * a dangling commit that will never go forward.
2406          */
2407         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2408                 goto again;
2409 }
2410
2411 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2412 {
2413         unsigned long commits;
2414
2415         if (RB_WARN_ON(cpu_buffer,
2416                        !local_read(&cpu_buffer->committing)))
2417                 return;
2418
2419  again:
2420         commits = local_read(&cpu_buffer->commits);
2421         /* synchronize with interrupts */
2422         barrier();
2423         if (local_read(&cpu_buffer->committing) == 1)
2424                 rb_set_commit_to_write(cpu_buffer);
2425
2426         local_dec(&cpu_buffer->committing);
2427
2428         /* synchronize with interrupts */
2429         barrier();
2430
2431         /*
2432          * Need to account for interrupts coming in between the
2433          * updating of the commit page and the clearing of the
2434          * committing counter.
2435          */
2436         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2437             !local_read(&cpu_buffer->committing)) {
2438                 local_inc(&cpu_buffer->committing);
2439                 goto again;
2440         }
2441 }
2442
2443 static inline void rb_event_discard(struct ring_buffer_event *event)
2444 {
2445         if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2446                 event = skip_time_extend(event);
2447
2448         /* array[0] holds the actual length for the discarded event */
2449         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2450         event->type_len = RINGBUF_TYPE_PADDING;
2451         /* time delta must be non zero */
2452         if (!event->time_delta)
2453                 event->time_delta = 1;
2454 }
2455
2456 static __always_inline bool
2457 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
2458                    struct ring_buffer_event *event)
2459 {
2460         unsigned long addr = (unsigned long)event;
2461         unsigned long index;
2462
2463         index = rb_event_index(event);
2464         addr &= PAGE_MASK;
2465
2466         return cpu_buffer->commit_page->page == (void *)addr &&
2467                 rb_commit_index(cpu_buffer) == index;
2468 }
2469
2470 static __always_inline void
2471 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2472                       struct ring_buffer_event *event)
2473 {
2474         u64 delta;
2475
2476         /*
2477          * The event first in the commit queue updates the
2478          * time stamp.
2479          */
2480         if (rb_event_is_commit(cpu_buffer, event)) {
2481                 /*
2482                  * A commit event that is first on a page
2483                  * updates the write timestamp with the page stamp
2484                  */
2485                 if (!rb_event_index(event))
2486                         cpu_buffer->write_stamp =
2487                                 cpu_buffer->commit_page->page->time_stamp;
2488                 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2489                         delta = event->array[0];
2490                         delta <<= TS_SHIFT;
2491                         delta += event->time_delta;
2492                         cpu_buffer->write_stamp += delta;
2493                 } else
2494                         cpu_buffer->write_stamp += event->time_delta;
2495         }
2496 }
2497
2498 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2499                       struct ring_buffer_event *event)
2500 {
2501         local_inc(&cpu_buffer->entries);
2502         rb_update_write_stamp(cpu_buffer, event);
2503         rb_end_commit(cpu_buffer);
2504 }
2505
2506 static __always_inline void
2507 rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2508 {
2509         bool pagebusy;
2510
2511         if (buffer->irq_work.waiters_pending) {
2512                 buffer->irq_work.waiters_pending = false;
2513                 /* irq_work_queue() supplies it's own memory barriers */
2514                 irq_work_queue(&buffer->irq_work.work);
2515         }
2516
2517         if (cpu_buffer->irq_work.waiters_pending) {
2518                 cpu_buffer->irq_work.waiters_pending = false;
2519                 /* irq_work_queue() supplies it's own memory barriers */
2520                 irq_work_queue(&cpu_buffer->irq_work.work);
2521         }
2522
2523         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
2524
2525         if (!pagebusy && cpu_buffer->irq_work.full_waiters_pending) {
2526                 cpu_buffer->irq_work.wakeup_full = true;
2527                 cpu_buffer->irq_work.full_waiters_pending = false;
2528                 /* irq_work_queue() supplies it's own memory barriers */
2529                 irq_work_queue(&cpu_buffer->irq_work.work);
2530         }
2531 }
2532
2533 /*
2534  * The lock and unlock are done within a preempt disable section.
2535  * The current_context per_cpu variable can only be modified
2536  * by the current task between lock and unlock. But it can
2537  * be modified more than once via an interrupt. To pass this
2538  * information from the lock to the unlock without having to
2539  * access the 'in_interrupt()' functions again (which do show
2540  * a bit of overhead in something as critical as function tracing,
2541  * we use a bitmask trick.
2542  *
2543  *  bit 0 =  NMI context
2544  *  bit 1 =  IRQ context
2545  *  bit 2 =  SoftIRQ context
2546  *  bit 3 =  normal context.
2547  *
2548  * This works because this is the order of contexts that can
2549  * preempt other contexts. A SoftIRQ never preempts an IRQ
2550  * context.
2551  *
2552  * When the context is determined, the corresponding bit is
2553  * checked and set (if it was set, then a recursion of that context
2554  * happened).
2555  *
2556  * On unlock, we need to clear this bit. To do so, just subtract
2557  * 1 from the current_context and AND it to itself.
2558  *
2559  * (binary)
2560  *  101 - 1 = 100
2561  *  101 & 100 = 100 (clearing bit zero)
2562  *
2563  *  1010 - 1 = 1001
2564  *  1010 & 1001 = 1000 (clearing bit 1)
2565  *
2566  * The least significant bit can be cleared this way, and it
2567  * just so happens that it is the same bit corresponding to
2568  * the current context.
2569  */
2570
2571 static __always_inline int
2572 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
2573 {
2574         unsigned int val = cpu_buffer->current_context;
2575         unsigned long pc = preempt_count();
2576         int bit;
2577
2578         if (!(pc & (NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))
2579                 bit = RB_CTX_NORMAL;
2580         else
2581                 bit = pc & NMI_MASK ? RB_CTX_NMI :
2582                         pc & HARDIRQ_MASK ? RB_CTX_IRQ : RB_CTX_SOFTIRQ;
2583
2584         if (unlikely(val & (1 << bit)))
2585                 return 1;
2586
2587         val |= (1 << bit);
2588         cpu_buffer->current_context = val;
2589
2590         return 0;
2591 }
2592
2593 static __always_inline void
2594 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
2595 {
2596         cpu_buffer->current_context &= cpu_buffer->current_context - 1;
2597 }
2598
2599 /**
2600  * ring_buffer_unlock_commit - commit a reserved
2601  * @buffer: The buffer to commit to
2602  * @event: The event pointer to commit.
2603  *
2604  * This commits the data to the ring buffer, and releases any locks held.
2605  *
2606  * Must be paired with ring_buffer_lock_reserve.
2607  */
2608 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2609                               struct ring_buffer_event *event)
2610 {
2611         struct ring_buffer_per_cpu *cpu_buffer;
2612         int cpu = raw_smp_processor_id();
2613
2614         cpu_buffer = buffer->buffers[cpu];
2615
2616         rb_commit(cpu_buffer, event);
2617
2618         rb_wakeups(buffer, cpu_buffer);
2619
2620         trace_recursive_unlock(cpu_buffer);
2621
2622         preempt_enable_notrace();
2623
2624         return 0;
2625 }
2626 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2627
2628 static noinline void
2629 rb_handle_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2630                     struct rb_event_info *info)
2631 {
2632         WARN_ONCE(info->delta > (1ULL << 59),
2633                   KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2634                   (unsigned long long)info->delta,
2635                   (unsigned long long)info->ts,
2636                   (unsigned long long)cpu_buffer->write_stamp,
2637                   sched_clock_stable() ? "" :
2638                   "If you just came from a suspend/resume,\n"
2639                   "please switch to the trace global clock:\n"
2640                   "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
2641         info->add_timestamp = 1;
2642 }
2643
2644 static struct ring_buffer_event *
2645 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
2646                   struct rb_event_info *info)
2647 {
2648         struct ring_buffer_event *event;
2649         struct buffer_page *tail_page;
2650         unsigned long tail, write;
2651
2652         /*
2653          * If the time delta since the last event is too big to
2654          * hold in the time field of the event, then we append a
2655          * TIME EXTEND event ahead of the data event.
2656          */
2657         if (unlikely(info->add_timestamp))
2658                 info->length += RB_LEN_TIME_EXTEND;
2659
2660         /* Don't let the compiler play games with cpu_buffer->tail_page */
2661         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
2662         write = local_add_return(info->length, &tail_page->write);
2663
2664         /* set write to only the index of the write */
2665         write &= RB_WRITE_MASK;
2666         tail = write - info->length;
2667
2668         /*
2669          * If this is the first commit on the page, then it has the same
2670          * timestamp as the page itself.
2671          */
2672         if (!tail)
2673                 info->delta = 0;
2674
2675         /* See if we shot pass the end of this buffer page */
2676         if (unlikely(write > BUF_PAGE_SIZE))
2677                 return rb_move_tail(cpu_buffer, tail, info);
2678
2679         /* We reserved something on the buffer */
2680
2681         event = __rb_page_index(tail_page, tail);
2682         rb_update_event(cpu_buffer, event, info);
2683
2684         local_inc(&tail_page->entries);
2685
2686         /*
2687          * If this is the first commit on the page, then update
2688          * its timestamp.
2689          */
2690         if (!tail)
2691                 tail_page->page->time_stamp = info->ts;
2692
2693         /* account for these added bytes */
2694         local_add(info->length, &cpu_buffer->entries_bytes);
2695
2696         return event;
2697 }
2698
2699 static __always_inline struct ring_buffer_event *
2700 rb_reserve_next_event(struct ring_buffer *buffer,
2701                       struct ring_buffer_per_cpu *cpu_buffer,
2702                       unsigned long length)
2703 {
2704         struct ring_buffer_event *event;
2705         struct rb_event_info info;
2706         int nr_loops = 0;
2707         u64 diff;
2708
2709         rb_start_commit(cpu_buffer);
2710
2711 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2712         /*
2713          * Due to the ability to swap a cpu buffer from a buffer
2714          * it is possible it was swapped before we committed.
2715          * (committing stops a swap). We check for it here and
2716          * if it happened, we have to fail the write.
