Merge branch 'x86/bugs' into x86/core, to pick up pending changes before dependent...
[linux-2.6-microblaze.git] / kernel / trace / ring_buffer.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/trace_seq.h>
13 #include <linux/spinlock.h>
14 #include <linux/irq_work.h>
15 #include <linux/security.h>
16 #include <linux/uaccess.h>
17 #include <linux/hardirq.h>
18 #include <linux/kthread.h>      /* for self test */
19 #include <linux/module.h>
20 #include <linux/percpu.h>
21 #include <linux/mutex.h>
22 #include <linux/delay.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/list.h>
27 #include <linux/cpu.h>
28 #include <linux/oom.h>
29
30 #include <asm/local64.h>
31 #include <asm/local.h>
32
33 /*
34  * The "absolute" timestamp in the buffer is only 59 bits.
35  * If a clock has the 5 MSBs set, it needs to be saved and
36  * reinserted.
37  */
38 #define TS_MSB          (0xf8ULL << 56)
39 #define ABS_TS_MASK     (~TS_MSB)
40
41 static void update_pages_handler(struct work_struct *work);
42
43 /*
44  * The ring buffer header is special. We must manually up keep it.
45  */
46 int ring_buffer_print_entry_header(struct trace_seq *s)
47 {
48         trace_seq_puts(s, "# compressed entry header\n");
49         trace_seq_puts(s, "\ttype_len    :    5 bits\n");
50         trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
51         trace_seq_puts(s, "\tarray       :   32 bits\n");
52         trace_seq_putc(s, '\n');
53         trace_seq_printf(s, "\tpadding     : type == %d\n",
54                          RINGBUF_TYPE_PADDING);
55         trace_seq_printf(s, "\ttime_extend : type == %d\n",
56                          RINGBUF_TYPE_TIME_EXTEND);
57         trace_seq_printf(s, "\ttime_stamp : type == %d\n",
58                          RINGBUF_TYPE_TIME_STAMP);
59         trace_seq_printf(s, "\tdata max type_len  == %d\n",
60                          RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
61
62         return !trace_seq_has_overflowed(s);
63 }
64
65 /*
66  * The ring buffer is made up of a list of pages. A separate list of pages is
67  * allocated for each CPU. A writer may only write to a buffer that is
68  * associated with the CPU it is currently executing on.  A reader may read
69  * from any per cpu buffer.
70  *
71  * The reader is special. For each per cpu buffer, the reader has its own
72  * reader page. When a reader has read the entire reader page, this reader
73  * page is swapped with another page in the ring buffer.
74  *
75  * Now, as long as the writer is off the reader page, the reader can do what
76  * ever it wants with that page. The writer will never write to that page
77  * again (as long as it is out of the ring buffer).
78  *
79  * Here's some silly ASCII art.
80  *
81  *   +------+
82  *   |reader|          RING BUFFER
83  *   |page  |
84  *   +------+        +---+   +---+   +---+
85  *                   |   |-->|   |-->|   |
86  *                   +---+   +---+   +---+
87  *                     ^               |
88  *                     |               |
89  *                     +---------------+
90  *
91  *
92  *   +------+
93  *   |reader|          RING BUFFER
94  *   |page  |------------------v
95  *   +------+        +---+   +---+   +---+
96  *                   |   |-->|   |-->|   |
97  *                   +---+   +---+   +---+
98  *                     ^               |
99  *                     |               |
100  *                     +---------------+
101  *
102  *
103  *   +------+
104  *   |reader|          RING BUFFER
105  *   |page  |------------------v
106  *   +------+        +---+   +---+   +---+
107  *      ^            |   |-->|   |-->|   |
108  *      |            +---+   +---+   +---+
109  *      |                              |
110  *      |                              |
111  *      +------------------------------+
112  *
113  *
114  *   +------+
115  *   |buffer|          RING BUFFER
116  *   |page  |------------------v
117  *   +------+        +---+   +---+   +---+
118  *      ^            |   |   |   |-->|   |
119  *      |   New      +---+   +---+   +---+
120  *      |  Reader------^               |
121  *      |   page                       |
122  *      +------------------------------+
123  *
124  *
125  * After we make this swap, the reader can hand this page off to the splice
126  * code and be done with it. It can even allocate a new page if it needs to
127  * and swap that into the ring buffer.
128  *
129  * We will be using cmpxchg soon to make all this lockless.
130  *
131  */
132
133 /* Used for individual buffers (after the counter) */
134 #define RB_BUFFER_OFF           (1 << 20)
135
136 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
137
138 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
139 #define RB_ALIGNMENT            4U
140 #define RB_MAX_SMALL_DATA       (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
141 #define RB_EVNT_MIN_SIZE        8U      /* two 32bit words */
142
143 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
144 # define RB_FORCE_8BYTE_ALIGNMENT       0
145 # define RB_ARCH_ALIGNMENT              RB_ALIGNMENT
146 #else
147 # define RB_FORCE_8BYTE_ALIGNMENT       1
148 # define RB_ARCH_ALIGNMENT              8U
149 #endif
150
151 #define RB_ALIGN_DATA           __aligned(RB_ARCH_ALIGNMENT)
152
153 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
154 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
155
156 enum {
157         RB_LEN_TIME_EXTEND = 8,
158         RB_LEN_TIME_STAMP =  8,
159 };
160
161 #define skip_time_extend(event) \
162         ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
163
164 #define extended_time(event) \
165         (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
166
167 static inline bool rb_null_event(struct ring_buffer_event *event)
168 {
169         return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
170 }
171
172 static void rb_event_set_padding(struct ring_buffer_event *event)
173 {
174         /* padding has a NULL time_delta */
175         event->type_len = RINGBUF_TYPE_PADDING;
176         event->time_delta = 0;
177 }
178
179 static unsigned
180 rb_event_data_length(struct ring_buffer_event *event)
181 {
182         unsigned length;
183
184         if (event->type_len)
185                 length = event->type_len * RB_ALIGNMENT;
186         else
187                 length = event->array[0];
188         return length + RB_EVNT_HDR_SIZE;
189 }
190
191 /*
192  * Return the length of the given event. Will return
193  * the length of the time extend if the event is a
194  * time extend.
195  */
196 static inline unsigned
197 rb_event_length(struct ring_buffer_event *event)
198 {
199         switch (event->type_len) {
200         case RINGBUF_TYPE_PADDING:
201                 if (rb_null_event(event))
202                         /* undefined */
203                         return -1;
204                 return  event->array[0] + RB_EVNT_HDR_SIZE;
205
206         case RINGBUF_TYPE_TIME_EXTEND:
207                 return RB_LEN_TIME_EXTEND;
208
209         case RINGBUF_TYPE_TIME_STAMP:
210                 return RB_LEN_TIME_STAMP;
211
212         case RINGBUF_TYPE_DATA:
213                 return rb_event_data_length(event);
214         default:
215                 WARN_ON_ONCE(1);
216         }
217         /* not hit */
218         return 0;
219 }
220
221 /*
222  * Return total length of time extend and data,
223  *   or just the event length for all other events.
224  */
225 static inline unsigned
226 rb_event_ts_length(struct ring_buffer_event *event)
227 {
228         unsigned len = 0;
229
230         if (extended_time(event)) {
231                 /* time extends include the data event after it */
232                 len = RB_LEN_TIME_EXTEND;
233                 event = skip_time_extend(event);
234         }
235         return len + rb_event_length(event);
236 }
237
238 /**
239  * ring_buffer_event_length - return the length of the event
240  * @event: the event to get the length of
241  *
242  * Returns the size of the data load of a data event.
243  * If the event is something other than a data event, it
244  * returns the size of the event itself. With the exception
245  * of a TIME EXTEND, where it still returns the size of the
246  * data load of the data event after it.
247  */
248 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
249 {
250         unsigned length;
251
252         if (extended_time(event))
253                 event = skip_time_extend(event);
254
255         length = rb_event_length(event);
256         if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
257                 return length;
258         length -= RB_EVNT_HDR_SIZE;
259         if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
260                 length -= sizeof(event->array[0]);
261         return length;
262 }
263 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
264
265 /* inline for ring buffer fast paths */
266 static __always_inline void *
267 rb_event_data(struct ring_buffer_event *event)
268 {
269         if (extended_time(event))
270                 event = skip_time_extend(event);
271         WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
272         /* If length is in len field, then array[0] has the data */
273         if (event->type_len)
274                 return (void *)&event->array[0];
275         /* Otherwise length is in array[0] and array[1] has the data */
276         return (void *)&event->array[1];
277 }
278
279 /**
280  * ring_buffer_event_data - return the data of the event
281  * @event: the event to get the data from
282  */
283 void *ring_buffer_event_data(struct ring_buffer_event *event)
284 {
285         return rb_event_data(event);
286 }
287 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
288
289 #define for_each_buffer_cpu(buffer, cpu)                \
290         for_each_cpu(cpu, buffer->cpumask)
291
292 #define for_each_online_buffer_cpu(buffer, cpu)         \
293         for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
294
295 #define TS_SHIFT        27
296 #define TS_MASK         ((1ULL << TS_SHIFT) - 1)
297 #define TS_DELTA_TEST   (~TS_MASK)
298
299 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
300 {
301         u64 ts;
302
303         ts = event->array[0];
304         ts <<= TS_SHIFT;
305         ts += event->time_delta;
306
307         return ts;
308 }
309
310 /* Flag when events were overwritten */
311 #define RB_MISSED_EVENTS        (1 << 31)
312 /* Missed count stored at end */
313 #define RB_MISSED_STORED        (1 << 30)
314
315 struct buffer_data_page {
316         u64              time_stamp;    /* page time stamp */
317         local_t          commit;        /* write committed index */
318         unsigned char    data[] RB_ALIGN_DATA;  /* data of buffer page */
319 };
320
321 struct buffer_data_read_page {
322         unsigned                order;  /* order of the page */
323         struct buffer_data_page *data;  /* actual data, stored in this page */
324 };
325
326 /*
327  * Note, the buffer_page list must be first. The buffer pages
328  * are allocated in cache lines, which means that each buffer
329  * page will be at the beginning of a cache line, and thus
330  * the least significant bits will be zero. We use this to
331  * add flags in the list struct pointers, to make the ring buffer
332  * lockless.
333  */
334 struct buffer_page {
335         struct list_head list;          /* list of buffer pages */
336         local_t          write;         /* index for next write */
337         unsigned         read;          /* index for next read */
338         local_t          entries;       /* entries on this page */
339         unsigned long    real_end;      /* real end of data */
340         unsigned         order;         /* order of the page */
341         struct buffer_data_page *page;  /* Actual data page */
342 };
343
344 /*
345  * The buffer page counters, write and entries, must be reset
346  * atomically when crossing page boundaries. To synchronize this
347  * update, two counters are inserted into the number. One is
348  * the actual counter for the write position or count on the page.
349  *
350  * The other is a counter of updaters. Before an update happens
351  * the update partition of the counter is incremented. This will
352  * allow the updater to update the counter atomically.
353  *
354  * The counter is 20 bits, and the state data is 12.
355  */
356 #define RB_WRITE_MASK           0xfffff
357 #define RB_WRITE_INTCNT         (1 << 20)
358
359 static void rb_init_page(struct buffer_data_page *bpage)
360 {
361         local_set(&bpage->commit, 0);
362 }
363
364 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
365 {
366         return local_read(&bpage->page->commit);
367 }
368
369 static void free_buffer_page(struct buffer_page *bpage)
370 {
371         free_pages((unsigned long)bpage->page, bpage->order);
372         kfree(bpage);
373 }
374
375 /*
376  * We need to fit the time_stamp delta into 27 bits.
377  */
378 static inline bool test_time_stamp(u64 delta)
379 {
380         return !!(delta & TS_DELTA_TEST);
381 }
382
383 struct rb_irq_work {
384         struct irq_work                 work;
385         wait_queue_head_t               waiters;
386         wait_queue_head_t               full_waiters;
387         long                            wait_index;
388         bool                            waiters_pending;
389         bool                            full_waiters_pending;
390         bool                            wakeup_full;
391 };
392
393 /*
394  * Structure to hold event state and handle nested events.
395  */
396 struct rb_event_info {
397         u64                     ts;
398         u64                     delta;
399         u64                     before;
400         u64                     after;
401         unsigned long           length;
402         struct buffer_page      *tail_page;
403         int                     add_timestamp;
404 };
405
406 /*
407  * Used for the add_timestamp
408  *  NONE
409  *  EXTEND - wants a time extend
410  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
411  *  FORCE - force a full time stamp.
412  */
413 enum {
414         RB_ADD_STAMP_NONE               = 0,
415         RB_ADD_STAMP_EXTEND             = BIT(1),
416         RB_ADD_STAMP_ABSOLUTE           = BIT(2),
417         RB_ADD_STAMP_FORCE              = BIT(3)
418 };
419 /*
420  * Used for which event context the event is in.
421  *  TRANSITION = 0
422  *  NMI     = 1
423  *  IRQ     = 2
424  *  SOFTIRQ = 3
425  *  NORMAL  = 4
426  *
427  * See trace_recursive_lock() comment below for more details.
428  */
429 enum {
430         RB_CTX_TRANSITION,
431         RB_CTX_NMI,
432         RB_CTX_IRQ,
433         RB_CTX_SOFTIRQ,
434         RB_CTX_NORMAL,
435         RB_CTX_MAX
436 };
437
438 struct rb_time_struct {
439         local64_t       time;
440 };
441 typedef struct rb_time_struct rb_time_t;
442
443 #define MAX_NEST        5
444
445 /*
446  * head_page == tail_page && head == tail then buffer is empty.
447  */
448 struct ring_buffer_per_cpu {
449         int                             cpu;
450         atomic_t                        record_disabled;
451         atomic_t                        resize_disabled;
452         struct trace_buffer     *buffer;
453         raw_spinlock_t                  reader_lock;    /* serialize readers */
454         arch_spinlock_t                 lock;
455         struct lock_class_key           lock_key;
456         struct buffer_data_page         *free_page;
457         unsigned long                   nr_pages;
458         unsigned int                    current_context;
459         struct list_head                *pages;
460         struct buffer_page              *head_page;     /* read from head */
461         struct buffer_page              *tail_page;     /* write to tail */
462         struct buffer_page              *commit_page;   /* committed pages */
463         struct buffer_page              *reader_page;
464         unsigned long                   lost_events;
465         unsigned long                   last_overrun;
466         unsigned long                   nest;
467         local_t                         entries_bytes;
468         local_t                         entries;
469         local_t                         overrun;
470         local_t                         commit_overrun;
471         local_t                         dropped_events;
472         local_t                         committing;
473         local_t                         commits;
474         local_t                         pages_touched;
475         local_t                         pages_lost;
476         local_t                         pages_read;
477         long                            last_pages_touch;
478         size_t                          shortest_full;
479         unsigned long                   read;
480         unsigned long                   read_bytes;
481         rb_time_t                       write_stamp;
482         rb_time_t                       before_stamp;
483         u64                             event_stamp[MAX_NEST];
484         u64                             read_stamp;
485         /* pages removed since last reset */
486         unsigned long                   pages_removed;
487         /* ring buffer pages to update, > 0 to add, < 0 to remove */
488         long                            nr_pages_to_update;
489         struct list_head                new_pages; /* new pages to add */
490         struct work_struct              update_pages_work;
491         struct completion               update_done;
492
493         struct rb_irq_work              irq_work;
494 };
495
496 struct trace_buffer {
497         unsigned                        flags;
498         int                             cpus;
499         atomic_t                        record_disabled;
500         atomic_t                        resizing;
501         cpumask_var_t                   cpumask;
502
503         struct lock_class_key           *reader_lock_key;
504
505         struct mutex                    mutex;
506
507         struct ring_buffer_per_cpu      **buffers;
508
509         struct hlist_node               node;
510         u64                             (*clock)(void);
511
512         struct rb_irq_work              irq_work;
513         bool                            time_stamp_abs;
514
515         unsigned int                    subbuf_size;
516         unsigned int                    subbuf_order;
517         unsigned int                    max_data_size;
518 };
519
520 struct ring_buffer_iter {
521         struct ring_buffer_per_cpu      *cpu_buffer;
522         unsigned long                   head;
523         unsigned long                   next_event;
524         struct buffer_page              *head_page;
525         struct buffer_page              *cache_reader_page;
526         unsigned long                   cache_read;
527         unsigned long                   cache_pages_removed;
528         u64                             read_stamp;
529         u64                             page_stamp;
530         struct ring_buffer_event        *event;
531         size_t                          event_size;
532         int                             missed_events;
533 };
534
535 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
536 {
537         struct buffer_data_page field;
538
539         trace_seq_printf(s, "\tfield: u64 timestamp;\t"
540                          "offset:0;\tsize:%u;\tsigned:%u;\n",
541                          (unsigned int)sizeof(field.time_stamp),
542                          (unsigned int)is_signed_type(u64));
543
544         trace_seq_printf(s, "\tfield: local_t commit;\t"
545                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
546                          (unsigned int)offsetof(typeof(field), commit),
547                          (unsigned int)sizeof(field.commit),
548                          (unsigned int)is_signed_type(long));
549
550         trace_seq_printf(s, "\tfield: int overwrite;\t"
551                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
552                          (unsigned int)offsetof(typeof(field), commit),
553                          1,
554                          (unsigned int)is_signed_type(long));
555
556         trace_seq_printf(s, "\tfield: char data;\t"
557                          "offset:%u;\tsize:%u;\tsigned:%u;\n",
558                          (unsigned int)offsetof(typeof(field), data),
559                          (unsigned int)buffer->subbuf_size,
560                          (unsigned int)is_signed_type(char));
561
562         return !trace_seq_has_overflowed(s);
563 }
564
565 static inline void rb_time_read(rb_time_t *t, u64 *ret)
566 {
567         *ret = local64_read(&t->time);
568 }
569 static void rb_time_set(rb_time_t *t, u64 val)
570 {
571         local64_set(&t->time, val);
572 }
573
574 /*
575  * Enable this to make sure that the event passed to
576  * ring_buffer_event_time_stamp() is not committed and also
577  * is on the buffer that it passed in.
578  */
579 //#define RB_VERIFY_EVENT
580 #ifdef RB_VERIFY_EVENT
581 static struct list_head *rb_list_head(struct list_head *list);
582 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
583                          void *event)
584 {
585         struct buffer_page *page = cpu_buffer->commit_page;
586         struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
587         struct list_head *next;
588         long commit, write;
589         unsigned long addr = (unsigned long)event;
590         bool done = false;
591         int stop = 0;
592
593         /* Make sure the event exists and is not committed yet */
594         do {
595                 if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
596                         done = true;
597                 commit = local_read(&page->page->commit);
598                 write = local_read(&page->write);
599                 if (addr >= (unsigned long)&page->page->data[commit] &&
600                     addr < (unsigned long)&page->page->data[write])
601                         return;
602
603                 next = rb_list_head(page->list.next);
604                 page = list_entry(next, struct buffer_page, list);
605         } while (!done);
606         WARN_ON_ONCE(1);
607 }
608 #else
609 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
610                          void *event)
611 {
612 }
613 #endif
614
615 /*
616  * The absolute time stamp drops the 5 MSBs and some clocks may
617  * require them. The rb_fix_abs_ts() will take a previous full
618  * time stamp, and add the 5 MSB of that time stamp on to the
619  * saved absolute time stamp. Then they are compared in case of
620  * the unlikely event that the latest time stamp incremented
621  * the 5 MSB.
622  */
623 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
624 {
625         if (save_ts & TS_MSB) {
626                 abs |= save_ts & TS_MSB;
627                 /* Check for overflow */
628                 if (unlikely(abs < save_ts))
629                         abs += 1ULL << 59;
630         }
631         return abs;
632 }
633
634 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
635
636 /**
637  * ring_buffer_event_time_stamp - return the event's current time stamp
638  * @buffer: The buffer that the event is on
639  * @event: the event to get the time stamp of
640  *
641  * Note, this must be called after @event is reserved, and before it is
642  * committed to the ring buffer. And must be called from the same
643  * context where the event was reserved (normal, softirq, irq, etc).
644  *
645  * Returns the time stamp associated with the current event.
646  * If the event has an extended time stamp, then that is used as
647  * the time stamp to return.
648  * In the highly unlikely case that the event was nested more than
649  * the max nesting, then the write_stamp of the buffer is returned,
650  * otherwise  current time is returned, but that really neither of
651  * the last two cases should ever happen.
652  */
653 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
654                                  struct ring_buffer_event *event)
655 {
656         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
657         unsigned int nest;
658         u64 ts;
659
660         /* If the event includes an absolute time, then just use that */
661         if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
662                 ts = rb_event_time_stamp(event);
663                 return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
664         }
665
666         nest = local_read(&cpu_buffer->committing);
667         verify_event(cpu_buffer, event);
668         if (WARN_ON_ONCE(!nest))
669                 goto fail;
670
671         /* Read the current saved nesting level time stamp */
672         if (likely(--nest < MAX_NEST))
673                 return cpu_buffer->event_stamp[nest];
674
675         /* Shouldn't happen, warn if it does */
676         WARN_ONCE(1, "nest (%d) greater than max", nest);
677
678  fail:
679         rb_time_read(&cpu_buffer->write_stamp, &ts);
680
681         return ts;
682 }
683
684 /**
685  * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
686  * @buffer: The ring_buffer to get the number of pages from
687  * @cpu: The cpu of the ring_buffer to get the number of pages from
688  *
689  * Returns the number of pages used by a per_cpu buffer of the ring buffer.
690  */
691 size_t ring_buffer_nr_pages(struct trace_buffer *buffer, int cpu)
692 {
693         return buffer->buffers[cpu]->nr_pages;
694 }
695
696 /**
697  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
698  * @buffer: The ring_buffer to get the number of pages from
699  * @cpu: The cpu of the ring_buffer to get the number of pages from
700  *
701  * Returns the number of pages that have content in the ring buffer.
702  */
703 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
704 {
705         size_t read;
706         size_t lost;
707         size_t cnt;
708
709         read = local_read(&buffer->buffers[cpu]->pages_read);
710         lost = local_read(&buffer->buffers[cpu]->pages_lost);
711         cnt = local_read(&buffer->buffers[cpu]->pages_touched);
712
713         if (WARN_ON_ONCE(cnt < lost))
714                 return 0;
715
716         cnt -= lost;
717
718         /* The reader can read an empty page, but not more than that */
719         if (cnt < read) {
720                 WARN_ON_ONCE(read > cnt + 1);
721                 return 0;
722         }
723
724         return cnt - read;
725 }
726
727 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
728 {
729         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
730         size_t nr_pages;
731         size_t dirty;
732
733         nr_pages = cpu_buffer->nr_pages;
734         if (!nr_pages || !full)
735                 return true;
736
737         /*
738          * Add one as dirty will never equal nr_pages, as the sub-buffer
739          * that the writer is on is not counted as dirty.
740          * This is needed if "buffer_percent" is set to 100.
741          */
742         dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
743
744         return (dirty * 100) >= (full * nr_pages);
745 }
746
747 /*
748  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
749  *
750  * Schedules a delayed work to wake up any task that is blocked on the
751  * ring buffer waiters queue.
752  */
753 static void rb_wake_up_waiters(struct irq_work *work)
754 {
755         struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
756
757         wake_up_all(&rbwork->waiters);
758         if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
759                 rbwork->wakeup_full = false;
760                 rbwork->full_waiters_pending = false;
761                 wake_up_all(&rbwork->full_waiters);
762         }
763 }
764
765 /**
766  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
767  * @buffer: The ring buffer to wake waiters on
768  * @cpu: The CPU buffer to wake waiters on
769  *
770  * In the case of a file that represents a ring buffer is closing,
771  * it is prudent to wake up any waiters that are on this.
772  */
773 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
774 {
775         struct ring_buffer_per_cpu *cpu_buffer;
776         struct rb_irq_work *rbwork;
777
778         if (!buffer)
779                 return;
780
781         if (cpu == RING_BUFFER_ALL_CPUS) {
782
783                 /* Wake up individual ones too. One level recursion */
784                 for_each_buffer_cpu(buffer, cpu)
785                         ring_buffer_wake_waiters(buffer, cpu);
786
787                 rbwork = &buffer->irq_work;
788         } else {
789                 if (WARN_ON_ONCE(!buffer->buffers))
790                         return;
791                 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
792                         return;
793
794                 cpu_buffer = buffer->buffers[cpu];
795                 /* The CPU buffer may not have been initialized yet */
796                 if (!cpu_buffer)
797                         return;
798                 rbwork = &cpu_buffer->irq_work;
799         }
800
801         rbwork->wait_index++;
802         /* make sure the waiters see the new index */
803         smp_wmb();
804
805         /* This can be called in any context */
806         irq_work_queue(&rbwork->work);
807 }
808
809 /**
810  * ring_buffer_wait - wait for input to the ring buffer
811  * @buffer: buffer to wait on
812  * @cpu: the cpu buffer to wait on
813  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
814  *
815  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
816  * as data is added to any of the @buffer's cpu buffers. Otherwise
817  * it will wait for data to be added to a specific cpu buffer.
818  */
819 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full)
820 {
821         struct ring_buffer_per_cpu *cpu_buffer;
822         DEFINE_WAIT(wait);
823         struct rb_irq_work *work;
824         long wait_index;
825         int ret = 0;
826
827         /*
828          * Depending on what the caller is waiting for, either any
829          * data in any cpu buffer, or a specific buffer, put the
830          * caller on the appropriate wait queue.
831          */
832         if (cpu == RING_BUFFER_ALL_CPUS) {
833                 work = &buffer->irq_work;
834                 /* Full only makes sense on per cpu reads */
835                 full = 0;
836         } else {
837                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
838                         return -ENODEV;
839                 cpu_buffer = buffer->buffers[cpu];
840                 work = &cpu_buffer->irq_work;
841         }
842
843         wait_index = READ_ONCE(work->wait_index);
844
845         while (true) {
846                 if (full)
847                         prepare_to_wait(&work->full_waiters, &wait, TASK_INTERRUPTIBLE);
848                 else
849                         prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
850
851                 /*
852                  * The events can happen in critical sections where
853                  * checking a work queue can cause deadlocks.
854                  * After adding a task to the queue, this flag is set
855                  * only to notify events to try to wake up the queue
856                  * using irq_work.
857                  *
858                  * We don't clear it even if the buffer is no longer
859                  * empty. The flag only causes the next event to run
860                  * irq_work to do the work queue wake up. The worse
861                  * that can happen if we race with !trace_empty() is that
862                  * an event will cause an irq_work to try to wake up
863                  * an empty queue.
864                  *
865                  * There's no reason to protect this flag either, as
866                  * the work queue and irq_work logic will do the necessary
867                  * synchronization for the wake ups. The only thing
868                  * that is necessary is that the wake up happens after
869                  * a task has been queued. It's OK for spurious wake ups.
870                  */
871                 if (full)
872                         work->full_waiters_pending = true;
873                 else
874                         work->waiters_pending = true;
875
876                 if (signal_pending(current)) {
877                         ret = -EINTR;
878                         break;
879                 }
880
881                 if (cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer))
882                         break;
883
884                 if (cpu != RING_BUFFER_ALL_CPUS &&
885                     !ring_buffer_empty_cpu(buffer, cpu)) {
886                         unsigned long flags;
887                         bool pagebusy;
888                         bool done;
889
890                         if (!full)
891                                 break;
892
893                         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
894                         pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
895                         done = !pagebusy && full_hit(buffer, cpu, full);
896
897                         if (!cpu_buffer->shortest_full ||
898                             cpu_buffer->shortest_full > full)
899                                 cpu_buffer->shortest_full = full;
900                         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
901                         if (done)
902                                 break;
903                 }
904
905                 schedule();
906
907                 /* Make sure to see the new wait index */
908                 smp_rmb();
909                 if (wait_index != work->wait_index)
910                         break;
911         }
912
913         if (full)
914                 finish_wait(&work->full_waiters, &wait);
915         else
916                 finish_wait(&work->waiters, &wait);
917
918         return ret;
919 }
920
921 /**
922  * ring_buffer_poll_wait - poll on buffer input
923  * @buffer: buffer to wait on
924  * @cpu: the cpu buffer to wait on
925  * @filp: the file descriptor
926  * @poll_table: The poll descriptor
927  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
928  *
929  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
930  * as data is added to any of the @buffer's cpu buffers. Otherwise
931  * it will wait for data to be added to a specific cpu buffer.
932  *
933  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
934  * zero otherwise.
935  */
936 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
937                           struct file *filp, poll_table *poll_table, int full)
938 {
939         struct ring_buffer_per_cpu *cpu_buffer;
940         struct rb_irq_work *work;
941
942         if (cpu == RING_BUFFER_ALL_CPUS) {
943                 work = &buffer->irq_work;
944                 full = 0;
945         } else {
946                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
947                         return EPOLLERR;
948
949                 cpu_buffer = buffer->buffers[cpu];
950                 work = &cpu_buffer->irq_work;
951         }
952
953         if (full) {
954                 poll_wait(filp, &work->full_waiters, poll_table);
955                 work->full_waiters_pending = true;
956                 if (!cpu_buffer->shortest_full ||
957                     cpu_buffer->shortest_full > full)
958                         cpu_buffer->shortest_full = full;
959         } else {
960                 poll_wait(filp, &work->waiters, poll_table);
961                 work->waiters_pending = true;
962         }
963
964         /*
965          * There's a tight race between setting the waiters_pending and
966          * checking if the ring buffer is empty.  Once the waiters_pending bit
967          * is set, the next event will wake the task up, but we can get stuck
968          * if there's only a single event in.
969          *
970          * FIXME: Ideally, we need a memory barrier on the writer side as well,
971          * but adding a memory barrier to all events will cause too much of a
972          * performance hit in the fast path.  We only need a memory barrier when
973          * the buffer goes from empty to having content.  But as this race is
974          * extremely small, and it's not a problem if another event comes in, we
975          * will fix it later.
976          */
977         smp_mb();
978
979         if (full)
980                 return full_hit(buffer, cpu, full) ? EPOLLIN | EPOLLRDNORM : 0;
981
982         if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
983             (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
984                 return EPOLLIN | EPOLLRDNORM;
985         return 0;
986 }
987
988 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
989 #define RB_WARN_ON(b, cond)                                             \
990         ({                                                              \
991                 int _____ret = unlikely(cond);                          \
992                 if (_____ret) {                                         \
993                         if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
994                                 struct ring_buffer_per_cpu *__b =       \
995                                         (void *)b;                      \
996                                 atomic_inc(&__b->buffer->record_disabled); \
997                         } else                                          \
998                                 atomic_inc(&b->record_disabled);        \
999                         WARN_ON(1);                                     \
1000                 }                                                       \
1001                 _____ret;                                               \
1002         })
1003
1004 /* Up this if you want to test the TIME_EXTENTS and normalization */
1005 #define DEBUG_SHIFT 0
1006
1007 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1008 {
1009         u64 ts;
1010
1011         /* Skip retpolines :-( */
1012         if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1013                 ts = trace_clock_local();
1014         else
1015                 ts = buffer->clock();
1016
1017         /* shift to debug/test normalization and TIME_EXTENTS */
1018         return ts << DEBUG_SHIFT;
1019 }
1020
1021 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1022 {
1023         u64 time;
1024
1025         preempt_disable_notrace();
1026         time = rb_time_stamp(buffer);
1027         preempt_enable_notrace();
1028
1029         return time;
1030 }
1031 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1032
1033 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1034                                       int cpu, u64 *ts)
1035 {
1036         /* Just stupid testing the normalize function and deltas */
1037         *ts >>= DEBUG_SHIFT;
1038 }
1039 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1040
1041 /*
1042  * Making the ring buffer lockless makes things tricky.
1043  * Although writes only happen on the CPU that they are on,
1044  * and they only need to worry about interrupts. Reads can
1045  * happen on any CPU.
1046  *
1047  * The reader page is always off the ring buffer, but when the
1048  * reader finishes with a page, it needs to swap its page with
1049  * a new one from the buffer. The reader needs to take from
1050  * the head (writes go to the tail). But if a writer is in overwrite
1051  * mode and wraps, it must push the head page forward.
1052  *
1053  * Here lies the problem.
1054  *
1055  * The reader must be careful to replace only the head page, and
1056  * not another one. As described at the top of the file in the
1057  * ASCII art, the reader sets its old page to point to the next
1058  * page after head. It then sets the page after head to point to
1059  * the old reader page. But if the writer moves the head page
1060  * during this operation, the reader could end up with the tail.
1061  *
1062  * We use cmpxchg to help prevent this race. We also do something
1063  * special with the page before head. We set the LSB to 1.
1064  *
1065  * When the writer must push the page forward, it will clear the
1066  * bit that points to the head page, move the head, and then set
1067  * the bit that points to the new head page.
1068  *
1069  * We also don't want an interrupt coming in and moving the head
1070  * page on another writer. Thus we use the second LSB to catch
1071  * that too. Thus:
1072  *
1073  * head->list->prev->next        bit 1          bit 0
1074  *                              -------        -------
1075  * Normal page                     0              0
1076  * Points to head page             0              1
1077  * New head page                   1              0
1078  *
1079  * Note we can not trust the prev pointer of the head page, because:
1080  *
1081  * +----+       +-----+        +-----+
1082  * |    |------>|  T  |---X--->|  N  |
1083  * |    |<------|     |        |     |
1084  * +----+       +-----+        +-----+
1085  *   ^                           ^ |
1086  *   |          +-----+          | |
1087  *   +----------|  R  |----------+ |
1088  *              |     |<-----------+
1089  *              +-----+
1090  *
1091  * Key:  ---X-->  HEAD flag set in pointer
1092  *         T      Tail page
1093  *         R      Reader page
1094  *         N      Next page
1095  *
1096  * (see __rb_reserve_next() to see where this happens)
1097  *
1098  *  What the above shows is that the reader just swapped out
1099  *  the reader page with a page in the buffer, but before it
1100  *  could make the new header point back to the new page added
1101  *  it was preempted by a writer. The writer moved forward onto
1102  *  the new page added by the reader and is about to move forward
1103  *  again.
1104  *
1105  *  You can see, it is legitimate for the previous pointer of
1106  *  the head (or any page) not to point back to itself. But only
1107  *  temporarily.
1108  */
1109
1110 #define RB_PAGE_NORMAL          0UL
1111 #define RB_PAGE_HEAD            1UL
1112 #define RB_PAGE_UPDATE          2UL
1113
1114
1115 #define RB_FLAG_MASK            3UL
1116
1117 /* PAGE_MOVED is not part of the mask */
1118 #define RB_PAGE_MOVED           4UL
1119
1120 /*
1121  * rb_list_head - remove any bit
1122  */
1123 static struct list_head *rb_list_head(struct list_head *list)
1124 {
1125         unsigned long val = (unsigned long)list;
1126
1127         return (struct list_head *)(val & ~RB_FLAG_MASK);
1128 }
1129
1130 /*
1131  * rb_is_head_page - test if the given page is the head page
1132  *
1133  * Because the reader may move the head_page pointer, we can
1134  * not trust what the head page is (it may be pointing to
1135  * the reader page). But if the next page is a header page,
1136  * its flags will be non zero.
1137  */
1138 static inline int
1139 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1140 {
1141         unsigned long val;
1142
1143         val = (unsigned long)list->next;
1144
1145         if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1146                 return RB_PAGE_MOVED;
1147
1148         return val & RB_FLAG_MASK;
1149 }
1150
1151 /*
1152  * rb_is_reader_page
1153  *
1154  * The unique thing about the reader page, is that, if the
1155  * writer is ever on it, the previous pointer never points
1156  * back to the reader page.
1157  */
1158 static bool rb_is_reader_page(struct buffer_page *page)
1159 {
1160         struct list_head *list = page->list.prev;
1161
1162         return rb_list_head(list->next) != &page->list;
1163 }
1164
1165 /*
1166  * rb_set_list_to_head - set a list_head to be pointing to head.
1167  */
1168 static void rb_set_list_to_head(struct list_head *list)
1169 {
1170         unsigned long *ptr;
1171
1172         ptr = (unsigned long *)&list->next;
1173         *ptr |= RB_PAGE_HEAD;
1174         *ptr &= ~RB_PAGE_UPDATE;
1175 }
1176
1177 /*
1178  * rb_head_page_activate - sets up head page
1179  */
1180 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1181 {
1182         struct buffer_page *head;
1183
1184         head = cpu_buffer->head_page;
1185         if (!head)
1186                 return;
1187
1188         /*
1189          * Set the previous list pointer to have the HEAD flag.
1190          */
1191         rb_set_list_to_head(head->list.prev);
1192 }
1193
1194 static void rb_list_head_clear(struct list_head *list)
1195 {
1196         unsigned long *ptr = (unsigned long *)&list->next;
1197
1198         *ptr &= ~RB_FLAG_MASK;
1199 }
1200
1201 /*
1202  * rb_head_page_deactivate - clears head page ptr (for free list)
1203  */
1204 static void
1205 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1206 {
1207         struct list_head *hd;
1208
1209         /* Go through the whole list and clear any pointers found. */
1210         rb_list_head_clear(cpu_buffer->pages);
1211
1212         list_for_each(hd, cpu_buffer->pages)
1213                 rb_list_head_clear(hd);
1214 }
1215
1216 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1217                             struct buffer_page *head,
1218                             struct buffer_page *prev,
1219                             int old_flag, int new_flag)
1220 {
1221         struct list_head *list;
1222         unsigned long val = (unsigned long)&head->list;
1223         unsigned long ret;
1224
1225         list = &prev->list;
1226
1227         val &= ~RB_FLAG_MASK;
1228
1229         ret = cmpxchg((unsigned long *)&list->next,
1230                       val | old_flag, val | new_flag);
1231
1232         /* check if the reader took the page */
1233         if ((ret & ~RB_FLAG_MASK) != val)
1234                 return RB_PAGE_MOVED;
1235
1236         return ret & RB_FLAG_MASK;
1237 }
1238
1239 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1240                                    struct buffer_page *head,
1241                                    struct buffer_page *prev,
1242                                    int old_flag)
1243 {
1244         return rb_head_page_set(cpu_buffer, head, prev,
1245                                 old_flag, RB_PAGE_UPDATE);
1246 }
1247
1248 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1249                                  struct buffer_page *head,
1250                                  struct buffer_page *prev,
1251                                  int old_flag)
1252 {
1253         return rb_head_page_set(cpu_buffer, head, prev,
1254                                 old_flag, RB_PAGE_HEAD);
1255 }
1256
1257 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1258                                    struct buffer_page *head,
1259                                    struct buffer_page *prev,
1260                                    int old_flag)
1261 {
1262         return rb_head_page_set(cpu_buffer, head, prev,
1263                                 old_flag, RB_PAGE_NORMAL);
1264 }
1265
1266 static inline void rb_inc_page(struct buffer_page **bpage)
1267 {
1268         struct list_head *p = rb_list_head((*bpage)->list.next);
1269
1270         *bpage = list_entry(p, struct buffer_page, list);
1271 }
1272
1273 static struct buffer_page *
1274 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1275 {
1276         struct buffer_page *head;
1277         struct buffer_page *page;
1278         struct list_head *list;
1279         int i;
1280
1281         if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1282                 return NULL;
1283
1284         /* sanity check */
1285         list = cpu_buffer->pages;
1286         if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1287                 return NULL;
1288
1289         page = head = cpu_buffer->head_page;
1290         /*
1291          * It is possible that the writer moves the header behind
1292          * where we started, and we miss in one loop.
1293          * A second loop should grab the header, but we'll do
1294          * three loops just because I'm paranoid.
1295          */
1296         for (i = 0; i < 3; i++) {
1297                 do {
1298                         if (rb_is_head_page(page, page->list.prev)) {
1299                                 cpu_buffer->head_page = page;
1300                                 return page;
1301                         }
1302                         rb_inc_page(&page);
1303                 } while (page != head);
1304         }
1305
1306         RB_WARN_ON(cpu_buffer, 1);
1307
1308         return NULL;
1309 }
1310
1311 static bool rb_head_page_replace(struct buffer_page *old,
1312                                 struct buffer_page *new)
1313 {
1314         unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1315         unsigned long val;
1316
1317         val = *ptr & ~RB_FLAG_MASK;
1318         val |= RB_PAGE_HEAD;
1319
1320         return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1321 }
1322
1323 /*
1324  * rb_tail_page_update - move the tail page forward
1325  */
1326 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1327                                struct buffer_page *tail_page,
1328                                struct buffer_page *next_page)
1329 {
1330         unsigned long old_entries;
1331         unsigned long old_write;
1332
1333         /*
1334          * The tail page now needs to be moved forward.
1335          *
1336          * We need to reset the tail page, but without messing
1337          * with possible erasing of data brought in by interrupts
1338          * that have moved the tail page and are currently on it.
1339          *
1340          * We add a counter to the write field to denote this.
1341          */
1342         old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1343         old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1344
1345         local_inc(&cpu_buffer->pages_touched);
1346         /*
1347          * Just make sure we have seen our old_write and synchronize
1348          * with any interrupts that come in.
1349          */
1350         barrier();
1351
1352         /*
1353          * If the tail page is still the same as what we think
1354          * it is, then it is up to us to update the tail
1355          * pointer.
1356          */
1357         if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1358                 /* Zero the write counter */
1359                 unsigned long val = old_write & ~RB_WRITE_MASK;
1360                 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1361
1362                 /*
1363                  * This will only succeed if an interrupt did
1364                  * not come in and change it. In which case, we
1365                  * do not want to modify it.
1366                  *
1367                  * We add (void) to let the compiler know that we do not care
1368                  * about the return value of these functions. We use the
1369                  * cmpxchg to only update if an interrupt did not already
1370                  * do it for us. If the cmpxchg fails, we don't care.
1371                  */
1372                 (void)local_cmpxchg(&next_page->write, old_write, val);
1373                 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
1374
1375                 /*
1376                  * No need to worry about races with clearing out the commit.
1377                  * it only can increment when a commit takes place. But that
1378                  * only happens in the outer most nested commit.
1379                  */
1380                 local_set(&next_page->page->commit, 0);
1381
1382                 /* Again, either we update tail_page or an interrupt does */
1383                 (void)cmpxchg(&cpu_buffer->tail_page, tail_page, next_page);
1384         }
1385 }
1386
1387 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1388                           struct buffer_page *bpage)
1389 {
1390         unsigned long val = (unsigned long)bpage;
1391
1392         RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1393 }
1394
1395 /**
1396  * rb_check_pages - integrity check of buffer pages
1397  * @cpu_buffer: CPU buffer with pages to test
1398  *
1399  * As a safety measure we check to make sure the data pages have not
1400  * been corrupted.
1401  */
1402 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1403 {
1404         struct list_head *head = rb_list_head(cpu_buffer->pages);
1405         struct list_head *tmp;
1406
1407         if (RB_WARN_ON(cpu_buffer,
1408                         rb_list_head(rb_list_head(head->next)->prev) != head))
1409                 return;
1410
1411         if (RB_WARN_ON(cpu_buffer,
1412                         rb_list_head(rb_list_head(head->prev)->next) != head))
1413                 return;
1414
1415         for (tmp = rb_list_head(head->next); tmp != head; tmp = rb_list_head(tmp->next)) {
1416                 if (RB_WARN_ON(cpu_buffer,
1417                                 rb_list_head(rb_list_head(tmp->next)->prev) != tmp))
1418                         return;
1419
1420                 if (RB_WARN_ON(cpu_buffer,
1421                                 rb_list_head(rb_list_head(tmp->prev)->next) != tmp))
1422                         return;
1423         }
1424 }
1425
1426 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1427                 long nr_pages, struct list_head *pages)
1428 {
1429         struct buffer_page *bpage, *tmp;
1430         bool user_thread = current->mm != NULL;
1431         gfp_t mflags;
1432         long i;
1433
1434         /*
1435          * Check if the available memory is there first.
1436          * Note, si_mem_available() only gives us a rough estimate of available
1437          * memory. It may not be accurate. But we don't care, we just want
1438          * to prevent doing any allocation when it is obvious that it is
1439          * not going to succeed.
1440          */
1441         i = si_mem_available();
1442         if (i < nr_pages)
1443                 return -ENOMEM;
1444
1445         /*
1446          * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1447          * gracefully without invoking oom-killer and the system is not
1448          * destabilized.
1449          */
1450         mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
1451
1452         /*
1453          * If a user thread allocates too much, and si_mem_available()
1454          * reports there's enough memory, even though there is not.
1455          * Make sure the OOM killer kills this thread. This can happen
1456          * even with RETRY_MAYFAIL because another task may be doing
1457          * an allocation after this task has taken all memory.
1458          * This is the task the OOM killer needs to take out during this
1459          * loop, even if it was triggered by an allocation somewhere else.
1460          */
1461         if (user_thread)
1462                 set_current_oom_origin();
1463         for (i = 0; i < nr_pages; i++) {
1464                 struct page *page;
1465
1466                 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1467                                     mflags, cpu_to_node(cpu_buffer->cpu));
1468                 if (!bpage)
1469                         goto free_pages;
1470
1471                 rb_check_bpage(cpu_buffer, bpage);
1472
1473                 list_add(&bpage->list, pages);
1474
1475                 page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu), mflags,
1476                                         cpu_buffer->buffer->subbuf_order);
1477                 if (!page)
1478                         goto free_pages;
1479                 bpage->page = page_address(page);
1480                 bpage->order = cpu_buffer->buffer->subbuf_order;
1481                 rb_init_page(bpage->page);
1482
1483                 if (user_thread && fatal_signal_pending(current))
1484                         goto free_pages;
1485         }
1486         if (user_thread)
1487                 clear_current_oom_origin();
1488
1489         return 0;
1490
1491 free_pages:
1492         list_for_each_entry_safe(bpage, tmp, pages, list) {
1493                 list_del_init(&bpage->list);
1494                 free_buffer_page(bpage);
1495         }
1496         if (user_thread)
1497                 clear_current_oom_origin();
1498
1499         return -ENOMEM;
1500 }
1501
1502 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1503                              unsigned long nr_pages)
1504 {
1505         LIST_HEAD(pages);
1506
1507         WARN_ON(!nr_pages);
1508
1509         if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
1510                 return -ENOMEM;
1511
1512         /*
1513          * The ring buffer page list is a circular list that does not
1514          * start and end with a list head. All page list items point to
1515          * other pages.
1516          */
1517         cpu_buffer->pages = pages.next;
1518         list_del(&pages);
1519
1520         cpu_buffer->nr_pages = nr_pages;
1521
1522         rb_check_pages(cpu_buffer);
1523
1524         return 0;
1525 }
1526
1527 static struct ring_buffer_per_cpu *
1528 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
1529 {
1530         struct ring_buffer_per_cpu *cpu_buffer;
1531         struct buffer_page *bpage;
1532         struct page *page;
1533         int ret;
1534
1535         cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1536                                   GFP_KERNEL, cpu_to_node(cpu));
1537         if (!cpu_buffer)
1538                 return NULL;
1539
1540         cpu_buffer->cpu = cpu;
1541         cpu_buffer->buffer = buffer;
1542         raw_spin_lock_init(&cpu_buffer->reader_lock);
1543         lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1544         cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
1545         INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
1546         init_completion(&cpu_buffer->update_done);
1547         init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
1548         init_waitqueue_head(&cpu_buffer->irq_work.waiters);
1549         init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
1550
1551         bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1552                             GFP_KERNEL, cpu_to_node(cpu));
1553         if (!bpage)
1554                 goto fail_free_buffer;
1555
1556         rb_check_bpage(cpu_buffer, bpage);
1557
1558         cpu_buffer->reader_page = bpage;
1559
1560         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, cpu_buffer->buffer->subbuf_order);
1561         if (!page)
1562                 goto fail_free_reader;
1563         bpage->page = page_address(page);
1564         rb_init_page(bpage->page);
1565
1566         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1567         INIT_LIST_HEAD(&cpu_buffer->new_pages);
1568
1569         ret = rb_allocate_pages(cpu_buffer, nr_pages);
1570         if (ret < 0)
1571                 goto fail_free_reader;
1572
1573         cpu_buffer->head_page
1574                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
1575         cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1576
1577         rb_head_page_activate(cpu_buffer);
1578
1579         return cpu_buffer;
1580
1581  fail_free_reader:
1582         free_buffer_page(cpu_buffer->reader_page);
1583
1584  fail_free_buffer:
1585         kfree(cpu_buffer);
1586         return NULL;
1587 }
1588
1589 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1590 {
1591         struct list_head *head = cpu_buffer->pages;
1592         struct buffer_page *bpage, *tmp;
1593
1594         irq_work_sync(&cpu_buffer->irq_work.work);
1595
1596         free_buffer_page(cpu_buffer->reader_page);
1597
1598         if (head) {
1599                 rb_head_page_deactivate(cpu_buffer);
1600
1601                 list_for_each_entry_safe(bpage, tmp, head, list) {
1602                         list_del_init(&bpage->list);
1603                         free_buffer_page(bpage);
1604                 }
1605                 bpage = list_entry(head, struct buffer_page, list);
1606                 free_buffer_page(bpage);
1607         }
1608
1609         free_page((unsigned long)cpu_buffer->free_page);
1610
1611         kfree(cpu_buffer);
1612 }
1613
1614 /**
1615  * __ring_buffer_alloc - allocate a new ring_buffer
1616  * @size: the size in bytes per cpu that is needed.
1617  * @flags: attributes to set for the ring buffer.
1618  * @key: ring buffer reader_lock_key.
1619  *
1620  * Currently the only flag that is available is the RB_FL_OVERWRITE
1621  * flag. This flag means that the buffer will overwrite old data
1622  * when the buffer wraps. If this flag is not set, the buffer will
1623  * drop data when the tail hits the head.
1624  */
1625 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1626                                         struct lock_class_key *key)
1627 {
1628         struct trace_buffer *buffer;
1629         long nr_pages;
1630         int bsize;
1631         int cpu;
1632         int ret;
1633
1634         /* keep it in its own cache line */
1635         buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1636                          GFP_KERNEL);
1637         if (!buffer)
1638                 return NULL;
1639
1640         if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1641                 goto fail_free_buffer;
1642
1643         /* Default buffer page size - one system page */
1644         buffer->subbuf_order = 0;
1645         buffer->subbuf_size = PAGE_SIZE - BUF_PAGE_HDR_SIZE;
1646
1647         /* Max payload is buffer page size - header (8bytes) */
1648         buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
1649
1650         nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1651         buffer->flags = flags;
1652         buffer->clock = trace_clock_local;
1653         buffer->reader_lock_key = key;
1654
1655         init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
1656         init_waitqueue_head(&buffer->irq_work.waiters);
1657
1658         /* need at least two pages */
1659         if (nr_pages < 2)
1660                 nr_pages = 2;
1661
1662         buffer->cpus = nr_cpu_ids;
1663
1664         bsize = sizeof(void *) * nr_cpu_ids;
1665         buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1666                                   GFP_KERNEL);
1667         if (!buffer->buffers)
1668                 goto fail_free_cpumask;
1669
1670         cpu = raw_smp_processor_id();
1671         cpumask_set_cpu(cpu, buffer->cpumask);
1672         buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
1673         if (!buffer->buffers[cpu])
1674                 goto fail_free_buffers;
1675
1676         ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1677         if (ret < 0)
1678                 goto fail_free_buffers;
1679
1680         mutex_init(&buffer->mutex);
1681
1682         return buffer;
1683
1684  fail_free_buffers:
1685         for_each_buffer_cpu(buffer, cpu) {
1686                 if (buffer->buffers[cpu])
1687                         rb_free_cpu_buffer(buffer->buffers[cpu]);
1688         }
1689         kfree(buffer->buffers);
1690
1691  fail_free_cpumask:
1692         free_cpumask_var(buffer->cpumask);
1693
1694  fail_free_buffer:
1695         kfree(buffer);
1696         return NULL;
1697 }
1698 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1699
1700 /**
1701  * ring_buffer_free - free a ring buffer.
1702  * @buffer: the buffer to free.
1703  */
1704 void
1705 ring_buffer_free(struct trace_buffer *buffer)
1706 {
1707         int cpu;
1708
1709         cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
1710
1711         irq_work_sync(&buffer->irq_work.work);
1712
1713         for_each_buffer_cpu(buffer, cpu)
1714                 rb_free_cpu_buffer(buffer->buffers[cpu]);
1715
1716         kfree(buffer->buffers);
1717         free_cpumask_var(buffer->cpumask);
1718
1719         kfree(buffer);
1720 }
1721 EXPORT_SYMBOL_GPL(ring_buffer_free);
1722
1723 void ring_buffer_set_clock(struct trace_buffer *buffer,
1724                            u64 (*clock)(void))
1725 {
1726         buffer->clock = clock;
1727 }
1728
1729 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
1730 {
1731         buffer->time_stamp_abs = abs;
1732 }
1733
1734 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
1735 {
1736         return buffer->time_stamp_abs;
1737 }
1738
1739 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1740
1741 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1742 {
1743         return local_read(&bpage->entries) & RB_WRITE_MASK;
1744 }
1745
1746 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1747 {
1748         return local_read(&bpage->write) & RB_WRITE_MASK;
1749 }
1750
1751 static bool
1752 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
1753 {
1754         struct list_head *tail_page, *to_remove, *next_page;
1755         struct buffer_page *to_remove_page, *tmp_iter_page;
1756         struct buffer_page *last_page, *first_page;
1757         unsigned long nr_removed;
1758         unsigned long head_bit;
1759         int page_entries;
1760
1761         head_bit = 0;
1762
1763         raw_spin_lock_irq(&cpu_buffer->reader_lock);
1764         atomic_inc(&cpu_buffer->record_disabled);
1765         /*
1766          * We don't race with the readers since we have acquired the reader
1767          * lock. We also don't race with writers after disabling recording.
1768          * This makes it easy to figure out the first and the last page to be
1769          * removed from the list. We unlink all the pages in between including
1770          * the first and last pages. This is done in a busy loop so that we
1771          * lose the least number of traces.
1772          * The pages are freed after we restart recording and unlock readers.
1773          */
1774         tail_page = &cpu_buffer->tail_page->list;
1775
1776         /*
1777          * tail page might be on reader page, we remove the next page
1778          * from the ring buffer
1779          */
1780         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1781                 tail_page = rb_list_head(tail_page->next);
1782         to_remove = tail_page;
1783
1784         /* start of pages to remove */
1785         first_page = list_entry(rb_list_head(to_remove->next),
1786                                 struct buffer_page, list);
1787
1788         for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1789                 to_remove = rb_list_head(to_remove)->next;
1790                 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
1791         }
1792         /* Read iterators need to reset themselves when some pages removed */
1793         cpu_buffer->pages_removed += nr_removed;
1794
1795         next_page = rb_list_head(to_remove)->next;
1796
1797         /*
1798          * Now we remove all pages between tail_page and next_page.
1799          * Make sure that we have head_bit value preserved for the
1800          * next page
1801          */
1802         tail_page->next = (struct list_head *)((unsigned long)next_page |
1803                                                 head_bit);
1804         next_page = rb_list_head(next_page);
1805         next_page->prev = tail_page;
1806
1807         /* make sure pages points to a valid page in the ring buffer */
1808         cpu_buffer->pages = next_page;
1809
1810         /* update head page */
1811         if (head_bit)
1812                 cpu_buffer->head_page = list_entry(next_page,
1813                                                 struct buffer_page, list);
1814
1815         /* pages are removed, resume tracing and then free the pages */
1816         atomic_dec(&cpu_buffer->record_disabled);
1817         raw_spin_unlock_irq(&cpu_buffer->reader_lock);
1818
1819         RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1820
1821         /* last buffer page to remove */
1822         last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1823                                 list);
1824         tmp_iter_page = first_page;
1825
1826         do {
1827                 cond_resched();
1828
1829                 to_remove_page = tmp_iter_page;
1830                 rb_inc_page(&tmp_iter_page);
1831
1832                 /* update the counters */
1833                 page_entries = rb_page_entries(to_remove_page);
1834                 if (page_entries) {
1835                         /*
1836                          * If something was added to this page, it was full
1837                          * since it is not the tail page. So we deduct the
1838                          * bytes consumed in ring buffer from here.
1839                          * Increment overrun to account for the lost events.
1840                          */
1841                         local_add(page_entries, &cpu_buffer->overrun);
1842                         local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
1843                         local_inc(&cpu_buffer->pages_lost);
1844                 }
1845
1846                 /*
1847                  * We have already removed references to this list item, just
1848                  * free up the buffer_page and its page
1849                  */
1850                 free_buffer_page(to_remove_page);
1851                 nr_removed--;
1852
1853         } while (to_remove_page != last_page);
1854
1855         RB_WARN_ON(cpu_buffer, nr_removed);
1856
1857         return nr_removed == 0;
1858 }
1859
1860 static bool
1861 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
1862 {
1863         struct list_head *pages = &cpu_buffer->new_pages;
1864         unsigned long flags;
1865         bool success;
1866         int retries;
1867
1868         /* Can be called at early boot up, where interrupts must not been enabled */
1869         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1870         /*
1871          * We are holding the reader lock, so the reader page won't be swapped
1872          * in the ring buffer. Now we are racing with the writer trying to
1873          * move head page and the tail page.
1874          * We are going to adapt the reader page update process where:
1875          * 1. We first splice the start and end of list of new pages between
1876          *    the head page and its previous page.
1877          * 2. We cmpxchg the prev_page->next to point from head page to the
1878          *    start of new pages list.
1879          * 3. Finally, we update the head->prev to the end of new list.
1880          *
1881          * We will try this process 10 times, to make sure that we don't keep
1882          * spinning.
1883          */
1884         retries = 10;
1885         success = false;
1886         while (retries--) {
1887                 struct list_head *head_page, *prev_page;
1888                 struct list_head *last_page, *first_page;
1889                 struct list_head *head_page_with_bit;
1890                 struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
1891
1892                 if (!hpage)
1893                         break;
1894                 head_page = &hpage->list;
1895                 prev_page = head_page->prev;
1896
1897                 first_page = pages->next;
1898                 last_page  = pages->prev;
1899
1900                 head_page_with_bit = (struct list_head *)
1901                                      ((unsigned long)head_page | RB_PAGE_HEAD);
1902
1903                 last_page->next = head_page_with_bit;
1904                 first_page->prev = prev_page;
1905
1906                 /* caution: head_page_with_bit gets updated on cmpxchg failure */
1907                 if (try_cmpxchg(&prev_page->next,
1908                                 &head_page_with_bit, first_page)) {
1909                         /*
1910                          * yay, we replaced the page pointer to our new list,
1911                          * now, we just have to update to head page's prev
1912                          * pointer to point to end of list
1913                          */
1914                         head_page->prev = last_page;
1915                         success = true;
1916                         break;
1917                 }
1918         }
1919
1920         if (success)
1921                 INIT_LIST_HEAD(pages);
1922         /*
1923          * If we weren't successful in adding in new pages, warn and stop
1924          * tracing
1925          */
1926         RB_WARN_ON(cpu_buffer, !success);
1927         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1928
1929         /* free pages if they weren't inserted */
1930         if (!success) {
1931                 struct buffer_page *bpage, *tmp;
1932                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1933                                          list) {
1934                         list_del_init(&bpage->list);
1935                         free_buffer_page(bpage);
1936                 }
1937         }
1938         return success;
1939 }
1940
1941 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
1942 {
1943         bool success;
1944
1945         if (cpu_buffer->nr_pages_to_update > 0)
1946                 success = rb_insert_pages(cpu_buffer);
1947         else
1948                 success = rb_remove_pages(cpu_buffer,
1949                                         -cpu_buffer->nr_pages_to_update);
1950
1951         if (success)
1952                 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
1953 }
1954
1955 static void update_pages_handler(struct work_struct *work)
1956 {
1957         struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1958                         struct ring_buffer_per_cpu, update_pages_work);
1959         rb_update_pages(cpu_buffer);
1960         complete(&cpu_buffer->update_done);
1961 }
1962
1963 /**
1964  * ring_buffer_resize - resize the ring buffer
1965  * @buffer: the buffer to resize.
1966  * @size: the new size.
1967  * @cpu_id: the cpu buffer to resize
1968  *
1969  * Minimum size is 2 * buffer->subbuf_size.
1970  *
1971  * Returns 0 on success and < 0 on failure.
1972  */
1973 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
1974                         int cpu_id)
1975 {
1976         struct ring_buffer_per_cpu *cpu_buffer;
1977         unsigned long nr_pages;
1978         int cpu, err;
1979
1980         /*
1981          * Always succeed at resizing a non-existent buffer:
1982          */
1983         if (!buffer)
1984                 return 0;
1985
1986         /* Make sure the requested buffer exists */
1987         if (cpu_id != RING_BUFFER_ALL_CPUS &&
1988             !cpumask_test_cpu(cpu_id, buffer->cpumask))
1989                 return 0;
1990
1991         nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
1992
1993         /* we need a minimum of two pages */
1994         if (nr_pages < 2)
1995                 nr_pages = 2;
1996
1997         /* prevent another thread from changing buffer sizes */
1998         mutex_lock(&buffer->mutex);
1999         atomic_inc(&buffer->resizing);
2000
2001         if (cpu_id == RING_BUFFER_ALL_CPUS) {
2002                 /*
2003                  * Don't succeed if resizing is disabled, as a reader might be
2004                  * manipulating the ring buffer and is expecting a sane state while
2005                  * this is true.
2006                  */
2007                 for_each_buffer_cpu(buffer, cpu) {
2008                         cpu_buffer = buffer->buffers[cpu];
2009                         if (atomic_read(&cpu_buffer->resize_disabled)) {
2010                                 err = -EBUSY;
2011                                 goto out_err_unlock;
2012                         }
2013                 }
2014
2015                 /* calculate the pages to update */
2016                 for_each_buffer_cpu(buffer, cpu) {
2017                         cpu_buffer = buffer->buffers[cpu];
2018
2019                         cpu_buffer->nr_pages_to_update = nr_pages -
2020                                                         cpu_buffer->nr_pages;
2021                         /*
2022                          * nothing more to do for removing pages or no update
2023                          */
2024                         if (cpu_buffer->nr_pages_to_update <= 0)
2025                                 continue;
2026                         /*
2027                          * to add pages, make sure all new pages can be
2028                          * allocated without receiving ENOMEM
2029                          */
2030                         INIT_LIST_HEAD(&cpu_buffer->new_pages);
2031                         if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2032                                                 &cpu_buffer->new_pages)) {
2033                                 /* not enough memory for new pages */
2034                                 err = -ENOMEM;
2035                                 goto out_err;
2036                         }
2037
2038                         cond_resched();
2039                 }
2040
2041                 cpus_read_lock();
2042                 /*
2043                  * Fire off all the required work handlers
2044                  * We can't schedule on offline CPUs, but it's not necessary
2045                  * since we can change their buffer sizes without any race.
2046                  */
2047                 for_each_buffer_cpu(buffer, cpu) {
2048                         cpu_buffer = buffer->buffers[cpu];
2049                         if (!cpu_buffer->nr_pages_to_update)
2050                                 continue;
2051
2052                         /* Can't run something on an offline CPU. */
2053                         if (!cpu_online(cpu)) {
2054                                 rb_update_pages(cpu_buffer);
2055                                 cpu_buffer->nr_pages_to_update = 0;
2056                         } else {
2057                                 /* Run directly if possible. */
2058                                 migrate_disable();
2059                                 if (cpu != smp_processor_id()) {
2060                                         migrate_enable();
2061                                         schedule_work_on(cpu,
2062                                                          &cpu_buffer->update_pages_work);
2063                                 } else {
2064                                         update_pages_handler(&cpu_buffer->update_pages_work);
2065                                         migrate_enable();
2066                                 }
2067                         }
2068                 }
2069
2070                 /* wait for all the updates to complete */
2071                 for_each_buffer_cpu(buffer, cpu) {
2072                         cpu_buffer = buffer->buffers[cpu];
2073                         if (!cpu_buffer->nr_pages_to_update)
2074                                 continue;
2075
2076                         if (cpu_online(cpu))
2077                                 wait_for_completion(&cpu_buffer->update_done);
2078                         cpu_buffer->nr_pages_to_update = 0;
2079                 }
2080
2081                 cpus_read_unlock();
2082         } else {
2083                 cpu_buffer = buffer->buffers[cpu_id];
2084
2085                 if (nr_pages == cpu_buffer->nr_pages)
2086                         goto out;
2087
2088                 /*
2089                  * Don't succeed if resizing is disabled, as a reader might be
2090                  * manipulating the ring buffer and is expecting a sane state while
2091                  * this is true.
2092                  */
2093                 if (atomic_read(&cpu_buffer->resize_disabled)) {
2094                         err = -EBUSY;
2095                         goto out_err_unlock;
2096                 }
2097
2098                 cpu_buffer->nr_pages_to_update = nr_pages -
2099                                                 cpu_buffer->nr_pages;
2100
2101                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
2102                 if (cpu_buffer->nr_pages_to_update > 0 &&
2103                         __rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2104                                             &cpu_buffer->new_pages)) {
2105                         err = -ENOMEM;
2106                         goto out_err;
2107                 }
2108
2109                 cpus_read_lock();
2110
2111                 /* Can't run something on an offline CPU. */
2112                 if (!cpu_online(cpu_id))
2113                         rb_update_pages(cpu_buffer);
2114                 else {
2115                         /* Run directly if possible. */
2116                         migrate_disable();
2117                         if (cpu_id == smp_processor_id()) {
2118                                 rb_update_pages(cpu_buffer);
2119                                 migrate_enable();
2120                         } else {
2121                                 migrate_enable();
2122                                 schedule_work_on(cpu_id,
2123                                                  &cpu_buffer->update_pages_work);
2124                                 wait_for_completion(&cpu_buffer->update_done);
2125                         }
2126                 }
2127
2128                 cpu_buffer->nr_pages_to_update = 0;
2129                 cpus_read_unlock();
2130         }
2131
2132  out:
2133         /*
2134          * The ring buffer resize can happen with the ring buffer
2135          * enabled, so that the update disturbs the tracing as little
2136          * as possible. But if the buffer is disabled, we do not need
2137          * to worry about that, and we can take the time to verify
2138          * that the buffer is not corrupt.
2139          */
2140         if (atomic_read(&buffer->record_disabled)) {
2141                 atomic_inc(&buffer->record_disabled);
2142                 /*
2143                  * Even though the buffer was disabled, we must make sure
2144                  * that it is truly disabled before calling rb_check_pages.
2145                  * There could have been a race between checking
2146                  * record_disable and incrementing it.
2147                  */
2148                 synchronize_rcu();
2149                 for_each_buffer_cpu(buffer, cpu) {
2150                         cpu_buffer = buffer->buffers[cpu];
2151                         rb_check_pages(cpu_buffer);
2152                 }
2153                 atomic_dec(&buffer->record_disabled);
2154         }
2155
2156         atomic_dec(&buffer->resizing);
2157         mutex_unlock(&buffer->mutex);
2158         return 0;
2159
2160  out_err:
2161         for_each_buffer_cpu(buffer, cpu) {
2162                 struct buffer_page *bpage, *tmp;
2163
2164                 cpu_buffer = buffer->buffers[cpu];
2165                 cpu_buffer->nr_pages_to_update = 0;
2166
2167                 if (list_empty(&cpu_buffer->new_pages))
2168                         continue;
2169
2170                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2171                                         list) {
2172                         list_del_init(&bpage->list);
2173                         free_buffer_page(bpage);
2174                 }
2175         }
2176  out_err_unlock:
2177         atomic_dec(&buffer->resizing);
2178         mutex_unlock(&buffer->mutex);
2179         return err;
2180 }
2181 EXPORT_SYMBOL_GPL(ring_buffer_resize);
2182
2183 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
2184 {
2185         mutex_lock(&buffer->mutex);
2186         if (val)
2187                 buffer->flags |= RB_FL_OVERWRITE;
2188         else
2189                 buffer->flags &= ~RB_FL_OVERWRITE;
2190         mutex_unlock(&buffer->mutex);
2191 }
2192 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
2193
2194 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
2195 {
2196         return bpage->page->data + index;
2197 }
2198
2199 static __always_inline struct ring_buffer_event *
2200 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
2201 {
2202         return __rb_page_index(cpu_buffer->reader_page,
2203                                cpu_buffer->reader_page->read);
2204 }
2205
2206 static struct ring_buffer_event *
2207 rb_iter_head_event(struct ring_buffer_iter *iter)
2208 {
2209         struct ring_buffer_event *event;
2210         struct buffer_page *iter_head_page = iter->head_page;
2211         unsigned long commit;
2212         unsigned length;
2213
2214         if (iter->head != iter->next_event)
2215                 return iter->event;
2216
2217         /*
2218          * When the writer goes across pages, it issues a cmpxchg which
2219          * is a mb(), which will synchronize with the rmb here.
2220          * (see rb_tail_page_update() and __rb_reserve_next())
2221          */
2222         commit = rb_page_commit(iter_head_page);
2223         smp_rmb();
2224
2225         /* An event needs to be at least 8 bytes in size */
2226         if (iter->head > commit - 8)
2227                 goto reset;
2228
2229         event = __rb_page_index(iter_head_page, iter->head);
2230         length = rb_event_length(event);
2231
2232         /*
2233          * READ_ONCE() doesn't work on functions and we don't want the
2234          * compiler doing any crazy optimizations with length.
2235          */
2236         barrier();
2237
2238         if ((iter->head + length) > commit || length > iter->event_size)
2239                 /* Writer corrupted the read? */
2240                 goto reset;
2241
2242         memcpy(iter->event, event, length);
2243         /*
2244          * If the page stamp is still the same after this rmb() then the
2245          * event was safely copied without the writer entering the page.
2246          */
2247         smp_rmb();
2248
2249         /* Make sure the page didn't change since we read this */
2250         if (iter->page_stamp != iter_head_page->page->time_stamp ||
2251             commit > rb_page_commit(iter_head_page))
2252                 goto reset;
2253
2254         iter->next_event = iter->head + length;
2255         return iter->event;
2256  reset:
2257         /* Reset to the beginning */
2258         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2259         iter->head = 0;
2260         iter->next_event = 0;
2261         iter->missed_events = 1;
2262         return NULL;
2263 }
2264
2265 /* Size is determined by what has been committed */
2266 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
2267 {
2268         return rb_page_commit(bpage);
2269 }
2270
2271 static __always_inline unsigned
2272 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
2273 {
2274         return rb_page_commit(cpu_buffer->commit_page);
2275 }
2276
2277 static __always_inline unsigned
2278 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
2279 {
2280         unsigned long addr = (unsigned long)event;
2281
2282         addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
2283
2284         return addr - BUF_PAGE_HDR_SIZE;
2285 }
2286
2287 static void rb_inc_iter(struct ring_buffer_iter *iter)
2288 {
2289         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2290
2291         /*
2292          * The iterator could be on the reader page (it starts there).
2293          * But the head could have moved, since the reader was
2294          * found. Check for this case and assign the iterator
2295          * to the head page instead of next.
2296          */
2297         if (iter->head_page == cpu_buffer->reader_page)
2298                 iter->head_page = rb_set_head_page(cpu_buffer);
2299         else
2300                 rb_inc_page(&iter->head_page);
2301
2302         iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
2303         iter->head = 0;
2304         iter->next_event = 0;
2305 }
2306
2307 /*
2308  * rb_handle_head_page - writer hit the head page
2309  *
2310  * Returns: +1 to retry page
2311  *           0 to continue
2312  *          -1 on error
2313  */
2314 static int
2315 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2316                     struct buffer_page *tail_page,
2317                     struct buffer_page *next_page)
2318 {
2319         struct buffer_page *new_head;
2320         int entries;
2321         int type;
2322         int ret;
2323
2324         entries = rb_page_entries(next_page);
2325
2326         /*
2327          * The hard part is here. We need to move the head
2328          * forward, and protect against both readers on
2329          * other CPUs and writers coming in via interrupts.
2330          */
2331         type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2332                                        RB_PAGE_HEAD);
2333
2334         /*
2335          * type can be one of four:
2336          *  NORMAL - an interrupt already moved it for us
2337          *  HEAD   - we are the first to get here.
2338          *  UPDATE - we are the interrupt interrupting
2339          *           a current move.
2340          *  MOVED  - a reader on another CPU moved the next
2341          *           pointer to its reader page. Give up
2342          *           and try again.
2343          */
2344
2345         switch (type) {
2346         case RB_PAGE_HEAD:
2347                 /*
2348                  * We changed the head to UPDATE, thus
2349                  * it is our responsibility to update
2350                  * the counters.
2351                  */
2352                 local_add(entries, &cpu_buffer->overrun);
2353                 local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
2354                 local_inc(&cpu_buffer->pages_lost);
2355
2356                 /*
2357                  * The entries will be zeroed out when we move the
2358                  * tail page.
2359                  */
2360
2361                 /* still more to do */
2362                 break;
2363
2364         case RB_PAGE_UPDATE:
2365                 /*
2366                  * This is an interrupt that interrupt the
2367                  * previous update. Still more to do.
2368                  */
2369                 break;
2370         case RB_PAGE_NORMAL:
2371                 /*
2372                  * An interrupt came in before the update
2373                  * and processed this for us.
2374                  * Nothing left to do.
2375                  */
2376                 return 1;
2377         case RB_PAGE_MOVED:
2378                 /*
2379                  * The reader is on another CPU and just did
2380                  * a swap with our next_page.
2381                  * Try again.
2382                  */
2383                 return 1;
2384         default:
2385                 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2386                 return -1;
2387         }
2388
2389         /*
2390          * Now that we are here, the old head pointer is
2391          * set to UPDATE. This will keep the reader from
2392          * swapping the head page with the reader page.
2393          * The reader (on another CPU) will spin till
2394          * we are finished.
2395          *
2396          * We just need to protect against interrupts
2397          * doing the job. We will set the next pointer
2398          * to HEAD. After that, we set the old pointer
2399          * to NORMAL, but only if it was HEAD before.
2400          * otherwise we are an interrupt, and only
2401          * want the outer most commit to reset it.
2402          */
2403         new_head = next_page;
2404         rb_inc_page(&new_head);
2405
2406         ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2407                                     RB_PAGE_NORMAL);
2408
2409         /*
2410          * Valid returns are:
2411          *  HEAD   - an interrupt came in and already set it.
2412          *  NORMAL - One of two things:
2413          *            1) We really set it.
2414          *            2) A bunch of interrupts came in and moved
2415          *               the page forward again.
2416          */
2417         switch (ret) {
2418         case RB_PAGE_HEAD:
2419         case RB_PAGE_NORMAL:
2420                 /* OK */
2421                 break;
2422         default:
2423                 RB_WARN_ON(cpu_buffer, 1);
2424                 return -1;
2425         }
2426
2427         /*
2428          * It is possible that an interrupt came in,
2429          * set the head up, then more interrupts came in
2430          * and moved it again. When we get back here,
2431          * the page would have been set to NORMAL but we
2432          * just set it back to HEAD.
2433          *
2434          * How do you detect this? Well, if that happened
2435          * the tail page would have moved.
2436          */
2437         if (ret == RB_PAGE_NORMAL) {
2438                 struct buffer_page *buffer_tail_page;
2439
2440                 buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
2441                 /*
2442                  * If the tail had moved passed next, then we need
2443                  * to reset the pointer.
2444                  */
2445                 if (buffer_tail_page != tail_page &&
2446                     buffer_tail_page != next_page)
2447                         rb_head_page_set_normal(cpu_buffer, new_head,
2448                                                 next_page,
2449                                                 RB_PAGE_HEAD);
2450         }
2451
2452         /*
2453          * If this was the outer most commit (the one that
2454          * changed the original pointer from HEAD to UPDATE),
2455          * then it is up to us to reset it to NORMAL.
2456          */
2457         if (type == RB_PAGE_HEAD) {
2458                 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2459                                               tail_page,
2460                                               RB_PAGE_UPDATE);
2461                 if (RB_WARN_ON(cpu_buffer,
2462                                ret != RB_PAGE_UPDATE))
2463                         return -1;
2464         }
2465
2466         return 0;
2467 }
2468
2469 static inline void
2470 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2471               unsigned long tail, struct rb_event_info *info)
2472 {
2473         unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
2474         struct buffer_page *tail_page = info->tail_page;
2475         struct ring_buffer_event *event;
2476         unsigned long length = info->length;
2477
2478         /*
2479          * Only the event that crossed the page boundary
2480          * must fill the old tail_page with padding.
2481          */
2482         if (tail >= bsize) {
2483                 /*
2484                  * If the page was filled, then we still need
2485                  * to update the real_end. Reset it to zero
2486                  * and the reader will ignore it.
2487                  */
2488                 if (tail == bsize)
2489                         tail_page->real_end = 0;
2490
2491                 local_sub(length, &tail_page->write);
2492                 return;
2493         }
2494
2495         event = __rb_page_index(tail_page, tail);
2496
2497         /*
2498          * Save the original length to the meta data.
2499          * This will be used by the reader to add lost event
2500          * counter.
2501          */
2502         tail_page->real_end = tail;
2503
2504         /*
2505          * If this event is bigger than the minimum size, then
2506          * we need to be careful that we don't subtract the
2507          * write counter enough to allow another writer to slip
2508          * in on this page.
2509          * We put in a discarded commit instead, to make sure
2510          * that this space is not used again, and this space will
2511          * not be accounted into 'entries_bytes'.
2512          *
2513          * If we are less than the minimum size, we don't need to
2514          * worry about it.
2515          */
2516         if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
2517                 /* No room for any events */
2518
2519                 /* Mark the rest of the page with padding */
2520                 rb_event_set_padding(event);
2521
2522                 /* Make sure the padding is visible before the write update */
2523                 smp_wmb();
2524
2525                 /* Set the write back to the previous setting */
2526                 local_sub(length, &tail_page->write);
2527                 return;
2528         }
2529
2530         /* Put in a discarded event */
2531         event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
2532         event->type_len = RINGBUF_TYPE_PADDING;
2533         /* time delta must be non zero */
2534         event->time_delta = 1;
2535
2536         /* account for padding bytes */
2537         local_add(bsize - tail, &cpu_buffer->entries_bytes);
2538
2539         /* Make sure the padding is visible before the tail_page->write update */
2540         smp_wmb();
2541
2542         /* Set write to end of buffer */
2543         length = (tail + length) - bsize;
2544         local_sub(length, &tail_page->write);
2545 }
2546
2547 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
2548
2549 /*
2550  * This is the slow path, force gcc not to inline it.
2551  */
2552 static noinline struct ring_buffer_event *
2553 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2554              unsigned long tail, struct rb_event_info *info)
2555 {
2556         struct buffer_page *tail_page = info->tail_page;
2557         struct buffer_page *commit_page = cpu_buffer->commit_page;
2558         struct trace_buffer *buffer = cpu_buffer->buffer;
2559         struct buffer_page *next_page;
2560         int ret;
2561
2562         next_page = tail_page;
2563
2564         rb_inc_page(&next_page);
2565
2566         /*
2567          * If for some reason, we had an interrupt storm that made
2568          * it all the way around the buffer, bail, and warn
2569          * about it.
2570          */
2571         if (unlikely(next_page == commit_page)) {
2572                 local_inc(&cpu_buffer->commit_overrun);
2573                 goto out_reset;
2574         }
2575
2576         /*
2577          * This is where the fun begins!
2578          *
2579          * We are fighting against races between a reader that
2580          * could be on another CPU trying to swap its reader
2581          * page with the buffer head.
2582          *
2583          * We are also fighting against interrupts coming in and
2584          * moving the head or tail on us as well.
2585          *
2586          * If the next page is the head page then we have filled
2587          * the buffer, unless the commit page is still on the
2588          * reader page.
2589          */
2590         if (rb_is_head_page(next_page, &tail_page->list)) {
2591
2592                 /*
2593                  * If the commit is not on the reader page, then
2594                  * move the header page.
2595                  */
2596                 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2597                         /*
2598                          * If we are not in overwrite mode,
2599                          * this is easy, just stop here.
2600                          */
2601                         if (!(buffer->flags & RB_FL_OVERWRITE)) {
2602                                 local_inc(&cpu_buffer->dropped_events);
2603                                 goto out_reset;
2604                         }
2605
2606                         ret = rb_handle_head_page(cpu_buffer,
2607                                                   tail_page,
2608                                                   next_page);
2609                         if (ret < 0)
2610                                 goto out_reset;
2611                         if (ret)
2612                                 goto out_again;
2613                 } else {
2614                         /*
2615                          * We need to be careful here too. The
2616                          * commit page could still be on the reader
2617                          * page. We could have a small buffer, and
2618                          * have filled up the buffer with events
2619                          * from interrupts and such, and wrapped.
2620                          *
2621                          * Note, if the tail page is also on the
2622                          * reader_page, we let it move out.
2623                          */
2624                         if (unlikely((cpu_buffer->commit_page !=
2625                                       cpu_buffer->tail_page) &&
2626                                      (cpu_buffer->commit_page ==
2627                                       cpu_buffer->reader_page))) {
2628                                 local_inc(&cpu_buffer->commit_overrun);
2629                                 goto out_reset;
2630                         }
2631                 }
2632         }
2633
2634         rb_tail_page_update(cpu_buffer, tail_page, next_page);
2635
2636  out_again:
2637
2638         rb_reset_tail(cpu_buffer, tail, info);
2639
2640         /* Commit what we have for now. */
2641         rb_end_commit(cpu_buffer);
2642         /* rb_end_commit() decs committing */
2643         local_inc(&cpu_buffer->committing);
2644
2645         /* fail and let the caller try again */
2646         return ERR_PTR(-EAGAIN);
2647
2648  out_reset:
2649         /* reset write */
2650         rb_reset_tail(cpu_buffer, tail, info);
2651
2652         return NULL;
2653 }
2654
2655 /* Slow path */
2656 static struct ring_buffer_event *
2657 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2658                   struct ring_buffer_event *event, u64 delta, bool abs)
2659 {
2660         if (abs)
2661                 event->type_len = RINGBUF_TYPE_TIME_STAMP;
2662         else
2663                 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2664
2665         /* Not the first event on the page, or not delta? */
2666         if (abs || rb_event_index(cpu_buffer, event)) {
2667                 event->time_delta = delta & TS_MASK;
2668                 event->array[0] = delta >> TS_SHIFT;
2669         } else {
2670                 /* nope, just zero it */
2671                 event->time_delta = 0;
2672                 event->array[0] = 0;
2673         }
2674
2675         return skip_time_extend(event);
2676 }
2677
2678 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2679 static inline bool sched_clock_stable(void)
2680 {
2681         return true;
2682 }
2683 #endif
2684
2685 static void
2686 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2687                    struct rb_event_info *info)
2688 {
2689         u64 write_stamp;
2690
2691         WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
2692                   (unsigned long long)info->delta,
2693                   (unsigned long long)info->ts,
2694                   (unsigned long long)info->before,
2695                   (unsigned long long)info->after,
2696                   (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
2697                   sched_clock_stable() ? "" :
2698                   "If you just came from a suspend/resume,\n"
2699                   "please switch to the trace global clock:\n"
2700                   "  echo global > /sys/kernel/tracing/trace_clock\n"
2701                   "or add trace_clock=global to the kernel command line\n");
2702 }
2703
2704 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
2705                                       struct ring_buffer_event **event,
2706                                       struct rb_event_info *info,
2707                                       u64 *delta,
2708                                       unsigned int *length)
2709 {
2710         bool abs = info->add_timestamp &
2711                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
2712
2713         if (unlikely(info->delta > (1ULL << 59))) {
2714                 /*
2715                  * Some timers can use more than 59 bits, and when a timestamp
2716                  * is added to the buffer, it will lose those bits.
2717                  */
2718                 if (abs && (info->ts & TS_MSB)) {
2719                         info->delta &= ABS_TS_MASK;
2720
2721                 /* did the clock go backwards */
2722                 } else if (info->before == info->after && info->before > info->ts) {
2723                         /* not interrupted */
2724                         static int once;
2725
2726                         /*
2727                          * This is possible with a recalibrating of the TSC.
2728                          * Do not produce a call stack, but just report it.
2729                          */
2730                         if (!once) {
2731                                 once++;
2732                                 pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
2733                                         info->before, info->ts);
2734                         }
2735                 } else
2736                         rb_check_timestamp(cpu_buffer, info);
2737                 if (!abs)
2738                         info->delta = 0;
2739         }
2740         *event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
2741         *length -= RB_LEN_TIME_EXTEND;
2742         *delta = 0;
2743 }
2744
2745 /**
2746  * rb_update_event - update event type and data
2747  * @cpu_buffer: The per cpu buffer of the @event
2748  * @event: the event to update
2749  * @info: The info to update the @event with (contains length and delta)
2750  *
2751  * Update the type and data fields of the @event. The length
2752  * is the actual size that is written to the ring buffer,
2753  * and with this, we can determine what to place into the
2754  * data field.
2755  */
2756 static void
2757 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2758                 struct ring_buffer_event *event,
2759                 struct rb_event_info *info)
2760 {
2761         unsigned length = info->length;
2762         u64 delta = info->delta;
2763         unsigned int nest = local_read(&cpu_buffer->committing) - 1;
2764
2765         if (!WARN_ON_ONCE(nest >= MAX_NEST))
2766                 cpu_buffer->event_stamp[nest] = info->ts;
2767
2768         /*
2769          * If we need to add a timestamp, then we
2770          * add it to the start of the reserved space.
2771          */
2772         if (unlikely(info->add_timestamp))
2773                 rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
2774
2775         event->time_delta = delta;
2776         length -= RB_EVNT_HDR_SIZE;
2777         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2778                 event->type_len = 0;
2779                 event->array[0] = length;
2780         } else
2781                 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
2782 }
2783
2784 static unsigned rb_calculate_event_length(unsigned length)
2785 {
2786         struct ring_buffer_event event; /* Used only for sizeof array */
2787
2788         /* zero length can cause confusions */
2789         if (!length)
2790                 length++;
2791
2792         if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
2793                 length += sizeof(event.array[0]);
2794
2795         length += RB_EVNT_HDR_SIZE;
2796         length = ALIGN(length, RB_ARCH_ALIGNMENT);
2797
2798         /*
2799          * In case the time delta is larger than the 27 bits for it
2800          * in the header, we need to add a timestamp. If another
2801          * event comes in when trying to discard this one to increase
2802          * the length, then the timestamp will be added in the allocated
2803          * space of this event. If length is bigger than the size needed
2804          * for the TIME_EXTEND, then padding has to be used. The events
2805          * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2806          * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2807          * As length is a multiple of 4, we only need to worry if it
2808          * is 12 (RB_LEN_TIME_EXTEND + 4).
2809          */
2810         if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
2811                 length += RB_ALIGNMENT;
2812
2813         return length;
2814 }
2815
2816 static inline bool
2817 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2818                   struct ring_buffer_event *event)
2819 {
2820         unsigned long new_index, old_index;
2821         struct buffer_page *bpage;
2822         unsigned long addr;
2823
2824         new_index = rb_event_index(cpu_buffer, event);
2825         old_index = new_index + rb_event_ts_length(event);
2826         addr = (unsigned long)event;
2827         addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
2828
2829         bpage = READ_ONCE(cpu_buffer->tail_page);
2830
2831         /*
2832          * Make sure the tail_page is still the same and
2833          * the next write location is the end of this event
2834          */
2835         if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
2836                 unsigned long write_mask =
2837                         local_read(&bpage->write) & ~RB_WRITE_MASK;
2838                 unsigned long event_length = rb_event_length(event);
2839
2840                 /*
2841                  * For the before_stamp to be different than the write_stamp
2842                  * to make sure that the next event adds an absolute
2843                  * value and does not rely on the saved write stamp, which
2844                  * is now going to be bogus.
2845                  *
2846                  * By setting the before_stamp to zero, the next event
2847                  * is not going to use the write_stamp and will instead
2848                  * create an absolute timestamp. This means there's no
2849                  * reason to update the wirte_stamp!
2850                  */
2851                 rb_time_set(&cpu_buffer->before_stamp, 0);
2852
2853                 /*
2854                  * If an event were to come in now, it would see that the
2855                  * write_stamp and the before_stamp are different, and assume
2856                  * that this event just added itself before updating
2857                  * the write stamp. The interrupting event will fix the
2858                  * write stamp for us, and use an absolute timestamp.
2859                  */
2860
2861                 /*
2862                  * This is on the tail page. It is possible that
2863                  * a write could come in and move the tail page
2864                  * and write to the next page. That is fine
2865                  * because we just shorten what is on this page.
2866                  */
2867                 old_index += write_mask;
2868                 new_index += write_mask;
2869
2870                 /* caution: old_index gets updated on cmpxchg failure */
2871                 if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
2872                         /* update counters */
2873                         local_sub(event_length, &cpu_buffer->entries_bytes);
2874                         return true;
2875                 }
2876         }
2877
2878         /* could not discard */
2879         return false;
2880 }
2881
2882 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2883 {
2884         local_inc(&cpu_buffer->committing);
2885         local_inc(&cpu_buffer->commits);
2886 }
2887
2888 static __always_inline void
2889 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
2890 {
2891         unsigned long max_count;
2892
2893         /*
2894          * We only race with interrupts and NMIs on this CPU.
2895          * If we own the commit event, then we can commit
2896          * all others that interrupted us, since the interruptions
2897          * are in stack format (they finish before they come
2898          * back to us). This allows us to do a simple loop to
2899          * assign the commit to the tail.
2900          */
2901  again:
2902         max_count = cpu_buffer->nr_pages * 100;
2903
2904         while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
2905                 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
2906                         return;
2907                 if (RB_WARN_ON(cpu_buffer,
2908                                rb_is_reader_page(cpu_buffer->tail_page)))
2909                         return;
2910                 /*
2911                  * No need for a memory barrier here, as the update
2912                  * of the tail_page did it for this page.
2913                  */
2914                 local_set(&cpu_buffer->commit_page->page->commit,
2915                           rb_page_write(cpu_buffer->commit_page));
2916                 rb_inc_page(&cpu_buffer->commit_page);
2917                 /* add barrier to keep gcc from optimizing too much */
2918                 barrier();
2919         }
2920         while (rb_commit_index(cpu_buffer) !=
2921                rb_page_write(cpu_buffer->commit_page)) {
2922
2923                 /* Make sure the readers see the content of what is committed. */
2924                 smp_wmb();
2925                 local_set(&cpu_buffer->commit_page->page->commit,
2926                           rb_page_write(cpu_buffer->commit_page));
2927                 RB_WARN_ON(cpu_buffer,
2928                            local_read(&cpu_buffer->commit_page->page->commit) &
2929                            ~RB_WRITE_MASK);
2930                 barrier();
2931         }
2932
2933         /* again, keep gcc from optimizing */
2934         barrier();
2935
2936         /*
2937          * If an interrupt came in just after the first while loop
2938          * and pushed the tail page forward, we will be left with
2939          * a dangling commit that will never go forward.
2940          */
2941         if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
2942                 goto again;
2943 }
2944
2945 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2946 {
2947         unsigned long commits;
2948
2949         if (RB_WARN_ON(cpu_buffer,
2950                        !local_read(&cpu_buffer->committing)))
2951                 return;
2952
2953  again:
2954         commits = local_read(&cpu_buffer->commits);
2955         /* synchronize with interrupts */
2956         barrier();
2957         if (local_read(&cpu_buffer->committing) == 1)
2958                 rb_set_commit_to_write(cpu_buffer);
2959
2960         local_dec(&cpu_buffer->committing);
2961
2962         /* synchronize with interrupts */
2963         barrier();
2964
2965         /*
2966          * Need to account for interrupts coming in between the
2967          * updating of the commit page and the clearing of the
2968          * committing counter.
2969          */
2970         if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2971             !local_read(&cpu_buffer->committing)) {
2972                 local_inc(&cpu_buffer->committing);
2973                 goto again;
2974         }
2975 }
2976
2977 static inline void rb_event_discard(struct ring_buffer_event *event)
2978 {
2979         if (extended_time(event))
2980                 event = skip_time_extend(event);
2981
2982         /* array[0] holds the actual length for the discarded event */
2983         event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2984         event->type_len = RINGBUF_TYPE_PADDING;
2985         /* time delta must be non zero */
2986         if (!event->time_delta)
2987                 event->time_delta = 1;
2988 }
2989
2990 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
2991 {
2992         local_inc(&cpu_buffer->entries);
2993         rb_end_commit(cpu_buffer);
2994 }
2995
2996 static __always_inline void
2997 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2998 {
2999         if (buffer->irq_work.waiters_pending) {
3000                 buffer->irq_work.waiters_pending = false;
3001                 /* irq_work_queue() supplies it's own memory barriers */
3002                 irq_work_queue(&buffer->irq_work.work);
3003         }
3004
3005         if (cpu_buffer->irq_work.waiters_pending) {
3006                 cpu_buffer->irq_work.waiters_pending = false;
3007                 /* irq_work_queue() supplies it's own memory barriers */
3008                 irq_work_queue(&cpu_buffer->irq_work.work);
3009         }
3010
3011         if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3012                 return;
3013
3014         if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3015                 return;
3016
3017         if (!cpu_buffer->irq_work.full_waiters_pending)
3018                 return;
3019
3020         cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3021
3022         if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3023                 return;
3024
3025         cpu_buffer->irq_work.wakeup_full = true;
3026         cpu_buffer->irq_work.full_waiters_pending = false;
3027         /* irq_work_queue() supplies it's own memory barriers */
3028         irq_work_queue(&cpu_buffer->irq_work.work);
3029 }
3030
3031 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3032 # define do_ring_buffer_record_recursion()      \
3033         do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3034 #else
3035 # define do_ring_buffer_record_recursion() do { } while (0)
3036 #endif
3037
3038 /*
3039  * The lock and unlock are done within a preempt disable section.
3040  * The current_context per_cpu variable can only be modified
3041  * by the current task between lock and unlock. But it can
3042  * be modified more than once via an interrupt. To pass this
3043  * information from the lock to the unlock without having to
3044  * access the 'in_interrupt()' functions again (which do show
3045  * a bit of overhead in something as critical as function tracing,
3046  * we use a bitmask trick.
3047  *
3048  *  bit 1 =  NMI context
3049  *  bit 2 =  IRQ context
3050  *  bit 3 =  SoftIRQ context
3051  *  bit 4 =  normal context.
3052  *
3053  * This works because this is the order of contexts that can
3054  * preempt other contexts. A SoftIRQ never preempts an IRQ
3055  * context.
3056  *
3057  * When the context is determined, the corresponding bit is
3058  * checked and set (if it was set, then a recursion of that context
3059  * happened).
3060  *
3061  * On unlock, we need to clear this bit. To do so, just subtract
3062  * 1 from the current_context and AND it to itself.
3063  *
3064  * (binary)
3065  *  101 - 1 = 100
3066  *  101 & 100 = 100 (clearing bit zero)
3067  *
3068  *  1010 - 1 = 1001
3069  *  1010 & 1001 = 1000 (clearing bit 1)
3070  *
3071  * The least significant bit can be cleared this way, and it
3072  * just so happens that it is the same bit corresponding to
3073  * the current context.
3074  *
3075  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3076  * is set when a recursion is detected at the current context, and if
3077  * the TRANSITION bit is already set, it will fail the recursion.
3078  * This is needed because there's a lag between the changing of
3079  * interrupt context and updating the preempt count. In this case,
3080  * a false positive will be found. To handle this, one extra recursion
3081  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3082  * bit is already set, then it is considered a recursion and the function
3083  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3084  *
3085  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3086  * to be cleared. Even if it wasn't the context that set it. That is,
3087  * if an interrupt comes in while NORMAL bit is set and the ring buffer
3088  * is called before preempt_count() is updated, since the check will
3089  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
3090  * NMI then comes in, it will set the NMI bit, but when the NMI code
3091  * does the trace_recursive_unlock() it will clear the TRANSITION bit
3092  * and leave the NMI bit set. But this is fine, because the interrupt
3093  * code that set the TRANSITION bit will then clear the NMI bit when it
3094  * calls trace_recursive_unlock(). If another NMI comes in, it will
3095  * set the TRANSITION bit and continue.
3096  *
3097  * Note: The TRANSITION bit only handles a single transition between context.
3098  */
3099
3100 static __always_inline bool
3101 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
3102 {
3103         unsigned int val = cpu_buffer->current_context;
3104         int bit = interrupt_context_level();
3105
3106         bit = RB_CTX_NORMAL - bit;
3107
3108         if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
3109                 /*
3110                  * It is possible that this was called by transitioning
3111                  * between interrupt context, and preempt_count() has not
3112                  * been updated yet. In this case, use the TRANSITION bit.
3113                  */
3114                 bit = RB_CTX_TRANSITION;
3115                 if (val & (1 << (bit + cpu_buffer->nest))) {
3116                         do_ring_buffer_record_recursion();
3117                         return true;
3118                 }
3119         }
3120
3121         val |= (1 << (bit + cpu_buffer->nest));
3122         cpu_buffer->current_context = val;
3123
3124         return false;
3125 }
3126
3127 static __always_inline void
3128 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
3129 {
3130         cpu_buffer->current_context &=
3131                 cpu_buffer->current_context - (1 << cpu_buffer->nest);
3132 }
3133
3134 /* The recursive locking above uses 5 bits */
3135 #define NESTED_BITS 5
3136
3137 /**
3138  * ring_buffer_nest_start - Allow to trace while nested
3139  * @buffer: The ring buffer to modify
3140  *
3141  * The ring buffer has a safety mechanism to prevent recursion.
3142  * But there may be a case where a trace needs to be done while
3143  * tracing something else. In this case, calling this function
3144  * will allow this function to nest within a currently active
3145  * ring_buffer_lock_reserve().
3146  *
3147  * Call this function before calling another ring_buffer_lock_reserve() and
3148  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
3149  */
3150 void ring_buffer_nest_start(struct trace_buffer *buffer)
3151 {
3152         struct ring_buffer_per_cpu *cpu_buffer;
3153         int cpu;
3154
3155         /* Enabled by ring_buffer_nest_end() */
3156         preempt_disable_notrace();
3157         cpu = raw_smp_processor_id();
3158         cpu_buffer = buffer->buffers[cpu];
3159         /* This is the shift value for the above recursive locking */
3160         cpu_buffer->nest += NESTED_BITS;
3161 }
3162
3163 /**
3164  * ring_buffer_nest_end - Allow to trace while nested
3165  * @buffer: The ring buffer to modify
3166  *
3167  * Must be called after ring_buffer_nest_start() and after the
3168  * ring_buffer_unlock_commit().
3169  */
3170 void ring_buffer_nest_end(struct trace_buffer *buffer)
3171 {
3172         struct ring_buffer_per_cpu *cpu_buffer;
3173         int cpu;
3174
3175         /* disabled by ring_buffer_nest_start() */
3176         cpu = raw_smp_processor_id();
3177         cpu_buffer = buffer->buffers[cpu];
3178         /* This is the shift value for the above recursive locking */
3179         cpu_buffer->nest -= NESTED_BITS;
3180         preempt_enable_notrace();
3181 }
3182
3183 /**
3184  * ring_buffer_unlock_commit - commit a reserved
3185  * @buffer: The buffer to commit to
3186  *
3187  * This commits the data to the ring buffer, and releases any locks held.
3188  *
3189  * Must be paired with ring_buffer_lock_reserve.
3190  */
3191 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
3192 {
3193         struct ring_buffer_per_cpu *cpu_buffer;
3194         int cpu = raw_smp_processor_id();
3195
3196         cpu_buffer = buffer->buffers[cpu];
3197
3198         rb_commit(cpu_buffer);
3199
3200         rb_wakeups(buffer, cpu_buffer);
3201
3202         trace_recursive_unlock(cpu_buffer);
3203
3204         preempt_enable_notrace();
3205
3206         return 0;
3207 }
3208 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
3209
3210 /* Special value to validate all deltas on a page. */
3211 #define CHECK_FULL_PAGE         1L
3212
3213 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
3214
3215 static const char *show_irq_str(int bits)
3216 {
3217         const char *type[] = {
3218                 ".",    // 0
3219                 "s",    // 1
3220                 "h",    // 2
3221                 "Hs",   // 3
3222                 "n",    // 4
3223                 "Ns",   // 5
3224                 "Nh",   // 6
3225                 "NHs",  // 7
3226         };
3227
3228         return type[bits];
3229 }
3230
3231 /* Assume this is an trace event */
3232 static const char *show_flags(struct ring_buffer_event *event)
3233 {
3234         struct trace_entry *entry;
3235         int bits = 0;
3236
3237         if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3238                 return "X";
3239
3240         entry = ring_buffer_event_data(event);
3241
3242         if (entry->flags & TRACE_FLAG_SOFTIRQ)
3243                 bits |= 1;
3244
3245         if (entry->flags & TRACE_FLAG_HARDIRQ)
3246                 bits |= 2;
3247
3248         if (entry->flags & TRACE_FLAG_NMI)
3249                 bits |= 4;
3250
3251         return show_irq_str(bits);
3252 }
3253
3254 static const char *show_irq(struct ring_buffer_event *event)
3255 {
3256         struct trace_entry *entry;
3257
3258         if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
3259                 return "";
3260
3261         entry = ring_buffer_event_data(event);
3262         if (entry->flags & TRACE_FLAG_IRQS_OFF)
3263                 return "d";
3264         return "";
3265 }
3266
3267 static const char *show_interrupt_level(void)
3268 {
3269         unsigned long pc = preempt_count();
3270         unsigned char level = 0;
3271
3272         if (pc & SOFTIRQ_OFFSET)
3273                 level |= 1;
3274
3275         if (pc & HARDIRQ_MASK)
3276                 level |= 2;
3277
3278         if (pc & NMI_MASK)
3279                 level |= 4;
3280
3281         return show_irq_str(level);
3282 }
3283
3284 static void dump_buffer_page(struct buffer_data_page *bpage,
3285                              struct rb_event_info *info,
3286                              unsigned long tail)
3287 {
3288         struct ring_buffer_event *event;
3289         u64 ts, delta;
3290         int e;
3291
3292         ts = bpage->time_stamp;
3293         pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
3294
3295         for (e = 0; e < tail; e += rb_event_length(event)) {
3296
3297                 event = (struct ring_buffer_event *)(bpage->data + e);
3298
3299                 switch (event->type_len) {
3300
3301                 case RINGBUF_TYPE_TIME_EXTEND:
3302                         delta = rb_event_time_stamp(event);
3303                         ts += delta;
3304                         pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
3305                                 e, ts, delta);
3306                         break;
3307
3308                 case RINGBUF_TYPE_TIME_STAMP:
3309                         delta = rb_event_time_stamp(event);
3310                         ts = rb_fix_abs_ts(delta, ts);
3311                         pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
3312                                 e, ts, delta);
3313                         break;
3314
3315                 case RINGBUF_TYPE_PADDING:
3316                         ts += event->time_delta;
3317                         pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
3318                                 e, ts, event->time_delta);
3319                         break;
3320
3321                 case RINGBUF_TYPE_DATA:
3322                         ts += event->time_delta;
3323                         pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
3324                                 e, ts, event->time_delta,
3325                                 show_flags(event), show_irq(event));
3326                         break;
3327
3328                 default:
3329                         break;
3330                 }
3331         }
3332         pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
3333 }
3334
3335 static DEFINE_PER_CPU(atomic_t, checking);
3336 static atomic_t ts_dump;
3337
3338 #define buffer_warn_return(fmt, ...)                                    \
3339         do {                                                            \
3340                 /* If another report is happening, ignore this one */   \
3341                 if (atomic_inc_return(&ts_dump) != 1) {                 \
3342                         atomic_dec(&ts_dump);                           \
3343                         goto out;                                       \
3344                 }                                                       \
3345                 atomic_inc(&cpu_buffer->record_disabled);               \
3346                 pr_warn(fmt, ##__VA_ARGS__);                            \
3347                 dump_buffer_page(bpage, info, tail);                    \
3348                 atomic_dec(&ts_dump);                                   \
3349                 /* There's some cases in boot up that this can happen */ \
3350                 if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))       \
3351                         /* Do not re-enable checking */                 \
3352                         return;                                         \
3353         } while (0)
3354
3355 /*
3356  * Check if the current event time stamp matches the deltas on
3357  * the buffer page.
3358  */
3359 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3360                          struct rb_event_info *info,
3361                          unsigned long tail)
3362 {
3363         struct ring_buffer_event *event;
3364         struct buffer_data_page *bpage;
3365         u64 ts, delta;
3366         bool full = false;
3367         int e;
3368
3369         bpage = info->tail_page->page;
3370
3371         if (tail == CHECK_FULL_PAGE) {
3372                 full = true;
3373                 tail = local_read(&bpage->commit);
3374         } else if (info->add_timestamp &
3375                    (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
3376                 /* Ignore events with absolute time stamps */
3377                 return;
3378         }
3379
3380         /*
3381          * Do not check the first event (skip possible extends too).
3382          * Also do not check if previous events have not been committed.
3383          */
3384         if (tail <= 8 || tail > local_read(&bpage->commit))
3385                 return;
3386
3387         /*
3388          * If this interrupted another event,
3389          */
3390         if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
3391                 goto out;
3392
3393         ts = bpage->time_stamp;
3394
3395         for (e = 0; e < tail; e += rb_event_length(event)) {
3396
3397                 event = (struct ring_buffer_event *)(bpage->data + e);
3398
3399                 switch (event->type_len) {
3400
3401                 case RINGBUF_TYPE_TIME_EXTEND:
3402                         delta = rb_event_time_stamp(event);
3403                         ts += delta;
3404                         break;
3405
3406                 case RINGBUF_TYPE_TIME_STAMP:
3407                         delta = rb_event_time_stamp(event);
3408                         delta = rb_fix_abs_ts(delta, ts);
3409                         if (delta < ts) {
3410                                 buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
3411                                                    cpu_buffer->cpu, ts, delta);
3412                         }
3413                         ts = delta;
3414                         break;
3415
3416                 case RINGBUF_TYPE_PADDING:
3417                         if (event->time_delta == 1)
3418                                 break;
3419                         fallthrough;
3420                 case RINGBUF_TYPE_DATA:
3421                         ts += event->time_delta;
3422                         break;
3423
3424                 default:
3425                         RB_WARN_ON(cpu_buffer, 1);
3426                 }
3427         }
3428         if ((full && ts > info->ts) ||
3429             (!full && ts + info->delta != info->ts)) {
3430                 buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
3431                                    cpu_buffer->cpu,
3432                                    ts + info->delta, info->ts, info->delta,
3433                                    info->before, info->after,
3434                                    full ? " (full)" : "", show_interrupt_level());
3435         }
3436 out:
3437         atomic_dec(this_cpu_ptr(&checking));
3438 }
3439 #else
3440 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
3441                          struct rb_event_info *info,
3442                          unsigned long tail)
3443 {
3444 }
3445 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
3446
3447 static struct ring_buffer_event *
3448 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
3449                   struct rb_event_info *info)
3450 {
3451         struct ring_buffer_event *event;
3452         struct buffer_page *tail_page;
3453         unsigned long tail, write, w;
3454
3455         /* Don't let the compiler play games with cpu_buffer->tail_page */
3456         tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
3457
3458  /*A*/  w = local_read(&tail_page->write) & RB_WRITE_MASK;
3459         barrier();
3460         rb_time_read(&cpu_buffer->before_stamp, &info->before);
3461         rb_time_read(&cpu_buffer->write_stamp, &info->after);
3462         barrier();
3463         info->ts = rb_time_stamp(cpu_buffer->buffer);
3464
3465         if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
3466                 info->delta = info->ts;
3467         } else {
3468                 /*
3469                  * If interrupting an event time update, we may need an
3470                  * absolute timestamp.
3471                  * Don't bother if this is the start of a new page (w == 0).
3472                  */
3473                 if (!w) {
3474                         /* Use the sub-buffer timestamp */
3475                         info->delta = 0;
3476                 } else if (unlikely(info->before != info->after)) {
3477                         info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
3478                         info->length += RB_LEN_TIME_EXTEND;
3479                 } else {
3480                         info->delta = info->ts - info->after;
3481                         if (unlikely(test_time_stamp(info->delta))) {
3482                                 info->add_timestamp |= RB_ADD_STAMP_EXTEND;
3483                                 info->length += RB_LEN_TIME_EXTEND;
3484                         }
3485                 }
3486         }
3487
3488  /*B*/  rb_time_set(&cpu_buffer->before_stamp, info->ts);
3489
3490  /*C*/  write = local_add_return(info->length, &tail_page->write);
3491
3492         /* set write to only the index of the write */
3493         write &= RB_WRITE_MASK;
3494
3495         tail = write - info->length;
3496
3497         /* See if we shot pass the end of this buffer page */
3498         if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
3499                 check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
3500                 return rb_move_tail(cpu_buffer, tail, info);
3501         }
3502
3503         if (likely(tail == w)) {
3504                 /* Nothing interrupted us between A and C */
3505  /*D*/          rb_time_set(&cpu_buffer->write_stamp, info->ts);
3506                 /*
3507                  * If something came in between C and D, the write stamp
3508                  * may now not be in sync. But that's fine as the before_stamp
3509                  * will be different and then next event will just be forced
3510                  * to use an absolute timestamp.
3511                  */
3512                 if (likely(!(info->add_timestamp &
3513                              (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3514                         /* This did not interrupt any time update */
3515                         info->delta = info->ts - info->after;
3516                 else
3517                         /* Just use full timestamp for interrupting event */
3518                         info->delta = info->ts;
3519                 check_buffer(cpu_buffer, info, tail);
3520         } else {
3521                 u64 ts;
3522                 /* SLOW PATH - Interrupted between A and C */
3523
3524                 /* Save the old before_stamp */
3525                 rb_time_read(&cpu_buffer->before_stamp, &info->before);
3526
3527                 /*
3528                  * Read a new timestamp and update the before_stamp to make
3529                  * the next event after this one force using an absolute
3530                  * timestamp. This is in case an interrupt were to come in
3531                  * between E and F.
3532                  */
3533                 ts = rb_time_stamp(cpu_buffer->buffer);
3534                 rb_time_set(&cpu_buffer->before_stamp, ts);
3535
3536                 barrier();
3537  /*E*/          rb_time_read(&cpu_buffer->write_stamp, &info->after);
3538                 barrier();
3539  /*F*/          if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
3540                     info->after == info->before && info->after < ts) {
3541                         /*
3542                          * Nothing came after this event between C and F, it is
3543                          * safe to use info->after for the delta as it
3544                          * matched info->before and is still valid.
3545                          */
3546                         info->delta = ts - info->after;
3547                 } else {
3548                         /*
3549                          * Interrupted between C and F:
3550                          * Lost the previous events time stamp. Just set the
3551                          * delta to zero, and this will be the same time as
3552                          * the event this event interrupted. And the events that
3553                          * came after this will still be correct (as they would
3554                          * have built their delta on the previous event.
3555                          */
3556                         info->delta = 0;
3557                 }
3558                 info->ts = ts;
3559                 info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
3560         }
3561
3562         /*
3563          * If this is the first commit on the page, then it has the same
3564          * timestamp as the page itself.
3565          */
3566         if (unlikely(!tail && !(info->add_timestamp &
3567                                 (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
3568                 info->delta = 0;
3569
3570         /* We reserved something on the buffer */
3571
3572         event = __rb_page_index(tail_page, tail);
3573         rb_update_event(cpu_buffer, event, info);
3574
3575         local_inc(&tail_page->entries);
3576
3577         /*
3578          * If this is the first commit on the page, then update
3579          * its timestamp.
3580          */
3581         if (unlikely(!tail))
3582                 tail_page->page->time_stamp = info->ts;
3583
3584         /* account for these added bytes */
3585         local_add(info->length, &cpu_buffer->entries_bytes);
3586
3587         return event;
3588 }
3589
3590 static __always_inline struct ring_buffer_event *
3591 rb_reserve_next_event(struct trace_buffer *buffer,
3592                       struct ring_buffer_per_cpu *cpu_buffer,
3593                       unsigned long length)
3594 {
3595         struct ring_buffer_event *event;
3596         struct rb_event_info info;
3597         int nr_loops = 0;
3598         int add_ts_default;
3599
3600         /* ring buffer does cmpxchg, make sure it is safe in NMI context */
3601         if (!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) &&
3602             (unlikely(in_nmi()))) {
3603                 return NULL;
3604         }
3605
3606         rb_start_commit(cpu_buffer);
3607         /* The commit page can not change after this */
3608
3609 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3610         /*
3611          * Due to the ability to swap a cpu buffer from a buffer
3612          * it is possible it was swapped before we committed.
3613          * (committing stops a swap). We check for it here and
3614          * if it happened, we have to fail the write.
3615          */
3616         barrier();
3617         if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
3618                 local_dec(&cpu_buffer->committing);
3619                 local_dec(&cpu_buffer->commits);
3620                 return NULL;
3621         }
3622 #endif
3623
3624         info.length = rb_calculate_event_length(length);
3625
3626         if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
3627                 add_ts_default = RB_ADD_STAMP_ABSOLUTE;
3628                 info.length += RB_LEN_TIME_EXTEND;
3629                 if (info.length > cpu_buffer->buffer->max_data_size)
3630                         goto out_fail;
3631         } else {
3632                 add_ts_default = RB_ADD_STAMP_NONE;
3633         }
3634
3635  again:
3636         info.add_timestamp = add_ts_default;
3637         info.delta = 0;
3638
3639         /*
3640          * We allow for interrupts to reenter here and do a trace.
3641          * If one does, it will cause this original code to loop
3642          * back here. Even with heavy interrupts happening, this
3643          * should only happen a few times in a row. If this happens
3644          * 1000 times in a row, there must be either an interrupt
3645          * storm or we have something buggy.
3646          * Bail!
3647          */
3648         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
3649                 goto out_fail;
3650
3651         event = __rb_reserve_next(cpu_buffer, &info);
3652
3653         if (unlikely(PTR_ERR(event) == -EAGAIN)) {
3654                 if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
3655                         info.length -= RB_LEN_TIME_EXTEND;
3656                 goto again;
3657         }
3658
3659         if (likely(event))
3660                 return event;
3661  out_fail:
3662         rb_end_commit(cpu_buffer);
3663         return NULL;
3664 }
3665
3666 /**
3667  * ring_buffer_lock_reserve - reserve a part of the buffer
3668  * @buffer: the ring buffer to reserve from
3669  * @length: the length of the data to reserve (excluding event header)
3670  *
3671  * Returns a reserved event on the ring buffer to copy directly to.
3672  * The user of this interface will need to get the body to write into
3673  * and can use the ring_buffer_event_data() interface.
3674  *
3675  * The length is the length of the data needed, not the event length
3676  * which also includes the event header.
3677  *
3678  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
3679  * If NULL is returned, then nothing has been allocated or locked.
3680  */
3681 struct ring_buffer_event *
3682 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
3683 {
3684         struct ring_buffer_per_cpu *cpu_buffer;
3685         struct ring_buffer_event *event;
3686         int cpu;
3687
3688         /* If we are tracing schedule, we don't want to recurse */
3689         preempt_disable_notrace();
3690
3691         if (unlikely(atomic_read(&buffer->record_disabled)))
3692                 goto out;
3693
3694         cpu = raw_smp_processor_id();
3695
3696         if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
3697                 goto out;
3698
3699         cpu_buffer = buffer->buffers[cpu];
3700
3701         if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
3702                 goto out;
3703
3704         if (unlikely(length > buffer->max_data_size))
3705                 goto out;
3706
3707         if (unlikely(trace_recursive_lock(cpu_buffer)))
3708                 goto out;
3709
3710         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3711         if (!event)
3712                 goto out_unlock;
3713
3714         return event;
3715
3716  out_unlock:
3717         trace_recursive_unlock(cpu_buffer);
3718  out:
3719         preempt_enable_notrace();
3720         return NULL;
3721 }
3722 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
3723
3724 /*
3725  * Decrement the entries to the page that an event is on.
3726  * The event does not even need to exist, only the pointer
3727  * to the page it is on. This may only be called before the commit
3728  * takes place.
3729  */
3730 static inline void
3731 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
3732                    struct ring_buffer_event *event)
3733 {
3734         unsigned long addr = (unsigned long)event;
3735         struct buffer_page *bpage = cpu_buffer->commit_page;
3736         struct buffer_page *start;
3737
3738         addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3739
3740         /* Do the likely case first */
3741         if (likely(bpage->page == (void *)addr)) {
3742                 local_dec(&bpage->entries);
3743                 return;
3744         }
3745
3746         /*
3747          * Because the commit page may be on the reader page we
3748          * start with the next page and check the end loop there.
3749          */
3750         rb_inc_page(&bpage);
3751         start = bpage;
3752         do {
3753                 if (bpage->page == (void *)addr) {
3754                         local_dec(&bpage->entries);
3755                         return;
3756                 }
3757                 rb_inc_page(&bpage);
3758         } while (bpage != start);
3759
3760         /* commit not part of this buffer?? */
3761         RB_WARN_ON(cpu_buffer, 1);
3762 }
3763
3764 /**
3765  * ring_buffer_discard_commit - discard an event that has not been committed
3766  * @buffer: the ring buffer
3767  * @event: non committed event to discard
3768  *
3769  * Sometimes an event that is in the ring buffer needs to be ignored.
3770  * This function lets the user discard an event in the ring buffer
3771  * and then that event will not be read later.
3772  *
3773  * This function only works if it is called before the item has been
3774  * committed. It will try to free the event from the ring buffer
3775  * if another event has not been added behind it.
3776  *
3777  * If another event has been added behind it, it will set the event
3778  * up as discarded, and perform the commit.
3779  *
3780  * If this function is called, do not call ring_buffer_unlock_commit on
3781  * the event.
3782  */
3783 void ring_buffer_discard_commit(struct trace_buffer *buffer,
3784                                 struct ring_buffer_event *event)
3785 {
3786         struct ring_buffer_per_cpu *cpu_buffer;
3787         int cpu;
3788
3789         /* The event is discarded regardless */
3790         rb_event_discard(event);
3791
3792         cpu = smp_processor_id();
3793         cpu_buffer = buffer->buffers[cpu];
3794
3795         /*
3796          * This must only be called if the event has not been
3797          * committed yet. Thus we can assume that preemption
3798          * is still disabled.
3799          */
3800         RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
3801
3802         rb_decrement_entry(cpu_buffer, event);
3803         if (rb_try_to_discard(cpu_buffer, event))
3804                 goto out;
3805
3806  out:
3807         rb_end_commit(cpu_buffer);
3808
3809         trace_recursive_unlock(cpu_buffer);
3810
3811         preempt_enable_notrace();
3812
3813 }
3814 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
3815
3816 /**
3817  * ring_buffer_write - write data to the buffer without reserving
3818  * @buffer: The ring buffer to write to.
3819  * @length: The length of the data being written (excluding the event header)
3820  * @data: The data to write to the buffer.
3821  *
3822  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3823  * one function. If you already have the data to write to the buffer, it
3824  * may be easier to simply call this function.
3825  *
3826  * Note, like ring_buffer_lock_reserve, the length is the length of the data
3827  * and not the length of the event which would hold the header.
3828  */
3829 int ring_buffer_write(struct trace_buffer *buffer,
3830                       unsigned long length,
3831                       void *data)
3832 {
3833         struct ring_buffer_per_cpu *cpu_buffer;
3834         struct ring_buffer_event *event;
3835         void *body;
3836         int ret = -EBUSY;
3837         int cpu;
3838
3839         preempt_disable_notrace();
3840
3841         if (atomic_read(&buffer->record_disabled))
3842                 goto out;
3843
3844         cpu = raw_smp_processor_id();
3845
3846         if (!cpumask_test_cpu(cpu, buffer->cpumask))
3847                 goto out;
3848
3849         cpu_buffer = buffer->buffers[cpu];
3850
3851         if (atomic_read(&cpu_buffer->record_disabled))
3852                 goto out;
3853
3854         if (length > buffer->max_data_size)
3855                 goto out;
3856
3857         if (unlikely(trace_recursive_lock(cpu_buffer)))
3858                 goto out;
3859
3860         event = rb_reserve_next_event(buffer, cpu_buffer, length);
3861         if (!event)
3862                 goto out_unlock;
3863
3864         body = rb_event_data(event);
3865
3866         memcpy(body, data, length);
3867
3868         rb_commit(cpu_buffer);
3869
3870         rb_wakeups(buffer, cpu_buffer);
3871
3872         ret = 0;
3873
3874  out_unlock:
3875         trace_recursive_unlock(cpu_buffer);
3876
3877  out:
3878         preempt_enable_notrace();
3879
3880         return ret;
3881 }
3882 EXPORT_SYMBOL_GPL(ring_buffer_write);
3883
3884 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
3885 {
3886         struct buffer_page *reader = cpu_buffer->reader_page;
3887         struct buffer_page *head = rb_set_head_page(cpu_buffer);
3888         struct buffer_page *commit = cpu_buffer->commit_page;
3889
3890         /* In case of error, head will be NULL */
3891         if (unlikely(!head))
3892                 return true;
3893
3894         /* Reader should exhaust content in reader page */
3895         if (reader->read != rb_page_commit(reader))
3896                 return false;
3897
3898         /*
3899          * If writers are committing on the reader page, knowing all
3900          * committed content has been read, the ring buffer is empty.
3901          */
3902         if (commit == reader)
3903                 return true;
3904
3905         /*
3906          * If writers are committing on a page other than reader page
3907          * and head page, there should always be content to read.
3908          */
3909         if (commit != head)
3910                 return false;
3911
3912         /*
3913          * Writers are committing on the head page, we just need
3914          * to care about there're committed data, and the reader will
3915          * swap reader page with head page when it is to read data.
3916          */
3917         return rb_page_commit(commit) == 0;
3918 }
3919
3920 /**
3921  * ring_buffer_record_disable - stop all writes into the buffer
3922  * @buffer: The ring buffer to stop writes to.
3923  *
3924  * This prevents all writes to the buffer. Any attempt to write
3925  * to the buffer after this will fail and return NULL.
3926  *
3927  * The caller should call synchronize_rcu() after this.
3928  */
3929 void ring_buffer_record_disable(struct trace_buffer *buffer)
3930 {
3931         atomic_inc(&buffer->record_disabled);
3932 }
3933 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
3934
3935 /**
3936  * ring_buffer_record_enable - enable writes to the buffer
3937  * @buffer: The ring buffer to enable writes
3938  *
3939  * Note, multiple disables will need the same number of enables
3940  * to truly enable the writing (much like preempt_disable).
3941  */
3942 void ring_buffer_record_enable(struct trace_buffer *buffer)
3943 {
3944         atomic_dec(&buffer->record_disabled);
3945 }
3946 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
3947
3948 /**
3949  * ring_buffer_record_off - stop all writes into the buffer
3950  * @buffer: The ring buffer to stop writes to.
3951  *
3952  * This prevents all writes to the buffer. Any attempt to write
3953  * to the buffer after this will fail and return NULL.
3954  *
3955  * This is different than ring_buffer_record_disable() as
3956  * it works like an on/off switch, where as the disable() version
3957  * must be paired with a enable().
3958  */
3959 void ring_buffer_record_off(struct trace_buffer *buffer)
3960 {
3961         unsigned int rd;
3962         unsigned int new_rd;
3963
3964         rd = atomic_read(&buffer->record_disabled);
3965         do {
3966                 new_rd = rd | RB_BUFFER_OFF;
3967         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
3968 }
3969 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3970
3971 /**
3972  * ring_buffer_record_on - restart writes into the buffer
3973  * @buffer: The ring buffer to start writes to.
3974  *
3975  * This enables all writes to the buffer that was disabled by
3976  * ring_buffer_record_off().
3977  *
3978  * This is different than ring_buffer_record_enable() as
3979  * it works like an on/off switch, where as the enable() version
3980  * must be paired with a disable().
3981  */
3982 void ring_buffer_record_on(struct trace_buffer *buffer)
3983 {
3984         unsigned int rd;
3985         unsigned int new_rd;
3986
3987         rd = atomic_read(&buffer->record_disabled);
3988         do {
3989                 new_rd = rd & ~RB_BUFFER_OFF;
3990         } while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
3991 }
3992 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3993
3994 /**
3995  * ring_buffer_record_is_on - return true if the ring buffer can write
3996  * @buffer: The ring buffer to see if write is enabled
3997  *
3998  * Returns true if the ring buffer is in a state that it accepts writes.
3999  */
4000 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4001 {
4002         return !atomic_read(&buffer->record_disabled);
4003 }
4004
4005 /**
4006  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4007  * @buffer: The ring buffer to see if write is set enabled
4008  *
4009  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4010  * Note that this does NOT mean it is in a writable state.
4011  *
4012  * It may return true when the ring buffer has been disabled by
4013  * ring_buffer_record_disable(), as that is a temporary disabling of
4014  * the ring buffer.
4015  */
4016 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4017 {
4018         return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4019 }
4020
4021 /**
4022  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4023  * @buffer: The ring buffer to stop writes to.
4024  * @cpu: The CPU buffer to stop
4025  *
4026  * This prevents all writes to the buffer. Any attempt to write
4027  * to the buffer after this will fail and return NULL.
4028  *
4029  * The caller should call synchronize_rcu() after this.
4030  */
4031 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4032 {
4033         struct ring_buffer_per_cpu *cpu_buffer;
4034
4035         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4036                 return;
4037
4038         cpu_buffer = buffer->buffers[cpu];
4039         atomic_inc(&cpu_buffer->record_disabled);
4040 }
4041 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4042
4043 /**
4044  * ring_buffer_record_enable_cpu - enable writes to the buffer
4045  * @buffer: The ring buffer to enable writes
4046  * @cpu: The CPU to enable.
4047  *
4048  * Note, multiple disables will need the same number of enables
4049  * to truly enable the writing (much like preempt_disable).
4050  */
4051 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4052 {
4053         struct ring_buffer_per_cpu *cpu_buffer;
4054
4055         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4056                 return;
4057
4058         cpu_buffer = buffer->buffers[cpu];
4059         atomic_dec(&cpu_buffer->record_disabled);
4060 }
4061 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4062
4063 /*
4064  * The total entries in the ring buffer is the running counter
4065  * of entries entered into the ring buffer, minus the sum of
4066  * the entries read from the ring buffer and the number of
4067  * entries that were overwritten.
4068  */
4069 static inline unsigned long
4070 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4071 {
4072         return local_read(&cpu_buffer->entries) -
4073                 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4074 }
4075
4076 /**
4077  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4078  * @buffer: The ring buffer
4079  * @cpu: The per CPU buffer to read from.
4080  */
4081 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4082 {
4083         unsigned long flags;
4084         struct ring_buffer_per_cpu *cpu_buffer;
4085         struct buffer_page *bpage;
4086         u64 ret = 0;
4087
4088         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4089                 return 0;
4090
4091         cpu_buffer = buffer->buffers[cpu];
4092         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4093         /*
4094          * if the tail is on reader_page, oldest time stamp is on the reader
4095          * page
4096          */
4097         if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4098                 bpage = cpu_buffer->reader_page;
4099         else
4100                 bpage = rb_set_head_page(cpu_buffer);
4101         if (bpage)
4102                 ret = bpage->page->time_stamp;
4103         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4104
4105         return ret;
4106 }
4107 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4108
4109 /**
4110  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4111  * @buffer: The ring buffer
4112  * @cpu: The per CPU buffer to read from.
4113  */
4114 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4115 {
4116         struct ring_buffer_per_cpu *cpu_buffer;
4117         unsigned long ret;
4118
4119         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4120                 return 0;
4121
4122         cpu_buffer = buffer->buffers[cpu];
4123         ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4124
4125         return ret;
4126 }
4127 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4128
4129 /**
4130  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4131  * @buffer: The ring buffer
4132  * @cpu: The per CPU buffer to get the entries from.
4133  */
4134 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4135 {
4136         struct ring_buffer_per_cpu *cpu_buffer;
4137
4138         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4139                 return 0;
4140
4141         cpu_buffer = buffer->buffers[cpu];
4142
4143         return rb_num_of_entries(cpu_buffer);
4144 }
4145 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
4146
4147 /**
4148  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
4149  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
4150  * @buffer: The ring buffer
4151  * @cpu: The per CPU buffer to get the number of overruns from
4152  */
4153 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
4154 {
4155         struct ring_buffer_per_cpu *cpu_buffer;
4156         unsigned long ret;
4157
4158         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4159                 return 0;
4160
4161         cpu_buffer = buffer->buffers[cpu];
4162         ret = local_read(&cpu_buffer->overrun);
4163
4164         return ret;
4165 }
4166 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
4167
4168 /**
4169  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
4170  * commits failing due to the buffer wrapping around while there are uncommitted
4171  * events, such as during an interrupt storm.
4172  * @buffer: The ring buffer
4173  * @cpu: The per CPU buffer to get the number of overruns from
4174  */
4175 unsigned long
4176 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
4177 {
4178         struct ring_buffer_per_cpu *cpu_buffer;
4179         unsigned long ret;
4180
4181         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4182                 return 0;
4183
4184         cpu_buffer = buffer->buffers[cpu];
4185         ret = local_read(&cpu_buffer->commit_overrun);
4186
4187         return ret;
4188 }
4189 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
4190
4191 /**
4192  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
4193  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
4194  * @buffer: The ring buffer
4195  * @cpu: The per CPU buffer to get the number of overruns from
4196  */
4197 unsigned long
4198 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
4199 {
4200         struct ring_buffer_per_cpu *cpu_buffer;
4201         unsigned long ret;
4202
4203         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4204                 return 0;
4205
4206         cpu_buffer = buffer->buffers[cpu];
4207         ret = local_read(&cpu_buffer->dropped_events);
4208
4209         return ret;
4210 }
4211 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
4212
4213 /**
4214  * ring_buffer_read_events_cpu - get the number of events successfully read
4215  * @buffer: The ring buffer
4216  * @cpu: The per CPU buffer to get the number of events read
4217  */
4218 unsigned long
4219 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
4220 {
4221         struct ring_buffer_per_cpu *cpu_buffer;
4222
4223         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4224                 return 0;
4225
4226         cpu_buffer = buffer->buffers[cpu];
4227         return cpu_buffer->read;
4228 }
4229 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
4230
4231 /**
4232  * ring_buffer_entries - get the number of entries in a buffer
4233  * @buffer: The ring buffer
4234  *
4235  * Returns the total number of entries in the ring buffer
4236  * (all CPU entries)
4237  */
4238 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
4239 {
4240         struct ring_buffer_per_cpu *cpu_buffer;
4241         unsigned long entries = 0;
4242         int cpu;
4243
4244         /* if you care about this being correct, lock the buffer */
4245         for_each_buffer_cpu(buffer, cpu) {
4246                 cpu_buffer = buffer->buffers[cpu];
4247                 entries += rb_num_of_entries(cpu_buffer);
4248         }
4249
4250         return entries;
4251 }
4252 EXPORT_SYMBOL_GPL(ring_buffer_entries);
4253
4254 /**
4255  * ring_buffer_overruns - get the number of overruns in buffer
4256  * @buffer: The ring buffer
4257  *
4258  * Returns the total number of overruns in the ring buffer
4259  * (all CPU entries)
4260  */
4261 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
4262 {
4263         struct ring_buffer_per_cpu *cpu_buffer;
4264         unsigned long overruns = 0;
4265         int cpu;
4266
4267         /* if you care about this being correct, lock the buffer */
4268         for_each_buffer_cpu(buffer, cpu) {
4269                 cpu_buffer = buffer->buffers[cpu];
4270                 overruns += local_read(&cpu_buffer->overrun);
4271         }
4272
4273         return overruns;
4274 }
4275 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
4276
4277 static void rb_iter_reset(struct ring_buffer_iter *iter)
4278 {
4279         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4280
4281         /* Iterator usage is expected to have record disabled */
4282         iter->head_page = cpu_buffer->reader_page;
4283         iter->head = cpu_buffer->reader_page->read;
4284         iter->next_event = iter->head;
4285
4286         iter->cache_reader_page = iter->head_page;
4287         iter->cache_read = cpu_buffer->read;
4288         iter->cache_pages_removed = cpu_buffer->pages_removed;
4289
4290         if (iter->head) {
4291                 iter->read_stamp = cpu_buffer->read_stamp;
4292                 iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
4293         } else {
4294                 iter->read_stamp = iter->head_page->page->time_stamp;
4295                 iter->page_stamp = iter->read_stamp;
4296         }
4297 }
4298
4299 /**
4300  * ring_buffer_iter_reset - reset an iterator
4301  * @iter: The iterator to reset
4302  *
4303  * Resets the iterator, so that it will start from the beginning
4304  * again.
4305  */
4306 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
4307 {
4308         struct ring_buffer_per_cpu *cpu_buffer;
4309         unsigned long flags;
4310
4311         if (!iter)
4312                 return;
4313
4314         cpu_buffer = iter->cpu_buffer;
4315
4316         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4317         rb_iter_reset(iter);
4318         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4319 }
4320 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
4321
4322 /**
4323  * ring_buffer_iter_empty - check if an iterator has no more to read
4324  * @iter: The iterator to check
4325  */
4326 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
4327 {
4328         struct ring_buffer_per_cpu *cpu_buffer;
4329         struct buffer_page *reader;
4330         struct buffer_page *head_page;
4331         struct buffer_page *commit_page;
4332         struct buffer_page *curr_commit_page;
4333         unsigned commit;
4334         u64 curr_commit_ts;
4335         u64 commit_ts;
4336
4337         cpu_buffer = iter->cpu_buffer;
4338         reader = cpu_buffer->reader_page;
4339         head_page = cpu_buffer->head_page;
4340         commit_page = cpu_buffer->commit_page;
4341         commit_ts = commit_page->page->time_stamp;
4342
4343         /*
4344          * When the writer goes across pages, it issues a cmpxchg which
4345          * is a mb(), which will synchronize with the rmb here.
4346          * (see rb_tail_page_update())
4347          */
4348         smp_rmb();
4349         commit = rb_page_commit(commit_page);
4350         /* We want to make sure that the commit page doesn't change */
4351         smp_rmb();
4352
4353         /* Make sure commit page didn't change */
4354         curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
4355         curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
4356
4357         /* If the commit page changed, then there's more data */
4358         if (curr_commit_page != commit_page ||
4359             curr_commit_ts != commit_ts)
4360                 return 0;
4361
4362         /* Still racy, as it may return a false positive, but that's OK */
4363         return ((iter->head_page == commit_page && iter->head >= commit) ||
4364                 (iter->head_page == reader && commit_page == head_page &&
4365                  head_page->read == commit &&
4366                  iter->head == rb_page_commit(cpu_buffer->reader_page)));
4367 }
4368 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
4369
4370 static void
4371 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
4372                      struct ring_buffer_event *event)
4373 {
4374         u64 delta;
4375
4376         switch (event->type_len) {
4377         case RINGBUF_TYPE_PADDING:
4378                 return;
4379
4380         case RINGBUF_TYPE_TIME_EXTEND:
4381                 delta = rb_event_time_stamp(event);
4382                 cpu_buffer->read_stamp += delta;
4383                 return;
4384
4385         case RINGBUF_TYPE_TIME_STAMP:
4386                 delta = rb_event_time_stamp(event);
4387                 delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
4388                 cpu_buffer->read_stamp = delta;
4389                 return;
4390
4391         case RINGBUF_TYPE_DATA:
4392                 cpu_buffer->read_stamp += event->time_delta;
4393                 return;
4394
4395         default:
4396                 RB_WARN_ON(cpu_buffer, 1);
4397         }
4398 }
4399
4400 static void
4401 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
4402                           struct ring_buffer_event *event)
4403 {
4404         u64 delta;
4405
4406         switch (event->type_len) {
4407         case RINGBUF_TYPE_PADDING:
4408                 return;
4409
4410         case RINGBUF_TYPE_TIME_EXTEND:
4411                 delta = rb_event_time_stamp(event);
4412                 iter->read_stamp += delta;
4413                 return;
4414
4415         case RINGBUF_TYPE_TIME_STAMP:
4416                 delta = rb_event_time_stamp(event);
4417                 delta = rb_fix_abs_ts(delta, iter->read_stamp);
4418                 iter->read_stamp = delta;
4419                 return;
4420
4421         case RINGBUF_TYPE_DATA:
4422                 iter->read_stamp += event->time_delta;
4423                 return;
4424
4425         default:
4426                 RB_WARN_ON(iter->cpu_buffer, 1);
4427         }
4428 }
4429
4430 static struct buffer_page *
4431 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
4432 {
4433         struct buffer_page *reader = NULL;
4434         unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
4435         unsigned long overwrite;
4436         unsigned long flags;
4437         int nr_loops = 0;
4438         bool ret;
4439
4440         local_irq_save(flags);
4441         arch_spin_lock(&cpu_buffer->lock);
4442
4443  again:
4444         /*
4445          * This should normally only loop twice. But because the
4446          * start of the reader inserts an empty page, it causes
4447          * a case where we will loop three times. There should be no
4448          * reason to loop four times (that I know of).
4449          */
4450         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
4451                 reader = NULL;
4452                 goto out;
4453         }
4454
4455         reader = cpu_buffer->reader_page;
4456
4457         /* If there's more to read, return this page */
4458         if (cpu_buffer->reader_page->read < rb_page_size(reader))
4459                 goto out;
4460
4461         /* Never should we have an index greater than the size */
4462         if (RB_WARN_ON(cpu_buffer,
4463                        cpu_buffer->reader_page->read > rb_page_size(reader)))
4464                 goto out;
4465
4466         /* check if we caught up to the tail */
4467         reader = NULL;
4468         if (cpu_buffer->commit_page == cpu_buffer->reader_page)
4469                 goto out;
4470
4471         /* Don't bother swapping if the ring buffer is empty */
4472         if (rb_num_of_entries(cpu_buffer) == 0)
4473                 goto out;
4474
4475         /*
4476          * Reset the reader page to size zero.
4477          */
4478         local_set(&cpu_buffer->reader_page->write, 0);
4479         local_set(&cpu_buffer->reader_page->entries, 0);
4480         local_set(&cpu_buffer->reader_page->page->commit, 0);
4481         cpu_buffer->reader_page->real_end = 0;
4482
4483  spin:
4484         /*
4485          * Splice the empty reader page into the list around the head.
4486          */
4487         reader = rb_set_head_page(cpu_buffer);
4488         if (!reader)
4489                 goto out;
4490         cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
4491         cpu_buffer->reader_page->list.prev = reader->list.prev;
4492
4493         /*
4494          * cpu_buffer->pages just needs to point to the buffer, it
4495          *  has no specific buffer page to point to. Lets move it out
4496          *  of our way so we don't accidentally swap it.
4497          */
4498         cpu_buffer->pages = reader->list.prev;
4499
4500         /* The reader page will be pointing to the new head */
4501         rb_set_list_to_head(&cpu_buffer->reader_page->list);
4502
4503         /*
4504          * We want to make sure we read the overruns after we set up our
4505          * pointers to the next object. The writer side does a
4506          * cmpxchg to cross pages which acts as the mb on the writer
4507          * side. Note, the reader will constantly fail the swap
4508          * while the writer is updating the pointers, so this
4509          * guarantees that the overwrite recorded here is the one we
4510          * want to compare with the last_overrun.
4511          */
4512         smp_mb();
4513         overwrite = local_read(&(cpu_buffer->overrun));
4514
4515         /*
4516          * Here's the tricky part.
4517          *
4518          * We need to move the pointer past the header page.
4519          * But we can only do that if a writer is not currently
4520          * moving it. The page before the header page has the
4521          * flag bit '1' set if it is pointing to the page we want.
4522          * but if the writer is in the process of moving it
4523          * than it will be '2' or already moved '0'.
4524          */
4525
4526         ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
4527
4528         /*
4529          * If we did not convert it, then we must try again.
4530          */
4531         if (!ret)
4532                 goto spin;
4533
4534         /*
4535          * Yay! We succeeded in replacing the page.
4536          *
4537          * Now make the new head point back to the reader page.
4538          */
4539         rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
4540         rb_inc_page(&cpu_buffer->head_page);
4541
4542         local_inc(&cpu_buffer->pages_read);
4543
4544         /* Finally update the reader page to the new head */
4545         cpu_buffer->reader_page = reader;
4546         cpu_buffer->reader_page->read = 0;
4547
4548         if (overwrite != cpu_buffer->last_overrun) {
4549                 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
4550                 cpu_buffer->last_overrun = overwrite;
4551         }
4552
4553         goto again;
4554
4555  out:
4556         /* Update the read_stamp on the first event */
4557         if (reader && reader->read == 0)
4558                 cpu_buffer->read_stamp = reader->page->time_stamp;
4559
4560         arch_spin_unlock(&cpu_buffer->lock);
4561         local_irq_restore(flags);
4562
4563         /*
4564          * The writer has preempt disable, wait for it. But not forever
4565          * Although, 1 second is pretty much "forever"
4566          */
4567 #define USECS_WAIT      1000000
4568         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
4569                 /* If the write is past the end of page, a writer is still updating it */
4570                 if (likely(!reader || rb_page_write(reader) <= bsize))
4571                         break;
4572
4573                 udelay(1);
4574
4575                 /* Get the latest version of the reader write value */
4576                 smp_rmb();
4577         }
4578
4579         /* The writer is not moving forward? Something is wrong */
4580         if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
4581                 reader = NULL;
4582
4583         /*
4584          * Make sure we see any padding after the write update
4585          * (see rb_reset_tail()).
4586          *
4587          * In addition, a writer may be writing on the reader page
4588          * if the page has not been fully filled, so the read barrier
4589          * is also needed to make sure we see the content of what is
4590          * committed by the writer (see rb_set_commit_to_write()).
4591          */
4592         smp_rmb();
4593
4594
4595         return reader;
4596 }
4597
4598 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
4599 {
4600         struct ring_buffer_event *event;
4601         struct buffer_page *reader;
4602         unsigned length;
4603
4604         reader = rb_get_reader_page(cpu_buffer);
4605
4606         /* This function should not be called when buffer is empty */
4607         if (RB_WARN_ON(cpu_buffer, !reader))
4608                 return;
4609
4610         event = rb_reader_event(cpu_buffer);
4611
4612         if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
4613                 cpu_buffer->read++;
4614
4615         rb_update_read_stamp(cpu_buffer, event);
4616
4617         length = rb_event_length(event);
4618         cpu_buffer->reader_page->read += length;
4619         cpu_buffer->read_bytes += length;
4620 }
4621
4622 static void rb_advance_iter(struct ring_buffer_iter *iter)
4623 {
4624         struct ring_buffer_per_cpu *cpu_buffer;
4625
4626         cpu_buffer = iter->cpu_buffer;
4627
4628         /* If head == next_event then we need to jump to the next event */
4629         if (iter->head == iter->next_event) {
4630                 /* If the event gets overwritten again, there's nothing to do */
4631                 if (rb_iter_head_event(iter) == NULL)
4632                         return;
4633         }
4634
4635         iter->head = iter->next_event;
4636
4637         /*
4638          * Check if we are at the end of the buffer.
4639          */
4640         if (iter->next_event >= rb_page_size(iter->head_page)) {
4641                 /* discarded commits can make the page empty */
4642                 if (iter->head_page == cpu_buffer->commit_page)
4643                         return;
4644                 rb_inc_iter(iter);
4645                 return;
4646         }
4647
4648         rb_update_iter_read_stamp(iter, iter->event);
4649 }
4650
4651 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
4652 {
4653         return cpu_buffer->lost_events;
4654 }
4655
4656 static struct ring_buffer_event *
4657 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
4658                unsigned long *lost_events)
4659 {
4660         struct ring_buffer_event *event;
4661         struct buffer_page *reader;
4662         int nr_loops = 0;
4663
4664         if (ts)
4665                 *ts = 0;
4666  again:
4667         /*
4668          * We repeat when a time extend is encountered.
4669          * Since the time extend is always attached to a data event,
4670          * we should never loop more than once.
4671          * (We never hit the following condition more than twice).
4672          */
4673         if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
4674                 return NULL;
4675
4676         reader = rb_get_reader_page(cpu_buffer);
4677         if (!reader)
4678                 return NULL;
4679
4680         event = rb_reader_event(cpu_buffer);
4681
4682         switch (event->type_len) {
4683         case RINGBUF_TYPE_PADDING:
4684                 if (rb_null_event(event))
4685                         RB_WARN_ON(cpu_buffer, 1);
4686                 /*
4687                  * Because the writer could be discarding every
4688                  * event it creates (which would probably be bad)
4689                  * if we were to go back to "again" then we may never
4690                  * catch up, and will trigger the warn on, or lock
4691                  * the box. Return the padding, and we will release
4692                  * the current locks, and try again.
4693                  */
4694                 return event;
4695
4696         case RINGBUF_TYPE_TIME_EXTEND:
4697                 /* Internal data, OK to advance */
4698                 rb_advance_reader(cpu_buffer);
4699                 goto again;
4700
4701         case RINGBUF_TYPE_TIME_STAMP:
4702                 if (ts) {
4703                         *ts = rb_event_time_stamp(event);
4704                         *ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
4705                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4706                                                          cpu_buffer->cpu, ts);
4707                 }
4708                 /* Internal data, OK to advance */
4709                 rb_advance_reader(cpu_buffer);
4710                 goto again;
4711
4712         case RINGBUF_TYPE_DATA:
4713                 if (ts && !(*ts)) {
4714                         *ts = cpu_buffer->read_stamp + event->time_delta;
4715                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4716                                                          cpu_buffer->cpu, ts);
4717                 }
4718                 if (lost_events)
4719                         *lost_events = rb_lost_events(cpu_buffer);
4720                 return event;
4721
4722         default:
4723                 RB_WARN_ON(cpu_buffer, 1);
4724         }
4725
4726         return NULL;
4727 }
4728 EXPORT_SYMBOL_GPL(ring_buffer_peek);
4729
4730 static struct ring_buffer_event *
4731 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4732 {
4733         struct trace_buffer *buffer;
4734         struct ring_buffer_per_cpu *cpu_buffer;
4735         struct ring_buffer_event *event;
4736         int nr_loops = 0;
4737
4738         if (ts)
4739                 *ts = 0;
4740
4741         cpu_buffer = iter->cpu_buffer;
4742         buffer = cpu_buffer->buffer;
4743
4744         /*
4745          * Check if someone performed a consuming read to the buffer
4746          * or removed some pages from the buffer. In these cases,
4747          * iterator was invalidated and we need to reset it.
4748          */
4749         if (unlikely(iter->cache_read != cpu_buffer->read ||
4750                      iter->cache_reader_page != cpu_buffer->reader_page ||
4751                      iter->cache_pages_removed != cpu_buffer->pages_removed))
4752                 rb_iter_reset(iter);
4753
4754  again:
4755         if (ring_buffer_iter_empty(iter))
4756                 return NULL;
4757
4758         /*
4759          * As the writer can mess with what the iterator is trying
4760          * to read, just give up if we fail to get an event after
4761          * three tries. The iterator is not as reliable when reading
4762          * the ring buffer with an active write as the consumer is.
4763          * Do not warn if the three failures is reached.
4764          */
4765         if (++nr_loops > 3)
4766                 return NULL;
4767
4768         if (rb_per_cpu_empty(cpu_buffer))
4769                 return NULL;
4770
4771         if (iter->head >= rb_page_size(iter->head_page)) {
4772                 rb_inc_iter(iter);
4773                 goto again;
4774         }
4775
4776         event = rb_iter_head_event(iter);
4777         if (!event)
4778                 goto again;
4779
4780         switch (event->type_len) {
4781         case RINGBUF_TYPE_PADDING:
4782                 if (rb_null_event(event)) {
4783                         rb_inc_iter(iter);
4784                         goto again;
4785                 }
4786                 rb_advance_iter(iter);
4787                 return event;
4788
4789         case RINGBUF_TYPE_TIME_EXTEND:
4790                 /* Internal data, OK to advance */
4791                 rb_advance_iter(iter);
4792                 goto again;
4793
4794         case RINGBUF_TYPE_TIME_STAMP:
4795                 if (ts) {
4796                         *ts = rb_event_time_stamp(event);
4797                         *ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
4798                         ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
4799                                                          cpu_buffer->cpu, ts);
4800                 }
4801                 /* Internal data, OK to advance */
4802                 rb_advance_iter(iter);
4803                 goto again;
4804
4805         case RINGBUF_TYPE_DATA:
4806                 if (ts && !(*ts)) {
4807                         *ts = iter->read_stamp + event->time_delta;
4808                         ring_buffer_normalize_time_stamp(buffer,
4809                                                          cpu_buffer->cpu, ts);
4810                 }
4811                 return event;
4812
4813         default:
4814                 RB_WARN_ON(cpu_buffer, 1);
4815         }
4816
4817         return NULL;
4818 }
4819 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
4820
4821 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
4822 {
4823         if (likely(!in_nmi())) {
4824                 raw_spin_lock(&cpu_buffer->reader_lock);
4825                 return true;
4826         }
4827
4828         /*
4829          * If an NMI die dumps out the content of the ring buffer
4830          * trylock must be used to prevent a deadlock if the NMI
4831          * preempted a task that holds the ring buffer locks. If
4832          * we get the lock then all is fine, if not, then continue
4833          * to do the read, but this can corrupt the ring buffer,
4834          * so it must be permanently disabled from future writes.
4835          * Reading from NMI is a oneshot deal.
4836          */
4837         if (raw_spin_trylock(&cpu_buffer->reader_lock))
4838                 return true;
4839
4840         /* Continue without locking, but disable the ring buffer */
4841         atomic_inc(&cpu_buffer->record_disabled);
4842         return false;
4843 }
4844
4845 static inline void
4846 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
4847 {
4848         if (likely(locked))
4849                 raw_spin_unlock(&cpu_buffer->reader_lock);
4850 }
4851
4852 /**
4853  * ring_buffer_peek - peek at the next event to be read
4854  * @buffer: The ring buffer to read
4855  * @cpu: The cpu to peak at
4856  * @ts: The timestamp counter of this event.
4857  * @lost_events: a variable to store if events were lost (may be NULL)
4858  *
4859  * This will return the event that will be read next, but does
4860  * not consume the data.
4861  */
4862 struct ring_buffer_event *
4863 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
4864                  unsigned long *lost_events)
4865 {
4866         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4867         struct ring_buffer_event *event;
4868         unsigned long flags;
4869         bool dolock;
4870
4871         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4872                 return NULL;
4873
4874  again:
4875         local_irq_save(flags);
4876         dolock = rb_reader_lock(cpu_buffer);
4877         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4878         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4879                 rb_advance_reader(cpu_buffer);
4880         rb_reader_unlock(cpu_buffer, dolock);
4881         local_irq_restore(flags);
4882
4883         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4884                 goto again;
4885
4886         return event;
4887 }
4888
4889 /** ring_buffer_iter_dropped - report if there are dropped events
4890  * @iter: The ring buffer iterator
4891  *
4892  * Returns true if there was dropped events since the last peek.
4893  */
4894 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
4895 {
4896         bool ret = iter->missed_events != 0;
4897
4898         iter->missed_events = 0;
4899         return ret;
4900 }
4901 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
4902
4903 /**
4904  * ring_buffer_iter_peek - peek at the next event to be read
4905  * @iter: The ring buffer iterator
4906  * @ts: The timestamp counter of this event.
4907  *
4908  * This will return the event that will be read next, but does
4909  * not increment the iterator.
4910  */
4911 struct ring_buffer_event *
4912 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
4913 {
4914         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4915         struct ring_buffer_event *event;
4916         unsigned long flags;
4917
4918  again:
4919         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4920         event = rb_iter_peek(iter, ts);
4921         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4922
4923         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4924                 goto again;
4925
4926         return event;
4927 }
4928
4929 /**
4930  * ring_buffer_consume - return an event and consume it
4931  * @buffer: The ring buffer to get the next event from
4932  * @cpu: the cpu to read the buffer from
4933  * @ts: a variable to store the timestamp (may be NULL)
4934  * @lost_events: a variable to store if events were lost (may be NULL)
4935  *
4936  * Returns the next event in the ring buffer, and that event is consumed.
4937  * Meaning, that sequential reads will keep returning a different event,
4938  * and eventually empty the ring buffer if the producer is slower.
4939  */
4940 struct ring_buffer_event *
4941 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
4942                     unsigned long *lost_events)
4943 {
4944         struct ring_buffer_per_cpu *cpu_buffer;
4945         struct ring_buffer_event *event = NULL;
4946         unsigned long flags;
4947         bool dolock;
4948
4949  again:
4950         /* might be called in atomic */
4951         preempt_disable();
4952
4953         if (!cpumask_test_cpu(cpu, buffer->cpumask))
4954                 goto out;
4955
4956         cpu_buffer = buffer->buffers[cpu];
4957         local_irq_save(flags);
4958         dolock = rb_reader_lock(cpu_buffer);
4959
4960         event = rb_buffer_peek(cpu_buffer, ts, lost_events);
4961         if (event) {
4962                 cpu_buffer->lost_events = 0;
4963                 rb_advance_reader(cpu_buffer);
4964         }
4965
4966         rb_reader_unlock(cpu_buffer, dolock);
4967         local_irq_restore(flags);
4968
4969  out:
4970         preempt_enable();
4971
4972         if (event && event->type_len == RINGBUF_TYPE_PADDING)
4973                 goto again;
4974
4975         return event;
4976 }
4977 EXPORT_SYMBOL_GPL(ring_buffer_consume);
4978
4979 /**
4980  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4981  * @buffer: The ring buffer to read from
4982  * @cpu: The cpu buffer to iterate over
4983  * @flags: gfp flags to use for memory allocation
4984  *
4985  * This performs the initial preparations necessary to iterate
4986  * through the buffer.  Memory is allocated, buffer recording
4987  * is disabled, and the iterator pointer is returned to the caller.
4988  *
4989  * Disabling buffer recording prevents the reading from being
4990  * corrupted. This is not a consuming read, so a producer is not
4991  * expected.
4992  *
4993  * After a sequence of ring_buffer_read_prepare calls, the user is
4994  * expected to make at least one call to ring_buffer_read_prepare_sync.
4995  * Afterwards, ring_buffer_read_start is invoked to get things going
4996  * for real.
4997  *
4998  * This overall must be paired with ring_buffer_read_finish.
4999  */
5000 struct ring_buffer_iter *
5001 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5002 {
5003         struct ring_buffer_per_cpu *cpu_buffer;
5004         struct ring_buffer_iter *iter;
5005
5006         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5007                 return NULL;
5008
5009         iter = kzalloc(sizeof(*iter), flags);
5010         if (!iter)
5011                 return NULL;
5012
5013         /* Holds the entire event: data and meta data */
5014         iter->event_size = buffer->subbuf_size;
5015         iter->event = kmalloc(iter->event_size, flags);
5016         if (!iter->event) {
5017                 kfree(iter);
5018                 return NULL;
5019         }
5020
5021         cpu_buffer = buffer->buffers[cpu];
5022
5023         iter->cpu_buffer = cpu_buffer;
5024
5025         atomic_inc(&cpu_buffer->resize_disabled);
5026
5027         return iter;
5028 }
5029 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5030
5031 /**
5032  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5033  *
5034  * All previously invoked ring_buffer_read_prepare calls to prepare
5035  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5036  * calls on those iterators are allowed.
5037  */
5038 void
5039 ring_buffer_read_prepare_sync(void)
5040 {
5041         synchronize_rcu();
5042 }
5043 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5044
5045 /**
5046  * ring_buffer_read_start - start a non consuming read of the buffer
5047  * @iter: The iterator returned by ring_buffer_read_prepare
5048  *
5049  * This finalizes the startup of an iteration through the buffer.
5050  * The iterator comes from a call to ring_buffer_read_prepare and
5051  * an intervening ring_buffer_read_prepare_sync must have been
5052  * performed.
5053  *
5054  * Must be paired with ring_buffer_read_finish.
5055  */
5056 void
5057 ring_buffer_read_start(struct ring_buffer_iter *iter)
5058 {
5059         struct ring_buffer_per_cpu *cpu_buffer;
5060         unsigned long flags;
5061
5062         if (!iter)
5063                 return;
5064
5065         cpu_buffer = iter->cpu_buffer;
5066
5067         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5068         arch_spin_lock(&cpu_buffer->lock);
5069         rb_iter_reset(iter);
5070         arch_spin_unlock(&cpu_buffer->lock);
5071         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5072 }
5073 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5074
5075 /**
5076  * ring_buffer_read_finish - finish reading the iterator of the buffer
5077  * @iter: The iterator retrieved by ring_buffer_start
5078  *
5079  * This re-enables the recording to the buffer, and frees the
5080  * iterator.
5081  */
5082 void
5083 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5084 {
5085         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5086         unsigned long flags;
5087
5088         /*
5089          * Ring buffer is disabled from recording, here's a good place
5090          * to check the integrity of the ring buffer.
5091          * Must prevent readers from trying to read, as the check
5092          * clears the HEAD page and readers require it.
5093          */
5094         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5095         rb_check_pages(cpu_buffer);
5096         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5097
5098         atomic_dec(&cpu_buffer->resize_disabled);
5099         kfree(iter->event);
5100         kfree(iter);
5101 }
5102 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5103
5104 /**
5105  * ring_buffer_iter_advance - advance the iterator to the next location
5106  * @iter: The ring buffer iterator
5107  *
5108  * Move the location of the iterator such that the next read will
5109  * be the next location of the iterator.
5110  */
5111 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5112 {
5113         struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5114         unsigned long flags;
5115
5116         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5117
5118         rb_advance_iter(iter);
5119
5120         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5121 }
5122 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5123
5124 /**
5125  * ring_buffer_size - return the size of the ring buffer (in bytes)
5126  * @buffer: The ring buffer.
5127  * @cpu: The CPU to get ring buffer size from.
5128  */
5129 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5130 {
5131         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5132                 return 0;
5133
5134         return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5135 }
5136 EXPORT_SYMBOL_GPL(ring_buffer_size);
5137
5138 /**
5139  * ring_buffer_max_event_size - return the max data size of an event
5140  * @buffer: The ring buffer.
5141  *
5142  * Returns the maximum size an event can be.
5143  */
5144 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5145 {
5146         /* If abs timestamp is requested, events have a timestamp too */
5147         if (ring_buffer_time_stamp_abs(buffer))
5148                 return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5149         return buffer->max_data_size;
5150 }
5151 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
5152
5153 static void rb_clear_buffer_page(struct buffer_page *page)
5154 {
5155         local_set(&page->write, 0);
5156         local_set(&page->entries, 0);
5157         rb_init_page(page->page);
5158         page->read = 0;
5159 }
5160
5161 static void
5162 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
5163 {
5164         struct buffer_page *page;
5165
5166         rb_head_page_deactivate(cpu_buffer);
5167
5168         cpu_buffer->head_page
5169                 = list_entry(cpu_buffer->pages, struct buffer_page, list);
5170         rb_clear_buffer_page(cpu_buffer->head_page);
5171         list_for_each_entry(page, cpu_buffer->pages, list) {
5172                 rb_clear_buffer_page(page);
5173         }
5174
5175         cpu_buffer->tail_page = cpu_buffer->head_page;
5176         cpu_buffer->commit_page = cpu_buffer->head_page;
5177
5178         INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5179         INIT_LIST_HEAD(&cpu_buffer->new_pages);
5180         rb_clear_buffer_page(cpu_buffer->reader_page);
5181
5182         local_set(&cpu_buffer->entries_bytes, 0);
5183         local_set(&cpu_buffer->overrun, 0);
5184         local_set(&cpu_buffer->commit_overrun, 0);
5185         local_set(&cpu_buffer->dropped_events, 0);
5186         local_set(&cpu_buffer->entries, 0);
5187         local_set(&cpu_buffer->committing, 0);
5188         local_set(&cpu_buffer->commits, 0);
5189         local_set(&cpu_buffer->pages_touched, 0);
5190         local_set(&cpu_buffer->pages_lost, 0);
5191         local_set(&cpu_buffer->pages_read, 0);
5192         cpu_buffer->last_pages_touch = 0;
5193         cpu_buffer->shortest_full = 0;
5194         cpu_buffer->read = 0;
5195         cpu_buffer->read_bytes = 0;
5196
5197         rb_time_set(&cpu_buffer->write_stamp, 0);
5198         rb_time_set(&cpu_buffer->before_stamp, 0);
5199
5200         memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
5201
5202         cpu_buffer->lost_events = 0;
5203         cpu_buffer->last_overrun = 0;
5204
5205         rb_head_page_activate(cpu_buffer);
5206         cpu_buffer->pages_removed = 0;
5207 }
5208
5209 /* Must have disabled the cpu buffer then done a synchronize_rcu */
5210 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
5211 {
5212         unsigned long flags;
5213
5214         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5215
5216         if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
5217                 goto out;
5218
5219         arch_spin_lock(&cpu_buffer->lock);
5220
5221         rb_reset_cpu(cpu_buffer);
5222
5223         arch_spin_unlock(&cpu_buffer->lock);
5224
5225  out:
5226         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5227 }
5228
5229 /**
5230  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
5231  * @buffer: The ring buffer to reset a per cpu buffer of
5232  * @cpu: The CPU buffer to be reset
5233  */
5234 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
5235 {
5236         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5237
5238         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5239                 return;
5240
5241         /* prevent another thread from changing buffer sizes */
5242         mutex_lock(&buffer->mutex);
5243
5244         atomic_inc(&cpu_buffer->resize_disabled);
5245         atomic_inc(&cpu_buffer->record_disabled);
5246
5247         /* Make sure all commits have finished */
5248         synchronize_rcu();
5249
5250         reset_disabled_cpu_buffer(cpu_buffer);
5251
5252         atomic_dec(&cpu_buffer->record_disabled);
5253         atomic_dec(&cpu_buffer->resize_disabled);
5254
5255         mutex_unlock(&buffer->mutex);
5256 }
5257 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
5258
5259 /* Flag to ensure proper resetting of atomic variables */
5260 #define RESET_BIT       (1 << 30)
5261
5262 /**
5263  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
5264  * @buffer: The ring buffer to reset a per cpu buffer of
5265  */
5266 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
5267 {
5268         struct ring_buffer_per_cpu *cpu_buffer;
5269         int cpu;
5270
5271         /* prevent another thread from changing buffer sizes */
5272         mutex_lock(&buffer->mutex);
5273
5274         for_each_online_buffer_cpu(buffer, cpu) {
5275                 cpu_buffer = buffer->buffers[cpu];
5276
5277                 atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
5278                 atomic_inc(&cpu_buffer->record_disabled);
5279         }
5280
5281         /* Make sure all commits have finished */
5282         synchronize_rcu();
5283
5284         for_each_buffer_cpu(buffer, cpu) {
5285                 cpu_buffer = buffer->buffers[cpu];
5286
5287                 /*
5288                  * If a CPU came online during the synchronize_rcu(), then
5289                  * ignore it.
5290                  */
5291                 if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
5292                         continue;
5293
5294                 reset_disabled_cpu_buffer(cpu_buffer);
5295
5296                 atomic_dec(&cpu_buffer->record_disabled);
5297                 atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
5298         }
5299
5300         mutex_unlock(&buffer->mutex);
5301 }
5302
5303 /**
5304  * ring_buffer_reset - reset a ring buffer
5305  * @buffer: The ring buffer to reset all cpu buffers
5306  */
5307 void ring_buffer_reset(struct trace_buffer *buffer)
5308 {
5309         struct ring_buffer_per_cpu *cpu_buffer;
5310         int cpu;
5311
5312         /* prevent another thread from changing buffer sizes */
5313         mutex_lock(&buffer->mutex);
5314
5315         for_each_buffer_cpu(buffer, cpu) {
5316                 cpu_buffer = buffer->buffers[cpu];
5317
5318                 atomic_inc(&cpu_buffer->resize_disabled);
5319                 atomic_inc(&cpu_buffer->record_disabled);
5320         }
5321
5322         /* Make sure all commits have finished */
5323         synchronize_rcu();
5324
5325         for_each_buffer_cpu(buffer, cpu) {
5326                 cpu_buffer = buffer->buffers[cpu];
5327
5328                 reset_disabled_cpu_buffer(cpu_buffer);
5329
5330                 atomic_dec(&cpu_buffer->record_disabled);
5331                 atomic_dec(&cpu_buffer->resize_disabled);
5332         }
5333
5334         mutex_unlock(&buffer->mutex);
5335 }
5336 EXPORT_SYMBOL_GPL(ring_buffer_reset);
5337
5338 /**
5339  * ring_buffer_empty - is the ring buffer empty?
5340  * @buffer: The ring buffer to test
5341  */
5342 bool ring_buffer_empty(struct trace_buffer *buffer)
5343 {
5344         struct ring_buffer_per_cpu *cpu_buffer;
5345         unsigned long flags;
5346         bool dolock;
5347         bool ret;
5348         int cpu;
5349
5350         /* yes this is racy, but if you don't like the race, lock the buffer */
5351         for_each_buffer_cpu(buffer, cpu) {
5352                 cpu_buffer = buffer->buffers[cpu];
5353                 local_irq_save(flags);
5354                 dolock = rb_reader_lock(cpu_buffer);
5355                 ret = rb_per_cpu_empty(cpu_buffer);
5356                 rb_reader_unlock(cpu_buffer, dolock);
5357                 local_irq_restore(flags);
5358
5359                 if (!ret)
5360                         return false;
5361         }
5362
5363         return true;
5364 }
5365 EXPORT_SYMBOL_GPL(ring_buffer_empty);
5366
5367 /**
5368  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
5369  * @buffer: The ring buffer
5370  * @cpu: The CPU buffer to test
5371  */
5372 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
5373 {
5374         struct ring_buffer_per_cpu *cpu_buffer;
5375         unsigned long flags;
5376         bool dolock;
5377         bool ret;
5378
5379         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5380                 return true;
5381
5382         cpu_buffer = buffer->buffers[cpu];
5383         local_irq_save(flags);
5384         dolock = rb_reader_lock(cpu_buffer);
5385         ret = rb_per_cpu_empty(cpu_buffer);
5386         rb_reader_unlock(cpu_buffer, dolock);
5387         local_irq_restore(flags);
5388
5389         return ret;
5390 }
5391 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
5392
5393 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
5394 /**
5395  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
5396  * @buffer_a: One buffer to swap with
5397  * @buffer_b: The other buffer to swap with
5398  * @cpu: the CPU of the buffers to swap
5399  *
5400  * This function is useful for tracers that want to take a "snapshot"
5401  * of a CPU buffer and has another back up buffer lying around.
5402  * it is expected that the tracer handles the cpu buffer not being
5403  * used at the moment.
5404  */
5405 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
5406                          struct trace_buffer *buffer_b, int cpu)
5407 {
5408         struct ring_buffer_per_cpu *cpu_buffer_a;
5409         struct ring_buffer_per_cpu *cpu_buffer_b;
5410         int ret = -EINVAL;
5411
5412         if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
5413             !cpumask_test_cpu(cpu, buffer_b->cpumask))
5414                 goto out;
5415
5416         cpu_buffer_a = buffer_a->buffers[cpu];
5417         cpu_buffer_b = buffer_b->buffers[cpu];
5418
5419         /* At least make sure the two buffers are somewhat the same */
5420         if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
5421                 goto out;
5422
5423         if (buffer_a->subbuf_order != buffer_b->subbuf_order)
5424                 goto out;
5425
5426         ret = -EAGAIN;
5427
5428         if (atomic_read(&buffer_a->record_disabled))
5429                 goto out;
5430
5431         if (atomic_read(&buffer_b->record_disabled))
5432                 goto out;
5433
5434         if (atomic_read(&cpu_buffer_a->record_disabled))
5435                 goto out;
5436
5437         if (atomic_read(&cpu_buffer_b->record_disabled))
5438                 goto out;
5439
5440         /*
5441          * We can't do a synchronize_rcu here because this
5442          * function can be called in atomic context.
5443          * Normally this will be called from the same CPU as cpu.
5444          * If not it's up to the caller to protect this.
5445          */
5446         atomic_inc(&cpu_buffer_a->record_disabled);
5447         atomic_inc(&cpu_buffer_b->record_disabled);
5448
5449         ret = -EBUSY;
5450         if (local_read(&cpu_buffer_a->committing))
5451                 goto out_dec;
5452         if (local_read(&cpu_buffer_b->committing))
5453                 goto out_dec;
5454
5455         /*
5456          * When resize is in progress, we cannot swap it because
5457          * it will mess the state of the cpu buffer.
5458          */
5459         if (atomic_read(&buffer_a->resizing))
5460                 goto out_dec;
5461         if (atomic_read(&buffer_b->resizing))
5462                 goto out_dec;
5463
5464         buffer_a->buffers[cpu] = cpu_buffer_b;
5465         buffer_b->buffers[cpu] = cpu_buffer_a;
5466
5467         cpu_buffer_b->buffer = buffer_a;
5468         cpu_buffer_a->buffer = buffer_b;
5469
5470         ret = 0;
5471
5472 out_dec:
5473         atomic_dec(&cpu_buffer_a->record_disabled);
5474         atomic_dec(&cpu_buffer_b->record_disabled);
5475 out:
5476         return ret;
5477 }
5478 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
5479 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
5480
5481 /**
5482  * ring_buffer_alloc_read_page - allocate a page to read from buffer
5483  * @buffer: the buffer to allocate for.
5484  * @cpu: the cpu buffer to allocate.
5485  *
5486  * This function is used in conjunction with ring_buffer_read_page.
5487  * When reading a full page from the ring buffer, these functions
5488  * can be used to speed up the process. The calling function should
5489  * allocate a few pages first with this function. Then when it
5490  * needs to get pages from the ring buffer, it passes the result
5491  * of this function into ring_buffer_read_page, which will swap
5492  * the page that was allocated, with the read page of the buffer.
5493  *
5494  * Returns:
5495  *  The page allocated, or ERR_PTR
5496  */
5497 struct buffer_data_read_page *
5498 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
5499 {
5500         struct ring_buffer_per_cpu *cpu_buffer;
5501         struct buffer_data_read_page *bpage = NULL;
5502         unsigned long flags;
5503         struct page *page;
5504
5505         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5506                 return ERR_PTR(-ENODEV);
5507
5508         bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
5509         if (!bpage)
5510                 return ERR_PTR(-ENOMEM);
5511
5512         bpage->order = buffer->subbuf_order;
5513         cpu_buffer = buffer->buffers[cpu];
5514         local_irq_save(flags);
5515         arch_spin_lock(&cpu_buffer->lock);
5516
5517         if (cpu_buffer->free_page) {
5518                 bpage->data = cpu_buffer->free_page;
5519                 cpu_buffer->free_page = NULL;
5520         }
5521
5522         arch_spin_unlock(&cpu_buffer->lock);
5523         local_irq_restore(flags);
5524
5525         if (bpage->data)
5526                 goto out;
5527
5528         page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL | __GFP_NORETRY,
5529                                 cpu_buffer->buffer->subbuf_order);
5530         if (!page) {
5531                 kfree(bpage);
5532                 return ERR_PTR(-ENOMEM);
5533         }
5534
5535         bpage->data = page_address(page);
5536
5537  out:
5538         rb_init_page(bpage->data);
5539
5540         return bpage;
5541 }
5542 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
5543
5544 /**
5545  * ring_buffer_free_read_page - free an allocated read page
5546  * @buffer: the buffer the page was allocate for
5547  * @cpu: the cpu buffer the page came from
5548  * @data_page: the page to free
5549  *
5550  * Free a page allocated from ring_buffer_alloc_read_page.
5551  */
5552 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
5553                                 struct buffer_data_read_page *data_page)
5554 {
5555         struct ring_buffer_per_cpu *cpu_buffer;
5556         struct buffer_data_page *bpage = data_page->data;
5557         struct page *page = virt_to_page(bpage);
5558         unsigned long flags;
5559
5560         if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
5561                 return;
5562
5563         cpu_buffer = buffer->buffers[cpu];
5564
5565         /*
5566          * If the page is still in use someplace else, or order of the page
5567          * is different from the subbuffer order of the buffer -
5568          * we can't reuse it
5569          */
5570         if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
5571                 goto out;
5572
5573         local_irq_save(flags);
5574         arch_spin_lock(&cpu_buffer->lock);
5575
5576         if (!cpu_buffer->free_page) {
5577                 cpu_buffer->free_page = bpage;
5578                 bpage = NULL;
5579         }
5580
5581         arch_spin_unlock(&cpu_buffer->lock);
5582         local_irq_restore(flags);
5583
5584  out:
5585         free_pages((unsigned long)bpage, data_page->order);
5586         kfree(data_page);
5587 }
5588 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
5589
5590 /**
5591  * ring_buffer_read_page - extract a page from the ring buffer
5592  * @buffer: buffer to extract from
5593  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
5594  * @len: amount to extract
5595  * @cpu: the cpu of the buffer to extract
5596  * @full: should the extraction only happen when the page is full.
5597  *
5598  * This function will pull out a page from the ring buffer and consume it.
5599  * @data_page must be the address of the variable that was returned
5600  * from ring_buffer_alloc_read_page. This is because the page might be used
5601  * to swap with a page in the ring buffer.
5602  *
5603  * for example:
5604  *      rpage = ring_buffer_alloc_read_page(buffer, cpu);
5605  *      if (IS_ERR(rpage))
5606  *              return PTR_ERR(rpage);
5607  *      ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
5608  *      if (ret >= 0)
5609  *              process_page(ring_buffer_read_page_data(rpage), ret);
5610  *      ring_buffer_free_read_page(buffer, cpu, rpage);
5611  *
5612  * When @full is set, the function will not return true unless
5613  * the writer is off the reader page.
5614  *
5615  * Note: it is up to the calling functions to handle sleeps and wakeups.
5616  *  The ring buffer can be used anywhere in the kernel and can not
5617  *  blindly call wake_up. The layer that uses the ring buffer must be
5618  *  responsible for that.
5619  *
5620  * Returns:
5621  *  >=0 if data has been transferred, returns the offset of consumed data.
5622  *  <0 if no data has been transferred.
5623  */
5624 int ring_buffer_read_page(struct trace_buffer *buffer,
5625                           struct buffer_data_read_page *data_page,
5626                           size_t len, int cpu, int full)
5627 {
5628         struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5629         struct ring_buffer_event *event;
5630         struct buffer_data_page *bpage;
5631         struct buffer_page *reader;
5632         unsigned long missed_events;
5633         unsigned long flags;
5634         unsigned int commit;
5635         unsigned int read;
5636         u64 save_timestamp;
5637         int ret = -1;
5638
5639         if (!cpumask_test_cpu(cpu, buffer->cpumask))
5640                 goto out;
5641
5642         /*
5643          * If len is not big enough to hold the page header, then
5644          * we can not copy anything.
5645          */
5646         if (len <= BUF_PAGE_HDR_SIZE)
5647                 goto out;
5648
5649         len -= BUF_PAGE_HDR_SIZE;
5650
5651         if (!data_page || !data_page->data)
5652                 goto out;
5653         if (data_page->order != buffer->subbuf_order)
5654                 goto out;
5655
5656         bpage = data_page->data;
5657         if (!bpage)
5658                 goto out;
5659
5660         raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5661
5662         reader = rb_get_reader_page(cpu_buffer);
5663         if (!reader)
5664                 goto out_unlock;
5665
5666         event = rb_reader_event(cpu_buffer);
5667
5668         read = reader->read;
5669         commit = rb_page_commit(reader);
5670
5671         /* Check if any events were dropped */
5672         missed_events = cpu_buffer->lost_events;
5673
5674         /*
5675          * If this page has been partially read or
5676          * if len is not big enough to read the rest of the page or
5677          * a writer is still on the page, then
5678          * we must copy the data from the page to the buffer.
5679          * Otherwise, we can simply swap the page with the one passed in.
5680          */
5681         if (read || (len < (commit - read)) ||
5682             cpu_buffer->reader_page == cpu_buffer->commit_page) {
5683                 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
5684                 unsigned int rpos = read;
5685                 unsigned int pos = 0;
5686                 unsigned int size;
5687
5688                 /*
5689                  * If a full page is expected, this can still be returned
5690                  * if there's been a previous partial read and the
5691                  * rest of the page can be read and the commit page is off
5692                  * the reader page.
5693                  */
5694                 if (full &&
5695                     (!read || (len < (commit - read)) ||
5696                      cpu_buffer->reader_page == cpu_buffer->commit_page))
5697                         goto out_unlock;
5698
5699                 if (len > (commit - read))
5700                         len = (commit - read);
5701
5702                 /* Always keep the time extend and data together */
5703                 size = rb_event_ts_length(event);
5704
5705                 if (len < size)
5706                         goto out_unlock;
5707
5708                 /* save the current timestamp, since the user will need it */
5709                 save_timestamp = cpu_buffer->read_stamp;
5710
5711                 /* Need to copy one event at a time */
5712                 do {
5713                         /* We need the size of one event, because
5714                          * rb_advance_reader only advances by one event,
5715                          * whereas rb_event_ts_length may include the size of
5716                          * one or two events.
5717                          * We have already ensured there's enough space if this
5718                          * is a time extend. */
5719                         size = rb_event_length(event);
5720                         memcpy(bpage->data + pos, rpage->data + rpos, size);
5721
5722                         len -= size;
5723
5724                         rb_advance_reader(cpu_buffer);
5725                         rpos = reader->read;
5726                         pos += size;
5727
5728                         if (rpos >= commit)
5729                                 break;
5730
5731                         event = rb_reader_event(cpu_buffer);
5732                         /* Always keep the time extend and data together */
5733                         size = rb_event_ts_length(event);
5734                 } while (len >= size);
5735
5736                 /* update bpage */
5737                 local_set(&bpage->commit, pos);
5738                 bpage->time_stamp = save_timestamp;
5739
5740                 /* we copied everything to the beginning */
5741                 read = 0;
5742         } else {
5743                 /* update the entry counter */
5744                 cpu_buffer->read += rb_page_entries(reader);
5745                 cpu_buffer->read_bytes += rb_page_commit(reader);
5746
5747                 /* swap the pages */
5748                 rb_init_page(bpage);
5749                 bpage = reader->page;
5750                 reader->page = data_page->data;
5751                 local_set(&reader->write, 0);
5752                 local_set(&reader->entries, 0);
5753                 reader->read = 0;
5754                 data_page->data = bpage;
5755
5756                 /*
5757                  * Use the real_end for the data size,
5758                  * This gives us a chance to store the lost events
5759                  * on the page.
5760                  */
5761                 if (reader->real_end)
5762                         local_set(&bpage->commit, reader->real_end);
5763         }
5764         ret = read;
5765
5766         cpu_buffer->lost_events = 0;
5767
5768         commit = local_read(&bpage->commit);
5769         /*
5770          * Set a flag in the commit field if we lost events
5771          */
5772         if (missed_events) {
5773                 /* If there is room at the end of the page to save the
5774                  * missed events, then record it there.
5775                  */
5776                 if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
5777                         memcpy(&bpage->data[commit], &missed_events,
5778                                sizeof(missed_events));
5779                         local_add(RB_MISSED_STORED, &bpage->commit);
5780                         commit += sizeof(missed_events);
5781                 }
5782                 local_add(RB_MISSED_EVENTS, &bpage->commit);
5783         }
5784
5785         /*
5786          * This page may be off to user land. Zero it out here.
5787          */
5788         if (commit < buffer->subbuf_size)
5789                 memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
5790
5791  out_unlock:
5792         raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5793
5794  out:
5795         return ret;
5796 }
5797 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
5798
5799 /**
5800  * ring_buffer_read_page_data - get pointer to the data in the page.
5801  * @page:  the page to get the data from
5802  *
5803  * Returns pointer to the actual data in this page.
5804  */
5805 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
5806 {
5807         return page->data;
5808 }
5809 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
5810
5811 /**
5812  * ring_buffer_subbuf_size_get - get size of the sub buffer.
5813  * @buffer: the buffer to get the sub buffer size from
5814  *
5815  * Returns size of the sub buffer, in bytes.
5816  */
5817 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
5818 {
5819         return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
5820 }
5821 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
5822
5823 /**
5824  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
5825  * @buffer: The ring_buffer to get the system sub page order from
5826  *
5827  * By default, one ring buffer sub page equals to one system page. This parameter
5828  * is configurable, per ring buffer. The size of the ring buffer sub page can be
5829  * extended, but must be an order of system page size.
5830  *
5831  * Returns the order of buffer sub page size, in system pages:
5832  * 0 means the sub buffer size is 1 system page and so forth.
5833  * In case of an error < 0 is returned.
5834  */
5835 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
5836 {
5837         if (!buffer)
5838                 return -EINVAL;
5839
5840         return buffer->subbuf_order;
5841 }
5842 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
5843
5844 /**
5845  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
5846  * @buffer: The ring_buffer to set the new page size.
5847  * @order: Order of the system pages in one sub buffer page
5848  *
5849  * By default, one ring buffer pages equals to one system page. This API can be
5850  * used to set new size of the ring buffer page. The size must be order of
5851  * system page size, that's why the input parameter @order is the order of
5852  * system pages that are allocated for one ring buffer page:
5853  *  0 - 1 system page
5854  *  1 - 2 system pages
5855  *  3 - 4 system pages
5856  *  ...
5857  *
5858  * Returns 0 on success or < 0 in case of an error.
5859  */
5860 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
5861 {
5862         struct ring_buffer_per_cpu *cpu_buffer;
5863         struct buffer_page *bpage, *tmp;
5864         int old_order, old_size;
5865         int nr_pages;
5866         int psize;
5867         int err;
5868         int cpu;
5869
5870         if (!buffer || order < 0)
5871                 return -EINVAL;
5872
5873         if (buffer->subbuf_order == order)
5874                 return 0;
5875
5876         psize = (1 << order) * PAGE_SIZE;
5877         if (psize <= BUF_PAGE_HDR_SIZE)
5878                 return -EINVAL;
5879
5880         old_order = buffer->subbuf_order;
5881         old_size = buffer->subbuf_size;
5882
5883         /* prevent another thread from changing buffer sizes */
5884         mutex_lock(&buffer->mutex);
5885         atomic_inc(&buffer->record_disabled);
5886
5887         /* Make sure all commits have finished */
5888         synchronize_rcu();
5889
5890         buffer->subbuf_order = order;
5891         buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
5892
5893         /* Make sure all new buffers are allocated, before deleting the old ones */
5894         for_each_buffer_cpu(buffer, cpu) {
5895
5896                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5897                         continue;
5898
5899                 cpu_buffer = buffer->buffers[cpu];
5900
5901                 /* Update the number of pages to match the new size */
5902                 nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
5903                 nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
5904
5905                 /* we need a minimum of two pages */
5906                 if (nr_pages < 2)
5907                         nr_pages = 2;
5908
5909                 cpu_buffer->nr_pages_to_update = nr_pages;
5910
5911                 /* Include the reader page */
5912                 nr_pages++;
5913
5914                 /* Allocate the new size buffer */
5915                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5916                 if (__rb_allocate_pages(cpu_buffer, nr_pages,
5917                                         &cpu_buffer->new_pages)) {
5918                         /* not enough memory for new pages */
5919                         err = -ENOMEM;
5920                         goto error;
5921                 }
5922         }
5923
5924         for_each_buffer_cpu(buffer, cpu) {
5925
5926                 if (!cpumask_test_cpu(cpu, buffer->cpumask))
5927                         continue;
5928
5929                 cpu_buffer = buffer->buffers[cpu];
5930
5931                 /* Clear the head bit to make the link list normal to read */
5932                 rb_head_page_deactivate(cpu_buffer);
5933
5934                 /* Now walk the list and free all the old sub buffers */
5935                 list_for_each_entry_safe(bpage, tmp, cpu_buffer->pages, list) {
5936                         list_del_init(&bpage->list);
5937                         free_buffer_page(bpage);
5938                 }
5939                 /* The above loop stopped an the last page needing to be freed */
5940                 bpage = list_entry(cpu_buffer->pages, struct buffer_page, list);
5941                 free_buffer_page(bpage);
5942
5943                 /* Free the current reader page */
5944                 free_buffer_page(cpu_buffer->reader_page);
5945
5946                 /* One page was allocated for the reader page */
5947                 cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
5948                                                      struct buffer_page, list);
5949                 list_del_init(&cpu_buffer->reader_page->list);
5950
5951                 /* The cpu_buffer pages are a link list with no head */
5952                 cpu_buffer->pages = cpu_buffer->new_pages.next;
5953                 cpu_buffer->new_pages.next->prev = cpu_buffer->new_pages.prev;
5954                 cpu_buffer->new_pages.prev->next = cpu_buffer->new_pages.next;
5955
5956                 /* Clear the new_pages list */
5957                 INIT_LIST_HEAD(&cpu_buffer->new_pages);
5958
5959                 cpu_buffer->head_page
5960                         = list_entry(cpu_buffer->pages, struct buffer_page, list);
5961                 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
5962
5963                 cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
5964                 cpu_buffer->nr_pages_to_update = 0;
5965
5966                 free_pages((unsigned long)cpu_buffer->free_page, old_order);
5967                 cpu_buffer->free_page = NULL;
5968
5969                 rb_head_page_activate(cpu_buffer);
5970
5971                 rb_check_pages(cpu_buffer);
5972         }
5973
5974         atomic_dec(&buffer->record_disabled);
5975         mutex_unlock(&buffer->mutex);
5976
5977         return 0;
5978
5979 error:
5980         buffer->subbuf_order = old_order;
5981         buffer->subbuf_size = old_size;
5982
5983         atomic_dec(&buffer->record_disabled);
5984         mutex_unlock(&buffer->mutex);
5985
5986         for_each_buffer_cpu(buffer, cpu) {
5987                 cpu_buffer = buffer->buffers[cpu];
5988
5989                 if (!cpu_buffer->nr_pages_to_update)
5990                         continue;
5991
5992                 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
5993                         list_del_init(&bpage->list);
5994                         free_buffer_page(bpage);
5995                 }
5996         }
5997
5998         return err;
5999 }
6000 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6001
6002 /*
6003  * We only allocate new buffers, never free them if the CPU goes down.
6004  * If we were to free the buffer, then the user would lose any trace that was in
6005  * the buffer.
6006  */
6007 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
6008 {
6009         struct trace_buffer *buffer;
6010         long nr_pages_same;
6011         int cpu_i;
6012         unsigned long nr_pages;
6013
6014         buffer = container_of(node, struct trace_buffer, node);
6015         if (cpumask_test_cpu(cpu, buffer->cpumask))
6016                 return 0;
6017
6018         nr_pages = 0;
6019         nr_pages_same = 1;
6020         /* check if all cpu sizes are same */
6021         for_each_buffer_cpu(buffer, cpu_i) {
6022                 /* fill in the size from first enabled cpu */
6023                 if (nr_pages == 0)
6024                         nr_pages = buffer->buffers[cpu_i]->nr_pages;
6025                 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
6026                         nr_pages_same = 0;
6027                         break;
6028                 }
6029         }
6030         /* allocate minimum pages, user can later expand it */
6031         if (!nr_pages_same)
6032                 nr_pages = 2;
6033         buffer->buffers[cpu] =
6034                 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
6035         if (!buffer->buffers[cpu]) {
6036                 WARN(1, "failed to allocate ring buffer on CPU %u\n",
6037                      cpu);
6038                 return -ENOMEM;
6039         }
6040         smp_wmb();
6041         cpumask_set_cpu(cpu, buffer->cpumask);
6042         return 0;
6043 }
6044
6045 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
6046 /*
6047  * This is a basic integrity check of the ring buffer.
6048  * Late in the boot cycle this test will run when configured in.
6049  * It will kick off a thread per CPU that will go into a loop
6050  * writing to the per cpu ring buffer various sizes of data.
6051  * Some of the data will be large items, some small.
6052  *
6053  * Another thread is created that goes into a spin, sending out
6054  * IPIs to the other CPUs to also write into the ring buffer.
6055  * this is to test the nesting ability of the buffer.
6056  *
6057  * Basic stats are recorded and reported. If something in the
6058  * ring buffer should happen that's not expected, a big warning
6059  * is displayed and all ring buffers are disabled.
6060  */
6061 static struct task_struct *rb_threads[NR_CPUS] __initdata;
6062
6063 struct rb_test_data {
6064         struct trace_buffer *buffer;
6065         unsigned long           events;
6066         unsigned long           bytes_written;
6067         unsigned long           bytes_alloc;
6068         unsigned long           bytes_dropped;
6069         unsigned long           events_nested;
6070         unsigned long           bytes_written_nested;
6071         unsigned long           bytes_alloc_nested;
6072         unsigned long           bytes_dropped_nested;
6073         int                     min_size_nested;
6074         int                     max_size_nested;
6075         int                     max_size;
6076         int                     min_size;
6077         int                     cpu;
6078         int                     cnt;
6079 };
6080
6081 static struct rb_test_data rb_data[NR_CPUS] __initdata;
6082
6083 /* 1 meg per cpu */
6084 #define RB_TEST_BUFFER_SIZE     1048576
6085
6086 static char rb_string[] __initdata =
6087         "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
6088         "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
6089         "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
6090
6091 static bool rb_test_started __initdata;
6092
6093 struct rb_item {
6094         int size;
6095         char str[];
6096 };
6097
6098 static __init int rb_write_something(struct rb_test_data *data, bool nested)
6099 {
6100         struct ring_buffer_event *event;
6101         struct rb_item *item;
6102         bool started;
6103         int event_len;
6104         int size;
6105         int len;
6106         int cnt;
6107
6108         /* Have nested writes different that what is written */
6109         cnt = data->cnt + (nested ? 27 : 0);
6110
6111         /* Multiply cnt by ~e, to make some unique increment */
6112         size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
6113
6114         len = size + sizeof(struct rb_item);
6115
6116         started = rb_test_started;
6117         /* read rb_test_started before checking buffer enabled */
6118         smp_rmb();
6119
6120         event = ring_buffer_lock_reserve(data->buffer, len);
6121         if (!event) {
6122                 /* Ignore dropped events before test starts. */
6123                 if (started) {
6124                         if (nested)
6125                                 data->bytes_dropped += len;
6126                         else
6127                                 data->bytes_dropped_nested += len;
6128                 }
6129                 return len;
6130         }
6131
6132         event_len = ring_buffer_event_length(event);
6133
6134         if (RB_WARN_ON(data->buffer, event_len < len))
6135                 goto out;
6136
6137         item = ring_buffer_event_data(event);
6138         item->size = size;
6139         memcpy(item->str, rb_string, size);
6140
6141         if (nested) {
6142                 data->bytes_alloc_nested += event_len;
6143                 data->bytes_written_nested += len;
6144                 data->events_nested++;
6145                 if (!data->min_size_nested || len < data->min_size_nested)
6146                         data->min_size_nested = len;
6147                 if (len > data->max_size_nested)
6148                         data->max_size_nested = len;
6149         } else {
6150                 data->bytes_alloc += event_len;
6151                 data->bytes_written += len;
6152                 data->events++;
6153                 if (!data->min_size || len < data->min_size)
6154                         data->max_size = len;
6155                 if (len > data->max_size)
6156                         data->max_size = len;
6157         }
6158
6159  out:
6160         ring_buffer_unlock_commit(data->buffer);
6161
6162         return 0;
6163 }
6164
6165 static __init int rb_test(void *arg)
6166 {
6167         struct rb_test_data *data = arg;
6168
6169         while (!kthread_should_stop()) {
6170                 rb_write_something(data, false);
6171                 data->cnt++;
6172
6173                 set_current_state(TASK_INTERRUPTIBLE);
6174                 /* Now sleep between a min of 100-300us and a max of 1ms */
6175                 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
6176         }
6177
6178         return 0;
6179 }
6180
6181 static __init void rb_ipi(void *ignore)
6182 {
6183         struct rb_test_data *data;
6184         int cpu = smp_processor_id();
6185
6186         data = &rb_data[cpu];
6187         rb_write_something(data, true);
6188 }
6189
6190 static __init int rb_hammer_test(void *arg)
6191 {
6192         while (!kthread_should_stop()) {
6193
6194                 /* Send an IPI to all cpus to write data! */
6195                 smp_call_function(rb_ipi, NULL, 1);
6196                 /* No sleep, but for non preempt, let others run */
6197                 schedule();
6198         }
6199
6200         return 0;
6201 }
6202
6203 static __init int test_ringbuffer(void)
6204 {
6205         struct task_struct *rb_hammer;
6206         struct trace_buffer *buffer;
6207         int cpu;
6208         int ret = 0;
6209
6210         if (security_locked_down(LOCKDOWN_TRACEFS)) {
6211                 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
6212                 return 0;
6213         }
6214
6215         pr_info("Running ring buffer tests...\n");
6216
6217         buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
6218         if (WARN_ON(!buffer))
6219                 return 0;
6220
6221         /* Disable buffer so that threads can't write to it yet */
6222         ring_buffer_record_off(buffer);
6223
6224         for_each_online_cpu(cpu) {
6225                 rb_data[cpu].buffer = buffer;
6226                 rb_data[cpu].cpu = cpu;
6227                 rb_data[cpu].cnt = cpu;
6228                 rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
6229                                                      cpu, "rbtester/%u");
6230                 if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
6231                         pr_cont("FAILED\n");
6232                         ret = PTR_ERR(rb_threads[cpu]);
6233                         goto out_free;
6234                 }
6235         }
6236
6237         /* Now create the rb hammer! */
6238         rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
6239         if (WARN_ON(IS_ERR(rb_hammer))) {
6240                 pr_cont("FAILED\n");
6241                 ret = PTR_ERR(rb_hammer);
6242                 goto out_free;
6243         }
6244
6245         ring_buffer_record_on(buffer);
6246         /*
6247          * Show buffer is enabled before setting rb_test_started.
6248          * Yes there's a small race window where events could be
6249          * dropped and the thread wont catch it. But when a ring
6250          * buffer gets enabled, there will always be some kind of
6251          * delay before other CPUs see it. Thus, we don't care about
6252          * those dropped events. We care about events dropped after
6253          * the threads see that the buffer is active.
6254          */
6255         smp_wmb();
6256         rb_test_started = true;
6257
6258         set_current_state(TASK_INTERRUPTIBLE);
6259         /* Just run for 10 seconds */;
6260         schedule_timeout(10 * HZ);
6261
6262         kthread_stop(rb_hammer);
6263
6264  out_free:
6265         for_each_online_cpu(cpu) {
6266                 if (!rb_threads[cpu])
6267                         break;
6268                 kthread_stop(rb_threads[cpu]);
6269         }
6270         if (ret) {
6271                 ring_buffer_free(buffer);
6272                 return ret;
6273         }
6274
6275         /* Report! */
6276         pr_info("finished\n");
6277         for_each_online_cpu(cpu) {
6278                 struct ring_buffer_event *event;
6279                 struct rb_test_data *data = &rb_data[cpu];
6280                 struct rb_item *item;
6281                 unsigned long total_events;
6282                 unsigned long total_dropped;
6283                 unsigned long total_written;
6284                 unsigned long total_alloc;
6285                 unsigned long total_read = 0;
6286                 unsigned long total_size = 0;
6287                 unsigned long total_len = 0;
6288                 unsigned long total_lost = 0;
6289                 unsigned long lost;
6290                 int big_event_size;
6291                 int small_event_size;
6292
6293                 ret = -1;
6294
6295                 total_events = data->events + data->events_nested;
6296                 total_written = data->bytes_written + data->bytes_written_nested;
6297                 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
6298                 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
6299
6300                 big_event_size = data->max_size + data->max_size_nested;
6301                 small_event_size = data->min_size + data->min_size_nested;
6302
6303                 pr_info("CPU %d:\n", cpu);
6304                 pr_info("              events:    %ld\n", total_events);
6305                 pr_info("       dropped bytes:    %ld\n", total_dropped);
6306                 pr_info("       alloced bytes:    %ld\n", total_alloc);
6307                 pr_info("       written bytes:    %ld\n", total_written);
6308                 pr_info("       biggest event:    %d\n", big_event_size);
6309                 pr_info("      smallest event:    %d\n", small_event_size);
6310
6311                 if (RB_WARN_ON(buffer, total_dropped))
6312                         break;
6313
6314                 ret = 0;
6315
6316                 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
6317                         total_lost += lost;
6318                         item = ring_buffer_event_data(event);
6319                         total_len += ring_buffer_event_length(event);
6320                         total_size += item->size + sizeof(struct rb_item);
6321                         if (memcmp(&item->str[0], rb_string, item->size) != 0) {
6322                                 pr_info("FAILED!\n");
6323                                 pr_info("buffer had: %.*s\n", item->size, item->str);
6324                                 pr_info("expected:   %.*s\n", item->size, rb_string);
6325                                 RB_WARN_ON(buffer, 1);
6326                                 ret = -1;
6327                                 break;
6328                         }
6329                         total_read++;
6330                 }
6331                 if (ret)
6332                         break;
6333
6334                 ret = -1;
6335
6336                 pr_info("         read events:   %ld\n", total_read);
6337                 pr_info("         lost events:   %ld\n", total_lost);
6338                 pr_info("        total events:   %ld\n", total_lost + total_read);
6339                 pr_info("  recorded len bytes:   %ld\n", total_len);
6340                 pr_info(" recorded size bytes:   %ld\n", total_size);
6341                 if (total_lost) {
6342                         pr_info(" With dropped events, record len and size may not match\n"
6343                                 " alloced and written from above\n");
6344                 } else {
6345                         if (RB_WARN_ON(buffer, total_len != total_alloc ||
6346                                        total_size != total_written))
6347                                 break;
6348                 }
6349                 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
6350                         break;
6351
6352                 ret = 0;
6353         }
6354         if (!ret)
6355                 pr_info("Ring buffer PASSED!\n");
6356
6357         ring_buffer_free(buffer);
6358         return 0;
6359 }
6360
6361 late_initcall(test_ringbuffer);
6362 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */