Merge branch 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / time / timer.c
1 /*
2  *  linux/kernel/timer.c
3  *
4  *  Kernel internal timers
5  *
6  *  Copyright (C) 1991, 1992  Linus Torvalds
7  *
8  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9  *
10  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13  *              serialize accesses to xtime/lost_ticks).
14  *                              Copyright (C) 1998  Andrea Arcangeli
15  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16  *  2002-05-31  Move sys_sysinfo here and make its locking sane, Robert Love
17  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20  */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/slab.h>
44 #include <linux/compat.h>
45
46 #include <linux/uaccess.h>
47 #include <asm/unistd.h>
48 #include <asm/div64.h>
49 #include <asm/timex.h>
50 #include <asm/io.h>
51
52 #include "tick-internal.h"
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/timer.h>
56
57 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
58
59 EXPORT_SYMBOL(jiffies_64);
60
61 /*
62  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
63  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
64  * level has a different granularity.
65  *
66  * The level granularity is:            LVL_CLK_DIV ^ lvl
67  * The level clock frequency is:        HZ / (LVL_CLK_DIV ^ level)
68  *
69  * The array level of a newly armed timer depends on the relative expiry
70  * time. The farther the expiry time is away the higher the array level and
71  * therefor the granularity becomes.
72  *
73  * Contrary to the original timer wheel implementation, which aims for 'exact'
74  * expiry of the timers, this implementation removes the need for recascading
75  * the timers into the lower array levels. The previous 'classic' timer wheel
76  * implementation of the kernel already violated the 'exact' expiry by adding
77  * slack to the expiry time to provide batched expiration. The granularity
78  * levels provide implicit batching.
79  *
80  * This is an optimization of the original timer wheel implementation for the
81  * majority of the timer wheel use cases: timeouts. The vast majority of
82  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
83  * the timeout expires it indicates that normal operation is disturbed, so it
84  * does not matter much whether the timeout comes with a slight delay.
85  *
86  * The only exception to this are networking timers with a small expiry
87  * time. They rely on the granularity. Those fit into the first wheel level,
88  * which has HZ granularity.
89  *
90  * We don't have cascading anymore. timers with a expiry time above the
91  * capacity of the last wheel level are force expired at the maximum timeout
92  * value of the last wheel level. From data sampling we know that the maximum
93  * value observed is 5 days (network connection tracking), so this should not
94  * be an issue.
95  *
96  * The currently chosen array constants values are a good compromise between
97  * array size and granularity.
98  *
99  * This results in the following granularity and range levels:
100  *
101  * HZ 1000 steps
102  * Level Offset  Granularity            Range
103  *  0      0         1 ms                0 ms -         63 ms
104  *  1     64         8 ms               64 ms -        511 ms
105  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
106  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
107  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
108  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
109  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
110  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
111  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
112  *
113  * HZ  300
114  * Level Offset  Granularity            Range
115  *  0      0         3 ms                0 ms -        210 ms
116  *  1     64        26 ms              213 ms -       1703 ms (213ms - ~1s)
117  *  2    128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
118  *  3    192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
119  *  4    256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
120  *  5    320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
121  *  6    384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
122  *  7    448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
123  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
124  *
125  * HZ  250
126  * Level Offset  Granularity            Range
127  *  0      0         4 ms                0 ms -        255 ms
128  *  1     64        32 ms              256 ms -       2047 ms (256ms - ~2s)
129  *  2    128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
130  *  3    192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
131  *  4    256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
132  *  5    320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
133  *  6    384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
134  *  7    448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
135  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
136  *
137  * HZ  100
138  * Level Offset  Granularity            Range
139  *  0      0         10 ms               0 ms -        630 ms
140  *  1     64         80 ms             640 ms -       5110 ms (640ms - ~5s)
141  *  2    128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
142  *  3    192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
143  *  4    256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
144  *  5    320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
145  *  6    384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
146  *  7    448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
147  */
148
149 /* Clock divisor for the next level */
150 #define LVL_CLK_SHIFT   3
151 #define LVL_CLK_DIV     (1UL << LVL_CLK_SHIFT)
152 #define LVL_CLK_MASK    (LVL_CLK_DIV - 1)
153 #define LVL_SHIFT(n)    ((n) * LVL_CLK_SHIFT)
154 #define LVL_GRAN(n)     (1UL << LVL_SHIFT(n))
155
156 /*
157  * The time start value for each level to select the bucket at enqueue
158  * time.
159  */
160 #define LVL_START(n)    ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
161
162 /* Size of each clock level */
163 #define LVL_BITS        6
164 #define LVL_SIZE        (1UL << LVL_BITS)
165 #define LVL_MASK        (LVL_SIZE - 1)
166 #define LVL_OFFS(n)     ((n) * LVL_SIZE)
167
168 /* Level depth */
169 #if HZ > 100
170 # define LVL_DEPTH      9
171 # else
172 # define LVL_DEPTH      8
173 #endif
174
175 /* The cutoff (max. capacity of the wheel) */
176 #define WHEEL_TIMEOUT_CUTOFF    (LVL_START(LVL_DEPTH))
177 #define WHEEL_TIMEOUT_MAX       (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
178
179 /*
180  * The resulting wheel size. If NOHZ is configured we allocate two
181  * wheels so we have a separate storage for the deferrable timers.
182  */
183 #define WHEEL_SIZE      (LVL_SIZE * LVL_DEPTH)
184
185 #ifdef CONFIG_NO_HZ_COMMON
186 # define NR_BASES       2
187 # define BASE_STD       0
188 # define BASE_DEF       1
189 #else
190 # define NR_BASES       1
191 # define BASE_STD       0
192 # define BASE_DEF       0
193 #endif
194
195 struct timer_base {
196         spinlock_t              lock;
197         struct timer_list       *running_timer;
198         unsigned long           clk;
199         unsigned long           next_expiry;
200         unsigned int            cpu;
201         bool                    migration_enabled;
202         bool                    nohz_active;
203         bool                    is_idle;
204         DECLARE_BITMAP(pending_map, WHEEL_SIZE);
205         struct hlist_head       vectors[WHEEL_SIZE];
206 } ____cacheline_aligned;
207
208 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
209
210 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
211 unsigned int sysctl_timer_migration = 1;
212
213 void timers_update_migration(bool update_nohz)
214 {
215         bool on = sysctl_timer_migration && tick_nohz_active;
216         unsigned int cpu;
217
218         /* Avoid the loop, if nothing to update */
219         if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
220                 return;
221
222         for_each_possible_cpu(cpu) {
223                 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
224                 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
225                 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
226                 if (!update_nohz)
227                         continue;
228                 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
229                 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
230                 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
231         }
232 }
233
234 int timer_migration_handler(struct ctl_table *table, int write,
235                             void __user *buffer, size_t *lenp,
236                             loff_t *ppos)
237 {
238         static DEFINE_MUTEX(mutex);
239         int ret;
240
241         mutex_lock(&mutex);
242         ret = proc_dointvec(table, write, buffer, lenp, ppos);
243         if (!ret && write)
244                 timers_update_migration(false);
245         mutex_unlock(&mutex);
246         return ret;
247 }
248 #endif
249
250 static unsigned long round_jiffies_common(unsigned long j, int cpu,
251                 bool force_up)
252 {
253         int rem;
254         unsigned long original = j;
255
256         /*
257          * We don't want all cpus firing their timers at once hitting the
258          * same lock or cachelines, so we skew each extra cpu with an extra
259          * 3 jiffies. This 3 jiffies came originally from the mm/ code which
260          * already did this.
261          * The skew is done by adding 3*cpunr, then round, then subtract this
262          * extra offset again.
263          */
264         j += cpu * 3;
265
266         rem = j % HZ;
267
268         /*
269          * If the target jiffie is just after a whole second (which can happen
270          * due to delays of the timer irq, long irq off times etc etc) then
271          * we should round down to the whole second, not up. Use 1/4th second
272          * as cutoff for this rounding as an extreme upper bound for this.
273          * But never round down if @force_up is set.
274          */
275         if (rem < HZ/4 && !force_up) /* round down */
276                 j = j - rem;
277         else /* round up */
278                 j = j - rem + HZ;
279
280         /* now that we have rounded, subtract the extra skew again */
281         j -= cpu * 3;
282
283         /*
284          * Make sure j is still in the future. Otherwise return the
285          * unmodified value.
286          */
287         return time_is_after_jiffies(j) ? j : original;
288 }
289
290 /**
291  * __round_jiffies - function to round jiffies to a full second
292  * @j: the time in (absolute) jiffies that should be rounded
293  * @cpu: the processor number on which the timeout will happen
294  *
295  * __round_jiffies() rounds an absolute time in the future (in jiffies)
296  * up or down to (approximately) full seconds. This is useful for timers
297  * for which the exact time they fire does not matter too much, as long as
298  * they fire approximately every X seconds.
299  *
300  * By rounding these timers to whole seconds, all such timers will fire
301  * at the same time, rather than at various times spread out. The goal
302  * of this is to have the CPU wake up less, which saves power.
303  *
304  * The exact rounding is skewed for each processor to avoid all
305  * processors firing at the exact same time, which could lead
306  * to lock contention or spurious cache line bouncing.
307  *
308  * The return value is the rounded version of the @j parameter.
309  */
310 unsigned long __round_jiffies(unsigned long j, int cpu)
311 {
312         return round_jiffies_common(j, cpu, false);
313 }
314 EXPORT_SYMBOL_GPL(__round_jiffies);
315
316 /**
317  * __round_jiffies_relative - function to round jiffies to a full second
318  * @j: the time in (relative) jiffies that should be rounded
319  * @cpu: the processor number on which the timeout will happen
320  *
321  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
322  * up or down to (approximately) full seconds. This is useful for timers
323  * for which the exact time they fire does not matter too much, as long as
324  * they fire approximately every X seconds.
325  *
326  * By rounding these timers to whole seconds, all such timers will fire
327  * at the same time, rather than at various times spread out. The goal
328  * of this is to have the CPU wake up less, which saves power.
329  *
330  * The exact rounding is skewed for each processor to avoid all
331  * processors firing at the exact same time, which could lead
332  * to lock contention or spurious cache line bouncing.
333  *
334  * The return value is the rounded version of the @j parameter.
335  */
336 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
337 {
338         unsigned long j0 = jiffies;
339
340         /* Use j0 because jiffies might change while we run */
341         return round_jiffies_common(j + j0, cpu, false) - j0;
342 }
343 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
344
345 /**
346  * round_jiffies - function to round jiffies to a full second
347  * @j: the time in (absolute) jiffies that should be rounded
348  *
349  * round_jiffies() rounds an absolute time in the future (in jiffies)
350  * up or down to (approximately) full seconds. This is useful for timers
351  * for which the exact time they fire does not matter too much, as long as
352  * they fire approximately every X seconds.
353  *
354  * By rounding these timers to whole seconds, all such timers will fire
355  * at the same time, rather than at various times spread out. The goal
356  * of this is to have the CPU wake up less, which saves power.
357  *
358  * The return value is the rounded version of the @j parameter.
359  */
360 unsigned long round_jiffies(unsigned long j)
361 {
362         return round_jiffies_common(j, raw_smp_processor_id(), false);
363 }
364 EXPORT_SYMBOL_GPL(round_jiffies);
365
366 /**
367  * round_jiffies_relative - function to round jiffies to a full second
368  * @j: the time in (relative) jiffies that should be rounded
369  *
370  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
371  * up or down to (approximately) full seconds. This is useful for timers
372  * for which the exact time they fire does not matter too much, as long as
373  * they fire approximately every X seconds.
374  *
375  * By rounding these timers to whole seconds, all such timers will fire
376  * at the same time, rather than at various times spread out. The goal
377  * of this is to have the CPU wake up less, which saves power.
378  *
379  * The return value is the rounded version of the @j parameter.
380  */
381 unsigned long round_jiffies_relative(unsigned long j)
382 {
383         return __round_jiffies_relative(j, raw_smp_processor_id());
384 }
385 EXPORT_SYMBOL_GPL(round_jiffies_relative);
386
387 /**
388  * __round_jiffies_up - function to round jiffies up to a full second
389  * @j: the time in (absolute) jiffies that should be rounded
390  * @cpu: the processor number on which the timeout will happen
391  *
392  * This is the same as __round_jiffies() except that it will never
393  * round down.  This is useful for timeouts for which the exact time
394  * of firing does not matter too much, as long as they don't fire too
395  * early.
396  */
397 unsigned long __round_jiffies_up(unsigned long j, int cpu)
398 {
399         return round_jiffies_common(j, cpu, true);
400 }
401 EXPORT_SYMBOL_GPL(__round_jiffies_up);
402
403 /**
404  * __round_jiffies_up_relative - function to round jiffies up to a full second
405  * @j: the time in (relative) jiffies that should be rounded
406  * @cpu: the processor number on which the timeout will happen
407  *
408  * This is the same as __round_jiffies_relative() except that it will never
409  * round down.  This is useful for timeouts for which the exact time
410  * of firing does not matter too much, as long as they don't fire too
411  * early.
412  */
413 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
414 {
415         unsigned long j0 = jiffies;
416
417         /* Use j0 because jiffies might change while we run */
418         return round_jiffies_common(j + j0, cpu, true) - j0;
419 }
420 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
421
422 /**
423  * round_jiffies_up - function to round jiffies up to a full second
424  * @j: the time in (absolute) jiffies that should be rounded
425  *
426  * This is the same as round_jiffies() except that it will never
427  * round down.  This is useful for timeouts for which the exact time
428  * of firing does not matter too much, as long as they don't fire too
429  * early.
430  */
431 unsigned long round_jiffies_up(unsigned long j)
432 {
433         return round_jiffies_common(j, raw_smp_processor_id(), true);
434 }
435 EXPORT_SYMBOL_GPL(round_jiffies_up);
436
437 /**
438  * round_jiffies_up_relative - function to round jiffies up to a full second
439  * @j: the time in (relative) jiffies that should be rounded
440  *
441  * This is the same as round_jiffies_relative() except that it will never
442  * round down.  This is useful for timeouts for which the exact time
443  * of firing does not matter too much, as long as they don't fire too
444  * early.
445  */
446 unsigned long round_jiffies_up_relative(unsigned long j)
447 {
448         return __round_jiffies_up_relative(j, raw_smp_processor_id());
449 }
450 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
451
452
453 static inline unsigned int timer_get_idx(struct timer_list *timer)
454 {
455         return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
456 }
457
458 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
459 {
460         timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
461                         idx << TIMER_ARRAYSHIFT;
462 }
463
464 /*
465  * Helper function to calculate the array index for a given expiry
466  * time.
467  */
468 static inline unsigned calc_index(unsigned expires, unsigned lvl)
469 {
470         expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
471         return LVL_OFFS(lvl) + (expires & LVL_MASK);
472 }
473
474 static int calc_wheel_index(unsigned long expires, unsigned long clk)
475 {
476         unsigned long delta = expires - clk;
477         unsigned int idx;
478
479         if (delta < LVL_START(1)) {
480                 idx = calc_index(expires, 0);
481         } else if (delta < LVL_START(2)) {
482                 idx = calc_index(expires, 1);
483         } else if (delta < LVL_START(3)) {
484                 idx = calc_index(expires, 2);
485         } else if (delta < LVL_START(4)) {
486                 idx = calc_index(expires, 3);
487         } else if (delta < LVL_START(5)) {
488                 idx = calc_index(expires, 4);
489         } else if (delta < LVL_START(6)) {
490                 idx = calc_index(expires, 5);
491         } else if (delta < LVL_START(7)) {
492                 idx = calc_index(expires, 6);
493         } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
494                 idx = calc_index(expires, 7);
495         } else if ((long) delta < 0) {
496                 idx = clk & LVL_MASK;
497         } else {
498                 /*
499                  * Force expire obscene large timeouts to expire at the
500                  * capacity limit of the wheel.
501                  */
502                 if (expires >= WHEEL_TIMEOUT_CUTOFF)
503                         expires = WHEEL_TIMEOUT_MAX;
504
505                 idx = calc_index(expires, LVL_DEPTH - 1);
506         }
507         return idx;
508 }
509
510 /*
511  * Enqueue the timer into the hash bucket, mark it pending in
512  * the bitmap and store the index in the timer flags.
513  */
514 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
515                           unsigned int idx)
516 {
517         hlist_add_head(&timer->entry, base->vectors + idx);
518         __set_bit(idx, base->pending_map);
519         timer_set_idx(timer, idx);
520 }
521
522 static void
523 __internal_add_timer(struct timer_base *base, struct timer_list *timer)
524 {
525         unsigned int idx;
526
527         idx = calc_wheel_index(timer->expires, base->clk);
528         enqueue_timer(base, timer, idx);
529 }
530
531 static void
532 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
533 {
534         if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
535                 return;
536
537         /*
538          * TODO: This wants some optimizing similar to the code below, but we
539          * will do that when we switch from push to pull for deferrable timers.
540          */
541         if (timer->flags & TIMER_DEFERRABLE) {
542                 if (tick_nohz_full_cpu(base->cpu))
543                         wake_up_nohz_cpu(base->cpu);
544                 return;
545         }
546
547         /*
548          * We might have to IPI the remote CPU if the base is idle and the
549          * timer is not deferrable. If the other CPU is on the way to idle
550          * then it can't set base->is_idle as we hold the base lock:
551          */
552         if (!base->is_idle)
553                 return;
554
555         /* Check whether this is the new first expiring timer: */
556         if (time_after_eq(timer->expires, base->next_expiry))
557                 return;
558
559         /*
560          * Set the next expiry time and kick the CPU so it can reevaluate the
561          * wheel:
562          */
563         base->next_expiry = timer->expires;
564                 wake_up_nohz_cpu(base->cpu);
565 }
566
567 static void
568 internal_add_timer(struct timer_base *base, struct timer_list *timer)
569 {
570         __internal_add_timer(base, timer);
571         trigger_dyntick_cpu(base, timer);
572 }
573
574 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
575
576 static struct debug_obj_descr timer_debug_descr;
577
578 static void *timer_debug_hint(void *addr)
579 {
580         return ((struct timer_list *) addr)->function;
581 }
582
583 static bool timer_is_static_object(void *addr)
584 {
585         struct timer_list *timer = addr;
586
587         return (timer->entry.pprev == NULL &&
588                 timer->entry.next == TIMER_ENTRY_STATIC);
589 }
590
591 /*
592  * fixup_init is called when:
593  * - an active object is initialized
594  */
595 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
596 {
597         struct timer_list *timer = addr;
598
599         switch (state) {
600         case ODEBUG_STATE_ACTIVE:
601                 del_timer_sync(timer);
602                 debug_object_init(timer, &timer_debug_descr);
603                 return true;
604         default:
605                 return false;
606         }
607 }
608
609 /* Stub timer callback for improperly used timers. */
610 static void stub_timer(unsigned long data)
611 {
612         WARN_ON(1);
613 }
614
615 /*
616  * fixup_activate is called when:
617  * - an active object is activated
618  * - an unknown non-static object is activated
619  */
620 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
621 {
622         struct timer_list *timer = addr;
623
624         switch (state) {
625         case ODEBUG_STATE_NOTAVAILABLE:
626                 setup_timer(timer, stub_timer, 0);
627                 return true;
628
629         case ODEBUG_STATE_ACTIVE:
630                 WARN_ON(1);
631
632         default:
633                 return false;
634         }
635 }
636
637 /*
638  * fixup_free is called when:
639  * - an active object is freed
640  */
641 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
642 {
643         struct timer_list *timer = addr;
644
645         switch (state) {
646         case ODEBUG_STATE_ACTIVE:
647                 del_timer_sync(timer);
648                 debug_object_free(timer, &timer_debug_descr);
649                 return true;
650         default:
651                 return false;
652         }
653 }
654
655 /*
656  * fixup_assert_init is called when:
657  * - an untracked/uninit-ed object is found
658  */
659 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
660 {
661         struct timer_list *timer = addr;
662
663         switch (state) {
664         case ODEBUG_STATE_NOTAVAILABLE:
665                 setup_timer(timer, stub_timer, 0);
666                 return true;
667         default:
668                 return false;
669         }
670 }
671
672 static struct debug_obj_descr timer_debug_descr = {
673         .name                   = "timer_list",
674         .debug_hint             = timer_debug_hint,
675         .is_static_object       = timer_is_static_object,
676         .fixup_init             = timer_fixup_init,
677         .fixup_activate         = timer_fixup_activate,
678         .fixup_free             = timer_fixup_free,
679         .fixup_assert_init      = timer_fixup_assert_init,
680 };
681
682 static inline void debug_timer_init(struct timer_list *timer)
683 {
684         debug_object_init(timer, &timer_debug_descr);
685 }
686
687 static inline void debug_timer_activate(struct timer_list *timer)
688 {
689         debug_object_activate(timer, &timer_debug_descr);
690 }
691
692 static inline void debug_timer_deactivate(struct timer_list *timer)
693 {
694         debug_object_deactivate(timer, &timer_debug_descr);
695 }
696
697 static inline void debug_timer_free(struct timer_list *timer)
698 {
699         debug_object_free(timer, &timer_debug_descr);
700 }
701
702 static inline void debug_timer_assert_init(struct timer_list *timer)
703 {
704         debug_object_assert_init(timer, &timer_debug_descr);
705 }
706
707 static void do_init_timer(struct timer_list *timer, unsigned int flags,
708                           const char *name, struct lock_class_key *key);
709
710 void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
711                              const char *name, struct lock_class_key *key)
712 {
713         debug_object_init_on_stack(timer, &timer_debug_descr);
714         do_init_timer(timer, flags, name, key);
715 }
716 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
717
718 void destroy_timer_on_stack(struct timer_list *timer)
719 {
720         debug_object_free(timer, &timer_debug_descr);
721 }
722 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
723
724 #else
725 static inline void debug_timer_init(struct timer_list *timer) { }
726 static inline void debug_timer_activate(struct timer_list *timer) { }
727 static inline void debug_timer_deactivate(struct timer_list *timer) { }
728 static inline void debug_timer_assert_init(struct timer_list *timer) { }
729 #endif
730
731 static inline void debug_init(struct timer_list *timer)
732 {
733         debug_timer_init(timer);
734         trace_timer_init(timer);
735 }
736
737 static inline void
738 debug_activate(struct timer_list *timer, unsigned long expires)
739 {
740         debug_timer_activate(timer);
741         trace_timer_start(timer, expires, timer->flags);
742 }
743
744 static inline void debug_deactivate(struct timer_list *timer)
745 {
746         debug_timer_deactivate(timer);
747         trace_timer_cancel(timer);
748 }
749
750 static inline void debug_assert_init(struct timer_list *timer)
751 {
752         debug_timer_assert_init(timer);
753 }
754
755 static void do_init_timer(struct timer_list *timer, unsigned int flags,
756                           const char *name, struct lock_class_key *key)
757 {
758         timer->entry.pprev = NULL;
759         timer->flags = flags | raw_smp_processor_id();
760         lockdep_init_map(&timer->lockdep_map, name, key, 0);
761 }
762
763 /**
764  * init_timer_key - initialize a timer
765  * @timer: the timer to be initialized
766  * @flags: timer flags
767  * @name: name of the timer
768  * @key: lockdep class key of the fake lock used for tracking timer
769  *       sync lock dependencies
770  *
771  * init_timer_key() must be done to a timer prior calling *any* of the
772  * other timer functions.
773  */
774 void init_timer_key(struct timer_list *timer, unsigned int flags,
775                     const char *name, struct lock_class_key *key)
776 {
777         debug_init(timer);
778         do_init_timer(timer, flags, name, key);
779 }
780 EXPORT_SYMBOL(init_timer_key);
781
782 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
783 {
784         struct hlist_node *entry = &timer->entry;
785
786         debug_deactivate(timer);
787
788         __hlist_del(entry);
789         if (clear_pending)
790                 entry->pprev = NULL;
791         entry->next = LIST_POISON2;
792 }
793
794 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
795                              bool clear_pending)
796 {
797         unsigned idx = timer_get_idx(timer);
798
799         if (!timer_pending(timer))
800                 return 0;
801
802         if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
803                 __clear_bit(idx, base->pending_map);
804
805         detach_timer(timer, clear_pending);
806         return 1;
807 }
808
809 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
810 {
811         struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
812
813         /*
814          * If the timer is deferrable and nohz is active then we need to use
815          * the deferrable base.
816          */
817         if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
818             (tflags & TIMER_DEFERRABLE))
819                 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
820         return base;
821 }
822
823 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
824 {
825         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
826
827         /*
828          * If the timer is deferrable and nohz is active then we need to use
829          * the deferrable base.
830          */
831         if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
832             (tflags & TIMER_DEFERRABLE))
833                 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
834         return base;
835 }
836
837 static inline struct timer_base *get_timer_base(u32 tflags)
838 {
839         return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
840 }
841
842 #ifdef CONFIG_NO_HZ_COMMON
843 static inline struct timer_base *
844 get_target_base(struct timer_base *base, unsigned tflags)
845 {
846 #ifdef CONFIG_SMP
847         if ((tflags & TIMER_PINNED) || !base->migration_enabled)
848                 return get_timer_this_cpu_base(tflags);
849         return get_timer_cpu_base(tflags, get_nohz_timer_target());
850 #else
851         return get_timer_this_cpu_base(tflags);
852 #endif
853 }
854
855 static inline void forward_timer_base(struct timer_base *base)
856 {
857         unsigned long jnow = READ_ONCE(jiffies);
858
859         /*
860          * We only forward the base when it's idle and we have a delta between
861          * base clock and jiffies.
862          */
863         if (!base->is_idle || (long) (jnow - base->clk) < 2)
864                 return;
865
866         /*
867          * If the next expiry value is > jiffies, then we fast forward to
868          * jiffies otherwise we forward to the next expiry value.
869          */
870         if (time_after(base->next_expiry, jnow))
871                 base->clk = jnow;
872         else
873                 base->clk = base->next_expiry;
874 }
875 #else
876 static inline struct timer_base *
877 get_target_base(struct timer_base *base, unsigned tflags)
878 {
879         return get_timer_this_cpu_base(tflags);
880 }
881
882 static inline void forward_timer_base(struct timer_base *base) { }
883 #endif
884
885
886 /*
887  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
888  * that all timers which are tied to this base are locked, and the base itself
889  * is locked too.
890  *
891  * So __run_timers/migrate_timers can safely modify all timers which could
892  * be found in the base->vectors array.
893  *
894  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
895  * to wait until the migration is done.
896  */
897 static struct timer_base *lock_timer_base(struct timer_list *timer,
898                                           unsigned long *flags)
899         __acquires(timer->base->lock)
900 {
901         for (;;) {
902                 struct timer_base *base;
903                 u32 tf;
904
905                 /*
906                  * We need to use READ_ONCE() here, otherwise the compiler
907                  * might re-read @tf between the check for TIMER_MIGRATING
908                  * and spin_lock().
909                  */
910                 tf = READ_ONCE(timer->flags);
911
912                 if (!(tf & TIMER_MIGRATING)) {
913                         base = get_timer_base(tf);
914                         spin_lock_irqsave(&base->lock, *flags);
915                         if (timer->flags == tf)
916                                 return base;
917                         spin_unlock_irqrestore(&base->lock, *flags);
918                 }
919                 cpu_relax();
920         }
921 }
922
923 static inline int
924 __mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
925 {
926         struct timer_base *base, *new_base;
927         unsigned int idx = UINT_MAX;
928         unsigned long clk = 0, flags;
929         int ret = 0;
930
931         BUG_ON(!timer->function);
932
933         /*
934          * This is a common optimization triggered by the networking code - if
935          * the timer is re-modified to have the same timeout or ends up in the
936          * same array bucket then just return:
937          */
938         if (timer_pending(timer)) {
939                 if (timer->expires == expires)
940                         return 1;
941
942                 /*
943                  * We lock timer base and calculate the bucket index right
944                  * here. If the timer ends up in the same bucket, then we
945                  * just update the expiry time and avoid the whole
946                  * dequeue/enqueue dance.
947                  */
948                 base = lock_timer_base(timer, &flags);
949
950                 clk = base->clk;
951                 idx = calc_wheel_index(expires, clk);
952
953                 /*
954                  * Retrieve and compare the array index of the pending
955                  * timer. If it matches set the expiry to the new value so a
956                  * subsequent call will exit in the expires check above.
957                  */
958                 if (idx == timer_get_idx(timer)) {
959                         timer->expires = expires;
960                         ret = 1;
961                         goto out_unlock;
962                 }
963         } else {
964                 base = lock_timer_base(timer, &flags);
965         }
966
967         ret = detach_if_pending(timer, base, false);
968         if (!ret && pending_only)
969                 goto out_unlock;
970
971         debug_activate(timer, expires);
972
973         new_base = get_target_base(base, timer->flags);
974
975         if (base != new_base) {
976                 /*
977                  * We are trying to schedule the timer on the new base.
978                  * However we can't change timer's base while it is running,
979                  * otherwise del_timer_sync() can't detect that the timer's
980                  * handler yet has not finished. This also guarantees that the
981                  * timer is serialized wrt itself.
982                  */
983                 if (likely(base->running_timer != timer)) {
984                         /* See the comment in lock_timer_base() */
985                         timer->flags |= TIMER_MIGRATING;
986
987                         spin_unlock(&base->lock);
988                         base = new_base;
989                         spin_lock(&base->lock);
990                         WRITE_ONCE(timer->flags,
991                                    (timer->flags & ~TIMER_BASEMASK) | base->cpu);
992                 }
993         }
994
995         /* Try to forward a stale timer base clock */
996         forward_timer_base(base);
997
998         timer->expires = expires;
999         /*
1000          * If 'idx' was calculated above and the base time did not advance
1001          * between calculating 'idx' and possibly switching the base, only
1002          * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1003          * we need to (re)calculate the wheel index via
1004          * internal_add_timer().
1005          */
1006         if (idx != UINT_MAX && clk == base->clk) {
1007                 enqueue_timer(base, timer, idx);
1008                 trigger_dyntick_cpu(base, timer);
1009         } else {
1010                 internal_add_timer(base, timer);
1011         }
1012
1013 out_unlock:
1014         spin_unlock_irqrestore(&base->lock, flags);
1015
1016         return ret;
1017 }
1018
1019 /**
1020  * mod_timer_pending - modify a pending timer's timeout
1021  * @timer: the pending timer to be modified
1022  * @expires: new timeout in jiffies
1023  *
1024  * mod_timer_pending() is the same for pending timers as mod_timer(),
1025  * but will not re-activate and modify already deleted timers.
1026  *
1027  * It is useful for unserialized use of timers.
1028  */
1029 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1030 {
1031         return __mod_timer(timer, expires, true);
1032 }
1033 EXPORT_SYMBOL(mod_timer_pending);
1034
1035 /**
1036  * mod_timer - modify a timer's timeout
1037  * @timer: the timer to be modified
1038  * @expires: new timeout in jiffies
1039  *
1040  * mod_timer() is a more efficient way to update the expire field of an
1041  * active timer (if the timer is inactive it will be activated)
1042  *
1043  * mod_timer(timer, expires) is equivalent to:
1044  *
1045  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1046  *
1047  * Note that if there are multiple unserialized concurrent users of the
1048  * same timer, then mod_timer() is the only safe way to modify the timeout,
1049  * since add_timer() cannot modify an already running timer.
1050  *
1051  * The function returns whether it has modified a pending timer or not.
1052  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1053  * active timer returns 1.)
1054  */
1055 int mod_timer(struct timer_list *timer, unsigned long expires)
1056 {
1057         return __mod_timer(timer, expires, false);
1058 }
1059 EXPORT_SYMBOL(mod_timer);
1060
1061 /**
1062  * add_timer - start a timer
1063  * @timer: the timer to be added
1064  *
1065  * The kernel will do a ->function(->data) callback from the
1066  * timer interrupt at the ->expires point in the future. The
1067  * current time is 'jiffies'.
1068  *
1069  * The timer's ->expires, ->function (and if the handler uses it, ->data)
1070  * fields must be set prior calling this function.
1071  *
1072  * Timers with an ->expires field in the past will be executed in the next
1073  * timer tick.
1074  */
1075 void add_timer(struct timer_list *timer)
1076 {
1077         BUG_ON(timer_pending(timer));
1078         mod_timer(timer, timer->expires);
1079 }
1080 EXPORT_SYMBOL(add_timer);
1081
1082 /**
1083  * add_timer_on - start a timer on a particular CPU
1084  * @timer: the timer to be added
1085  * @cpu: the CPU to start it on
1086  *
1087  * This is not very scalable on SMP. Double adds are not possible.
1088  */
1089 void add_timer_on(struct timer_list *timer, int cpu)
1090 {
1091         struct timer_base *new_base, *base;
1092         unsigned long flags;
1093
1094         BUG_ON(timer_pending(timer) || !timer->function);
1095
1096         new_base = get_timer_cpu_base(timer->flags, cpu);
1097
1098         /*
1099          * If @timer was on a different CPU, it should be migrated with the
1100          * old base locked to prevent other operations proceeding with the
1101          * wrong base locked.  See lock_timer_base().
1102          */
1103         base = lock_timer_base(timer, &flags);
1104         if (base != new_base) {
1105                 timer->flags |= TIMER_MIGRATING;
1106
1107                 spin_unlock(&base->lock);
1108                 base = new_base;
1109                 spin_lock(&base->lock);
1110                 WRITE_ONCE(timer->flags,
1111                            (timer->flags & ~TIMER_BASEMASK) | cpu);
1112         }
1113
1114         debug_activate(timer, timer->expires);
1115         internal_add_timer(base, timer);
1116         spin_unlock_irqrestore(&base->lock, flags);
1117 }
1118 EXPORT_SYMBOL_GPL(add_timer_on);
1119
1120 /**
1121  * del_timer - deactive a timer.
1122  * @timer: the timer to be deactivated
1123  *
1124  * del_timer() deactivates a timer - this works on both active and inactive
1125  * timers.
1126  *
1127  * The function returns whether it has deactivated a pending timer or not.
1128  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1129  * active timer returns 1.)
1130  */
1131 int del_timer(struct timer_list *timer)
1132 {
1133         struct timer_base *base;
1134         unsigned long flags;
1135         int ret = 0;
1136
1137         debug_assert_init(timer);
1138
1139         if (timer_pending(timer)) {
1140                 base = lock_timer_base(timer, &flags);
1141                 ret = detach_if_pending(timer, base, true);
1142                 spin_unlock_irqrestore(&base->lock, flags);
1143         }
1144
1145         return ret;
1146 }
1147 EXPORT_SYMBOL(del_timer);
1148
1149 /**
1150  * try_to_del_timer_sync - Try to deactivate a timer
1151  * @timer: timer do del
1152  *
1153  * This function tries to deactivate a timer. Upon successful (ret >= 0)
1154  * exit the timer is not queued and the handler is not running on any CPU.
1155  */
1156 int try_to_del_timer_sync(struct timer_list *timer)
1157 {
1158         struct timer_base *base;
1159         unsigned long flags;
1160         int ret = -1;
1161
1162         debug_assert_init(timer);
1163
1164         base = lock_timer_base(timer, &flags);
1165
1166         if (base->running_timer != timer)
1167                 ret = detach_if_pending(timer, base, true);
1168
1169         spin_unlock_irqrestore(&base->lock, flags);
1170
1171         return ret;
1172 }
1173 EXPORT_SYMBOL(try_to_del_timer_sync);
1174
1175 #ifdef CONFIG_SMP
1176 /**
1177  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1178  * @timer: the timer to be deactivated
1179  *
1180  * This function only differs from del_timer() on SMP: besides deactivating
1181  * the timer it also makes sure the handler has finished executing on other
1182  * CPUs.
1183  *
1184  * Synchronization rules: Callers must prevent restarting of the timer,
1185  * otherwise this function is meaningless. It must not be called from
1186  * interrupt contexts unless the timer is an irqsafe one. The caller must
1187  * not hold locks which would prevent completion of the timer's
1188  * handler. The timer's handler must not call add_timer_on(). Upon exit the
1189  * timer is not queued and the handler is not running on any CPU.
1190  *
1191  * Note: For !irqsafe timers, you must not hold locks that are held in
1192  *   interrupt context while calling this function. Even if the lock has
1193  *   nothing to do with the timer in question.  Here's why:
1194  *
1195  *    CPU0                             CPU1
1196  *    ----                             ----
1197  *                                   <SOFTIRQ>
1198  *                                   call_timer_fn();
1199  *                                     base->running_timer = mytimer;
1200  *  spin_lock_irq(somelock);
1201  *                                     <IRQ>
1202  *                                        spin_lock(somelock);
1203  *  del_timer_sync(mytimer);
1204  *   while (base->running_timer == mytimer);
1205  *
1206  * Now del_timer_sync() will never return and never release somelock.
1207  * The interrupt on the other CPU is waiting to grab somelock but
1208  * it has interrupted the softirq that CPU0 is waiting to finish.
1209  *
1210  * The function returns whether it has deactivated a pending timer or not.
1211  */
1212 int del_timer_sync(struct timer_list *timer)
1213 {
1214 #ifdef CONFIG_LOCKDEP
1215         unsigned long flags;
1216
1217         /*
1218          * If lockdep gives a backtrace here, please reference
1219          * the synchronization rules above.
1220          */
1221         local_irq_save(flags);
1222         lock_map_acquire(&timer->lockdep_map);
1223         lock_map_release(&timer->lockdep_map);
1224         local_irq_restore(flags);
1225 #endif
1226         /*
1227          * don't use it in hardirq context, because it
1228          * could lead to deadlock.
1229          */
1230         WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
1231         for (;;) {
1232                 int ret = try_to_del_timer_sync(timer);
1233                 if (ret >= 0)
1234                         return ret;
1235                 cpu_relax();
1236         }
1237 }
1238 EXPORT_SYMBOL(del_timer_sync);
1239 #endif
1240
1241 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1242                           unsigned long data)
1243 {
1244         int count = preempt_count();
1245
1246 #ifdef CONFIG_LOCKDEP
1247         /*
1248          * It is permissible to free the timer from inside the
1249          * function that is called from it, this we need to take into
1250          * account for lockdep too. To avoid bogus "held lock freed"
1251          * warnings as well as problems when looking into
1252          * timer->lockdep_map, make a copy and use that here.
1253          */
1254         struct lockdep_map lockdep_map;
1255
1256         lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1257 #endif
1258         /*
1259          * Couple the lock chain with the lock chain at
1260          * del_timer_sync() by acquiring the lock_map around the fn()
1261          * call here and in del_timer_sync().
1262          */
1263         lock_map_acquire(&lockdep_map);
1264
1265         trace_timer_expire_entry(timer);
1266         fn(data);
1267         trace_timer_expire_exit(timer);
1268
1269         lock_map_release(&lockdep_map);
1270
1271         if (count != preempt_count()) {
1272                 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1273                           fn, count, preempt_count());
1274                 /*
1275                  * Restore the preempt count. That gives us a decent
1276                  * chance to survive and extract information. If the
1277                  * callback kept a lock held, bad luck, but not worse
1278                  * than the BUG() we had.
1279                  */
1280                 preempt_count_set(count);
1281         }
1282 }
1283
1284 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1285 {
1286         while (!hlist_empty(head)) {
1287                 struct timer_list *timer;
1288                 void (*fn)(unsigned long);
1289                 unsigned long data;
1290
1291                 timer = hlist_entry(head->first, struct timer_list, entry);
1292
1293                 base->running_timer = timer;
1294                 detach_timer(timer, true);
1295
1296                 fn = timer->function;
1297                 data = timer->data;
1298
1299                 if (timer->flags & TIMER_IRQSAFE) {
1300                         spin_unlock(&base->lock);
1301                         call_timer_fn(timer, fn, data);
1302                         spin_lock(&base->lock);
1303                 } else {
1304                         spin_unlock_irq(&base->lock);
1305                         call_timer_fn(timer, fn, data);
1306                         spin_lock_irq(&base->lock);
1307                 }
1308         }
1309 }
1310
1311 static int __collect_expired_timers(struct timer_base *base,
1312                                     struct hlist_head *heads)
1313 {
1314         unsigned long clk = base->clk;
1315         struct hlist_head *vec;
1316         int i, levels = 0;
1317         unsigned int idx;
1318
1319         for (i = 0; i < LVL_DEPTH; i++) {
1320                 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1321
1322                 if (__test_and_clear_bit(idx, base->pending_map)) {
1323                         vec = base->vectors + idx;
1324                         hlist_move_list(vec, heads++);
1325                         levels++;
1326                 }
1327                 /* Is it time to look at the next level? */
1328                 if (clk & LVL_CLK_MASK)
1329                         break;
1330                 /* Shift clock for the next level granularity */
1331                 clk >>= LVL_CLK_SHIFT;
1332         }
1333         return levels;
1334 }
1335
1336 #ifdef CONFIG_NO_HZ_COMMON
1337 /*
1338  * Find the next pending bucket of a level. Search from level start (@offset)
1339  * + @clk upwards and if nothing there, search from start of the level
1340  * (@offset) up to @offset + clk.
1341  */
1342 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1343                                unsigned clk)
1344 {
1345         unsigned pos, start = offset + clk;
1346         unsigned end = offset + LVL_SIZE;
1347
1348         pos = find_next_bit(base->pending_map, end, start);
1349         if (pos < end)
1350                 return pos - start;
1351
1352         pos = find_next_bit(base->pending_map, start, offset);
1353         return pos < start ? pos + LVL_SIZE - start : -1;
1354 }
1355
1356 /*
1357  * Search the first expiring timer in the various clock levels. Caller must
1358  * hold base->lock.
1359  */
1360 static unsigned long __next_timer_interrupt(struct timer_base *base)
1361 {
1362         unsigned long clk, next, adj;
1363         unsigned lvl, offset = 0;
1364
1365         next = base->clk + NEXT_TIMER_MAX_DELTA;
1366         clk = base->clk;
1367         for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1368                 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1369
1370                 if (pos >= 0) {
1371                         unsigned long tmp = clk + (unsigned long) pos;
1372
1373                         tmp <<= LVL_SHIFT(lvl);
1374                         if (time_before(tmp, next))
1375                                 next = tmp;
1376                 }
1377                 /*
1378                  * Clock for the next level. If the current level clock lower
1379                  * bits are zero, we look at the next level as is. If not we
1380                  * need to advance it by one because that's going to be the
1381                  * next expiring bucket in that level. base->clk is the next
1382                  * expiring jiffie. So in case of:
1383                  *
1384                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1385                  *  0    0    0    0    0    0
1386                  *
1387                  * we have to look at all levels @index 0. With
1388                  *
1389                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1390                  *  0    0    0    0    0    2
1391                  *
1392                  * LVL0 has the next expiring bucket @index 2. The upper
1393                  * levels have the next expiring bucket @index 1.
1394                  *
1395                  * In case that the propagation wraps the next level the same
1396                  * rules apply:
1397                  *
1398                  * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1399                  *  0    0    0    0    F    2
1400                  *
1401                  * So after looking at LVL0 we get:
1402                  *
1403                  * LVL5 LVL4 LVL3 LVL2 LVL1
1404                  *  0    0    0    1    0
1405                  *
1406                  * So no propagation from LVL1 to LVL2 because that happened
1407                  * with the add already, but then we need to propagate further
1408                  * from LVL2 to LVL3.
1409                  *
1410                  * So the simple check whether the lower bits of the current
1411                  * level are 0 or not is sufficient for all cases.
1412                  */
1413                 adj = clk & LVL_CLK_MASK ? 1 : 0;
1414                 clk >>= LVL_CLK_SHIFT;
1415                 clk += adj;
1416         }
1417         return next;
1418 }
1419
1420 /*
1421  * Check, if the next hrtimer event is before the next timer wheel
1422  * event:
1423  */
1424 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1425 {
1426         u64 nextevt = hrtimer_get_next_event();
1427
1428         /*
1429          * If high resolution timers are enabled
1430          * hrtimer_get_next_event() returns KTIME_MAX.
1431          */
1432         if (expires <= nextevt)
1433                 return expires;
1434
1435         /*
1436          * If the next timer is already expired, return the tick base
1437          * time so the tick is fired immediately.
1438          */
1439         if (nextevt <= basem)
1440                 return basem;
1441
1442         /*
1443          * Round up to the next jiffie. High resolution timers are
1444          * off, so the hrtimers are expired in the tick and we need to
1445          * make sure that this tick really expires the timer to avoid
1446          * a ping pong of the nohz stop code.
1447          *
1448          * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
1449          */
1450         return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1451 }
1452
1453 /**
1454  * get_next_timer_interrupt - return the time (clock mono) of the next timer
1455  * @basej:      base time jiffies
1456  * @basem:      base time clock monotonic
1457  *
1458  * Returns the tick aligned clock monotonic time of the next pending
1459  * timer or KTIME_MAX if no timer is pending.
1460  */
1461 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1462 {
1463         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1464         u64 expires = KTIME_MAX;
1465         unsigned long nextevt;
1466         bool is_max_delta;
1467
1468         /*
1469          * Pretend that there is no timer pending if the cpu is offline.
1470          * Possible pending timers will be migrated later to an active cpu.
1471          */
1472         if (cpu_is_offline(smp_processor_id()))
1473                 return expires;
1474
1475         spin_lock(&base->lock);
1476         nextevt = __next_timer_interrupt(base);
1477         is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
1478         base->next_expiry = nextevt;
1479         /*
1480          * We have a fresh next event. Check whether we can forward the
1481          * base. We can only do that when @basej is past base->clk
1482          * otherwise we might rewind base->clk.
1483          */
1484         if (time_after(basej, base->clk)) {
1485                 if (time_after(nextevt, basej))
1486                         base->clk = basej;
1487                 else if (time_after(nextevt, base->clk))
1488                         base->clk = nextevt;
1489         }
1490
1491         if (time_before_eq(nextevt, basej)) {
1492                 expires = basem;
1493                 base->is_idle = false;
1494         } else {
1495                 if (!is_max_delta)
1496                         expires = basem + (nextevt - basej) * TICK_NSEC;
1497                 /*
1498                  * If we expect to sleep more than a tick, mark the base idle:
1499                  */
1500                 if ((expires - basem) > TICK_NSEC)
1501                         base->is_idle = true;
1502         }
1503         spin_unlock(&base->lock);
1504
1505         return cmp_next_hrtimer_event(basem, expires);
1506 }
1507
1508 /**
1509  * timer_clear_idle - Clear the idle state of the timer base
1510  *
1511  * Called with interrupts disabled
1512  */
1513 void timer_clear_idle(void)
1514 {
1515         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1516
1517         /*
1518          * We do this unlocked. The worst outcome is a remote enqueue sending
1519          * a pointless IPI, but taking the lock would just make the window for
1520          * sending the IPI a few instructions smaller for the cost of taking
1521          * the lock in the exit from idle path.
1522          */
1523         base->is_idle = false;
1524 }
1525
1526 static int collect_expired_timers(struct timer_base *base,
1527                                   struct hlist_head *heads)
1528 {
1529         /*
1530          * NOHZ optimization. After a long idle sleep we need to forward the
1531          * base to current jiffies. Avoid a loop by searching the bitfield for
1532          * the next expiring timer.
1533          */
1534         if ((long)(jiffies - base->clk) > 2) {
1535                 unsigned long next = __next_timer_interrupt(base);
1536
1537                 /*
1538                  * If the next timer is ahead of time forward to current
1539                  * jiffies, otherwise forward to the next expiry time:
1540                  */
1541                 if (time_after(next, jiffies)) {
1542                         /* The call site will increment clock! */
1543                         base->clk = jiffies - 1;
1544                         return 0;
1545                 }
1546                 base->clk = next;
1547         }
1548         return __collect_expired_timers(base, heads);
1549 }
1550 #else
1551 static inline int collect_expired_timers(struct timer_base *base,
1552                                          struct hlist_head *heads)
1553 {
1554         return __collect_expired_timers(base, heads);
1555 }
1556 #endif
1557
1558 /*
1559  * Called from the timer interrupt handler to charge one tick to the current
1560  * process.  user_tick is 1 if the tick is user time, 0 for system.
1561  */
1562 void update_process_times(int user_tick)
1563 {
1564         struct task_struct *p = current;
1565
1566         /* Note: this timer irq context must be accounted for as well. */
1567         account_process_tick(p, user_tick);
1568         run_local_timers();
1569         rcu_check_callbacks(user_tick);
1570 #ifdef CONFIG_IRQ_WORK
1571         if (in_irq())
1572                 irq_work_tick();
1573 #endif
1574         scheduler_tick();
1575         if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1576                 run_posix_cpu_timers(p);
1577 }
1578
1579 /**
1580  * __run_timers - run all expired timers (if any) on this CPU.
1581  * @base: the timer vector to be processed.
1582  */
1583 static inline void __run_timers(struct timer_base *base)
1584 {
1585         struct hlist_head heads[LVL_DEPTH];
1586         int levels;
1587
1588         if (!time_after_eq(jiffies, base->clk))
1589                 return;
1590
1591         spin_lock_irq(&base->lock);
1592
1593         while (time_after_eq(jiffies, base->clk)) {
1594
1595                 levels = collect_expired_timers(base, heads);
1596                 base->clk++;
1597
1598                 while (levels--)
1599                         expire_timers(base, heads + levels);
1600         }
1601         base->running_timer = NULL;
1602         spin_unlock_irq(&base->lock);
1603 }
1604
1605 /*
1606  * This function runs timers and the timer-tq in bottom half context.
1607  */
1608 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1609 {
1610         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1611
1612         __run_timers(base);
1613         if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1614                 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1615 }
1616
1617 /*
1618  * Called by the local, per-CPU timer interrupt on SMP.
1619  */
1620 void run_local_timers(void)
1621 {
1622         struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1623
1624         hrtimer_run_queues();
1625         /* Raise the softirq only if required. */
1626         if (time_before(jiffies, base->clk)) {
1627                 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1628                         return;
1629                 /* CPU is awake, so check the deferrable base. */
1630                 base++;
1631                 if (time_before(jiffies, base->clk))
1632                         return;
1633         }
1634         raise_softirq(TIMER_SOFTIRQ);
1635 }
1636
1637 static void process_timeout(unsigned long __data)
1638 {
1639         wake_up_process((struct task_struct *)__data);
1640 }
1641
1642 /**
1643  * schedule_timeout - sleep until timeout
1644  * @timeout: timeout value in jiffies
1645  *
1646  * Make the current task sleep until @timeout jiffies have
1647  * elapsed. The routine will return immediately unless
1648  * the current task state has been set (see set_current_state()).
1649  *
1650  * You can set the task state as follows -
1651  *
1652  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1653  * pass before the routine returns unless the current task is explicitly
1654  * woken up, (e.g. by wake_up_process())".
1655  *
1656  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1657  * delivered to the current task or the current task is explicitly woken
1658  * up.
1659  *
1660  * The current task state is guaranteed to be TASK_RUNNING when this
1661  * routine returns.