2717          */
2718         barrier();
2719         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
2720                 local_dec(&cpu_buffer->committing);
2721                 local_dec(&cpu_buffer->commits);
2722                 return NULL;
2723         }
2724 #endif
2725
2726         info.length = rb_calculate_event_length(length);
2727  again:
2728         info.add_timestamp = 0;
2729         info.delta = 0;
2730
2731         /*
2732          * We allow for interrupts to reenter here and do a trace.
2733          * If one does, it will cause this original code to loop
2734          * back here. Even with heavy interrupts happening, this
2735          * should only happen a few times in a row. If this happens
2736          * 1000 times in a row, there must be either an interrupt
2737          * storm or we have something buggy.
2738          * Bail!
2739          */
2740         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2741                 goto out_fail;
2742
2743         info.ts = rb_time_stamp(cpu_buffer->buffer);
2744         diff = info.ts - cpu_buffer->write_stamp;
2745
2746         /* make sure this diff is calculated here */
2747         barrier();
2748
2749         /* Did the write stamp get updated already? */
2750         if (likely(info.ts >= cpu_buffer->write_stamp)) {
2751                 info.delta = diff;
2752                 if (unlikely(test_time_stamp(info.delta)))
2753                         rb_handle_timestamp(cpu_buffer, &info);
2754         }
2755
2756         event = __rb_reserve_next(cpu_buffer, &info);
2757
2758         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
2759                 if (info.add_timestamp)
2760                         info.length -= RB_LEN_TIME_EXTEND;
2761                 goto again;
2762         }
2763
2764         if (!event)
2765                 goto out_fail;
2766
2767         return event;
2768
2769  out_fail:
2770         rb_end_commit(cpu_buffer);
2771         return NULL;
2772 }
2773
2774 /**
2775  * ring_buffer_lock_reserve - reserve a part of the buffer
2776  * @buffer: the ring buffer to reserve from
2777  * @length: the length of the data to reserve (excluding event header)
2778  *
2779  * Returns a reseverd event on the ring buffer to copy directly to.
2780  * The user of this interface will need to get the body to write into
2781  * and can use the ring_buffer_event_data() interface.
2782  *
2783  * The length is the length of the data needed, not the event length
2784  * which also includes the event header.
2785  *
2786  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2787  * If NULL is returned, then nothing has been allocated or locked.
2788  */
2789 struct ring_buffer_event *
2790 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2791 {
2792         struct ring_buffer_per_cpu *cpu_buffer;
2793         struct ring_buffer_event *event;
2794         int cpu;
2795
2796         /* If we are tracing schedule, we don't want to recurse */
2797         preempt_disable_notrace();
2798
2799         if (unlikely(atomic_read(&buffer->record_disabled)))
2800                 goto out;
2801
2802         cpu = raw_smp_processor_id();
2803
2804         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
2805                 goto out;
2806
2807         cpu_buffer = buffer->buffers[cpu];
2808
2809         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
2810                 goto out;
2811
2812         if (unlikely(length > BUF_MAX_DATA_SIZE))
2813                 goto out;
2814
2815         if (unlikely(trace_recursive_lock(cpu_buffer)))
2816                 goto out;
2817
2818         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2819         if (!event)
2820                 goto out_unlock;
2821
2822         return event;
2823
2824  out_unlock:
2825         trace_recursive_unlock(cpu_buffer);
2826  out:
2827         preempt_enable_notrace();
2828         return NULL;
2829 }
2830 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2831
2832 /*
2833  * Decrement the entries to the page that an event is on.
2834  * The event does not even need to exist, only the pointer
2835  * to the page it is on. This may only be called before the commit
2836  * takes place.
2837  */
2838 static inline void
2839 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2840                    struct ring_buffer_event *event)
2841 {
2842         unsigned long addr = (unsigned long)event;
2843         struct buffer_page *bpage = cpu_buffer->commit_page;
2844         struct buffer_page *start;
2845
2846         addr &= PAGE_MASK;
2847
2848         /* Do the likely case first */
2849         if (likely(bpage->page == (void *)addr)) {
2850                 local_dec(&bpage->entries);
2851                 return;
2852         }
2853
2854         /*
2855          * Because the commit page may be on the reader page we
2856          * start with the next page and check the end loop there.
2857          */
2858         rb_inc_page(cpu_buffer, &bpage);
2859         start = bpage;
2860         do {
2861                 if (bpage->page == (void *)addr) {
2862                         local_dec(&bpage->entries);
2863                         return;
2864                 }
2865                 rb_inc_page(cpu_buffer, &bpage);
2866         } while (bpage != start);
2867
2868         /* commit not part of this buffer?? */
2869         RB_WARN_ON(cpu_buffer, 1);
2870 }
2871
2872 /**
2873  * ring_buffer_commit_discard - discard an event that has not been committed
2874  * @buffer: the ring buffer
2875  * @event: non committed event to discard
2876  *
2877  * Sometimes an event that is in the ring buffer needs to be ignored.
2878  * This function lets the user discard an event in the ring buffer
2879  * and then that event will not be read later.
2880  *
2881  * This function only works if it is called before the the item has been
2882  * committed. It will try to free the event from the ring buffer
2883  * if another event has not been added behind it.
2884  *
2885  * If another event has been added behind it, it will set the event
2886  * up as discarded, and perform the commit.
2887  *
2888  * If this function is called, do not call ring_buffer_unlock_commit on
2889  * the event.
2890  */
2891 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2892                                 struct ring_buffer_event *event)
2893 {
2894         struct ring_buffer_per_cpu *cpu_buffer;
2895         int cpu;
2896
2897         /* The event is discarded regardless */
2898         rb_event_discard(event);
2899
2900         cpu = smp_processor_id();
2901         cpu_buffer = buffer->buffers[cpu];
2902
2903         /*
2904          * This must only be called if the event has not been
2905          * committed yet. Thus we can assume that preemption
2906          * is still disabled.
2907          */
2908         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2909
2910         rb_decrement_entry(cpu_buffer, event);
2911         if (rb_try_to_discard(cpu_buffer, event))
2912                 goto out;
2913
2914         /*
2915          * The commit is still visible by the reader, so we
2916          * must still update the timestamp.
2917          */
2918         rb_update_write_stamp(cpu_buffer, event);
2919  out:
2920         rb_end_commit(cpu_buffer);
2921
2922         trace_recursive_unlock(cpu_buffer);
2923
2924         preempt_enable_notrace();
2925
2926 }
2927 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2928
2929 /**
2930  * ring_buffer_write - write data to the buffer without reserving
2931  * @buffer: The ring buffer to write to.
2932  * @length: The length of the data being written (excluding the event header)
2933  * @data: The data to write to the buffer.
2934  *
2935  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2936  * one function. If you already have the data to write to the buffer, it
2937  * may be easier to simply call this function.
2938  *
2939  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2940  * and not the length of the event which would hold the header.
2941  */
2942 int ring_buffer_write(struct ring_buffer *buffer,
2943                       unsigned long length,
2944                       void *data)
2945 {
2946         struct ring_buffer_per_cpu *cpu_buffer;
2947         struct ring_buffer_event *event;
2948         void *body;
2949         int ret = -EBUSY;
2950         int cpu;
2951
2952         preempt_disable_notrace();
2953
2954         if (atomic_read(&buffer->record_disabled))
2955                 goto out;
2956
2957         cpu = raw_smp_processor_id();
2958
2959         if (!cpumask_test_cpu(cpu, buffer->cpumask))
2960                 goto out;
2961
2962         cpu_buffer = buffer->buffers[cpu];
2963
2964         if (atomic_read(&cpu_buffer->record_disabled))
2965                 goto out;
2966
2967         if (length > BUF_MAX_DATA_SIZE)
2968                 goto out;
2969
2970         if (unlikely(trace_recursive_lock(cpu_buffer)))
2971                 goto out;
2972
2973         event = rb_reserve_next_event(buffer, cpu_buffer, length);
2974         if (!event)
2975                 goto out_unlock;
2976
2977         body = rb_event_data(event);
2978
2979         memcpy(body, data, length);
2980
2981         rb_commit(cpu_buffer, event);
2982
2983         rb_wakeups(buffer, cpu_buffer);
2984
2985         ret = 0;
2986
2987  out_unlock:
2988         trace_recursive_unlock(cpu_buffer);
2989
2990  out:
2991         preempt_enable_notrace();
2992
2993         return ret;
2994 }
2995 EXPORT_SYMBOL_GPL(ring_buffer_write);
2996
2997 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2998 {
2999         struct buffer_page *reader = cpu_buffer->reader_page;
3000         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3001         struct buffer_page *commit = cpu_buffer->commit_page;
3002
3003         /* In case of error, head will be NULL */
3004         if (unlikely(!head))
3005                 return true;
3006
3007         return reader->read == rb_page_commit(reader) &&
3008                 (commit == reader ||
3009                  (commit == head &&
3010                   head->read == rb_page_commit(commit)));
3011 }
3012
3013 /**
3014  * ring_buffer_record_disable - stop all writes into the buffer
3015  * @buffer: The ring buffer to stop writes to.
3016  *
3017  * This prevents all writes to the buffer. Any attempt to write
3018  * to the buffer after this will fail and return NULL.
3019  *
3020  * The caller should call synchronize_sched() after this.
3021  */
3022 void ring_buffer_record_disable(struct ring_buffer *buffer)
3023 {
3024         atomic_inc(&buffer->record_disabled);
3025 }
3026 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3027
3028 /**
3029  * ring_buffer_record_enable - enable writes to the buffer
3030  * @buffer: The ring buffer to enable writes
3031  *
3032  * Note, multiple disables will need the same number of enables
3033  * to truly enable the writing (much like preempt_disable).
3034  */
3035 void ring_buffer_record_enable(struct ring_buffer *buffer)
3036 {
3037         atomic_dec(&buffer->record_disabled);
3038 }
3039 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3040
3041 /**
3042  * ring_buffer_record_off - stop all writes into the buffer
3043  * @buffer: The ring buffer to stop writes to.
3044  *
3045  * This prevents all writes to the buffer. Any attempt to write
3046  * to the buffer after this will fail and return NULL.
3047  *
3048  * This is different than ring_buffer_record_disable() as
3049  * it works like an on/off switch, where as the disable() version
3050  * must be paired with a enable().
3051  */
3052 void ring_buffer_record_off(struct ring_buffer *buffer)
3053 {
3054         unsigned int rd;
3055         unsigned int new_rd;
3056
3057         do {
3058                 rd = atomic_read(&buffer->record_disabled);
3059                 new_rd = rd | RB_BUFFER_OFF;
3060         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3061 }
3062 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3063
3064 /**
3065  * ring_buffer_record_on - restart writes into the buffer
3066  * @buffer: The ring buffer to start writes to.
3067  *
3068  * This enables all writes to the buffer that was disabled by
3069  * ring_buffer_record_off().
3070  *
3071  * This is different than ring_buffer_record_enable() as
3072  * it works like an on/off switch, where as the enable() version
3073  * must be paired with a disable().
3074  */
3075 void ring_buffer_record_on(struct ring_buffer *buffer)
3076 {
3077         unsigned int rd;
3078         unsigned int new_rd;
3079
3080         do {
3081                 rd = atomic_read(&buffer->record_disabled);
3082                 new_rd = rd & ~RB_BUFFER_OFF;
3083         } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3084 }
3085 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3086
3087 /**
3088  * ring_buffer_record_is_on - return true if the ring buffer can write
3089  * @buffer: The ring buffer to see if write is enabled
3090  *
3091  * Returns true if the ring buffer is in a state that it accepts writes.
3092  */
3093 int ring_buffer_record_is_on(struct ring_buffer *buffer)
3094 {
3095         return !atomic_read(&buffer->record_disabled);
3096 }
3097
3098 /**
3099  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3100  * @buffer: The ring buffer to stop writes to.
3101  * @cpu: The CPU buffer to stop
3102  *
3103  * This prevents all writes to the buffer. Any attempt to write
3104  * to the buffer after this will fail and return NULL.
3105  *
3106  * The caller should call synchronize_sched() after this.
3107  */
3108 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3109 {
3110         struct ring_buffer_per_cpu *cpu_buffer;
3111
3112         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3113                 return;
3114
3115         cpu_buffer = buffer->buffers[cpu];
3116         atomic_inc(&cpu_buffer->record_disabled);
3117 }
3118 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
3119
3120 /**
3121  * ring_buffer_record_enable_cpu - enable writes to the buffer
3122  * @buffer: The ring buffer to enable writes
3123  * @cpu: The CPU to enable.
3124  *
3125  * Note, multiple disables will need the same number of enables
3126  * to truly enable the writing (much like preempt_disable).
3127  */
3128 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3129 {
3130         struct ring_buffer_per_cpu *cpu_buffer;
3131
3132         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3133                 return;
3134
3135         cpu_buffer = buffer->buffers[cpu];
3136         atomic_dec(&cpu_buffer->record_disabled);
3137 }
3138 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
3139
3140 /*
3141  * The total entries in the ring buffer is the running counter
3142  * of entries entered into the ring buffer, minus the sum of
3143  * the entries read from the ring buffer and the number of
3144  * entries that were overwritten.
3145  */
3146 static inline unsigned long
3147 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3148 {
3149         return local_read(&cpu_buffer->entries) -
3150                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3151 }
3152
3153 /**
3154  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3155  * @buffer: The ring buffer
3156  * @cpu: The per CPU buffer to read from.
3157  */
3158 u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
3159 {
3160         unsigned long flags;
3161         struct ring_buffer_per_cpu *cpu_buffer;
3162         struct buffer_page *bpage;
3163         u64 ret = 0;
3164
3165         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3166                 return 0;
3167
3168         cpu_buffer = buffer->buffers[cpu];
3169         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3170         /*
3171          * if the tail is on reader_page, oldest time stamp is on the reader
3172          * page
3173          */
3174         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3175                 bpage = cpu_buffer->reader_page;
3176         else
3177                 bpage = rb_set_head_page(cpu_buffer);
3178         if (bpage)
3179                 ret = bpage->page->time_stamp;
3180         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3181
3182         return ret;
3183 }
3184 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3185
3186 /**
3187  * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3188  * @buffer: The ring buffer
3189  * @cpu: The per CPU buffer to read from.
3190  */
3191 unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3192 {
3193         struct ring_buffer_per_cpu *cpu_buffer;
3194         unsigned long ret;
3195
3196         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3197                 return 0;
3198
3199         cpu_buffer = buffer->buffers[cpu];
3200         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3201
3202         return ret;
3203 }
3204 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3205
3206 /**
3207  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3208  * @buffer: The ring buffer
3209  * @cpu: The per CPU buffer to get the entries from.
3210  */
3211 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3212 {
3213         struct ring_buffer_per_cpu *cpu_buffer;
3214
3215         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3216                 return 0;
3217
3218         cpu_buffer = buffer->buffers[cpu];
3219
3220         return rb_num_of_entries(cpu_buffer);
3221 }
3222 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
3223
3224 /**
3225  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3226  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3227  * @buffer: The ring buffer
3228  * @cpu: The per CPU buffer to get the number of overruns from
3229  */
3230 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3231 {
3232         struct ring_buffer_per_cpu *cpu_buffer;
3233         unsigned long ret;
3234
3235         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3236                 return 0;
3237
3238         cpu_buffer = buffer->buffers[cpu];
3239         ret = local_read(&cpu_buffer->overrun);
3240
3241         return ret;
3242 }
3243 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
3244
3245 /**
3246  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3247  * commits failing due to the buffer wrapping around while there are uncommitted
3248  * events, such as during an interrupt storm.
3249  * @buffer: The ring buffer
3250  * @cpu: The per CPU buffer to get the number of overruns from
3251  */
3252 unsigned long
3253 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3254 {
3255         struct ring_buffer_per_cpu *cpu_buffer;
3256         unsigned long ret;
3257
3258         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3259                 return 0;
3260
3261         cpu_buffer = buffer->buffers[cpu];
3262         ret = local_read(&cpu_buffer->commit_overrun);
3263
3264         return ret;
3265 }
3266 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3267
3268 /**
3269  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3270  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3271  * @buffer: The ring buffer
3272  * @cpu: The per CPU buffer to get the number of overruns from
3273  */
3274 unsigned long
3275 ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3276 {
3277         struct ring_buffer_per_cpu *cpu_buffer;
3278         unsigned long ret;
3279
3280         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3281                 return 0;
3282
3283         cpu_buffer = buffer->buffers[cpu];
3284         ret = local_read(&cpu_buffer->dropped_events);
3285
3286         return ret;
3287 }
3288 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3289
3290 /**
3291  * ring_buffer_read_events_cpu - get the number of events successfully read
3292  * @buffer: The ring buffer
3293  * @cpu: The per CPU buffer to get the number of events read
3294  */
3295 unsigned long
3296 ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3297 {
3298         struct ring_buffer_per_cpu *cpu_buffer;
3299
3300         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3301                 return 0;
3302
3303         cpu_buffer = buffer->buffers[cpu];
3304         return cpu_buffer->read;
3305 }
3306 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3307
3308 /**
3309  * ring_buffer_entries - get the number of entries in a buffer
3310  * @buffer: The ring buffer
3311  *
3312  * Returns the total number of entries in the ring buffer
3313  * (all CPU entries)
3314  */
3315 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3316 {
3317         struct ring_buffer_per_cpu *cpu_buffer;
3318         unsigned long entries = 0;
3319         int cpu;
3320
3321         /* if you care about this being correct, lock the buffer */
3322         for_each_buffer_cpu(buffer, cpu) {
3323                 cpu_buffer = buffer->buffers[cpu];
3324                 entries += rb_num_of_entries(cpu_buffer);
3325         }
3326
3327         return entries;
3328 }
3329 EXPORT_SYMBOL_GPL(ring_buffer_entries);
3330
3331 /**
3332  * ring_buffer_overruns - get the number of overruns in buffer
3333  * @buffer: The ring buffer
3334  *
3335  * Returns the total number of overruns in the ring buffer
3336  * (all CPU entries)
3337  */
3338 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3339 {
3340         struct ring_buffer_per_cpu *cpu_buffer;
3341         unsigned long overruns = 0;
3342         int cpu;
3343
3344         /* if you care about this being correct, lock the buffer */
3345         for_each_buffer_cpu(buffer, cpu) {
3346                 cpu_buffer = buffer->buffers[cpu];
3347                 overruns += local_read(&cpu_buffer->overrun);
3348         }
3349
3350         return overruns;
3351 }
3352 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
3353
3354 static void rb_iter_reset(struct ring_buffer_iter *iter)
3355 {
3356         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3357
3358         /* Iterator usage is expected to have record disabled */
3359         iter->head_page = cpu_buffer->reader_page;
3360         iter->head = cpu_buffer->reader_page->read;
3361
3362         iter->cache_reader_page = iter->head_page;
3363         iter->cache_read = cpu_buffer->read;
3364
3365         if (iter->head)
3366                 iter->read_stamp = cpu_buffer->read_stamp;
3367         else
3368                 iter->read_stamp = iter->head_page->page->time_stamp;
3369 }
3370
3371 /**
3372  * ring_buffer_iter_reset - reset an iterator
3373  * @iter: The iterator to reset
3374  *
3375  * Resets the iterator, so that it will start from the beginning
3376  * again.
3377  */
3378 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3379 {
3380         struct ring_buffer_per_cpu *cpu_buffer;
3381         unsigned long flags;
3382
3383         if (!iter)
3384                 return;
3385
3386         cpu_buffer = iter->cpu_buffer;
3387
3388         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3389         rb_iter_reset(iter);
3390         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3391 }
3392 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
3393
3394 /**
3395  * ring_buffer_iter_empty - check if an iterator has no more to read
3396  * @iter: The iterator to check
3397  */
3398 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3399 {
3400         struct ring_buffer_per_cpu *cpu_buffer;
3401         struct buffer_page *reader;
3402         struct buffer_page *head_page;
3403         struct buffer_page *commit_page;
3404         unsigned commit;
3405
3406         cpu_buffer = iter->cpu_buffer;
3407
3408         /* Remember, trace recording is off when iterator is in use */
3409         reader = cpu_buffer->reader_page;
3410         head_page = cpu_buffer->head_page;
3411         commit_page = cpu_buffer->commit_page;
3412         commit = rb_page_commit(commit_page);
3413
3414         return ((iter->head_page == commit_page && iter->head == commit) ||
3415                 (iter->head_page == reader && commit_page == head_page &&
3416                  head_page->read == commit &&
3417                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
3418 }
3419 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
3420
3421 static void
3422 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3423                      struct ring_buffer_event *event)
3424 {
3425         u64 delta;
3426
3427         switch (event->type_len) {
3428         case RINGBUF_TYPE_PADDING:
3429                 return;
3430
3431         case RINGBUF_TYPE_TIME_EXTEND:
3432                 delta = event->array[0];
3433                 delta <<= TS_SHIFT;
3434                 delta += event->time_delta;
3435                 cpu_buffer->read_stamp += delta;
3436                 return;
3437
3438         case RINGBUF_TYPE_TIME_STAMP:
3439                 /* FIXME: not implemented */
3440                 return;
3441
3442         case RINGBUF_TYPE_DATA:
3443                 cpu_buffer->read_stamp += event->time_delta;
3444                 return;
3445
3446         default:
3447                 BUG();
3448         }
3449         return;
3450 }
3451
3452 static void
3453 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3454                           struct ring_buffer_event *event)
3455 {
3456         u64 delta;
3457
3458         switch (event->type_len) {
3459         case RINGBUF_TYPE_PADDING:
3460                 return;
3461
3462         case RINGBUF_TYPE_TIME_EXTEND:
3463                 delta = event->array[0];
3464                 delta <<= TS_SHIFT;
3465                 delta += event->time_delta;
3466                 iter->read_stamp += delta;
3467                 return;
3468
3469         case RINGBUF_TYPE_TIME_STAMP:
3470                 /* FIXME: not implemented */
3471                 return;
3472
3473         case RINGBUF_TYPE_DATA:
3474                 iter->read_stamp += event->time_delta;
3475                 return;
3476
3477         default:
3478                 BUG();
3479         }
3480         return;
3481 }
3482
3483 static struct buffer_page *
3484 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
3485 {
3486         struct buffer_page *reader = NULL;
3487         unsigned long overwrite;
3488         unsigned long flags;
3489         int nr_loops = 0;
3490         int ret;
3491
3492         local_irq_save(flags);
3493         arch_spin_lock(&cpu_buffer->lock);
3494
3495  again:
3496         /*
3497          * This should normally only loop twice. But because the
3498          * start of the reader inserts an empty page, it causes
3499          * a case where we will loop three times. There should be no
3500          * reason to loop four times (that I know of).
3501          */
3502         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
3503                 reader = NULL;
3504                 goto out;
3505         }
3506
3507         reader = cpu_buffer->reader_page;
3508
3509         /* If there's more to read, return this page */
3510         if (cpu_buffer->reader_page->read < rb_page_size(reader))
3511                 goto out;
3512
3513         /* Never should we have an index greater than the size */
3514         if (RB_WARN_ON(cpu_buffer,
3515                        cpu_buffer->reader_page->read > rb_page_size(reader)))
3516                 goto out;
3517
3518         /* check if we caught up to the tail */
3519         reader = NULL;
3520         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
3521                 goto out;
3522
3523         /* Don't bother swapping if the ring buffer is empty */
3524         if (rb_num_of_entries(cpu_buffer) == 0)
3525                 goto out;
3526
3527         /*
3528          * Reset the reader page to size zero.
3529          */
3530         local_set(&cpu_buffer->reader_page->write, 0);
3531         local_set(&cpu_buffer->reader_page->entries, 0);
3532         local_set(&cpu_buffer->reader_page->page->commit, 0);
3533         cpu_buffer->reader_page->real_end = 0;
3534
3535  spin:
3536         /*
3537          * Splice the empty reader page into the list around the head.
3538          */
3539         reader = rb_set_head_page(cpu_buffer);
3540         if (!reader)
3541                 goto out;
3542         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
3543         cpu_buffer->reader_page->list.prev = reader->list.prev;
3544
3545         /*
3546          * cpu_buffer->pages just needs to point to the buffer, it
3547          *  has no specific buffer page to point to. Lets move it out
3548          *  of our way so we don't accidentally swap it.
3549          */
3550         cpu_buffer->pages = reader->list.prev;
3551
3552         /* The reader page will be pointing to the new head */
3553         rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
3554
3555         /*
3556          * We want to make sure we read the overruns after we set up our
3557          * pointers to the next object. The writer side does a
3558          * cmpxchg to cross pages which acts as the mb on the writer
3559          * side. Note, the reader will constantly fail the swap
3560          * while the writer is updating the pointers, so this
3561          * guarantees that the overwrite recorded here is the one we
3562          * want to compare with the last_overrun.
3563          */
3564         smp_mb();
3565         overwrite = local_read(&(cpu_buffer->overrun));
3566
3567         /*
3568          * Here's the tricky part.
3569          *
3570          * We need to move the pointer past the header page.
3571          * But we can only do that if a writer is not currently
3572          * moving it. The page before the header page has the
3573          * flag bit '1' set if it is pointing to the page we want.
3574          * but if the writer is in the process of moving it
3575          * than it will be '2' or already moved '0'.
3576          */
3577
3578         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
3579
3580         /*
3581          * If we did not convert it, then we must try again.
3582          */
3583         if (!ret)
3584                 goto spin;
3585
3586         /*
3587          * Yeah! We succeeded in replacing the page.
3588          *
3589          * Now make the new head point back to the reader page.
3590          */
3591         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
3592         rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
3593
3594         /* Finally update the reader page to the new head */
3595         cpu_buffer->reader_page = reader;
3596         cpu_buffer->reader_page->read = 0;
3597
3598         if (overwrite != cpu_buffer->last_overrun) {
3599                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3600                 cpu_buffer->last_overrun = overwrite;
3601         }
3602
3603         goto again;
3604
3605  out:
3606         /* Update the read_stamp on the first event */
3607         if (reader && reader->read == 0)
3608                 cpu_buffer->read_stamp = reader->page->time_stamp;
3609
3610         arch_spin_unlock(&cpu_buffer->lock);
3611         local_irq_restore(flags);
3612
3613         return reader;
3614 }
3615
3616 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3617 {
3618         struct ring_buffer_event *event;
3619         struct buffer_page *reader;
3620         unsigned length;
3621
3622         reader = rb_get_reader_page(cpu_buffer);
3623
3624         /* This function should not be called when buffer is empty */
3625         if (RB_WARN_ON(cpu_buffer, !reader))
3626                 return;
3627
3628         event = rb_reader_event(cpu_buffer);
3629
3630         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
3631                 cpu_buffer->read++;
3632
3633         rb_update_read_stamp(cpu_buffer, event);
3634
3635         length = rb_event_length(event);
3636         cpu_buffer->reader_page->read += length;
3637 }
3638
3639 static void rb_advance_iter(struct ring_buffer_iter *iter)
3640 {
3641         struct ring_buffer_per_cpu *cpu_buffer;
3642         struct ring_buffer_event *event;
3643         unsigned length;
3644
3645         cpu_buffer = iter->cpu_buffer;
3646
3647         /*
3648          * Check if we are at the end of the buffer.
3649          */
3650         if (iter->head >= rb_page_size(iter->head_page)) {
3651                 /* discarded commits can make the page empty */
3652                 if (iter->head_page == cpu_buffer->commit_page)
3653                         return;
3654                 rb_inc_iter(iter);
3655                 return;
3656         }
3657
3658         event = rb_iter_head_event(iter);
3659
3660         length = rb_event_length(event);
3661
3662         /*
3663          * This should not be called to advance the header if we are
3664          * at the tail of the buffer.
3665          */
3666         if (RB_WARN_ON(cpu_buffer,
3667                        (iter->head_page == cpu_buffer->commit_page) &&
3668                        (iter->head + length > rb_commit_index(cpu_buffer))))
3669                 return;
3670
3671         rb_update_iter_read_stamp(iter, event);
3672
3673         iter->head += length;
3674
3675         /* check for end of page padding */
3676         if ((iter->head >= rb_page_size(iter->head_page)) &&
3677             (iter->head_page != cpu_buffer->commit_page))
3678                 rb_inc_iter(iter);
3679 }
3680
3681 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3682 {
3683         return cpu_buffer->lost_events;
3684 }
3685
3686 static struct ring_buffer_event *
3687 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3688                unsigned long *lost_events)
3689 {
3690         struct ring_buffer_event *event;
3691         struct buffer_page *reader;
3692         int nr_loops = 0;
3693
3694  again:
3695         /*
3696          * We repeat when a time extend is encountered.
3697          * Since the time extend is always attached to a data event,
3698          * we should never loop more than once.
3699          * (We never hit the following condition more than twice).
3700          */
3701         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
3702                 return NULL;
3703
3704         reader = rb_get_reader_page(cpu_buffer);
3705         if (!reader)
3706                 return NULL;
3707
3708         event = rb_reader_event(cpu_buffer);
3709
3710         switch (event->type_len) {
3711         case RINGBUF_TYPE_PADDING:
3712                 if (rb_null_event(event))
3713                         RB_WARN_ON(cpu_buffer, 1);
3714                 /*
3715                  * Because the writer could be discarding every
3716                  * event it creates (which would probably be bad)
3717                  * if we were to go back to "again" then we may never
3718                  * catch up, and will trigger the warn on, or lock
3719                  * the box. Return the padding, and we will release
3720                  * the current locks, and try again.
3721                  */
3722                 return event;
3723
3724         case RINGBUF_TYPE_TIME_EXTEND:
3725                 /* Internal data, OK to advance */
3726                 rb_advance_reader(cpu_buffer);
3727                 goto again;
3728
3729         case RINGBUF_TYPE_TIME_STAMP:
3730                 /* FIXME: not implemented */
3731                 rb_advance_reader(cpu_buffer);
3732                 goto again;
3733
3734         case RINGBUF_TYPE_DATA:
3735                 if (ts) {
3736                         *ts = cpu_buffer->read_stamp + event->time_delta;
3737                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3738                                                          cpu_buffer->cpu, ts);
3739                 }
3740                 if (lost_events)
3741                         *lost_events = rb_lost_events(cpu_buffer);
3742                 return event;
3743
3744         default:
3745                 BUG();
3746         }
3747
3748         return NULL;
3749 }
3750 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3751
3752 static struct ring_buffer_event *
3753 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3754 {
3755         struct ring_buffer *buffer;
3756         struct ring_buffer_per_cpu *cpu_buffer;
3757         struct ring_buffer_event *event;
3758         int nr_loops = 0;
3759
3760         cpu_buffer = iter->cpu_buffer;
3761         buffer = cpu_buffer->buffer;
3762
3763         /*
3764          * Check if someone performed a consuming read to
3765          * the buffer. A consuming read invalidates the iterator
3766          * and we need to reset the iterator in this case.
3767          */
3768         if (unlikely(iter->cache_read != cpu_buffer->read ||
3769                      iter->cache_reader_page != cpu_buffer->reader_page))
3770                 rb_iter_reset(iter);
3771
3772  again:
3773         if (ring_buffer_iter_empty(iter))
3774                 return NULL;
3775
3776         /*
3777          * We repeat when a time extend is encountered or we hit
3778          * the end of the page. Since the time extend is always attached
3779          * to a data event, we should never loop more than three times.
3780          * Once for going to next page, once on time extend, and
3781          * finally once to get the event.
3782          * (We never hit the following condition more than thrice).
3783          */
3784         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
3785                 return NULL;
3786
3787         if (rb_per_cpu_empty(cpu_buffer))
3788                 return NULL;
3789
3790         if (iter->head >= rb_page_size(iter->head_page)) {
3791                 rb_inc_iter(iter);
3792                 goto again;
3793         }
3794
3795         event = rb_iter_head_event(iter);
3796
3797         switch (event->type_len) {
3798         case RINGBUF_TYPE_PADDING:
3799                 if (rb_null_event(event)) {
3800                         rb_inc_iter(iter);
3801                         goto again;
3802                 }
3803                 rb_advance_iter(iter);
3804                 return event;
3805
3806         case RINGBUF_TYPE_TIME_EXTEND:
3807                 /* Internal data, OK to advance */
3808                 rb_advance_iter(iter);
3809                 goto again;
3810
3811         case RINGBUF_TYPE_TIME_STAMP:
3812                 /* FIXME: not implemented */
3813                 rb_advance_iter(iter);
3814                 goto again;
3815
3816         case RINGBUF_TYPE_DATA:
3817                 if (ts) {
3818                         *ts = iter->read_stamp + event->time_delta;
3819                         ring_buffer_normalize_time_stamp(buffer,
3820                                                          cpu_buffer->cpu, ts);
3821                 }
3822                 return event;
3823
3824         default:
3825                 BUG();
3826         }
3827
3828         return NULL;
3829 }
3830 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3831
3832 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
3833 {
3834         if (likely(!in_nmi())) {
3835                 raw_spin_lock(&cpu_buffer->reader_lock);
3836                 return true;
3837         }
3838
3839         /*
3840          * If an NMI die dumps out the content of the ring buffer
3841          * trylock must be used to prevent a deadlock if the NMI
3842          * preempted a task that holds the ring buffer locks. If
3843          * we get the lock then all is fine, if not, then continue
3844          * to do the read, but this can corrupt the ring buffer,
3845          * so it must be permanently disabled from future writes.
3846          * Reading from NMI is a oneshot deal.
3847          */
3848         if (raw_spin_trylock(&cpu_buffer->reader_lock))
3849                 return true;
3850
3851         /* Continue without locking, but disable the ring buffer */
3852         atomic_inc(&cpu_buffer->record_disabled);
3853         return false;
3854 }
3855
3856 static inline void
3857 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
3858 {
3859         if (likely(locked))
3860                 raw_spin_unlock(&cpu_buffer->reader_lock);
3861         return;
3862 }
3863
3864 /**
3865  * ring_buffer_peek - peek at the next event to be read
3866  * @buffer: The ring buffer to read
3867  * @cpu: The cpu to peak at
3868  * @ts: The timestamp counter of this event.
3869  * @lost_events: a variable to store if events were lost (may be NULL)
3870  *
3871  * This will return the event that will be read next, but does
3872  * not consume the data.
3873  */
3874 struct ring_buffer_event *
3875 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3876                  unsigned long *lost_events)
3877 {
3878         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3879         struct ring_buffer_event *event;
3880         unsigned long flags;
3881         bool dolock;
3882
3883         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3884                 return NULL;
3885
3886  again:
3887         local_irq_save(flags);
3888         dolock = rb_reader_lock(cpu_buffer);
3889         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3890         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3891                 rb_advance_reader(cpu_buffer);
3892         rb_reader_unlock(cpu_buffer, dolock);
3893         local_irq_restore(flags);
3894
3895         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3896                 goto again;
3897
3898         return event;
3899 }
3900
3901 /**
3902  * ring_buffer_iter_peek - peek at the next event to be read
3903  * @iter: The ring buffer iterator
3904  * @ts: The timestamp counter of this event.
3905  *
3906  * This will return the event that will be read next, but does
3907  * not increment the iterator.
3908  */
3909 struct ring_buffer_event *
3910 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3911 {
3912         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3913         struct ring_buffer_event *event;
3914         unsigned long flags;
3915
3916  again:
3917         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3918         event = rb_iter_peek(iter, ts);
3919         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3920
3921         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3922                 goto again;
3923
3924         return event;
3925 }
3926
3927 /**
3928  * ring_buffer_consume - return an event and consume it
3929  * @buffer: The ring buffer to get the next event from
3930  * @cpu: the cpu to read the buffer from
3931  * @ts: a variable to store the timestamp (may be NULL)
3932  * @lost_events: a variable to store if events were lost (may be NULL)
3933  *
3934  * Returns the next event in the ring buffer, and that event is consumed.
3935  * Meaning, that sequential reads will keep returning a different event,
3936  * and eventually empty the ring buffer if the producer is slower.
3937  */
3938 struct ring_buffer_event *
3939 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3940                     unsigned long *lost_events)
3941 {
3942         struct ring_buffer_per_cpu *cpu_buffer;
3943         struct ring_buffer_event *event = NULL;
3944         unsigned long flags;
3945         bool dolock;
3946
3947  again:
3948         /* might be called in atomic */
3949         preempt_disable();
3950
3951         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3952                 goto out;
3953
3954         cpu_buffer = buffer->buffers[cpu];
3955         local_irq_save(flags);
3956         dolock = rb_reader_lock(cpu_buffer);
3957
3958         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3959         if (event) {
3960                 cpu_buffer->lost_events = 0;
3961                 rb_advance_reader(cpu_buffer);
3962         }
3963
3964         rb_reader_unlock(cpu_buffer, dolock);
3965         local_irq_restore(flags);
3966
3967  out:
3968         preempt_enable();
3969
3970         if (event && event->type_len == RINGBUF_TYPE_PADDING)
3971                 goto again;
3972
3973         return event;
3974 }
3975 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3976
3977 /**
3978  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3979  * @buffer: The ring buffer to read from
3980  * @cpu: The cpu buffer to iterate over
3981  *
3982  * This performs the initial preparations necessary to iterate
3983  * through the buffer.  Memory is allocated, buffer recording
3984  * is disabled, and the iterator pointer is returned to the caller.
3985  *
3986  * Disabling buffer recordng prevents the reading from being
3987  * corrupted. This is not a consuming read, so a producer is not
3988  * expected.
3989  *
3990  * After a sequence of ring_buffer_read_prepare calls, the user is
3991  * expected to make at least one call to ring_buffer_read_prepare_sync.
3992  * Afterwards, ring_buffer_read_start is invoked to get things going
3993  * for real.
3994  *
3995  * This overall must be paired with ring_buffer_read_finish.
3996  */
3997 struct ring_buffer_iter *
3998 ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
3999 {
4000         struct ring_buffer_per_cpu *cpu_buffer;
4001         struct ring_buffer_iter *iter;
4002
4003         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4004                 return NULL;
4005
4006         iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4007         if (!iter)
4008                 return NULL;
4009
4010         cpu_buffer = buffer->buffers[cpu];
4011
4012         iter->cpu_buffer = cpu_buffer;
4013
4014         atomic_inc(&buffer->resize_disabled);
4015         atomic_inc(&cpu_buffer->record_disabled);
4016
4017         return iter;
4018 }
4019 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4020
4021 /**
4022  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4023  *
4024  * All previously invoked ring_buffer_read_prepare calls to prepare
4025  * iterators will be synchronized.  Afterwards, read_buffer_read_start
4026  * calls on those iterators are allowed.
4027  */
4028 void
4029 ring_buffer_read_prepare_sync(void)
4030 {
4031         synchronize_sched();
4032 }
4033 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4034
4035 /**
4036  * ring_buffer_read_start - start a non consuming read of the buffer
4037  * @iter: The iterator returned by ring_buffer_read_prepare
4038  *
4039  * This finalizes the startup of an iteration through the buffer.
4040  * The iterator comes from a call to ring_buffer_read_prepare and
4041  * an intervening ring_buffer_read_prepare_sync must have been
4042  * performed.
4043  *
4044  * Must be paired with ring_buffer_read_finish.
4045  */
4046 void
4047 ring_buffer_read_start(struct ring_buffer_iter *iter)
4048 {
4049         struct ring_buffer_per_cpu *cpu_buffer;
4050         unsigned long flags;
4051
4052         if (!iter)
4053                 return;
4054
4055         cpu_buffer = iter->cpu_buffer;
4056
4057         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4058         arch_spin_lock(&cpu_buffer->lock);
4059         rb_iter_reset(iter);
4060         arch_spin_unlock(&cpu_buffer->lock);
4061         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4062 }
4063 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
4064
4065 /**
4066  * ring_buffer_read_finish - finish reading the iterator of the buffer
4067  * @iter: The iterator retrieved by ring_buffer_start
4068  *
4069  * This re-enables the recording to the buffer, and frees the
4070  * iterator.
4071  */
4072 void
4073 ring_buffer_read_finish(struct ring_buffer_iter *iter)
4074 {
4075         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4076         unsigned long flags;
4077
4078         /*
4079          * Ring buffer is disabled from recording, here's a good place
4080          * to check the integrity of the ring buffer.
4081          * Must prevent readers from trying to read, as the check
4082          * clears the HEAD page and readers require it.
4083          */
4084         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4085         rb_check_pages(cpu_buffer);
4086         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4087
4088         atomic_dec(&cpu_buffer->record_disabled);
4089         atomic_dec(&cpu_buffer->buffer->resize_disabled);
4090         kfree(iter);
4091 }
4092 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
4093
4094 /**
4095  * ring_buffer_read - read the next item in the ring buffer by the iterator
4096  * @iter: The ring buffer iterator
4097  * @ts: The time stamp of the event read.
4098  *
4099  * This reads the next event in the ring buffer and increments the iterator.
4100  */
4101 struct ring_buffer_event *
4102 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4103 {
4104         struct ring_buffer_event *event;
4105         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4106         unsigned long flags;
4107
4108         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4109  again:
4110         event = rb_iter_peek(iter, ts);
4111         if (!event)
4112                 goto out;
4113
4114         if (event->type_len == RINGBUF_TYPE_PADDING)
4115                 goto again;
4116
4117         rb_advance_iter(iter);
4118  out:
4119         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4120
4121         return event;
4122 }
4123 EXPORT_SYMBOL_GPL(ring_buffer_read);
4124
4125 /**
4126  * ring_buffer_size - return the size of the ring buffer (in bytes)
4127  * @buffer: The ring buffer.
4128  */
4129 unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
4130 {
4131         /*
4132          * Earlier, this method returned
4133          *      BUF_PAGE_SIZE * buffer->nr_pages
4134          * Since the nr_pages field is now removed, we have converted this to
4135          * return the per cpu buffer value.
4136          */
4137         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4138                 return 0;
4139
4140         return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
4141 }
4142 EXPORT_SYMBOL_GPL(ring_buffer_size);
4143
4144 static void
4145 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4146 {
4147         rb_head_page_deactivate(cpu_buffer);
4148
4149         cpu_buffer->head_page
4150                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
4151         local_set(&cpu_buffer->head_page->write, 0);
4152         local_set(&cpu_buffer->head_page->entries, 0);
4153         local_set(&cpu_buffer->head_page->page->commit, 0);
4154
4155         cpu_buffer->head_page->read = 0;
4156
4157         cpu_buffer->tail_page = cpu_buffer->head_page;
4158         cpu_buffer->commit_page = cpu_buffer->head_page;
4159
4160         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
4161         INIT_LIST_HEAD(&cpu_buffer->new_pages);
4162         local_set(&cpu_buffer->reader_page->write, 0);
4163         local_set(&cpu_buffer->reader_page->entries, 0);
4164         local_set(&cpu_buffer->reader_page->page->commit, 0);
4165         cpu_buffer->reader_page->read = 0;
4166
4167         local_set(&cpu_buffer->entries_bytes, 0);
4168         local_set(&cpu_buffer->overrun, 0);
4169         local_set(&cpu_buffer->commit_overrun, 0);
4170         local_set(&cpu_buffer->dropped_events, 0);
4171         local_set(&cpu_buffer->entries, 0);
4172         local_set(&cpu_buffer->committing, 0);
4173         local_set(&cpu_buffer->commits, 0);
4174         cpu_buffer->read = 0;
4175         cpu_buffer->read_bytes = 0;
4176
4177         cpu_buffer->write_stamp = 0;
4178         cpu_buffer->read_stamp = 0;
4179
4180         cpu_buffer->lost_events = 0;
4181         cpu_buffer->last_overrun = 0;
4182
4183         rb_head_page_activate(cpu_buffer);
4184 }
4185
4186 /**
4187  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4188  * @buffer: The ring buffer to reset a per cpu buffer of
4189  * @cpu: The CPU buffer to be reset
4190  */
4191 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4192 {
4193         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4194         unsigned long flags;
4195
4196         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4197                 return;
4198
4199         atomic_inc(&buffer->resize_disabled);
4200         atomic_inc(&cpu_buffer->record_disabled);
4201
4202         /* Make sure all commits have finished */
4203         synchronize_sched();
4204
4205         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4206
4207         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4208                 goto out;
4209
4210         arch_spin_lock(&cpu_buffer->lock);
4211
4212         rb_reset_cpu(cpu_buffer);
4213
4214         arch_spin_unlock(&cpu_buffer->lock);
4215
4216  out:
4217         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4218
4219         atomic_dec(&cpu_buffer->record_disabled);
4220         atomic_dec(&buffer->resize_disabled);
4221 }
4222 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
4223
4224 /**
4225  * ring_buffer_reset - reset a ring buffer
4226  * @buffer: The ring buffer to reset all cpu buffers
4227  */
4228 void ring_buffer_reset(struct ring_buffer *buffer)
4229 {
4230         int cpu;
4231
4232         for_each_buffer_cpu(buffer, cpu)
4233                 ring_buffer_reset_cpu(buffer, cpu);
4234 }
4235 EXPORT_SYMBOL_GPL(ring_buffer_reset);
4236
4237 /**
4238  * rind_buffer_empty - is the ring buffer empty?
4239  * @buffer: The ring buffer to test
4240  */
4241 bool ring_buffer_empty(struct ring_buffer *buffer)
4242 {
4243         struct ring_buffer_per_cpu *cpu_buffer;
4244         unsigned long flags;
4245         bool dolock;
4246         int cpu;
4247         int ret;
4248
4249         /* yes this is racy, but if you don't like the race, lock the buffer */
4250         for_each_buffer_cpu(buffer, cpu) {
4251                 cpu_buffer = buffer->buffers[cpu];
4252                 local_irq_save(flags);
4253                 dolock = rb_reader_lock(cpu_buffer);
4254                 ret = rb_per_cpu_empty(cpu_buffer);
4255                 rb_reader_unlock(cpu_buffer, dolock);
4256                 local_irq_restore(flags);
4257
4258                 if (!ret)
4259                         return false;
4260         }
4261
4262         return true;
4263 }
4264 EXPORT_SYMBOL_GPL(ring_buffer_empty);
4265
4266 /**
4267  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4268  * @buffer: The ring buffer
4269  * @cpu: The CPU buffer to test
4270  */
4271 bool ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4272 {
4273         struct ring_buffer_per_cpu *cpu_buffer;
4274         unsigned long flags;
4275         bool dolock;
4276         int ret;
4277
4278         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4279                 return true;
4280
4281         cpu_buffer = buffer->buffers[cpu];
4282         local_irq_save(flags);
4283         dolock = rb_reader_lock(cpu_buffer);
4284         ret = rb_per_cpu_empty(cpu_buffer);
4285         rb_reader_unlock(cpu_buffer, dolock);
4286         local_irq_restore(flags);
4287
4288         return ret;
4289 }
4290 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
4291
4292 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4293 /**
4294  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4295  * @buffer_a: One buffer to swap with
4296  * @buffer_b: The other buffer to swap with
4297  *
4298  * This function is useful for tracers that want to take a "snapshot"
4299  * of a CPU buffer and has another back up buffer lying around.
4300  * it is expected that the tracer handles the cpu buffer not being
4301  * used at the moment.
4302  */
4303 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4304                          struct ring_buffer *buffer_b, int cpu)
4305 {
4306         struct ring_buffer_per_cpu *cpu_buffer_a;
4307         struct ring_buffer_per_cpu *cpu_buffer_b;
4308         int ret = -EINVAL;
4309
4310         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4311             !cpumask_test_cpu(cpu, buffer_b->cpumask))
4312                 goto out;
4313
4314         cpu_buffer_a = buffer_a->buffers[cpu];
4315         cpu_buffer_b = buffer_b->buffers[cpu];
4316
4317         /* At least make sure the two buffers are somewhat the same */
4318         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
4319                 goto out;
4320
4321         ret = -EAGAIN;
4322
4323         if (atomic_read(&buffer_a->record_disabled))
4324                 goto out;
4325
4326         if (atomic_read(&buffer_b->record_disabled))
4327                 goto out;
4328
4329         if (atomic_read(&cpu_buffer_a->record_disabled))
4330                 goto out;
4331
4332         if (atomic_read(&cpu_buffer_b->record_disabled))
4333                 goto out;
4334
4335         /*
4336          * We can't do a synchronize_sched here because this
4337          * function can be called in atomic context.
4338          * Normally this will be called from the same CPU as cpu.
4339          * If not it's up to the caller to protect this.
4340          */
4341         atomic_inc(&cpu_buffer_a->record_disabled);
4342         atomic_inc(&cpu_buffer_b->record_disabled);
4343
4344         ret = -EBUSY;
4345         if (local_read(&cpu_buffer_a->committing))
4346                 goto out_dec;
4347         if (local_read(&cpu_buffer_b->committing))
4348                 goto out_dec;
4349
4350         buffer_a->buffers[cpu] = cpu_buffer_b;
4351         buffer_b->buffers[cpu] = cpu_buffer_a;
4352
4353         cpu_buffer_b->buffer = buffer_a;
4354         cpu_buffer_a->buffer = buffer_b;
4355
4356         ret = 0;
4357
4358 out_dec:
4359         atomic_dec(&cpu_buffer_a->record_disabled);
4360         atomic_dec(&cpu_buffer_b->record_disabled);
4361 out:
4362         return ret;
4363 }
4364 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
4365 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4366
4367 /**
4368  * ring_buffer_alloc_read_page - allocate a page to read from buffer
4369  * @buffer: the buffer to allocate for.
4370  * @cpu: the cpu buffer to allocate.
4371  *
4372  * This function is used in conjunction with ring_buffer_read_page.
4373  * When reading a full page from the ring buffer, these functions
4374  * can be used to speed up the process. The calling function should
4375  * allocate a few pages first with this function. Then when it
4376  * needs to get pages from the ring buffer, it passes the result
4377  * of this function into ring_buffer_read_page, which will swap
4378  * the page that was allocated, with the read page of the buffer.
4379  *
4380  * Returns:
4381  *  The page allocated, or ERR_PTR
4382  */
4383 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
4384 {
4385         struct ring_buffer_per_cpu *cpu_buffer;
4386         struct buffer_data_page *bpage = NULL;
4387         unsigned long flags;
4388         struct page *page;
4389
4390         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4391                 return ERR_PTR(-ENODEV);
4392
4393         cpu_buffer = buffer->buffers[cpu];
4394         local_irq_save(flags);
4395         arch_spin_lock(&cpu_buffer->lock);
4396
4397         if (cpu_buffer->free_page) {
4398                 bpage = cpu_buffer->free_page;
4399                 cpu_buffer->free_page = NULL;
4400         }
4401
4402         arch_spin_unlock(&cpu_buffer->lock);
4403         local_irq_restore(flags);
4404
4405         if (bpage)
4406                 goto out;
4407
4408         page = alloc_pages_node(cpu_to_node(cpu),
4409                                 GFP_KERNEL | __GFP_NORETRY, 0);
4410         if (!page)
4411                 return ERR_PTR(-ENOMEM);
4412
4413         bpage = page_address(page);
4414
4415  out:
4416         rb_init_page(bpage);
4417
4418         return bpage;
4419 }
4420 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
4421
4422 /**
4423  * ring_buffer_free_read_page - free an allocated read page
4424  * @buffer: the buffer the page was allocate for
4425  * @cpu: the cpu buffer the page came from
4426  * @data: the page to free
4427  *
4428  * Free a page allocated from ring_buffer_alloc_read_page.
4429  */
4430 void ring_buffer_free_read_page(struct ring_buffer *buffer, int cpu, void *data)
4431 {
4432         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4433         struct buffer_data_page *bpage = data;
4434         struct page *page = virt_to_page(bpage);
4435         unsigned long flags;
4436
4437         /* If the page is still in use someplace else, we can't reuse it */
4438         if (page_ref_count(page) > 1)
4439                 goto out;
4440
4441         local_irq_save(flags);
4442         arch_spin_lock(&cpu_buffer->lock);
4443
4444         if (!cpu_buffer->free_page) {
4445                 cpu_buffer->free_page = bpage;
4446                 bpage = NULL;
4447         }
4448
4449         arch_spin_unlock(&cpu_buffer->lock);
4450         local_irq_restore(flags);
4451
4452  out:
4453         free_page((unsigned long)bpage);
4454 }
4455 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
4456
4457 /**
4458  * ring_buffer_read_page - extract a page from the ring buffer
4459  * @buffer: buffer to extract from
4460  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4461  * @len: amount to extract
4462  * @cpu: the cpu of the buffer to extract
4463  * @full: should the extraction only happen when the page is full.
4464  *
4465  * This function will pull out a page from the ring buffer and consume it.
4466  * @data_page must be the address of the variable that was returned
4467  * from ring_buffer_alloc_read_page. This is because the page might be used
4468  * to swap with a page in the ring buffer.
4469  *
4470  * for example:
4471  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
4472  *      if (IS_ERR(rpage))
4473  *              return PTR_ERR(rpage);
4474  *      ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4475  *      if (ret >= 0)
4476  *              process_page(rpage, ret);
4477  *
4478  * When @full is set, the function will not return true unless
4479  * the writer is off the reader page.
4480  *
4481  * Note: it is up to the calling functions to handle sleeps and wakeups.
4482  *  The ring buffer can be used anywhere in the kernel and can not
4483  *  blindly call wake_up. The layer that uses the ring buffer must be
4484  *  responsible for that.
4485  *
4486  * Returns:
4487  *  >=0 if data has been transferred, returns the offset of consumed data.
4488  *  <0 if no data has been transferred.
4489  */
4490 int ring_buffer_read_page(struct ring_buffer *buffer,
4491                           void **data_page, size_t len, int cpu, int full)
4492 {
4493         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4494         struct ring_buffer_event *event;
4495         struct buffer_data_page *bpage;
4496         struct buffer_page *reader;
4497         unsigned long missed_events;
4498         unsigned long flags;
4499         unsigned int commit;
4500         unsigned int read;
4501         u64 save_timestamp;
4502         int ret = -1;
4503
4504         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4505                 goto out;
4506
4507         /*
4508          * If len is not big enough to hold the page header, then
4509          * we can not copy anything.
4510          */
4511         if (len <= BUF_PAGE_HDR_SIZE)
4512                 goto out;
4513
4514         len -= BUF_PAGE_HDR_SIZE;
4515
4516         if (!data_page)
4517                 goto out;
4518
4519         bpage = *data_page;
4520         if (!bpage)
4521                 goto out;
4522
4523         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4524
4525         reader = rb_get_reader_page(cpu_buffer);
4526         if (!reader)
4527                 goto out_unlock;
4528
4529         event = rb_reader_event(cpu_buffer);
4530
4531         read = reader->read;
4532         commit = rb_page_commit(reader);
4533
4534         /* Check if any events were dropped */
4535         missed_events = cpu_buffer->lost_events;
4536
4537         /*
4538          * If this page has been partially read or
4539          * if len is not big enough to read the rest of the page or
4540          * a writer is still on the page, then
4541          * we must copy the data from the page to the buffer.
4542          * Otherwise, we can simply swap the page with the one passed in.
4543          */
4544         if (read || (len < (commit - read)) ||
4545             cpu_buffer->reader_page == cpu_buffer->commit_page) {
4546                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
4547                 unsigned int rpos = read;
4548                 unsigned int pos = 0;
4549                 unsigned int size;
4550
4551                 if (full)
4552                         goto out_unlock;
4553
4554                 if (len > (commit - read))
4555                         len = (commit - read);
4556
4557                 /* Always keep the time extend and data together */
4558                 size = rb_event_ts_length(event);
4559
4560                 if (len < size)
4561                         goto out_unlock;
4562
4563                 /* save the current timestamp, since the user will need it */
4564                 save_timestamp = cpu_buffer->read_stamp;
4565
4566                 /* Need to copy one event at a time */
4567                 do {
4568                         /* We need the size of one event, because
4569                          * rb_advance_reader only advances by one event,
4570                          * whereas rb_event_ts_length may include the size of
4571                          * one or two events.
4572                          * We have already ensured there's enough space if this
4573                          * is a time extend. */
4574                         size = rb_event_length(event);
4575                         memcpy(bpage->data + pos, rpage->data + rpos, size);
4576
4577                         len -= size;
4578
4579                         rb_advance_reader(cpu_buffer);
4580                         rpos = reader->read;
4581                         pos += size;
4582
4583                         if (rpos >= commit)
4584                                 break;
4585
4586                         event = rb_reader_event(cpu_buffer);
4587                         /* Always keep the time extend and data together */
4588                         size = rb_event_ts_length(event);
4589                 } while (len >= size);
4590
4591                 /* update bpage */
4592                 local_set(&bpage->commit, pos);
4593                 bpage->time_stamp = save_timestamp;
4594
4595                 /* we copied everything to the beginning */
4596                 read = 0;
4597         } else {
4598                 /* update the entry counter */
4599                 cpu_buffer->read += rb_page_entries(reader);
4600                 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
4601
4602                 /* swap the pages */
4603                 rb_init_page(bpage);
4604                 bpage = reader->page;
4605                 reader->page = *data_page;
4606                 local_set(&reader->write, 0);
4607                 local_set(&reader->entries, 0);
4608                 reader->read = 0;
4609                 *data_page = bpage;
4610
4611                 /*
4612                  * Use the real_end for the data size,
4613                  * This gives us a chance to store the lost events
4614                  * on the page.
4615                  */
4616                 if (reader->real_end)
4617                         local_set(&bpage->commit, reader->real_end);
4618         }
4619         ret = read;
4620
4621         cpu_buffer->lost_events = 0;
4622
4623         commit = local_read(&bpage->commit);
4624         /*
4625          * Set a flag in the commit field if we lost events
4626          */
4627         if (missed_events) {
4628                 /* If there is room at the end of the page to save the
4629                  * missed events, then record it there.
4630                  */
4631                 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4632                         memcpy(&bpage->data[commit], &missed_events,
4633                                sizeof(missed_events));
4634                         local_add(RB_MISSED_STORED, &bpage->commit);
4635                         commit += sizeof(missed_events);
4636                 }
4637                 local_add(RB_MISSED_EVENTS, &bpage->commit);
4638         }
4639
4640         /*
4641          * This page may be off to user land. Zero it out here.
4642          */
4643         if (commit < BUF_PAGE_SIZE)
4644                 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4645
4646  out_unlock:
4647         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4648
4649  out:
4650         return ret;
4651 }
4652 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
4653
4654 /*
4655  * We only allocate new buffers, never free them if the CPU goes down.
4656  * If we were to free the buffer, then the user would lose any trace that was in
4657  * the buffer.
4658  */
4659 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
4660 {
4661         struct ring_buffer *buffer;
4662         long nr_pages_same;
4663         int cpu_i;
4664         unsigned long nr_pages;
4665
4666         buffer = container_of(node, struct ring_buffer, node);
4667         if (cpumask_test_cpu(cpu, buffer->cpumask))
4668                 return 0;
4669
4670         nr_pages = 0;
4671         nr_pages_same = 1;
4672         /* check if all cpu sizes are same */
4673         for_each_buffer_cpu(buffer, cpu_i) {
4674                 /* fill in the size from first enabled cpu */
4675                 if (nr_pages == 0)
4676                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
4677                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4678                         nr_pages_same = 0;
4679                         break;
4680                 }
4681         }
4682         /* allocate minimum pages, user can later expand it */
4683         if (!nr_pages_same)
4684                 nr_pages = 2;
4685         buffer->buffers[cpu] =
4686                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
4687         if (!buffer->buffers[cpu]) {
4688                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4689                      cpu);
4690                 return -ENOMEM;
4691         }
4692         smp_wmb();
4693         cpumask_set_cpu(cpu, buffer->cpumask);
4694         return 0;
4695 }
4696
4697 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4698 /*
4699  * This is a basic integrity check of the ring buffer.
4700  * Late in the boot cycle this test will run when configured in.
4701  * It will kick off a thread per CPU that will go into a loop
4702  * writing to the per cpu ring buffer various sizes of data.
4703  * Some of the data will be large items, some small.
4704  *
4705  * Another thread is created that goes into a spin, sending out
4706  * IPIs to the other CPUs to also write into the ring buffer.
4707  * this is to test the nesting ability of the buffer.
4708  *
4709  * Basic stats are recorded and reported. If something in the
4710  * ring buffer should happen that's not expected, a big warning
4711  * is displayed and all ring buffers are disabled.
4712  */
4713 static struct task_struct *rb_threads[NR_CPUS] __initdata;
4714
4715 struct rb_test_data {
4716         struct ring_buffer      *buffer;
4717         unsigned long           events;
4718         unsigned long           bytes_written;
4719         unsigned long           bytes_alloc;
4720         unsigned long           bytes_dropped;
4721         unsigned long           events_nested;
4722         unsigned long           bytes_written_nested;
4723         unsigned long           bytes_alloc_nested;
4724         unsigned long           bytes_dropped_nested;
4725         int                     min_size_nested;
4726         int                     max_size_nested;
4727         int                     max_size;
4728         int                     min_size;
4729         int                     cpu;
4730         int                     cnt;
4731 };
4732
4733 static struct rb_test_data rb_data[NR_CPUS] __initdata;
4734
4735 /* 1 meg per cpu */
4736 #define RB_TEST_BUFFER_SIZE     1048576
4737
4738 static char rb_string[] __initdata =
4739         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4740         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4741         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4742
4743 static bool rb_test_started __initdata;
4744
4745 struct rb_item {
4746         int size;
4747         char str[];
4748 };
4749
4750 static __init int rb_write_something(struct rb_test_data *data, bool nested)
4751 {
4752         struct ring_buffer_event *event;
4753         struct rb_item *item;
4754         bool started;
4755         int event_len;
4756         int size;
4757         int len;
4758         int cnt;
4759
4760         /* Have nested writes different that what is written */
4761         cnt = data->cnt + (nested ? 27 : 0);
4762
4763         /* Multiply cnt by ~e, to make some unique increment */
4764         size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4765
4766         len = size + sizeof(struct rb_item);
4767
4768         started = rb_test_started;
4769         /* read rb_test_started before checking buffer enabled */
4770         smp_rmb();
4771
4772         event = ring_buffer_lock_reserve(data->buffer, len);
4773         if (!event) {
4774                 /* Ignore dropped events before test starts. */
4775                 if (started) {
4776                         if (nested)
4777                                 data->bytes_dropped += len;
4778                         else
4779                                 data->bytes_dropped_nested += len;
4780                 }
4781                 return len;
4782         }
4783
4784         event_len = ring_buffer_event_length(event);
4785
4786         if (RB_WARN_ON(data->buffer, event_len < len))
4787                 goto out;
4788
4789         item = ring_buffer_event_data(event);
4790         item->size = size;
4791         memcpy(item->str, rb_string, size);
4792
4793         if (nested) {
4794                 data->bytes_alloc_nested += event_len;
4795                 data->bytes_written_nested += len;
4796                 data->events_nested++;
4797                 if (!data->min_size_nested || len < data->min_size_nested)
4798                         data->min_size_nested = len;
4799                 if (len > data->max_size_nested)
4800                         data->max_size_nested = len;
4801         } else {
4802                 data->bytes_alloc += event_len;
4803                 data->bytes_written += len;
4804                 data->events++;
4805                 if (!data->min_size || len < data->min_size)
4806                         data->max_size = len;
4807                 if (len > data->max_size)
4808                         data->max_size = len;
4809         }
4810
4811  out:
4812         ring_buffer_unlock_commit(data->buffer, event);
4813
4814         return 0;
4815 }
4816
4817 static __init int rb_test(void *arg)
4818 {
4819         struct rb_test_data *data = arg;
4820
4821         while (!kthread_should_stop()) {
4822                 rb_write_something(data, false);
4823                 data->cnt++;
4824
4825                 set_current_state(TASK_INTERRUPTIBLE);
4826                 /* Now sleep between a min of 100-300us and a max of 1ms */
4827                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4828         }
4829
4830         return 0;
4831 }
4832
4833 static __init void rb_ipi(void *ignore)
4834 {
4835         struct rb_test_data *data;
4836         int cpu = smp_processor_id();
4837
4838         data = &rb_data[cpu];
4839         rb_write_something(data, true);
4840 }
4841
4842 static __init int rb_hammer_test(void *arg)
4843 {
4844         while (!kthread_should_stop()) {
4845
4846                 /* Send an IPI to all cpus to write data! */
4847                 smp_call_function(rb_ipi, NULL, 1);
4848                 /* No sleep, but for non preempt, let others run */
4849                 schedule();
4850         }
4851
4852         return 0;
4853 }
4854
4855 static __init int test_ringbuffer(void)
4856 {
4857         struct task_struct *rb_hammer;
4858         struct ring_buffer *buffer;
4859         int cpu;
4860         int ret = 0;
4861
4862         pr_info("Running ring buffer tests...\n");
4863
4864         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4865         if (WARN_ON(!buffer))
4866                 return 0;
4867
4868         /* Disable buffer so that threads can't write to it yet */
4869         ring_buffer_record_off(buffer);
4870
4871         for_each_online_cpu(cpu) {
4872                 rb_data[cpu].buffer = buffer;
4873                 rb_data[cpu].cpu = cpu;
4874                 rb_data[cpu].cnt = cpu;
4875                 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4876                                                  "rbtester/%d", cpu);
4877                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
4878                         pr_cont("FAILED\n");
4879                         ret = PTR_ERR(rb_threads[cpu]);
4880                         goto out_free;
4881                 }
4882
4883                 kthread_bind(rb_threads[cpu], cpu);
4884                 wake_up_process(rb_threads[cpu]);
4885         }
4886
4887         /* Now create the rb hammer! */
4888         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4889         if (WARN_ON(IS_ERR(rb_hammer))) {
4890                 pr_cont("FAILED\n");
4891                 ret = PTR_ERR(rb_hammer);
4892                 goto out_free;
4893         }
4894
4895         ring_buffer_record_on(buffer);
4896         /*
4897          * Show buffer is enabled before setting rb_test_started.
4898          * Yes there's a small race window where events could be
4899          * dropped and the thread wont catch it. But when a ring
4900          * buffer gets enabled, there will always be some kind of
4901          * delay before other CPUs see it. Thus, we don't care about
4902          * those dropped events. We care about events dropped after
4903          * the threads see that the buffer is active.
4904          */
4905         smp_wmb();
4906         rb_test_started = true;
4907
4908         set_current_state(TASK_INTERRUPTIBLE);
4909         /* Just run for 10 seconds */;
4910         schedule_timeout(10 * HZ);
4911
4912         kthread_stop(rb_hammer);
4913
4914  out_free:
4915         for_each_online_cpu(cpu) {
4916                 if (!rb_threads[cpu])
4917                         break;
4918                 kthread_stop(rb_threads[cpu]);
4919         }
4920         if (ret) {
4921                 ring_buffer_free(buffer);
4922                 return ret;
4923         }
4924
4925         /* Report! */
4926         pr_info("finished\n");
4927         for_each_online_cpu(cpu) {
4928                 struct ring_buffer_event *event;
4929                 struct rb_test_data *data = &rb_data[cpu];
4930                 struct rb_item *item;
4931                 unsigned long total_events;
4932                 unsigned long total_dropped;
4933                 unsigned long total_written;
4934                 unsigned long total_alloc;
4935                 unsigned long total_read = 0;
4936                 unsigned long total_size = 0;
4937                 unsigned long total_len = 0;
4938                 unsigned long total_lost = 0;
4939                 unsigned long lost;
4940                 int big_event_size;
4941                 int small_event_size;
4942
4943                 ret = -1;
4944
4945                 total_events = data->events + data->events_nested;
4946                 total_written = data->bytes_written + data->bytes_written_nested;
4947                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4948                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4949
4950                 big_event_size = data->max_size + data->max_size_nested;
4951                 small_event_size = data->min_size + data->min_size_nested;
4952
4953                 pr_info("CPU %d:\n", cpu);
4954                 pr_info("              events:    %ld\n", total_events);
4955                 pr_info("       dropped bytes:    %ld\n", total_dropped);
4956                 pr_info("       alloced bytes:    %ld\n", total_alloc);
4957                 pr_info("       written bytes:    %ld\n", total_written);
4958                 pr_info("       biggest event:    %d\n", big_event_size);
4959                 pr_info("      smallest event:    %d\n", small_event_size);
4960
4961                 if (RB_WARN_ON(buffer, total_dropped))
4962                         break;
4963
4964                 ret = 0;
4965
4966                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4967                         total_lost += lost;
4968                         item = ring_buffer_event_data(event);
4969                         total_len += ring_buffer_event_length(event);
4970                         total_size += item->size + sizeof(struct rb_item);
4971                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4972                                 pr_info("FAILED!\n");
4973                                 pr_info("buffer had: %.*s\n", item->size, item->str);
4974                                 pr_info("expected:   %.*s\n", item->size, rb_string);
4975                                 RB_WARN_ON(buffer, 1);
4976                                 ret = -1;
4977                                 break;
4978                         }
4979                         total_read++;
4980                 }
4981                 if (ret)
4982                         break;
4983
4984                 ret = -1;
4985
4986                 pr_info("         read events:   %ld\n", total_read);
4987                 pr_info("         lost events:   %ld\n", total_lost);
4988                 pr_info("        total events:   %ld\n", total_lost + total_read);
4989                 pr_info("  recorded len bytes:   %ld\n", total_len);
4990                 pr_info(" recorded size bytes:   %ld\n", total_size);
4991                 if (total_lost)
4992                         pr_info(" With dropped events, record len and size may not match\n"
4993                                 " alloced and written from above\n");
4994                 if (!total_lost) {
4995                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
4996                                        total_size != total_written))
4997                                 break;
4998                 }
4999                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
5000                         break;
5001
5002                 ret = 0;
5003         }
5004         if (!ret)
5005                 pr_info("Ring buffer PASSED!\n");
5006
5007         ring_buffer_free(buffer);
5008         return 0;
5009 }
5010
5011 late_initcall(test_ringbuffer);
5012 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */