ftrace: Add comment to why rcu_dereference_sched() is open coded
[linux-2.6-microblaze.git] / kernel / trace / bpf_trace.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_perf_event.h>
10 #include <linux/filter.h>
11 #include <linux/uaccess.h>
12 #include <linux/ctype.h>
13 #include <linux/kprobes.h>
14 #include <linux/syscalls.h>
15 #include <linux/error-injection.h>
16
17 #include <asm/tlb.h>
18
19 #include "trace_probe.h"
20 #include "trace.h"
21
22 #define bpf_event_rcu_dereference(p)                                    \
23         rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
24
25 #ifdef CONFIG_MODULES
26 struct bpf_trace_module {
27         struct module *module;
28         struct list_head list;
29 };
30
31 static LIST_HEAD(bpf_trace_modules);
32 static DEFINE_MUTEX(bpf_module_mutex);
33
34 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
35 {
36         struct bpf_raw_event_map *btp, *ret = NULL;
37         struct bpf_trace_module *btm;
38         unsigned int i;
39
40         mutex_lock(&bpf_module_mutex);
41         list_for_each_entry(btm, &bpf_trace_modules, list) {
42                 for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
43                         btp = &btm->module->bpf_raw_events[i];
44                         if (!strcmp(btp->tp->name, name)) {
45                                 if (try_module_get(btm->module))
46                                         ret = btp;
47                                 goto out;
48                         }
49                 }
50         }
51 out:
52         mutex_unlock(&bpf_module_mutex);
53         return ret;
54 }
55 #else
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58         return NULL;
59 }
60 #endif /* CONFIG_MODULES */
61
62 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
63 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
64
65 /**
66  * trace_call_bpf - invoke BPF program
67  * @call: tracepoint event
68  * @ctx: opaque context pointer
69  *
70  * kprobe handlers execute BPF programs via this helper.
71  * Can be used from static tracepoints in the future.
72  *
73  * Return: BPF programs always return an integer which is interpreted by
74  * kprobe handler as:
75  * 0 - return from kprobe (event is filtered out)
76  * 1 - store kprobe event into ring buffer
77  * Other values are reserved and currently alias to 1
78  */
79 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
80 {
81         unsigned int ret;
82
83         if (in_nmi()) /* not supported yet */
84                 return 1;
85
86         preempt_disable();
87
88         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
89                 /*
90                  * since some bpf program is already running on this cpu,
91                  * don't call into another bpf program (same or different)
92                  * and don't send kprobe event into ring-buffer,
93                  * so return zero here
94                  */
95                 ret = 0;
96                 goto out;
97         }
98
99         /*
100          * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
101          * to all call sites, we did a bpf_prog_array_valid() there to check
102          * whether call->prog_array is empty or not, which is
103          * a heurisitc to speed up execution.
104          *
105          * If bpf_prog_array_valid() fetched prog_array was
106          * non-NULL, we go into trace_call_bpf() and do the actual
107          * proper rcu_dereference() under RCU lock.
108          * If it turns out that prog_array is NULL then, we bail out.
109          * For the opposite, if the bpf_prog_array_valid() fetched pointer
110          * was NULL, you'll skip the prog_array with the risk of missing
111          * out of events when it was updated in between this and the
112          * rcu_dereference() which is accepted risk.
113          */
114         ret = BPF_PROG_RUN_ARRAY_CHECK(call->prog_array, ctx, BPF_PROG_RUN);
115
116  out:
117         __this_cpu_dec(bpf_prog_active);
118         preempt_enable();
119
120         return ret;
121 }
122 EXPORT_SYMBOL_GPL(trace_call_bpf);
123
124 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
125 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
126 {
127         regs_set_return_value(regs, rc);
128         override_function_with_return(regs);
129         return 0;
130 }
131
132 static const struct bpf_func_proto bpf_override_return_proto = {
133         .func           = bpf_override_return,
134         .gpl_only       = true,
135         .ret_type       = RET_INTEGER,
136         .arg1_type      = ARG_PTR_TO_CTX,
137         .arg2_type      = ARG_ANYTHING,
138 };
139 #endif
140
141 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
142            const void __user *, unsafe_ptr)
143 {
144         int ret = probe_user_read(dst, unsafe_ptr, size);
145
146         if (unlikely(ret < 0))
147                 memset(dst, 0, size);
148
149         return ret;
150 }
151
152 static const struct bpf_func_proto bpf_probe_read_user_proto = {
153         .func           = bpf_probe_read_user,
154         .gpl_only       = true,
155         .ret_type       = RET_INTEGER,
156         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
157         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
158         .arg3_type      = ARG_ANYTHING,
159 };
160
161 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
162            const void __user *, unsafe_ptr)
163 {
164         int ret = strncpy_from_unsafe_user(dst, unsafe_ptr, size);
165
166         if (unlikely(ret < 0))
167                 memset(dst, 0, size);
168
169         return ret;
170 }
171
172 static const struct bpf_func_proto bpf_probe_read_user_str_proto = {
173         .func           = bpf_probe_read_user_str,
174         .gpl_only       = true,
175         .ret_type       = RET_INTEGER,
176         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
177         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
178         .arg3_type      = ARG_ANYTHING,
179 };
180
181 static __always_inline int
182 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr,
183                              const bool compat)
184 {
185         int ret = security_locked_down(LOCKDOWN_BPF_READ);
186
187         if (unlikely(ret < 0))
188                 goto out;
189         ret = compat ? probe_kernel_read(dst, unsafe_ptr, size) :
190               probe_kernel_read_strict(dst, unsafe_ptr, size);
191         if (unlikely(ret < 0))
192 out:
193                 memset(dst, 0, size);
194         return ret;
195 }
196
197 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
198            const void *, unsafe_ptr)
199 {
200         return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, false);
201 }
202
203 static const struct bpf_func_proto bpf_probe_read_kernel_proto = {
204         .func           = bpf_probe_read_kernel,
205         .gpl_only       = true,
206         .ret_type       = RET_INTEGER,
207         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
208         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
209         .arg3_type      = ARG_ANYTHING,
210 };
211
212 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
213            const void *, unsafe_ptr)
214 {
215         return bpf_probe_read_kernel_common(dst, size, unsafe_ptr, true);
216 }
217
218 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
219         .func           = bpf_probe_read_compat,
220         .gpl_only       = true,
221         .ret_type       = RET_INTEGER,
222         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
223         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
224         .arg3_type      = ARG_ANYTHING,
225 };
226
227 static __always_inline int
228 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr,
229                                  const bool compat)
230 {
231         int ret = security_locked_down(LOCKDOWN_BPF_READ);
232
233         if (unlikely(ret < 0))
234                 goto out;
235         /*
236          * The strncpy_from_unsafe_*() call will likely not fill the entire
237          * buffer, but that's okay in this circumstance as we're probing
238          * arbitrary memory anyway similar to bpf_probe_read_*() and might
239          * as well probe the stack. Thus, memory is explicitly cleared
240          * only in error case, so that improper users ignoring return
241          * code altogether don't copy garbage; otherwise length of string
242          * is returned that can be used for bpf_perf_event_output() et al.
243          */
244         ret = compat ? strncpy_from_unsafe(dst, unsafe_ptr, size) :
245               strncpy_from_unsafe_strict(dst, unsafe_ptr, size);
246         if (unlikely(ret < 0))
247 out:
248                 memset(dst, 0, size);
249         return ret;
250 }
251
252 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
253            const void *, unsafe_ptr)
254 {
255         return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, false);
256 }
257
258 static const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
259         .func           = bpf_probe_read_kernel_str,
260         .gpl_only       = true,
261         .ret_type       = RET_INTEGER,
262         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
263         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
264         .arg3_type      = ARG_ANYTHING,
265 };
266
267 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
268            const void *, unsafe_ptr)
269 {
270         return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr, true);
271 }
272
273 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
274         .func           = bpf_probe_read_compat_str,
275         .gpl_only       = true,
276         .ret_type       = RET_INTEGER,
277         .arg1_type      = ARG_PTR_TO_UNINIT_MEM,
278         .arg2_type      = ARG_CONST_SIZE_OR_ZERO,
279         .arg3_type      = ARG_ANYTHING,
280 };
281
282 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
283            u32, size)
284 {
285         /*
286          * Ensure we're in user context which is safe for the helper to
287          * run. This helper has no business in a kthread.
288          *
289          * access_ok() should prevent writing to non-user memory, but in
290          * some situations (nommu, temporary switch, etc) access_ok() does
291          * not provide enough validation, hence the check on KERNEL_DS.
292          *
293          * nmi_uaccess_okay() ensures the probe is not run in an interim
294          * state, when the task or mm are switched. This is specifically
295          * required to prevent the use of temporary mm.
296          */
297
298         if (unlikely(in_interrupt() ||
299                      current->flags & (PF_KTHREAD | PF_EXITING)))
300                 return -EPERM;
301         if (unlikely(uaccess_kernel()))
302                 return -EPERM;
303         if (unlikely(!nmi_uaccess_okay()))
304                 return -EPERM;
305
306         return probe_user_write(unsafe_ptr, src, size);
307 }
308
309 static const struct bpf_func_proto bpf_probe_write_user_proto = {
310         .func           = bpf_probe_write_user,
311         .gpl_only       = true,
312         .ret_type       = RET_INTEGER,
313         .arg1_type      = ARG_ANYTHING,
314         .arg2_type      = ARG_PTR_TO_MEM,
315         .arg3_type      = ARG_CONST_SIZE,
316 };
317
318 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
319 {
320         pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
321                             current->comm, task_pid_nr(current));
322
323         return &bpf_probe_write_user_proto;
324 }
325
326 /*
327  * Only limited trace_printk() conversion specifiers allowed:
328  * %d %i %u %x %ld %li %lu %lx %lld %lli %llu %llx %p %s
329  */
330 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
331            u64, arg2, u64, arg3)
332 {
333         bool str_seen = false;
334         int mod[3] = {};
335         int fmt_cnt = 0;
336         u64 unsafe_addr;
337         char buf[64];
338         int i;
339
340         /*
341          * bpf_check()->check_func_arg()->check_stack_boundary()
342          * guarantees that fmt points to bpf program stack,
343          * fmt_size bytes of it were initialized and fmt_size > 0
344          */
345         if (fmt[--fmt_size] != 0)
346                 return -EINVAL;
347
348         /* check format string for allowed specifiers */
349         for (i = 0; i < fmt_size; i++) {
350                 if ((!isprint(fmt[i]) && !isspace(fmt[i])) || !isascii(fmt[i]))
351                         return -EINVAL;
352
353                 if (fmt[i] != '%')
354                         continue;
355
356                 if (fmt_cnt >= 3)
357                         return -EINVAL;
358
359                 /* fmt[i] != 0 && fmt[last] == 0, so we can access fmt[i + 1] */
360                 i++;
361                 if (fmt[i] == 'l') {
362                         mod[fmt_cnt]++;
363                         i++;
364                 } else if (fmt[i] == 'p' || fmt[i] == 's') {
365                         mod[fmt_cnt]++;
366                         /* disallow any further format extensions */
367                         if (fmt[i + 1] != 0 &&
368                             !isspace(fmt[i + 1]) &&
369                             !ispunct(fmt[i + 1]))
370                                 return -EINVAL;
371                         fmt_cnt++;
372                         if (fmt[i] == 's') {
373                                 if (str_seen)
374                                         /* allow only one '%s' per fmt string */
375                                         return -EINVAL;
376                                 str_seen = true;
377
378                                 switch (fmt_cnt) {
379                                 case 1:
380                                         unsafe_addr = arg1;
381                                         arg1 = (long) buf;
382                                         break;
383                                 case 2:
384                                         unsafe_addr = arg2;
385                                         arg2 = (long) buf;
386                                         break;
387                                 case 3:
388                                         unsafe_addr = arg3;
389                                         arg3 = (long) buf;
390                                         break;
391                                 }
392                                 buf[0] = 0;
393                                 strncpy_from_unsafe(buf,
394                                                     (void *) (long) unsafe_addr,
395                                                     sizeof(buf));
396                         }
397                         continue;
398                 }
399
400                 if (fmt[i] == 'l') {
401                         mod[fmt_cnt]++;
402                         i++;
403                 }
404
405                 if (fmt[i] != 'i' && fmt[i] != 'd' &&
406                     fmt[i] != 'u' && fmt[i] != 'x')
407                         return -EINVAL;
408                 fmt_cnt++;
409         }
410
411 /* Horrid workaround for getting va_list handling working with different
412  * argument type combinations generically for 32 and 64 bit archs.
413  */
414 #define __BPF_TP_EMIT() __BPF_ARG3_TP()
415 #define __BPF_TP(...)                                                   \
416         __trace_printk(0 /* Fake ip */,                                 \
417                        fmt, ##__VA_ARGS__)
418
419 #define __BPF_ARG1_TP(...)                                              \
420         ((mod[0] == 2 || (mod[0] == 1 && __BITS_PER_LONG == 64))        \
421           ? __BPF_TP(arg1, ##__VA_ARGS__)                               \
422           : ((mod[0] == 1 || (mod[0] == 0 && __BITS_PER_LONG == 32))    \
423               ? __BPF_TP((long)arg1, ##__VA_ARGS__)                     \
424               : __BPF_TP((u32)arg1, ##__VA_ARGS__)))
425
426 #define __BPF_ARG2_TP(...)                                              \
427         ((mod[1] == 2 || (mod[1] == 1 && __BITS_PER_LONG == 64))        \
428           ? __BPF_ARG1_TP(arg2, ##__VA_ARGS__)                          \
429           : ((mod[1] == 1 || (mod[1] == 0 && __BITS_PER_LONG == 32))    \
430               ? __BPF_ARG1_TP((long)arg2, ##__VA_ARGS__)                \
431               : __BPF_ARG1_TP((u32)arg2, ##__VA_ARGS__)))
432
433 #define __BPF_ARG3_TP(...)                                              \
434         ((mod[2] == 2 || (mod[2] == 1 && __BITS_PER_LONG == 64))        \
435           ? __BPF_ARG2_TP(arg3, ##__VA_ARGS__)                          \
436           : ((mod[2] == 1 || (mod[2] == 0 && __BITS_PER_LONG == 32))    \
437               ? __BPF_ARG2_TP((long)arg3, ##__VA_ARGS__)                \
438               : __BPF_ARG2_TP((u32)arg3, ##__VA_ARGS__)))
439
440         return __BPF_TP_EMIT();
441 }
442
443 static const struct bpf_func_proto bpf_trace_printk_proto = {
444         .func           = bpf_trace_printk,
445         .gpl_only       = true,
446         .ret_type       = RET_INTEGER,
447         .arg1_type      = ARG_PTR_TO_MEM,
448         .arg2_type      = ARG_CONST_SIZE,
449 };
450
451 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
452 {
453         /*
454          * this program might be calling bpf_trace_printk,
455          * so allocate per-cpu printk buffers
456          */
457         trace_printk_init_buffers();
458
459         return &bpf_trace_printk_proto;
460 }
461
462 static __always_inline int
463 get_map_perf_counter(struct bpf_map *map, u64 flags,
464                      u64 *value, u64 *enabled, u64 *running)
465 {
466         struct bpf_array *array = container_of(map, struct bpf_array, map);
467         unsigned int cpu = smp_processor_id();
468         u64 index = flags & BPF_F_INDEX_MASK;
469         struct bpf_event_entry *ee;
470
471         if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
472                 return -EINVAL;
473         if (index == BPF_F_CURRENT_CPU)
474                 index = cpu;
475         if (unlikely(index >= array->map.max_entries))
476                 return -E2BIG;
477
478         ee = READ_ONCE(array->ptrs[index]);
479         if (!ee)
480                 return -ENOENT;
481
482         return perf_event_read_local(ee->event, value, enabled, running);
483 }
484
485 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
486 {
487         u64 value = 0;
488         int err;
489
490         err = get_map_perf_counter(map, flags, &value, NULL, NULL);
491         /*
492          * this api is ugly since we miss [-22..-2] range of valid
493          * counter values, but that's uapi
494          */
495         if (err)
496                 return err;
497         return value;
498 }
499
500 static const struct bpf_func_proto bpf_perf_event_read_proto = {
501         .func           = bpf_perf_event_read,
502         .gpl_only       = true,
503         .ret_type       = RET_INTEGER,
504         .arg1_type      = ARG_CONST_MAP_PTR,
505         .arg2_type      = ARG_ANYTHING,
506 };
507
508 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
509            struct bpf_perf_event_value *, buf, u32, size)
510 {
511         int err = -EINVAL;
512
513         if (unlikely(size != sizeof(struct bpf_perf_event_value)))
514                 goto clear;
515         err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
516                                    &buf->running);
517         if (unlikely(err))
518                 goto clear;
519         return 0;
520 clear:
521         memset(buf, 0, size);
522         return err;
523 }
524
525 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
526         .func           = bpf_perf_event_read_value,
527         .gpl_only       = true,
528         .ret_type       = RET_INTEGER,
529         .arg1_type      = ARG_CONST_MAP_PTR,
530         .arg2_type      = ARG_ANYTHING,
531         .arg3_type      = ARG_PTR_TO_UNINIT_MEM,
532         .arg4_type      = ARG_CONST_SIZE,
533 };
534
535 static __always_inline u64
536 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
537                         u64 flags, struct perf_sample_data *sd)
538 {
539         struct bpf_array *array = container_of(map, struct bpf_array, map);
540         unsigned int cpu = smp_processor_id();
541         u64 index = flags & BPF_F_INDEX_MASK;
542         struct bpf_event_entry *ee;
543         struct perf_event *event;
544
545         if (index == BPF_F_CURRENT_CPU)
546                 index = cpu;
547         if (unlikely(index >= array->map.max_entries))
548                 return -E2BIG;
549
550         ee = READ_ONCE(array->ptrs[index]);
551         if (!ee)
552                 return -ENOENT;
553
554         event = ee->event;
555         if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
556                      event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
557                 return -EINVAL;
558
559         if (unlikely(event->oncpu != cpu))
560                 return -EOPNOTSUPP;
561
562         return perf_event_output(event, sd, regs);
563 }
564
565 /*
566  * Support executing tracepoints in normal, irq, and nmi context that each call
567  * bpf_perf_event_output
568  */
569 struct bpf_trace_sample_data {
570         struct perf_sample_data sds[3];
571 };
572
573 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
574 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
575 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
576            u64, flags, void *, data, u64, size)
577 {
578         struct bpf_trace_sample_data *sds = this_cpu_ptr(&bpf_trace_sds);
579         int nest_level = this_cpu_inc_return(bpf_trace_nest_level);
580         struct perf_raw_record raw = {
581                 .frag = {
582                         .size = size,
583                         .data = data,
584                 },
585         };
586         struct perf_sample_data *sd;
587         int err;
588
589         if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
590                 err = -EBUSY;
591                 goto out;
592         }
593
594         sd = &sds->sds[nest_level - 1];
595
596         if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
597                 err = -EINVAL;
598                 goto out;
599         }
600
601         perf_sample_data_init(sd, 0, 0);
602         sd->raw = &raw;
603
604         err = __bpf_perf_event_output(regs, map, flags, sd);
605
606 out:
607         this_cpu_dec(bpf_trace_nest_level);
608         return err;
609 }
610
611 static const struct bpf_func_proto bpf_perf_event_output_proto = {
612         .func           = bpf_perf_event_output,
613         .gpl_only       = true,
614         .ret_type       = RET_INTEGER,
615         .arg1_type      = ARG_PTR_TO_CTX,
616         .arg2_type      = ARG_CONST_MAP_PTR,
617         .arg3_type      = ARG_ANYTHING,
618         .arg4_type      = ARG_PTR_TO_MEM,
619         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
620 };
621
622 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
623 struct bpf_nested_pt_regs {
624         struct pt_regs regs[3];
625 };
626 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
627 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
628
629 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
630                      void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
631 {
632         int nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
633         struct perf_raw_frag frag = {
634                 .copy           = ctx_copy,
635                 .size           = ctx_size,
636                 .data           = ctx,
637         };
638         struct perf_raw_record raw = {
639                 .frag = {
640                         {
641                                 .next   = ctx_size ? &frag : NULL,
642                         },
643                         .size   = meta_size,
644                         .data   = meta,
645                 },
646         };
647         struct perf_sample_data *sd;
648         struct pt_regs *regs;
649         u64 ret;
650
651         if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
652                 ret = -EBUSY;
653                 goto out;
654         }
655         sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
656         regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
657
658         perf_fetch_caller_regs(regs);
659         perf_sample_data_init(sd, 0, 0);
660         sd->raw = &raw;
661
662         ret = __bpf_perf_event_output(regs, map, flags, sd);
663 out:
664         this_cpu_dec(bpf_event_output_nest_level);
665         return ret;
666 }
667
668 BPF_CALL_0(bpf_get_current_task)
669 {
670         return (long) current;
671 }
672
673 static const struct bpf_func_proto bpf_get_current_task_proto = {
674         .func           = bpf_get_current_task,
675         .gpl_only       = true,
676         .ret_type       = RET_INTEGER,
677 };
678
679 BPF_CALL_2(bpf_current_task_under_cgroup, struct bpf_map *, map, u32, idx)
680 {
681         struct bpf_array *array = container_of(map, struct bpf_array, map);
682         struct cgroup *cgrp;
683
684         if (unlikely(idx >= array->map.max_entries))
685                 return -E2BIG;
686
687         cgrp = READ_ONCE(array->ptrs[idx]);
688         if (unlikely(!cgrp))
689                 return -EAGAIN;
690
691         return task_under_cgroup_hierarchy(current, cgrp);
692 }
693
694 static const struct bpf_func_proto bpf_current_task_under_cgroup_proto = {
695         .func           = bpf_current_task_under_cgroup,
696         .gpl_only       = false,
697         .ret_type       = RET_INTEGER,
698         .arg1_type      = ARG_CONST_MAP_PTR,
699         .arg2_type      = ARG_ANYTHING,
700 };
701
702 struct send_signal_irq_work {
703         struct irq_work irq_work;
704         struct task_struct *task;
705         u32 sig;
706 };
707
708 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
709
710 static void do_bpf_send_signal(struct irq_work *entry)
711 {
712         struct send_signal_irq_work *work;
713
714         work = container_of(entry, struct send_signal_irq_work, irq_work);
715         group_send_sig_info(work->sig, SEND_SIG_PRIV, work->task, PIDTYPE_TGID);
716 }
717
718 BPF_CALL_1(bpf_send_signal, u32, sig)
719 {
720         struct send_signal_irq_work *work = NULL;
721
722         /* Similar to bpf_probe_write_user, task needs to be
723          * in a sound condition and kernel memory access be
724          * permitted in order to send signal to the current
725          * task.
726          */
727         if (unlikely(current->flags & (PF_KTHREAD | PF_EXITING)))
728                 return -EPERM;
729         if (unlikely(uaccess_kernel()))
730                 return -EPERM;
731         if (unlikely(!nmi_uaccess_okay()))
732                 return -EPERM;
733
734         if (in_nmi()) {
735                 /* Do an early check on signal validity. Otherwise,
736                  * the error is lost in deferred irq_work.
737                  */
738                 if (unlikely(!valid_signal(sig)))
739                         return -EINVAL;
740
741                 work = this_cpu_ptr(&send_signal_work);
742                 if (atomic_read(&work->irq_work.flags) & IRQ_WORK_BUSY)
743                         return -EBUSY;
744
745                 /* Add the current task, which is the target of sending signal,
746                  * to the irq_work. The current task may change when queued
747                  * irq works get executed.
748                  */
749                 work->task = current;
750                 work->sig = sig;
751                 irq_work_queue(&work->irq_work);
752                 return 0;
753         }
754
755         return group_send_sig_info(sig, SEND_SIG_PRIV, current, PIDTYPE_TGID);
756 }
757
758 static const struct bpf_func_proto bpf_send_signal_proto = {
759         .func           = bpf_send_signal,
760         .gpl_only       = false,
761         .ret_type       = RET_INTEGER,
762         .arg1_type      = ARG_ANYTHING,
763 };
764
765 static const struct bpf_func_proto *
766 tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
767 {
768         switch (func_id) {
769         case BPF_FUNC_map_lookup_elem:
770                 return &bpf_map_lookup_elem_proto;
771         case BPF_FUNC_map_update_elem:
772                 return &bpf_map_update_elem_proto;
773         case BPF_FUNC_map_delete_elem:
774                 return &bpf_map_delete_elem_proto;
775         case BPF_FUNC_map_push_elem:
776                 return &bpf_map_push_elem_proto;
777         case BPF_FUNC_map_pop_elem:
778                 return &bpf_map_pop_elem_proto;
779         case BPF_FUNC_map_peek_elem:
780                 return &bpf_map_peek_elem_proto;
781         case BPF_FUNC_ktime_get_ns:
782                 return &bpf_ktime_get_ns_proto;
783         case BPF_FUNC_tail_call:
784                 return &bpf_tail_call_proto;
785         case BPF_FUNC_get_current_pid_tgid:
786                 return &bpf_get_current_pid_tgid_proto;
787         case BPF_FUNC_get_current_task:
788                 return &bpf_get_current_task_proto;
789         case BPF_FUNC_get_current_uid_gid:
790                 return &bpf_get_current_uid_gid_proto;
791         case BPF_FUNC_get_current_comm:
792                 return &bpf_get_current_comm_proto;
793         case BPF_FUNC_trace_printk:
794                 return bpf_get_trace_printk_proto();
795         case BPF_FUNC_get_smp_processor_id:
796                 return &bpf_get_smp_processor_id_proto;
797         case BPF_FUNC_get_numa_node_id:
798                 return &bpf_get_numa_node_id_proto;
799         case BPF_FUNC_perf_event_read:
800                 return &bpf_perf_event_read_proto;
801         case BPF_FUNC_probe_write_user:
802                 return bpf_get_probe_write_proto();
803         case BPF_FUNC_current_task_under_cgroup:
804                 return &bpf_current_task_under_cgroup_proto;
805         case BPF_FUNC_get_prandom_u32:
806                 return &bpf_get_prandom_u32_proto;
807         case BPF_FUNC_probe_read_user:
808                 return &bpf_probe_read_user_proto;
809         case BPF_FUNC_probe_read_kernel:
810                 return &bpf_probe_read_kernel_proto;
811         case BPF_FUNC_probe_read:
812                 return &bpf_probe_read_compat_proto;
813         case BPF_FUNC_probe_read_user_str:
814                 return &bpf_probe_read_user_str_proto;
815         case BPF_FUNC_probe_read_kernel_str:
816                 return &bpf_probe_read_kernel_str_proto;
817         case BPF_FUNC_probe_read_str:
818                 return &bpf_probe_read_compat_str_proto;
819 #ifdef CONFIG_CGROUPS
820         case BPF_FUNC_get_current_cgroup_id:
821                 return &bpf_get_current_cgroup_id_proto;
822 #endif
823         case BPF_FUNC_send_signal:
824                 return &bpf_send_signal_proto;
825         default:
826                 return NULL;
827         }
828 }
829
830 static const struct bpf_func_proto *
831 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
832 {
833         switch (func_id) {
834         case BPF_FUNC_perf_event_output:
835                 return &bpf_perf_event_output_proto;
836         case BPF_FUNC_get_stackid:
837                 return &bpf_get_stackid_proto;
838         case BPF_FUNC_get_stack:
839                 return &bpf_get_stack_proto;
840         case BPF_FUNC_perf_event_read_value:
841                 return &bpf_perf_event_read_value_proto;
842 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
843         case BPF_FUNC_override_return:
844                 return &bpf_override_return_proto;
845 #endif
846         default:
847                 return tracing_func_proto(func_id, prog);
848         }
849 }
850
851 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
852 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
853                                         const struct bpf_prog *prog,
854                                         struct bpf_insn_access_aux *info)
855 {
856         if (off < 0 || off >= sizeof(struct pt_regs))
857                 return false;
858         if (type != BPF_READ)
859                 return false;
860         if (off % size != 0)
861                 return false;
862         /*
863          * Assertion for 32 bit to make sure last 8 byte access
864          * (BPF_DW) to the last 4 byte member is disallowed.
865          */
866         if (off + size > sizeof(struct pt_regs))
867                 return false;
868
869         return true;
870 }
871
872 const struct bpf_verifier_ops kprobe_verifier_ops = {
873         .get_func_proto  = kprobe_prog_func_proto,
874         .is_valid_access = kprobe_prog_is_valid_access,
875 };
876
877 const struct bpf_prog_ops kprobe_prog_ops = {
878 };
879
880 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
881            u64, flags, void *, data, u64, size)
882 {
883         struct pt_regs *regs = *(struct pt_regs **)tp_buff;
884
885         /*
886          * r1 points to perf tracepoint buffer where first 8 bytes are hidden
887          * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
888          * from there and call the same bpf_perf_event_output() helper inline.
889          */
890         return ____bpf_perf_event_output(regs, map, flags, data, size);
891 }
892
893 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
894         .func           = bpf_perf_event_output_tp,
895         .gpl_only       = true,
896         .ret_type       = RET_INTEGER,
897         .arg1_type      = ARG_PTR_TO_CTX,
898         .arg2_type      = ARG_CONST_MAP_PTR,
899         .arg3_type      = ARG_ANYTHING,
900         .arg4_type      = ARG_PTR_TO_MEM,
901         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
902 };
903
904 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
905            u64, flags)
906 {
907         struct pt_regs *regs = *(struct pt_regs **)tp_buff;
908
909         /*
910          * Same comment as in bpf_perf_event_output_tp(), only that this time
911          * the other helper's function body cannot be inlined due to being
912          * external, thus we need to call raw helper function.
913          */
914         return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
915                                flags, 0, 0);
916 }
917
918 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
919         .func           = bpf_get_stackid_tp,
920         .gpl_only       = true,
921         .ret_type       = RET_INTEGER,
922         .arg1_type      = ARG_PTR_TO_CTX,
923         .arg2_type      = ARG_CONST_MAP_PTR,
924         .arg3_type      = ARG_ANYTHING,
925 };
926
927 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
928            u64, flags)
929 {
930         struct pt_regs *regs = *(struct pt_regs **)tp_buff;
931
932         return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
933                              (unsigned long) size, flags, 0);
934 }
935
936 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
937         .func           = bpf_get_stack_tp,
938         .gpl_only       = true,
939         .ret_type       = RET_INTEGER,
940         .arg1_type      = ARG_PTR_TO_CTX,
941         .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
942         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
943         .arg4_type      = ARG_ANYTHING,
944 };
945
946 static const struct bpf_func_proto *
947 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
948 {
949         switch (func_id) {
950         case BPF_FUNC_perf_event_output:
951                 return &bpf_perf_event_output_proto_tp;
952         case BPF_FUNC_get_stackid:
953                 return &bpf_get_stackid_proto_tp;
954         case BPF_FUNC_get_stack:
955                 return &bpf_get_stack_proto_tp;
956         default:
957                 return tracing_func_proto(func_id, prog);
958         }
959 }
960
961 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
962                                     const struct bpf_prog *prog,
963                                     struct bpf_insn_access_aux *info)
964 {
965         if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
966                 return false;
967         if (type != BPF_READ)
968                 return false;
969         if (off % size != 0)
970                 return false;
971
972         BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
973         return true;
974 }
975
976 const struct bpf_verifier_ops tracepoint_verifier_ops = {
977         .get_func_proto  = tp_prog_func_proto,
978         .is_valid_access = tp_prog_is_valid_access,
979 };
980
981 const struct bpf_prog_ops tracepoint_prog_ops = {
982 };
983
984 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
985            struct bpf_perf_event_value *, buf, u32, size)
986 {
987         int err = -EINVAL;
988
989         if (unlikely(size != sizeof(struct bpf_perf_event_value)))
990                 goto clear;
991         err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
992                                     &buf->running);
993         if (unlikely(err))
994                 goto clear;
995         return 0;
996 clear:
997         memset(buf, 0, size);
998         return err;
999 }
1000
1001 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1002          .func           = bpf_perf_prog_read_value,
1003          .gpl_only       = true,
1004          .ret_type       = RET_INTEGER,
1005          .arg1_type      = ARG_PTR_TO_CTX,
1006          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1007          .arg3_type      = ARG_CONST_SIZE,
1008 };
1009
1010 static const struct bpf_func_proto *
1011 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1012 {
1013         switch (func_id) {
1014         case BPF_FUNC_perf_event_output:
1015                 return &bpf_perf_event_output_proto_tp;
1016         case BPF_FUNC_get_stackid:
1017                 return &bpf_get_stackid_proto_tp;
1018         case BPF_FUNC_get_stack:
1019                 return &bpf_get_stack_proto_tp;
1020         case BPF_FUNC_perf_prog_read_value:
1021                 return &bpf_perf_prog_read_value_proto;
1022         default:
1023                 return tracing_func_proto(func_id, prog);
1024         }
1025 }
1026
1027 /*
1028  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1029  * to avoid potential recursive reuse issue when/if tracepoints are added
1030  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1031  *
1032  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1033  * in normal, irq, and nmi context.
1034  */
1035 struct bpf_raw_tp_regs {
1036         struct pt_regs regs[3];
1037 };
1038 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1039 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1040 static struct pt_regs *get_bpf_raw_tp_regs(void)
1041 {
1042         struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1043         int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1044
1045         if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1046                 this_cpu_dec(bpf_raw_tp_nest_level);
1047                 return ERR_PTR(-EBUSY);
1048         }
1049
1050         return &tp_regs->regs[nest_level - 1];
1051 }
1052
1053 static void put_bpf_raw_tp_regs(void)
1054 {
1055         this_cpu_dec(bpf_raw_tp_nest_level);
1056 }
1057
1058 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1059            struct bpf_map *, map, u64, flags, void *, data, u64, size)
1060 {
1061         struct pt_regs *regs = get_bpf_raw_tp_regs();
1062         int ret;
1063
1064         if (IS_ERR(regs))
1065                 return PTR_ERR(regs);
1066
1067         perf_fetch_caller_regs(regs);
1068         ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1069
1070         put_bpf_raw_tp_regs();
1071         return ret;
1072 }
1073
1074 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1075         .func           = bpf_perf_event_output_raw_tp,
1076         .gpl_only       = true,
1077         .ret_type       = RET_INTEGER,
1078         .arg1_type      = ARG_PTR_TO_CTX,
1079         .arg2_type      = ARG_CONST_MAP_PTR,
1080         .arg3_type      = ARG_ANYTHING,
1081         .arg4_type      = ARG_PTR_TO_MEM,
1082         .arg5_type      = ARG_CONST_SIZE_OR_ZERO,
1083 };
1084
1085 extern const struct bpf_func_proto bpf_skb_output_proto;
1086
1087 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1088            struct bpf_map *, map, u64, flags)
1089 {
1090         struct pt_regs *regs = get_bpf_raw_tp_regs();
1091         int ret;
1092
1093         if (IS_ERR(regs))
1094                 return PTR_ERR(regs);
1095
1096         perf_fetch_caller_regs(regs);
1097         /* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1098         ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1099                               flags, 0, 0);
1100         put_bpf_raw_tp_regs();
1101         return ret;
1102 }
1103
1104 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1105         .func           = bpf_get_stackid_raw_tp,
1106         .gpl_only       = true,
1107         .ret_type       = RET_INTEGER,
1108         .arg1_type      = ARG_PTR_TO_CTX,
1109         .arg2_type      = ARG_CONST_MAP_PTR,
1110         .arg3_type      = ARG_ANYTHING,
1111 };
1112
1113 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1114            void *, buf, u32, size, u64, flags)
1115 {
1116         struct pt_regs *regs = get_bpf_raw_tp_regs();
1117         int ret;
1118
1119         if (IS_ERR(regs))
1120                 return PTR_ERR(regs);
1121
1122         perf_fetch_caller_regs(regs);
1123         ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1124                             (unsigned long) size, flags, 0);
1125         put_bpf_raw_tp_regs();
1126         return ret;
1127 }
1128
1129 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1130         .func           = bpf_get_stack_raw_tp,
1131         .gpl_only       = true,
1132         .ret_type       = RET_INTEGER,
1133         .arg1_type      = ARG_PTR_TO_CTX,
1134         .arg2_type      = ARG_PTR_TO_MEM,
1135         .arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1136         .arg4_type      = ARG_ANYTHING,
1137 };
1138
1139 static const struct bpf_func_proto *
1140 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1141 {
1142         switch (func_id) {
1143         case BPF_FUNC_perf_event_output:
1144                 return &bpf_perf_event_output_proto_raw_tp;
1145         case BPF_FUNC_get_stackid:
1146                 return &bpf_get_stackid_proto_raw_tp;
1147         case BPF_FUNC_get_stack:
1148                 return &bpf_get_stack_proto_raw_tp;
1149         default:
1150                 return tracing_func_proto(func_id, prog);
1151         }
1152 }
1153
1154 static const struct bpf_func_proto *
1155 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1156 {
1157         switch (func_id) {
1158 #ifdef CONFIG_NET
1159         case BPF_FUNC_skb_output:
1160                 return &bpf_skb_output_proto;
1161 #endif
1162         default:
1163                 return raw_tp_prog_func_proto(func_id, prog);
1164         }
1165 }
1166
1167 static bool raw_tp_prog_is_valid_access(int off, int size,
1168                                         enum bpf_access_type type,
1169                                         const struct bpf_prog *prog,
1170                                         struct bpf_insn_access_aux *info)
1171 {
1172         if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1173                 return false;
1174         if (type != BPF_READ)
1175                 return false;
1176         if (off % size != 0)
1177                 return false;
1178         return true;
1179 }
1180
1181 static bool tracing_prog_is_valid_access(int off, int size,
1182                                          enum bpf_access_type type,
1183                                          const struct bpf_prog *prog,
1184                                          struct bpf_insn_access_aux *info)
1185 {
1186         if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
1187                 return false;
1188         if (type != BPF_READ)
1189                 return false;
1190         if (off % size != 0)
1191                 return false;
1192         return btf_ctx_access(off, size, type, prog, info);
1193 }
1194
1195 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
1196         .get_func_proto  = raw_tp_prog_func_proto,
1197         .is_valid_access = raw_tp_prog_is_valid_access,
1198 };
1199
1200 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
1201 };
1202
1203 const struct bpf_verifier_ops tracing_verifier_ops = {
1204         .get_func_proto  = tracing_prog_func_proto,
1205         .is_valid_access = tracing_prog_is_valid_access,
1206 };
1207
1208 const struct bpf_prog_ops tracing_prog_ops = {
1209 };
1210
1211 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
1212                                                  enum bpf_access_type type,
1213                                                  const struct bpf_prog *prog,
1214                                                  struct bpf_insn_access_aux *info)
1215 {
1216         if (off == 0) {
1217                 if (size != sizeof(u64) || type != BPF_READ)
1218                         return false;
1219                 info->reg_type = PTR_TO_TP_BUFFER;
1220         }
1221         return raw_tp_prog_is_valid_access(off, size, type, prog, info);
1222 }
1223
1224 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
1225         .get_func_proto  = raw_tp_prog_func_proto,
1226         .is_valid_access = raw_tp_writable_prog_is_valid_access,
1227 };
1228
1229 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
1230 };
1231
1232 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1233                                     const struct bpf_prog *prog,
1234                                     struct bpf_insn_access_aux *info)
1235 {
1236         const int size_u64 = sizeof(u64);
1237
1238         if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
1239                 return false;
1240         if (type != BPF_READ)
1241                 return false;
1242         if (off % size != 0) {
1243                 if (sizeof(unsigned long) != 4)
1244                         return false;
1245                 if (size != 8)
1246                         return false;
1247                 if (off % size != 4)
1248                         return false;
1249         }
1250
1251         switch (off) {
1252         case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
1253                 bpf_ctx_record_field_size(info, size_u64);
1254                 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1255                         return false;
1256                 break;
1257         case bpf_ctx_range(struct bpf_perf_event_data, addr):
1258                 bpf_ctx_record_field_size(info, size_u64);
1259                 if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
1260                         return false;
1261                 break;
1262         default:
1263                 if (size != sizeof(long))
1264                         return false;
1265         }
1266
1267         return true;
1268 }
1269
1270 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
1271                                       const struct bpf_insn *si,
1272                                       struct bpf_insn *insn_buf,
1273                                       struct bpf_prog *prog, u32 *target_size)
1274 {
1275         struct bpf_insn *insn = insn_buf;
1276
1277         switch (si->off) {
1278         case offsetof(struct bpf_perf_event_data, sample_period):
1279                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1280                                                        data), si->dst_reg, si->src_reg,
1281                                       offsetof(struct bpf_perf_event_data_kern, data));
1282                 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1283                                       bpf_target_off(struct perf_sample_data, period, 8,
1284                                                      target_size));
1285                 break;
1286         case offsetof(struct bpf_perf_event_data, addr):
1287                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1288                                                        data), si->dst_reg, si->src_reg,
1289                                       offsetof(struct bpf_perf_event_data_kern, data));
1290                 *insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
1291                                       bpf_target_off(struct perf_sample_data, addr, 8,
1292                                                      target_size));
1293                 break;
1294         default:
1295                 *insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
1296                                                        regs), si->dst_reg, si->src_reg,
1297                                       offsetof(struct bpf_perf_event_data_kern, regs));
1298                 *insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
1299                                       si->off);
1300                 break;
1301         }
1302
1303         return insn - insn_buf;
1304 }
1305
1306 const struct bpf_verifier_ops perf_event_verifier_ops = {
1307         .get_func_proto         = pe_prog_func_proto,
1308         .is_valid_access        = pe_prog_is_valid_access,
1309         .convert_ctx_access     = pe_prog_convert_ctx_access,
1310 };
1311
1312 const struct bpf_prog_ops perf_event_prog_ops = {
1313 };
1314
1315 static DEFINE_MUTEX(bpf_event_mutex);
1316
1317 #define BPF_TRACE_MAX_PROGS 64
1318
1319 int perf_event_attach_bpf_prog(struct perf_event *event,
1320                                struct bpf_prog *prog)
1321 {
1322         struct bpf_prog_array *old_array;
1323         struct bpf_prog_array *new_array;
1324         int ret = -EEXIST;
1325
1326         /*
1327          * Kprobe override only works if they are on the function entry,
1328          * and only if they are on the opt-in list.
1329          */
1330         if (prog->kprobe_override &&
1331             (!trace_kprobe_on_func_entry(event->tp_event) ||
1332              !trace_kprobe_error_injectable(event->tp_event)))
1333                 return -EINVAL;
1334
1335         mutex_lock(&bpf_event_mutex);
1336
1337         if (event->prog)
1338                 goto unlock;
1339
1340         old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1341         if (old_array &&
1342             bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
1343                 ret = -E2BIG;
1344                 goto unlock;
1345         }
1346
1347         ret = bpf_prog_array_copy(old_array, NULL, prog, &new_array);
1348         if (ret < 0)
1349                 goto unlock;
1350
1351         /* set the new array to event->tp_event and set event->prog */
1352         event->prog = prog;
1353         rcu_assign_pointer(event->tp_event->prog_array, new_array);
1354         bpf_prog_array_free(old_array);
1355
1356 unlock:
1357         mutex_unlock(&bpf_event_mutex);
1358         return ret;
1359 }
1360
1361 void perf_event_detach_bpf_prog(struct perf_event *event)
1362 {
1363         struct bpf_prog_array *old_array;
1364         struct bpf_prog_array *new_array;
1365         int ret;
1366
1367         mutex_lock(&bpf_event_mutex);
1368
1369         if (!event->prog)
1370                 goto unlock;
1371
1372         old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
1373         ret = bpf_prog_array_copy(old_array, event->prog, NULL, &new_array);
1374         if (ret == -ENOENT)
1375                 goto unlock;
1376         if (ret < 0) {
1377                 bpf_prog_array_delete_safe(old_array, event->prog);
1378         } else {
1379                 rcu_assign_pointer(event->tp_event->prog_array, new_array);
1380                 bpf_prog_array_free(old_array);
1381         }
1382
1383         bpf_prog_put(event->prog);
1384         event->prog = NULL;
1385
1386 unlock:
1387         mutex_unlock(&bpf_event_mutex);
1388 }
1389
1390 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
1391 {
1392         struct perf_event_query_bpf __user *uquery = info;
1393         struct perf_event_query_bpf query = {};
1394         struct bpf_prog_array *progs;
1395         u32 *ids, prog_cnt, ids_len;
1396         int ret;
1397
1398         if (!capable(CAP_SYS_ADMIN))
1399                 return -EPERM;
1400         if (event->attr.type != PERF_TYPE_TRACEPOINT)
1401                 return -EINVAL;
1402         if (copy_from_user(&query, uquery, sizeof(query)))
1403                 return -EFAULT;
1404
1405         ids_len = query.ids_len;
1406         if (ids_len > BPF_TRACE_MAX_PROGS)
1407                 return -E2BIG;
1408         ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
1409         if (!ids)
1410                 return -ENOMEM;
1411         /*
1412          * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
1413          * is required when user only wants to check for uquery->prog_cnt.
1414          * There is no need to check for it since the case is handled
1415          * gracefully in bpf_prog_array_copy_info.
1416          */
1417
1418         mutex_lock(&bpf_event_mutex);
1419         progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
1420         ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
1421         mutex_unlock(&bpf_event_mutex);
1422
1423         if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
1424             copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
1425                 ret = -EFAULT;
1426
1427         kfree(ids);
1428         return ret;
1429 }
1430
1431 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
1432 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
1433
1434 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
1435 {
1436         struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
1437
1438         for (; btp < __stop__bpf_raw_tp; btp++) {
1439                 if (!strcmp(btp->tp->name, name))
1440                         return btp;
1441         }
1442
1443         return bpf_get_raw_tracepoint_module(name);
1444 }
1445
1446 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
1447 {
1448         struct module *mod = __module_address((unsigned long)btp);
1449
1450         if (mod)
1451                 module_put(mod);
1452 }
1453
1454 static __always_inline
1455 void __bpf_trace_run(struct bpf_prog *prog, u64 *args)
1456 {
1457         rcu_read_lock();
1458         preempt_disable();
1459         (void) BPF_PROG_RUN(prog, args);
1460         preempt_enable();
1461         rcu_read_unlock();
1462 }
1463
1464 #define UNPACK(...)                     __VA_ARGS__
1465 #define REPEAT_1(FN, DL, X, ...)        FN(X)
1466 #define REPEAT_2(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
1467 #define REPEAT_3(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
1468 #define REPEAT_4(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
1469 #define REPEAT_5(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
1470 #define REPEAT_6(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
1471 #define REPEAT_7(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
1472 #define REPEAT_8(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
1473 #define REPEAT_9(FN, DL, X, ...)        FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
1474 #define REPEAT_10(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
1475 #define REPEAT_11(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
1476 #define REPEAT_12(FN, DL, X, ...)       FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
1477 #define REPEAT(X, FN, DL, ...)          REPEAT_##X(FN, DL, __VA_ARGS__)
1478
1479 #define SARG(X)         u64 arg##X
1480 #define COPY(X)         args[X] = arg##X
1481
1482 #define __DL_COM        (,)
1483 #define __DL_SEM        (;)
1484
1485 #define __SEQ_0_11      0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
1486
1487 #define BPF_TRACE_DEFN_x(x)                                             \
1488         void bpf_trace_run##x(struct bpf_prog *prog,                    \
1489                               REPEAT(x, SARG, __DL_COM, __SEQ_0_11))    \
1490         {                                                               \
1491                 u64 args[x];                                            \
1492                 REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);                  \
1493                 __bpf_trace_run(prog, args);                            \
1494         }                                                               \
1495         EXPORT_SYMBOL_GPL(bpf_trace_run##x)
1496 BPF_TRACE_DEFN_x(1);
1497 BPF_TRACE_DEFN_x(2);
1498 BPF_TRACE_DEFN_x(3);
1499 BPF_TRACE_DEFN_x(4);
1500 BPF_TRACE_DEFN_x(5);
1501 BPF_TRACE_DEFN_x(6);
1502 BPF_TRACE_DEFN_x(7);
1503 BPF_TRACE_DEFN_x(8);
1504 BPF_TRACE_DEFN_x(9);
1505 BPF_TRACE_DEFN_x(10);
1506 BPF_TRACE_DEFN_x(11);
1507 BPF_TRACE_DEFN_x(12);
1508
1509 static int __bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1510 {
1511         struct tracepoint *tp = btp->tp;
1512
1513         /*
1514          * check that program doesn't access arguments beyond what's
1515          * available in this tracepoint
1516          */
1517         if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
1518                 return -EINVAL;
1519
1520         if (prog->aux->max_tp_access > btp->writable_size)
1521                 return -EINVAL;
1522
1523         return tracepoint_probe_register(tp, (void *)btp->bpf_func, prog);
1524 }
1525
1526 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1527 {
1528         return __bpf_probe_register(btp, prog);
1529 }
1530
1531 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_prog *prog)
1532 {
1533         return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, prog);
1534 }
1535
1536 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
1537                             u32 *fd_type, const char **buf,
1538                             u64 *probe_offset, u64 *probe_addr)
1539 {
1540         bool is_tracepoint, is_syscall_tp;
1541         struct bpf_prog *prog;
1542         int flags, err = 0;
1543
1544         prog = event->prog;
1545         if (!prog)
1546                 return -ENOENT;
1547
1548         /* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
1549         if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
1550                 return -EOPNOTSUPP;
1551
1552         *prog_id = prog->aux->id;
1553         flags = event->tp_event->flags;
1554         is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
1555         is_syscall_tp = is_syscall_trace_event(event->tp_event);
1556
1557         if (is_tracepoint || is_syscall_tp) {
1558                 *buf = is_tracepoint ? event->tp_event->tp->name
1559                                      : event->tp_event->name;
1560                 *fd_type = BPF_FD_TYPE_TRACEPOINT;
1561                 *probe_offset = 0x0;
1562                 *probe_addr = 0x0;
1563         } else {
1564                 /* kprobe/uprobe */
1565                 err = -EOPNOTSUPP;
1566 #ifdef CONFIG_KPROBE_EVENTS
1567                 if (flags & TRACE_EVENT_FL_KPROBE)
1568                         err = bpf_get_kprobe_info(event, fd_type, buf,
1569                                                   probe_offset, probe_addr,
1570                                                   event->attr.type == PERF_TYPE_TRACEPOINT);
1571 #endif
1572 #ifdef CONFIG_UPROBE_EVENTS
1573                 if (flags & TRACE_EVENT_FL_UPROBE)
1574                         err = bpf_get_uprobe_info(event, fd_type, buf,
1575                                                   probe_offset,
1576                                                   event->attr.type == PERF_TYPE_TRACEPOINT);
1577 #endif
1578         }
1579
1580         return err;
1581 }
1582
1583 static int __init send_signal_irq_work_init(void)
1584 {
1585         int cpu;
1586         struct send_signal_irq_work *work;
1587
1588         for_each_possible_cpu(cpu) {
1589                 work = per_cpu_ptr(&send_signal_work, cpu);
1590                 init_irq_work(&work->irq_work, do_bpf_send_signal);
1591         }
1592         return 0;
1593 }
1594
1595 subsys_initcall(send_signal_irq_work_init);
1596
1597 #ifdef CONFIG_MODULES
1598 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
1599                             void *module)
1600 {
1601         struct bpf_trace_module *btm, *tmp;
1602         struct module *mod = module;
1603
1604         if (mod->num_bpf_raw_events == 0 ||
1605             (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
1606                 return 0;
1607
1608         mutex_lock(&bpf_module_mutex);
1609
1610         switch (op) {
1611         case MODULE_STATE_COMING:
1612                 btm = kzalloc(sizeof(*btm), GFP_KERNEL);
1613                 if (btm) {
1614                         btm->module = module;
1615                         list_add(&btm->list, &bpf_trace_modules);
1616                 }
1617                 break;
1618         case MODULE_STATE_GOING:
1619                 list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
1620                         if (btm->module == module) {
1621                                 list_del(&btm->list);
1622                                 kfree(btm);
1623                                 break;
1624                         }
1625                 }
1626                 break;
1627         }
1628
1629         mutex_unlock(&bpf_module_mutex);
1630
1631         return 0;
1632 }
1633
1634 static struct notifier_block bpf_module_nb = {
1635         .notifier_call = bpf_event_notify,
1636 };
1637
1638 static int __init bpf_event_init(void)
1639 {
1640         register_module_notifier(&bpf_module_nb);
1641         return 0;
1642 }
1643
1644 fs_initcall(bpf_event_init);
1645 #endif /* CONFIG_MODULES */