1662  *
1663  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1664  * the CPU away without a bound on the timeout. In this case the return
1665  * value will be %MAX_SCHEDULE_TIMEOUT.
1666  *
1667  * Returns 0 when the timer has expired otherwise the remaining time in
1668  * jiffies will be returned.  In all cases the return value is guaranteed
1669  * to be non-negative.
1670  */
1671 signed long __sched schedule_timeout(signed long timeout)
1672 {
1673         struct timer_list timer;
1674         unsigned long expire;
1675
1676         switch (timeout)
1677         {
1678         case MAX_SCHEDULE_TIMEOUT:
1679                 /*
1680                  * These two special cases are useful to be comfortable
1681                  * in the caller. Nothing more. We could take
1682                  * MAX_SCHEDULE_TIMEOUT from one of the negative value
1683                  * but I' d like to return a valid offset (>=0) to allow
1684                  * the caller to do everything it want with the retval.
1685                  */
1686                 schedule();
1687                 goto out;
1688         default:
1689                 /*
1690                  * Another bit of PARANOID. Note that the retval will be
1691                  * 0 since no piece of kernel is supposed to do a check
1692                  * for a negative retval of schedule_timeout() (since it
1693                  * should never happens anyway). You just have the printk()
1694                  * that will tell you if something is gone wrong and where.
1695                  */
1696                 if (timeout < 0) {
1697                         printk(KERN_ERR "schedule_timeout: wrong timeout "
1698                                 "value %lx\n", timeout);
1699                         dump_stack();
1700                         current->state = TASK_RUNNING;
1701                         goto out;
1702                 }
1703         }
1704
1705         expire = timeout + jiffies;
1706
1707         setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1708         __mod_timer(&timer, expire, false);
1709         schedule();
1710         del_singleshot_timer_sync(&timer);
1711
1712         /* Remove the timer from the object tracker */
1713         destroy_timer_on_stack(&timer);
1714
1715         timeout = expire - jiffies;
1716
1717  out:
1718         return timeout < 0 ? 0 : timeout;
1719 }
1720 EXPORT_SYMBOL(schedule_timeout);
1721
1722 /*
1723  * We can use __set_current_state() here because schedule_timeout() calls
1724  * schedule() unconditionally.
1725  */
1726 signed long __sched schedule_timeout_interruptible(signed long timeout)
1727 {
1728         __set_current_state(TASK_INTERRUPTIBLE);
1729         return schedule_timeout(timeout);
1730 }
1731 EXPORT_SYMBOL(schedule_timeout_interruptible);
1732
1733 signed long __sched schedule_timeout_killable(signed long timeout)
1734 {
1735         __set_current_state(TASK_KILLABLE);
1736         return schedule_timeout(timeout);
1737 }
1738 EXPORT_SYMBOL(schedule_timeout_killable);
1739
1740 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1741 {
1742         __set_current_state(TASK_UNINTERRUPTIBLE);
1743         return schedule_timeout(timeout);
1744 }
1745 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1746
1747 /*
1748  * Like schedule_timeout_uninterruptible(), except this task will not contribute
1749  * to load average.
1750  */
1751 signed long __sched schedule_timeout_idle(signed long timeout)
1752 {
1753         __set_current_state(TASK_IDLE);
1754         return schedule_timeout(timeout);
1755 }
1756 EXPORT_SYMBOL(schedule_timeout_idle);
1757
1758 #ifdef CONFIG_HOTPLUG_CPU
1759 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1760 {
1761         struct timer_list *timer;
1762         int cpu = new_base->cpu;
1763
1764         while (!hlist_empty(head)) {
1765                 timer = hlist_entry(head->first, struct timer_list, entry);
1766                 detach_timer(timer, false);
1767                 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1768                 internal_add_timer(new_base, timer);
1769         }
1770 }
1771
1772 int timers_dead_cpu(unsigned int cpu)
1773 {
1774         struct timer_base *old_base;
1775         struct timer_base *new_base;
1776         int b, i;
1777
1778         BUG_ON(cpu_online(cpu));
1779
1780         for (b = 0; b < NR_BASES; b++) {
1781                 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1782                 new_base = get_cpu_ptr(&timer_bases[b]);
1783                 /*
1784                  * The caller is globally serialized and nobody else
1785                  * takes two locks at once, deadlock is not possible.
1786                  */
1787                 spin_lock_irq(&new_base->lock);
1788                 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1789
1790                 BUG_ON(old_base->running_timer);
1791
1792                 for (i = 0; i < WHEEL_SIZE; i++)
1793                         migrate_timer_list(new_base, old_base->vectors + i);
1794
1795                 spin_unlock(&old_base->lock);
1796                 spin_unlock_irq(&new_base->lock);
1797                 put_cpu_ptr(&timer_bases);
1798         }
1799         return 0;
1800 }
1801
1802 #endif /* CONFIG_HOTPLUG_CPU */
1803
1804 static void __init init_timer_cpu(int cpu)
1805 {
1806         struct timer_base *base;
1807         int i;
1808
1809         for (i = 0; i < NR_BASES; i++) {
1810                 base = per_cpu_ptr(&timer_bases[i], cpu);
1811                 base->cpu = cpu;
1812                 spin_lock_init(&base->lock);
1813                 base->clk = jiffies;
1814         }
1815 }
1816
1817 static void __init init_timer_cpus(void)
1818 {
1819         int cpu;
1820
1821         for_each_possible_cpu(cpu)
1822                 init_timer_cpu(cpu);
1823 }
1824
1825 void __init init_timers(void)
1826 {
1827         init_timer_cpus();
1828         open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1829 }
1830
1831 /**
1832  * msleep - sleep safely even with waitqueue interruptions
1833  * @msecs: Time in milliseconds to sleep for
1834  */
1835 void msleep(unsigned int msecs)
1836 {
1837         unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1838
1839         while (timeout)
1840                 timeout = schedule_timeout_uninterruptible(timeout);
1841 }
1842
1843 EXPORT_SYMBOL(msleep);
1844
1845 /**
1846  * msleep_interruptible - sleep waiting for signals
1847  * @msecs: Time in milliseconds to sleep for
1848  */
1849 unsigned long msleep_interruptible(unsigned int msecs)
1850 {
1851         unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1852
1853         while (timeout && !signal_pending(current))
1854                 timeout = schedule_timeout_interruptible(timeout);
1855         return jiffies_to_msecs(timeout);
1856 }
1857
1858 EXPORT_SYMBOL(msleep_interruptible);
1859
1860 /**
1861  * usleep_range - Sleep for an approximate time
1862  * @min: Minimum time in usecs to sleep
1863  * @max: Maximum time in usecs to sleep
1864  *
1865  * In non-atomic context where the exact wakeup time is flexible, use
1866  * usleep_range() instead of udelay().  The sleep improves responsiveness
1867  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1868  * power usage by allowing hrtimers to take advantage of an already-
1869  * scheduled interrupt instead of scheduling a new one just for this sleep.
1870  */
1871 void __sched usleep_range(unsigned long min, unsigned long max)
1872 {
1873         ktime_t exp = ktime_add_us(ktime_get(), min);
1874         u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1875
1876         for (;;) {
1877                 __set_current_state(TASK_UNINTERRUPTIBLE);
1878                 /* Do not return before the requested sleep time has elapsed */
1879                 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1880                         break;
1881         }
1882 }
1883 EXPORT_SYMBOL(usleep_range);