Merge tag 'clk-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/clk/linux
[linux-2.6-microblaze.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/syscore_ops.h>
21 #include <linux/clocksource.h>
22 #include <linux/jiffies.h>
23 #include <linux/time.h>
24 #include <linux/tick.h>
25 #include <linux/stop_machine.h>
26 #include <linux/pvclock_gtod.h>
27 #include <linux/compiler.h>
28
29 #include "tick-internal.h"
30 #include "ntp_internal.h"
31 #include "timekeeping_internal.h"
32
33 #define TK_CLEAR_NTP            (1 << 0)
34 #define TK_MIRROR               (1 << 1)
35 #define TK_CLOCK_WAS_SET        (1 << 2)
36
37 /*
38  * The most important data for readout fits into a single 64 byte
39  * cache line.
40  */
41 static struct {
42         seqcount_t              seq;
43         struct timekeeper       timekeeper;
44 } tk_core ____cacheline_aligned;
45
46 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
47 static struct timekeeper shadow_timekeeper;
48
49 /**
50  * struct tk_fast - NMI safe timekeeper
51  * @seq:        Sequence counter for protecting updates. The lowest bit
52  *              is the index for the tk_read_base array
53  * @base:       tk_read_base array. Access is indexed by the lowest bit of
54  *              @seq.
55  *
56  * See @update_fast_timekeeper() below.
57  */
58 struct tk_fast {
59         seqcount_t              seq;
60         struct tk_read_base     base[2];
61 };
62
63 /* Suspend-time cycles value for halted fast timekeeper. */
64 static u64 cycles_at_suspend;
65
66 static u64 dummy_clock_read(struct clocksource *cs)
67 {
68         return cycles_at_suspend;
69 }
70
71 static struct clocksource dummy_clock = {
72         .read = dummy_clock_read,
73 };
74
75 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
76         .base[0] = { .clock = &dummy_clock, },
77         .base[1] = { .clock = &dummy_clock, },
78 };
79
80 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
81         .base[0] = { .clock = &dummy_clock, },
82         .base[1] = { .clock = &dummy_clock, },
83 };
84
85 /* flag for if timekeeping is suspended */
86 int __read_mostly timekeeping_suspended;
87
88 static inline void tk_normalize_xtime(struct timekeeper *tk)
89 {
90         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
91                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
92                 tk->xtime_sec++;
93         }
94         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
95                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
96                 tk->raw_sec++;
97         }
98 }
99
100 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
101 {
102         struct timespec64 ts;
103
104         ts.tv_sec = tk->xtime_sec;
105         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
106         return ts;
107 }
108
109 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
110 {
111         tk->xtime_sec = ts->tv_sec;
112         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
113 }
114
115 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
116 {
117         tk->xtime_sec += ts->tv_sec;
118         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
119         tk_normalize_xtime(tk);
120 }
121
122 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
123 {
124         struct timespec64 tmp;
125
126         /*
127          * Verify consistency of: offset_real = -wall_to_monotonic
128          * before modifying anything
129          */
130         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
131                                         -tk->wall_to_monotonic.tv_nsec);
132         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
133         tk->wall_to_monotonic = wtm;
134         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
135         tk->offs_real = timespec64_to_ktime(tmp);
136         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
137 }
138
139 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
140 {
141         /* Update both bases so mono and raw stay coupled. */
142         tk->tkr_mono.base += delta;
143         tk->tkr_raw.base += delta;
144
145         /* Accumulate time spent in suspend */
146         tk->time_suspended += delta;
147 }
148
149 /*
150  * tk_clock_read - atomic clocksource read() helper
151  *
152  * This helper is necessary to use in the read paths because, while the
153  * seqlock ensures we don't return a bad value while structures are updated,
154  * it doesn't protect from potential crashes. There is the possibility that
155  * the tkr's clocksource may change between the read reference, and the
156  * clock reference passed to the read function.  This can cause crashes if
157  * the wrong clocksource is passed to the wrong read function.
158  * This isn't necessary to use when holding the timekeeper_lock or doing
159  * a read of the fast-timekeeper tkrs (which is protected by its own locking
160  * and update logic).
161  */
162 static inline u64 tk_clock_read(struct tk_read_base *tkr)
163 {
164         struct clocksource *clock = READ_ONCE(tkr->clock);
165
166         return clock->read(clock);
167 }
168
169 #ifdef CONFIG_DEBUG_TIMEKEEPING
170 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
171
172 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
173 {
174
175         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
176         const char *name = tk->tkr_mono.clock->name;
177
178         if (offset > max_cycles) {
179                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
180                                 offset, name, max_cycles);
181                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
182         } else {
183                 if (offset > (max_cycles >> 1)) {
184                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
185                                         offset, name, max_cycles >> 1);
186                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
187                 }
188         }
189
190         if (tk->underflow_seen) {
191                 if (jiffies - tk->last_warning > WARNING_FREQ) {
192                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
193                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
194                         printk_deferred("         Your kernel is probably still fine.\n");
195                         tk->last_warning = jiffies;
196                 }
197                 tk->underflow_seen = 0;
198         }
199
200         if (tk->overflow_seen) {
201                 if (jiffies - tk->last_warning > WARNING_FREQ) {
202                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
203                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
204                         printk_deferred("         Your kernel is probably still fine.\n");
205                         tk->last_warning = jiffies;
206                 }
207                 tk->overflow_seen = 0;
208         }
209 }
210
211 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
212 {
213         struct timekeeper *tk = &tk_core.timekeeper;
214         u64 now, last, mask, max, delta;
215         unsigned int seq;
216
217         /*
218          * Since we're called holding a seqlock, the data may shift
219          * under us while we're doing the calculation. This can cause
220          * false positives, since we'd note a problem but throw the
221          * results away. So nest another seqlock here to atomically
222          * grab the points we are checking with.
223          */
224         do {
225                 seq = read_seqcount_begin(&tk_core.seq);
226                 now = tk_clock_read(tkr);
227                 last = tkr->cycle_last;
228                 mask = tkr->mask;
229                 max = tkr->clock->max_cycles;
230         } while (read_seqcount_retry(&tk_core.seq, seq));
231
232         delta = clocksource_delta(now, last, mask);
233
234         /*
235          * Try to catch underflows by checking if we are seeing small
236          * mask-relative negative values.
237          */
238         if (unlikely((~delta & mask) < (mask >> 3))) {
239                 tk->underflow_seen = 1;
240                 delta = 0;
241         }
242
243         /* Cap delta value to the max_cycles values to avoid mult overflows */
244         if (unlikely(delta > max)) {
245                 tk->overflow_seen = 1;
246                 delta = tkr->clock->max_cycles;
247         }
248
249         return delta;
250 }
251 #else
252 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
253 {
254 }
255 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
256 {
257         u64 cycle_now, delta;
258
259         /* read clocksource */
260         cycle_now = tk_clock_read(tkr);
261
262         /* calculate the delta since the last update_wall_time */
263         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
264
265         return delta;
266 }
267 #endif
268
269 /**
270  * tk_setup_internals - Set up internals to use clocksource clock.
271  *
272  * @tk:         The target timekeeper to setup.
273  * @clock:              Pointer to clocksource.
274  *
275  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
276  * pair and interval request.
277  *
278  * Unless you're the timekeeping code, you should not be using this!
279  */
280 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
281 {
282         u64 interval;
283         u64 tmp, ntpinterval;
284         struct clocksource *old_clock;
285
286         ++tk->cs_was_changed_seq;
287         old_clock = tk->tkr_mono.clock;
288         tk->tkr_mono.clock = clock;
289         tk->tkr_mono.mask = clock->mask;
290         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
291
292         tk->tkr_raw.clock = clock;
293         tk->tkr_raw.mask = clock->mask;
294         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
295
296         /* Do the ns -> cycle conversion first, using original mult */
297         tmp = NTP_INTERVAL_LENGTH;
298         tmp <<= clock->shift;
299         ntpinterval = tmp;
300         tmp += clock->mult/2;
301         do_div(tmp, clock->mult);
302         if (tmp == 0)
303                 tmp = 1;
304
305         interval = (u64) tmp;
306         tk->cycle_interval = interval;
307
308         /* Go back from cycles -> shifted ns */
309         tk->xtime_interval = interval * clock->mult;
310         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
311         tk->raw_interval = interval * clock->mult;
312
313          /* if changing clocks, convert xtime_nsec shift units */
314         if (old_clock) {
315                 int shift_change = clock->shift - old_clock->shift;
316                 if (shift_change < 0) {
317                         tk->tkr_mono.xtime_nsec >>= -shift_change;
318                         tk->tkr_raw.xtime_nsec >>= -shift_change;
319                 } else {
320                         tk->tkr_mono.xtime_nsec <<= shift_change;
321                         tk->tkr_raw.xtime_nsec <<= shift_change;
322                 }
323         }
324
325         tk->tkr_mono.shift = clock->shift;
326         tk->tkr_raw.shift = clock->shift;
327
328         tk->ntp_error = 0;
329         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
330         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
331
332         /*
333          * The timekeeper keeps its own mult values for the currently
334          * active clocksource. These value will be adjusted via NTP
335          * to counteract clock drifting.
336          */
337         tk->tkr_mono.mult = clock->mult;
338         tk->tkr_raw.mult = clock->mult;
339         tk->ntp_err_mult = 0;
340         tk->skip_second_overflow = 0;
341 }
342
343 /* Timekeeper helper functions. */
344
345 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
346 static u32 default_arch_gettimeoffset(void) { return 0; }
347 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
348 #else
349 static inline u32 arch_gettimeoffset(void) { return 0; }
350 #endif
351
352 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
353 {
354         u64 nsec;
355
356         nsec = delta * tkr->mult + tkr->xtime_nsec;
357         nsec >>= tkr->shift;
358
359         /* If arch requires, add in get_arch_timeoffset() */
360         return nsec + arch_gettimeoffset();
361 }
362
363 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
364 {
365         u64 delta;
366
367         delta = timekeeping_get_delta(tkr);
368         return timekeeping_delta_to_ns(tkr, delta);
369 }
370
371 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
372 {
373         u64 delta;
374
375         /* calculate the delta since the last update_wall_time */
376         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
377         return timekeeping_delta_to_ns(tkr, delta);
378 }
379
380 /**
381  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
382  * @tkr: Timekeeping readout base from which we take the update
383  *
384  * We want to use this from any context including NMI and tracing /
385  * instrumenting the timekeeping code itself.
386  *
387  * Employ the latch technique; see @raw_write_seqcount_latch.
388  *
389  * So if a NMI hits the update of base[0] then it will use base[1]
390  * which is still consistent. In the worst case this can result is a
391  * slightly wrong timestamp (a few nanoseconds). See
392  * @ktime_get_mono_fast_ns.
393  */
394 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
395 {
396         struct tk_read_base *base = tkf->base;
397
398         /* Force readers off to base[1] */
399         raw_write_seqcount_latch(&tkf->seq);
400
401         /* Update base[0] */
402         memcpy(base, tkr, sizeof(*base));
403
404         /* Force readers back to base[0] */
405         raw_write_seqcount_latch(&tkf->seq);
406
407         /* Update base[1] */
408         memcpy(base + 1, base, sizeof(*base));
409 }
410
411 /**
412  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
413  *
414  * This timestamp is not guaranteed to be monotonic across an update.
415  * The timestamp is calculated by:
416  *
417  *      now = base_mono + clock_delta * slope
418  *
419  * So if the update lowers the slope, readers who are forced to the
420  * not yet updated second array are still using the old steeper slope.
421  *
422  * tmono
423  * ^
424  * |    o  n
425  * |   o n
426  * |  u
427  * | o
428  * |o
429  * |12345678---> reader order
430  *
431  * o = old slope
432  * u = update
433  * n = new slope
434  *
435  * So reader 6 will observe time going backwards versus reader 5.
436  *
437  * While other CPUs are likely to be able observe that, the only way
438  * for a CPU local observation is when an NMI hits in the middle of
439  * the update. Timestamps taken from that NMI context might be ahead
440  * of the following timestamps. Callers need to be aware of that and
441  * deal with it.
442  */
443 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
444 {
445         struct tk_read_base *tkr;
446         unsigned int seq;
447         u64 now;
448
449         do {
450                 seq = raw_read_seqcount_latch(&tkf->seq);
451                 tkr = tkf->base + (seq & 0x01);
452                 now = ktime_to_ns(tkr->base);
453
454                 now += timekeeping_delta_to_ns(tkr,
455                                 clocksource_delta(
456                                         tk_clock_read(tkr),
457                                         tkr->cycle_last,
458                                         tkr->mask));
459         } while (read_seqcount_retry(&tkf->seq, seq));
460
461         return now;
462 }
463
464 u64 ktime_get_mono_fast_ns(void)
465 {
466         return __ktime_get_fast_ns(&tk_fast_mono);
467 }
468 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
469
470 u64 ktime_get_raw_fast_ns(void)
471 {
472         return __ktime_get_fast_ns(&tk_fast_raw);
473 }
474 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
475
476 /*
477  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
478  */
479 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
480 {
481         struct tk_read_base *tkr;
482         unsigned int seq;
483         u64 now;
484
485         do {
486                 seq = raw_read_seqcount_latch(&tkf->seq);
487                 tkr = tkf->base + (seq & 0x01);
488                 now = ktime_to_ns(tkr->base_real);
489
490                 now += timekeeping_delta_to_ns(tkr,
491                                 clocksource_delta(
492                                         tk_clock_read(tkr),
493                                         tkr->cycle_last,
494                                         tkr->mask));
495         } while (read_seqcount_retry(&tkf->seq, seq));
496
497         return now;
498 }
499
500 /**
501  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
502  */
503 u64 ktime_get_real_fast_ns(void)
504 {
505         return __ktime_get_real_fast_ns(&tk_fast_mono);
506 }
507 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
508
509 /**
510  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
511  * @tk: Timekeeper to snapshot.
512  *
513  * It generally is unsafe to access the clocksource after timekeeping has been
514  * suspended, so take a snapshot of the readout base of @tk and use it as the
515  * fast timekeeper's readout base while suspended.  It will return the same
516  * number of cycles every time until timekeeping is resumed at which time the
517  * proper readout base for the fast timekeeper will be restored automatically.
518  */
519 static void halt_fast_timekeeper(struct timekeeper *tk)
520 {
521         static struct tk_read_base tkr_dummy;
522         struct tk_read_base *tkr = &tk->tkr_mono;
523
524         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
525         cycles_at_suspend = tk_clock_read(tkr);
526         tkr_dummy.clock = &dummy_clock;
527         tkr_dummy.base_real = tkr->base + tk->offs_real;
528         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
529
530         tkr = &tk->tkr_raw;
531         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
532         tkr_dummy.clock = &dummy_clock;
533         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
534 }
535
536 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
537
538 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
539 {
540         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
541 }
542
543 /**
544  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
545  */
546 int pvclock_gtod_register_notifier(struct notifier_block *nb)
547 {
548         struct timekeeper *tk = &tk_core.timekeeper;
549         unsigned long flags;
550         int ret;
551
552         raw_spin_lock_irqsave(&timekeeper_lock, flags);
553         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
554         update_pvclock_gtod(tk, true);
555         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
556
557         return ret;
558 }
559 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
560
561 /**
562  * pvclock_gtod_unregister_notifier - unregister a pvclock
563  * timedata update listener
564  */
565 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
566 {
567         unsigned long flags;
568         int ret;
569
570         raw_spin_lock_irqsave(&timekeeper_lock, flags);
571         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
572         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
573
574         return ret;
575 }
576 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
577
578 /*
579  * tk_update_leap_state - helper to update the next_leap_ktime
580  */
581 static inline void tk_update_leap_state(struct timekeeper *tk)
582 {
583         tk->next_leap_ktime = ntp_get_next_leap();
584         if (tk->next_leap_ktime != KTIME_MAX)
585                 /* Convert to monotonic time */
586                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
587 }
588
589 /*
590  * Update the ktime_t based scalar nsec members of the timekeeper
591  */
592 static inline void tk_update_ktime_data(struct timekeeper *tk)
593 {
594         u64 seconds;
595         u32 nsec;
596
597         /*
598          * The xtime based monotonic readout is:
599          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
600          * The ktime based monotonic readout is:
601          *      nsec = base_mono + now();
602          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
603          */
604         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
605         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
606         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
607
608         /*
609          * The sum of the nanoseconds portions of xtime and
610          * wall_to_monotonic can be greater/equal one second. Take
611          * this into account before updating tk->ktime_sec.
612          */
613         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
614         if (nsec >= NSEC_PER_SEC)
615                 seconds++;
616         tk->ktime_sec = seconds;
617
618         /* Update the monotonic raw base */
619         tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
620 }
621
622 /* must hold timekeeper_lock */
623 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
624 {
625         if (action & TK_CLEAR_NTP) {
626                 tk->ntp_error = 0;
627                 ntp_clear();
628         }
629
630         tk_update_leap_state(tk);
631         tk_update_ktime_data(tk);
632
633         update_vsyscall(tk);
634         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
635
636         tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
637         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
638         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
639
640         if (action & TK_CLOCK_WAS_SET)
641                 tk->clock_was_set_seq++;
642         /*
643          * The mirroring of the data to the shadow-timekeeper needs
644          * to happen last here to ensure we don't over-write the
645          * timekeeper structure on the next update with stale data
646          */
647         if (action & TK_MIRROR)
648                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
649                        sizeof(tk_core.timekeeper));
650 }
651
652 /**
653  * timekeeping_forward_now - update clock to the current time
654  *
655  * Forward the current clock to update its state since the last call to
656  * update_wall_time(). This is useful before significant clock changes,
657  * as it avoids having to deal with this time offset explicitly.
658  */
659 static void timekeeping_forward_now(struct timekeeper *tk)
660 {
661         u64 cycle_now, delta;
662
663         cycle_now = tk_clock_read(&tk->tkr_mono);
664         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
665         tk->tkr_mono.cycle_last = cycle_now;
666         tk->tkr_raw.cycle_last  = cycle_now;
667
668         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
669
670         /* If arch requires, add in get_arch_timeoffset() */
671         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
672
673
674         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
675
676         /* If arch requires, add in get_arch_timeoffset() */
677         tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
678
679         tk_normalize_xtime(tk);
680 }
681
682 /**
683  * __getnstimeofday64 - Returns the time of day in a timespec64.
684  * @ts:         pointer to the timespec to be set
685  *
686  * Updates the time of day in the timespec.
687  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
688  */
689 int __getnstimeofday64(struct timespec64 *ts)
690 {
691         struct timekeeper *tk = &tk_core.timekeeper;
692         unsigned long seq;
693         u64 nsecs;
694
695         do {
696                 seq = read_seqcount_begin(&tk_core.seq);
697
698                 ts->tv_sec = tk->xtime_sec;
699                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
700
701         } while (read_seqcount_retry(&tk_core.seq, seq));
702
703         ts->tv_nsec = 0;
704         timespec64_add_ns(ts, nsecs);
705
706         /*
707          * Do not bail out early, in case there were callers still using
708          * the value, even in the face of the WARN_ON.
709          */
710         if (unlikely(timekeeping_suspended))
711                 return -EAGAIN;
712         return 0;
713 }
714 EXPORT_SYMBOL(__getnstimeofday64);
715
716 /**
717  * getnstimeofday64 - Returns the time of day in a timespec64.
718  * @ts:         pointer to the timespec64 to be set
719  *
720  * Returns the time of day in a timespec64 (WARN if suspended).
721  */
722 void getnstimeofday64(struct timespec64 *ts)
723 {
724         WARN_ON(__getnstimeofday64(ts));
725 }
726 EXPORT_SYMBOL(getnstimeofday64);
727
728 ktime_t ktime_get(void)
729 {
730         struct timekeeper *tk = &tk_core.timekeeper;
731         unsigned int seq;
732         ktime_t base;
733         u64 nsecs;
734
735         WARN_ON(timekeeping_suspended);
736
737         do {
738                 seq = read_seqcount_begin(&tk_core.seq);
739                 base = tk->tkr_mono.base;
740                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
741
742         } while (read_seqcount_retry(&tk_core.seq, seq));
743
744         return ktime_add_ns(base, nsecs);
745 }
746 EXPORT_SYMBOL_GPL(ktime_get);
747
748 u32 ktime_get_resolution_ns(void)
749 {
750         struct timekeeper *tk = &tk_core.timekeeper;
751         unsigned int seq;
752         u32 nsecs;
753
754         WARN_ON(timekeeping_suspended);
755
756         do {
757                 seq = read_seqcount_begin(&tk_core.seq);
758                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
759         } while (read_seqcount_retry(&tk_core.seq, seq));
760
761         return nsecs;
762 }
763 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
764
765 static ktime_t *offsets[TK_OFFS_MAX] = {
766         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
767         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
768 };
769
770 ktime_t ktime_get_with_offset(enum tk_offsets offs)
771 {
772         struct timekeeper *tk = &tk_core.timekeeper;
773         unsigned int seq;
774         ktime_t base, *offset = offsets[offs];
775         u64 nsecs;
776
777         WARN_ON(timekeeping_suspended);
778
779         do {
780                 seq = read_seqcount_begin(&tk_core.seq);
781                 base = ktime_add(tk->tkr_mono.base, *offset);
782                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
783
784         } while (read_seqcount_retry(&tk_core.seq, seq));
785
786         return ktime_add_ns(base, nsecs);
787
788 }
789 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
790
791 /**
792  * ktime_mono_to_any() - convert mononotic time to any other time
793  * @tmono:      time to convert.
794  * @offs:       which offset to use
795  */
796 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
797 {
798         ktime_t *offset = offsets[offs];
799         unsigned long seq;
800         ktime_t tconv;
801
802         do {
803                 seq = read_seqcount_begin(&tk_core.seq);
804                 tconv = ktime_add(tmono, *offset);
805         } while (read_seqcount_retry(&tk_core.seq, seq));
806
807         return tconv;
808 }
809 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
810
811 /**
812  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
813  */
814 ktime_t ktime_get_raw(void)
815 {
816         struct timekeeper *tk = &tk_core.timekeeper;
817         unsigned int seq;
818         ktime_t base;
819         u64 nsecs;
820
821         do {
822                 seq = read_seqcount_begin(&tk_core.seq);
823                 base = tk->tkr_raw.base;
824                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
825
826         } while (read_seqcount_retry(&tk_core.seq, seq));
827
828         return ktime_add_ns(base, nsecs);
829 }
830 EXPORT_SYMBOL_GPL(ktime_get_raw);
831
832 /**
833  * ktime_get_ts64 - get the monotonic clock in timespec64 format
834  * @ts:         pointer to timespec variable
835  *
836  * The function calculates the monotonic clock from the realtime
837  * clock and the wall_to_monotonic offset and stores the result
838  * in normalized timespec64 format in the variable pointed to by @ts.
839  */
840 void ktime_get_ts64(struct timespec64 *ts)
841 {
842         struct timekeeper *tk = &tk_core.timekeeper;
843         struct timespec64 tomono;
844         unsigned int seq;
845         u64 nsec;
846
847         WARN_ON(timekeeping_suspended);
848
849         do {
850                 seq = read_seqcount_begin(&tk_core.seq);
851                 ts->tv_sec = tk->xtime_sec;
852                 nsec = timekeeping_get_ns(&tk->tkr_mono);
853                 tomono = tk->wall_to_monotonic;
854
855         } while (read_seqcount_retry(&tk_core.seq, seq));
856
857         ts->tv_sec += tomono.tv_sec;
858         ts->tv_nsec = 0;
859         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
860 }
861 EXPORT_SYMBOL_GPL(ktime_get_ts64);
862
863 /**
864  * ktime_get_active_ts64 - Get the active non-suspended monotonic clock
865  * @ts:         pointer to timespec variable
866  *
867  * The function calculates the monotonic clock from the realtime clock and
868  * the wall_to_monotonic offset, subtracts the accumulated suspend time and
869  * stores the result in normalized timespec64 format in the variable
870  * pointed to by @ts.
871  */
872 void ktime_get_active_ts64(struct timespec64 *ts)
873 {
874         struct timekeeper *tk = &tk_core.timekeeper;
875         struct timespec64 tomono, tsusp;
876         u64 nsec, nssusp;
877         unsigned int seq;
878
879         WARN_ON(timekeeping_suspended);
880
881         do {
882                 seq = read_seqcount_begin(&tk_core.seq);
883                 ts->tv_sec = tk->xtime_sec;
884                 nsec = timekeeping_get_ns(&tk->tkr_mono);
885                 tomono = tk->wall_to_monotonic;
886                 nssusp = tk->time_suspended;
887         } while (read_seqcount_retry(&tk_core.seq, seq));
888
889         ts->tv_sec += tomono.tv_sec;
890         ts->tv_nsec = 0;
891         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
892         tsusp = ns_to_timespec64(nssusp);
893         *ts = timespec64_sub(*ts, tsusp);
894 }
895
896 /**
897  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
898  *
899  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
900  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
901  * works on both 32 and 64 bit systems. On 32 bit systems the readout
902  * covers ~136 years of uptime which should be enough to prevent
903  * premature wrap arounds.
904  */
905 time64_t ktime_get_seconds(void)
906 {
907         struct timekeeper *tk = &tk_core.timekeeper;
908
909         WARN_ON(timekeeping_suspended);
910         return tk->ktime_sec;
911 }
912 EXPORT_SYMBOL_GPL(ktime_get_seconds);
913
914 /**
915  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
916  *
917  * Returns the wall clock seconds since 1970. This replaces the
918  * get_seconds() interface which is not y2038 safe on 32bit systems.
919  *
920  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
921  * 32bit systems the access must be protected with the sequence
922  * counter to provide "atomic" access to the 64bit tk->xtime_sec
923  * value.
924  */
925 time64_t ktime_get_real_seconds(void)
926 {
927         struct timekeeper *tk = &tk_core.timekeeper;
928         time64_t seconds;
929         unsigned int seq;
930
931         if (IS_ENABLED(CONFIG_64BIT))
932                 return tk->xtime_sec;
933
934         do {
935                 seq = read_seqcount_begin(&tk_core.seq);
936                 seconds = tk->xtime_sec;
937
938         } while (read_seqcount_retry(&tk_core.seq, seq));
939
940         return seconds;
941 }
942 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
943
944 /**
945  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
946  * but without the sequence counter protect. This internal function
947  * is called just when timekeeping lock is already held.
948  */
949 time64_t __ktime_get_real_seconds(void)
950 {
951         struct timekeeper *tk = &tk_core.timekeeper;
952
953         return tk->xtime_sec;
954 }
955
956 /**
957  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
958  * @systime_snapshot:   pointer to struct receiving the system time snapshot
959  */
960 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
961 {
962         struct timekeeper *tk = &tk_core.timekeeper;
963         unsigned long seq;
964         ktime_t base_raw;
965         ktime_t base_real;
966         u64 nsec_raw;
967         u64 nsec_real;
968         u64 now;
969
970         WARN_ON_ONCE(timekeeping_suspended);
971
972         do {
973                 seq = read_seqcount_begin(&tk_core.seq);
974                 now = tk_clock_read(&tk->tkr_mono);
975                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
976                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
977                 base_real = ktime_add(tk->tkr_mono.base,
978                                       tk_core.timekeeper.offs_real);
979                 base_raw = tk->tkr_raw.base;
980                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
981                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
982         } while (read_seqcount_retry(&tk_core.seq, seq));
983
984         systime_snapshot->cycles = now;
985         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
986         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
987 }
988 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
989
990 /* Scale base by mult/div checking for overflow */
991 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
992 {
993         u64 tmp, rem;
994
995         tmp = div64_u64_rem(*base, div, &rem);
996
997         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
998             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
999                 return -EOVERFLOW;
1000         tmp *= mult;
1001         rem *= mult;
1002
1003         do_div(rem, div);
1004         *base = tmp + rem;
1005         return 0;
1006 }
1007
1008 /**
1009  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1010  * @history:                    Snapshot representing start of history
1011  * @partial_history_cycles:     Cycle offset into history (fractional part)
1012  * @total_history_cycles:       Total history length in cycles
1013  * @discontinuity:              True indicates clock was set on history period
1014  * @ts:                         Cross timestamp that should be adjusted using
1015  *      partial/total ratio
1016  *
1017  * Helper function used by get_device_system_crosststamp() to correct the
1018  * crosstimestamp corresponding to the start of the current interval to the
1019  * system counter value (timestamp point) provided by the driver. The
1020  * total_history_* quantities are the total history starting at the provided
1021  * reference point and ending at the start of the current interval. The cycle
1022  * count between the driver timestamp point and the start of the current
1023  * interval is partial_history_cycles.
1024  */
1025 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1026                                          u64 partial_history_cycles,
1027                                          u64 total_history_cycles,
1028                                          bool discontinuity,
1029                                          struct system_device_crosststamp *ts)
1030 {
1031         struct timekeeper *tk = &tk_core.timekeeper;
1032         u64 corr_raw, corr_real;
1033         bool interp_forward;
1034         int ret;
1035
1036         if (total_history_cycles == 0 || partial_history_cycles == 0)
1037                 return 0;
1038
1039         /* Interpolate shortest distance from beginning or end of history */
1040         interp_forward = partial_history_cycles > total_history_cycles / 2;
1041         partial_history_cycles = interp_forward ?
1042                 total_history_cycles - partial_history_cycles :
1043                 partial_history_cycles;
1044
1045         /*
1046          * Scale the monotonic raw time delta by:
1047          *      partial_history_cycles / total_history_cycles
1048          */
1049         corr_raw = (u64)ktime_to_ns(
1050                 ktime_sub(ts->sys_monoraw, history->raw));
1051         ret = scale64_check_overflow(partial_history_cycles,
1052                                      total_history_cycles, &corr_raw);
1053         if (ret)
1054                 return ret;
1055
1056         /*
1057          * If there is a discontinuity in the history, scale monotonic raw
1058          *      correction by:
1059          *      mult(real)/mult(raw) yielding the realtime correction
1060          * Otherwise, calculate the realtime correction similar to monotonic
1061          *      raw calculation
1062          */
1063         if (discontinuity) {
1064                 corr_real = mul_u64_u32_div
1065                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1066         } else {
1067                 corr_real = (u64)ktime_to_ns(
1068                         ktime_sub(ts->sys_realtime, history->real));
1069                 ret = scale64_check_overflow(partial_history_cycles,
1070                                              total_history_cycles, &corr_real);
1071                 if (ret)
1072                         return ret;
1073         }
1074
1075         /* Fixup monotonic raw and real time time values */
1076         if (interp_forward) {
1077                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1078                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1079         } else {
1080                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1081                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1082         }
1083
1084         return 0;
1085 }
1086
1087 /*
1088  * cycle_between - true if test occurs chronologically between before and after
1089  */
1090 static bool cycle_between(u64 before, u64 test, u64 after)
1091 {
1092         if (test > before && test < after)
1093                 return true;
1094         if (test < before && before > after)
1095                 return true;
1096         return false;
1097 }
1098
1099 /**
1100  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1101  * @get_time_fn:        Callback to get simultaneous device time and
1102  *      system counter from the device driver
1103  * @ctx:                Context passed to get_time_fn()
1104  * @history_begin:      Historical reference point used to interpolate system
1105  *      time when counter provided by the driver is before the current interval
1106  * @xtstamp:            Receives simultaneously captured system and device time
1107  *
1108  * Reads a timestamp from a device and correlates it to system time
1109  */
1110 int get_device_system_crosststamp(int (*get_time_fn)
1111                                   (ktime_t *device_time,
1112                                    struct system_counterval_t *sys_counterval,
1113                                    void *ctx),
1114                                   void *ctx,
1115                                   struct system_time_snapshot *history_begin,
1116                                   struct system_device_crosststamp *xtstamp)
1117 {
1118         struct system_counterval_t system_counterval;
1119         struct timekeeper *tk = &tk_core.timekeeper;
1120         u64 cycles, now, interval_start;
1121         unsigned int clock_was_set_seq = 0;
1122         ktime_t base_real, base_raw;
1123         u64 nsec_real, nsec_raw;
1124         u8 cs_was_changed_seq;
1125         unsigned long seq;
1126         bool do_interp;
1127         int ret;
1128
1129         do {
1130                 seq = read_seqcount_begin(&tk_core.seq);
1131                 /*
1132                  * Try to synchronously capture device time and a system
1133                  * counter value calling back into the device driver
1134                  */
1135                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1136                 if (ret)
1137                         return ret;
1138
1139                 /*
1140                  * Verify that the clocksource associated with the captured
1141                  * system counter value is the same as the currently installed
1142                  * timekeeper clocksource
1143                  */
1144                 if (tk->tkr_mono.clock != system_counterval.cs)
1145                         return -ENODEV;
1146                 cycles = system_counterval.cycles;
1147
1148                 /*
1149                  * Check whether the system counter value provided by the
1150                  * device driver is on the current timekeeping interval.
1151                  */
1152                 now = tk_clock_read(&tk->tkr_mono);
1153                 interval_start = tk->tkr_mono.cycle_last;
1154                 if (!cycle_between(interval_start, cycles, now)) {
1155                         clock_was_set_seq = tk->clock_was_set_seq;
1156                         cs_was_changed_seq = tk->cs_was_changed_seq;
1157                         cycles = interval_start;
1158                         do_interp = true;
1159                 } else {
1160                         do_interp = false;
1161                 }
1162
1163                 base_real = ktime_add(tk->tkr_mono.base,
1164                                       tk_core.timekeeper.offs_real);
1165                 base_raw = tk->tkr_raw.base;
1166
1167                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1168                                                      system_counterval.cycles);
1169                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1170                                                     system_counterval.cycles);
1171         } while (read_seqcount_retry(&tk_core.seq, seq));
1172
1173         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1174         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1175
1176         /*
1177          * Interpolate if necessary, adjusting back from the start of the
1178          * current interval
1179          */
1180         if (do_interp) {
1181                 u64 partial_history_cycles, total_history_cycles;
1182                 bool discontinuity;
1183
1184                 /*
1185                  * Check that the counter value occurs after the provided
1186                  * history reference and that the history doesn't cross a
1187                  * clocksource change
1188                  */
1189                 if (!history_begin ||
1190                     !cycle_between(history_begin->cycles,
1191                                    system_counterval.cycles, cycles) ||
1192                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1193                         return -EINVAL;
1194                 partial_history_cycles = cycles - system_counterval.cycles;
1195                 total_history_cycles = cycles - history_begin->cycles;
1196                 discontinuity =
1197                         history_begin->clock_was_set_seq != clock_was_set_seq;
1198
1199                 ret = adjust_historical_crosststamp(history_begin,
1200                                                     partial_history_cycles,
1201                                                     total_history_cycles,
1202                                                     discontinuity, xtstamp);
1203                 if (ret)
1204                         return ret;
1205         }
1206
1207         return 0;
1208 }
1209 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1210
1211 /**
1212  * do_gettimeofday - Returns the time of day in a timeval
1213  * @tv:         pointer to the timeval to be set
1214  *
1215  * NOTE: Users should be converted to using getnstimeofday()
1216  */
1217 void do_gettimeofday(struct timeval *tv)
1218 {
1219         struct timespec64 now;
1220
1221         getnstimeofday64(&now);
1222         tv->tv_sec = now.tv_sec;
1223         tv->tv_usec = now.tv_nsec/1000;
1224 }
1225 EXPORT_SYMBOL(do_gettimeofday);
1226
1227 /**
1228  * do_settimeofday64 - Sets the time of day.
1229  * @ts:     pointer to the timespec64 variable containing the new time
1230  *
1231  * Sets the time of day to the new time and update NTP and notify hrtimers
1232  */
1233 int do_settimeofday64(const struct timespec64 *ts)
1234 {
1235         struct timekeeper *tk = &tk_core.timekeeper;
1236         struct timespec64 ts_delta, xt;
1237         unsigned long flags;
1238         int ret = 0;
1239
1240         if (!timespec64_valid_strict(ts))
1241                 return -EINVAL;
1242
1243         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1244         write_seqcount_begin(&tk_core.seq);
1245
1246         timekeeping_forward_now(tk);
1247
1248         xt = tk_xtime(tk);
1249         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1250         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1251
1252         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1253                 ret = -EINVAL;
1254                 goto out;
1255         }
1256
1257         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1258
1259         tk_set_xtime(tk, ts);
1260 out:
1261         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1262
1263         write_seqcount_end(&tk_core.seq);
1264         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1265
1266         /* signal hrtimers about time change */
1267         clock_was_set();
1268
1269         return ret;
1270 }
1271 EXPORT_SYMBOL(do_settimeofday64);
1272
1273 /**
1274  * timekeeping_inject_offset - Adds or subtracts from the current time.
1275  * @tv:         pointer to the timespec variable containing the offset
1276  *
1277  * Adds or subtracts an offset value from the current time.
1278  */
1279 static int timekeeping_inject_offset(struct timespec64 *ts)
1280 {
1281         struct timekeeper *tk = &tk_core.timekeeper;
1282         unsigned long flags;
1283         struct timespec64 tmp;
1284         int ret = 0;
1285
1286         if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1287                 return -EINVAL;
1288
1289         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1290         write_seqcount_begin(&tk_core.seq);
1291
1292         timekeeping_forward_now(tk);
1293
1294         /* Make sure the proposed value is valid */
1295         tmp = timespec64_add(tk_xtime(tk), *ts);
1296         if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1297             !timespec64_valid_strict(&tmp)) {
1298                 ret = -EINVAL;
1299                 goto error;
1300         }
1301
1302         tk_xtime_add(tk, ts);
1303         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1304
1305 error: /* even if we error out, we forwarded the time, so call update */
1306         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1307
1308         write_seqcount_end(&tk_core.seq);
1309         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1310
1311         /* signal hrtimers about time change */
1312         clock_was_set();
1313
1314         return ret;
1315 }
1316
1317 /*
1318  * Indicates if there is an offset between the system clock and the hardware
1319  * clock/persistent clock/rtc.
1320  */
1321 int persistent_clock_is_local;
1322
1323 /*
1324  * Adjust the time obtained from the CMOS to be UTC time instead of
1325  * local time.
1326  *
1327  * This is ugly, but preferable to the alternatives.  Otherwise we
1328  * would either need to write a program to do it in /etc/rc (and risk
1329  * confusion if the program gets run more than once; it would also be
1330  * hard to make the program warp the clock precisely n hours)  or
1331  * compile in the timezone information into the kernel.  Bad, bad....
1332  *
1333  *                                              - TYT, 1992-01-01
1334  *
1335  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1336  * as real UNIX machines always do it. This avoids all headaches about
1337  * daylight saving times and warping kernel clocks.
1338  */
1339 void timekeeping_warp_clock(void)
1340 {
1341         if (sys_tz.tz_minuteswest != 0) {
1342                 struct timespec64 adjust;
1343
1344                 persistent_clock_is_local = 1;
1345                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1346                 adjust.tv_nsec = 0;
1347                 timekeeping_inject_offset(&adjust);
1348         }
1349 }
1350
1351 /**
1352  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1353  *
1354  */
1355 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1356 {
1357         tk->tai_offset = tai_offset;
1358         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1359 }
1360
1361 /**
1362  * change_clocksource - Swaps clocksources if a new one is available
1363  *
1364  * Accumulates current time interval and initializes new clocksource
1365  */
1366 static int change_clocksource(void *data)
1367 {
1368         struct timekeeper *tk = &tk_core.timekeeper;
1369         struct clocksource *new, *old;
1370         unsigned long flags;
1371
1372         new = (struct clocksource *) data;
1373
1374         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1375         write_seqcount_begin(&tk_core.seq);
1376
1377         timekeeping_forward_now(tk);
1378         /*
1379          * If the cs is in module, get a module reference. Succeeds
1380          * for built-in code (owner == NULL) as well.
1381          */
1382         if (try_module_get(new->owner)) {
1383                 if (!new->enable || new->enable(new) == 0) {
1384                         old = tk->tkr_mono.clock;
1385                         tk_setup_internals(tk, new);
1386                         if (old->disable)
1387                                 old->disable(old);
1388                         module_put(old->owner);
1389                 } else {
1390                         module_put(new->owner);
1391                 }
1392         }
1393         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1394
1395         write_seqcount_end(&tk_core.seq);
1396         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1397
1398         return 0;
1399 }
1400
1401 /**
1402  * timekeeping_notify - Install a new clock source
1403  * @clock:              pointer to the clock source
1404  *
1405  * This function is called from clocksource.c after a new, better clock
1406  * source has been registered. The caller holds the clocksource_mutex.
1407  */
1408 int timekeeping_notify(struct clocksource *clock)
1409 {
1410         struct timekeeper *tk = &tk_core.timekeeper;
1411
1412         if (tk->tkr_mono.clock == clock)
1413                 return 0;
1414         stop_machine(change_clocksource, clock, NULL);
1415         tick_clock_notify();
1416         return tk->tkr_mono.clock == clock ? 0 : -1;
1417 }
1418
1419 /**
1420  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1421  * @ts:         pointer to the timespec64 to be set
1422  *
1423  * Returns the raw monotonic time (completely un-modified by ntp)
1424  */
1425 void getrawmonotonic64(struct timespec64 *ts)
1426 {
1427         struct timekeeper *tk = &tk_core.timekeeper;
1428         unsigned long seq;
1429         u64 nsecs;
1430
1431         do {
1432                 seq = read_seqcount_begin(&tk_core.seq);
1433                 ts->tv_sec = tk->raw_sec;
1434                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1435
1436         } while (read_seqcount_retry(&tk_core.seq, seq));
1437
1438         ts->tv_nsec = 0;
1439         timespec64_add_ns(ts, nsecs);
1440 }
1441 EXPORT_SYMBOL(getrawmonotonic64);
1442
1443
1444 /**
1445  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1446  */
1447 int timekeeping_valid_for_hres(void)
1448 {
1449         struct timekeeper *tk = &tk_core.timekeeper;
1450         unsigned long seq;
1451         int ret;
1452
1453         do {
1454                 seq = read_seqcount_begin(&tk_core.seq);
1455
1456                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1457
1458         } while (read_seqcount_retry(&tk_core.seq, seq));
1459
1460         return ret;
1461 }
1462
1463 /**
1464  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1465  */
1466 u64 timekeeping_max_deferment(void)
1467 {
1468         struct timekeeper *tk = &tk_core.timekeeper;
1469         unsigned long seq;
1470         u64 ret;
1471
1472         do {
1473                 seq = read_seqcount_begin(&tk_core.seq);
1474
1475                 ret = tk->tkr_mono.clock->max_idle_ns;
1476
1477         } while (read_seqcount_retry(&tk_core.seq, seq));
1478
1479         return ret;
1480 }
1481
1482 /**
1483  * read_persistent_clock -  Return time from the persistent clock.
1484  *
1485  * Weak dummy function for arches that do not yet support it.
1486  * Reads the time from the battery backed persistent clock.
1487  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1488  *
1489  *  XXX - Do be sure to remove it once all arches implement it.
1490  */
1491 void __weak read_persistent_clock(struct timespec *ts)
1492 {
1493         ts->tv_sec = 0;
1494         ts->tv_nsec = 0;
1495 }
1496
1497 void __weak read_persistent_clock64(struct timespec64 *ts64)
1498 {
1499         struct timespec ts;
1500
1501         read_persistent_clock(&ts);
1502         *ts64 = timespec_to_timespec64(ts);
1503 }
1504
1505 /**
1506  * read_boot_clock64 -  Return time of the system start.
1507  *
1508  * Weak dummy function for arches that do not yet support it.
1509  * Function to read the exact time the system has been started.
1510  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1511  *
1512  *  XXX - Do be sure to remove it once all arches implement it.
1513  */
1514 void __weak read_boot_clock64(struct timespec64 *ts)
1515 {
1516         ts->tv_sec = 0;
1517         ts->tv_nsec = 0;
1518 }
1519
1520 /* Flag for if timekeeping_resume() has injected sleeptime */
1521 static bool sleeptime_injected;
1522
1523 /* Flag for if there is a persistent clock on this platform */
1524 static bool persistent_clock_exists;
1525
1526 /*
1527  * timekeeping_init - Initializes the clocksource and common timekeeping values
1528  */
1529 void __init timekeeping_init(void)
1530 {
1531         struct timekeeper *tk = &tk_core.timekeeper;
1532         struct clocksource *clock;
1533         unsigned long flags;
1534         struct timespec64 now, boot, tmp;
1535
1536         read_persistent_clock64(&now);
1537         if (!timespec64_valid_strict(&now)) {
1538                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1539                         "         Check your CMOS/BIOS settings.\n");
1540                 now.tv_sec = 0;
1541                 now.tv_nsec = 0;
1542         } else if (now.tv_sec || now.tv_nsec)
1543                 persistent_clock_exists = true;
1544
1545         read_boot_clock64(&boot);
1546         if (!timespec64_valid_strict(&boot)) {
1547                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1548                         "         Check your CMOS/BIOS settings.\n");
1549                 boot.tv_sec = 0;
1550                 boot.tv_nsec = 0;
1551         }
1552
1553         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1554         write_seqcount_begin(&tk_core.seq);
1555         ntp_init();
1556
1557         clock = clocksource_default_clock();
1558         if (clock->enable)
1559                 clock->enable(clock);
1560         tk_setup_internals(tk, clock);
1561
1562         tk_set_xtime(tk, &now);
1563         tk->raw_sec = 0;
1564         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1565                 boot = tk_xtime(tk);
1566
1567         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1568         tk_set_wall_to_mono(tk, tmp);
1569
1570         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1571
1572         write_seqcount_end(&tk_core.seq);
1573         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1574 }
1575
1576 /* time in seconds when suspend began for persistent clock */
1577 static struct timespec64 timekeeping_suspend_time;
1578
1579 /**
1580  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1581  * @delta: pointer to a timespec delta value
1582  *
1583  * Takes a timespec offset measuring a suspend interval and properly
1584  * adds the sleep offset to the timekeeping variables.
1585  */
1586 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1587                                            struct timespec64 *delta)
1588 {
1589         if (!timespec64_valid_strict(delta)) {
1590                 printk_deferred(KERN_WARNING
1591                                 "__timekeeping_inject_sleeptime: Invalid "
1592                                 "sleep delta value!\n");
1593                 return;
1594         }
1595         tk_xtime_add(tk, delta);
1596         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1597         tk_debug_account_sleep_time(delta);
1598 }
1599
1600 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1601 /**
1602  * We have three kinds of time sources to use for sleep time
1603  * injection, the preference order is:
1604  * 1) non-stop clocksource
1605  * 2) persistent clock (ie: RTC accessible when irqs are off)
1606  * 3) RTC
1607  *
1608  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1609  * If system has neither 1) nor 2), 3) will be used finally.
1610  *
1611  *
1612  * If timekeeping has injected sleeptime via either 1) or 2),
1613  * 3) becomes needless, so in this case we don't need to call
1614  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1615  * means.
1616  */
1617 bool timekeeping_rtc_skipresume(void)
1618 {
1619         return sleeptime_injected;
1620 }
1621
1622 /**
1623  * 1) can be determined whether to use or not only when doing
1624  * timekeeping_resume() which is invoked after rtc_suspend(),
1625  * so we can't skip rtc_suspend() surely if system has 1).
1626  *
1627  * But if system has 2), 2) will definitely be used, so in this
1628  * case we don't need to call rtc_suspend(), and this is what
1629  * timekeeping_rtc_skipsuspend() means.
1630  */
1631 bool timekeeping_rtc_skipsuspend(void)
1632 {
1633         return persistent_clock_exists;
1634 }
1635
1636 /**
1637  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1638  * @delta: pointer to a timespec64 delta value
1639  *
1640  * This hook is for architectures that cannot support read_persistent_clock64
1641  * because their RTC/persistent clock is only accessible when irqs are enabled.
1642  * and also don't have an effective nonstop clocksource.
1643  *
1644  * This function should only be called by rtc_resume(), and allows
1645  * a suspend offset to be injected into the timekeeping values.
1646  */
1647 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1648 {
1649         struct timekeeper *tk = &tk_core.timekeeper;
1650         unsigned long flags;
1651
1652         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1653         write_seqcount_begin(&tk_core.seq);
1654
1655         timekeeping_forward_now(tk);
1656
1657         __timekeeping_inject_sleeptime(tk, delta);
1658
1659         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1660
1661         write_seqcount_end(&tk_core.seq);
1662         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1663
1664         /* signal hrtimers about time change */
1665         clock_was_set();
1666 }
1667 #endif
1668
1669 /**
1670  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1671  */
1672 void timekeeping_resume(void)
1673 {
1674         struct timekeeper *tk = &tk_core.timekeeper;
1675         struct clocksource *clock = tk->tkr_mono.clock;
1676         unsigned long flags;
1677         struct timespec64 ts_new, ts_delta;
1678         u64 cycle_now;
1679
1680         sleeptime_injected = false;
1681         read_persistent_clock64(&ts_new);
1682
1683         clockevents_resume();
1684         clocksource_resume();
1685
1686         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1687         write_seqcount_begin(&tk_core.seq);
1688
1689         /*
1690          * After system resumes, we need to calculate the suspended time and
1691          * compensate it for the OS time. There are 3 sources that could be
1692          * used: Nonstop clocksource during suspend, persistent clock and rtc
1693          * device.
1694          *
1695          * One specific platform may have 1 or 2 or all of them, and the
1696          * preference will be:
1697          *      suspend-nonstop clocksource -> persistent clock -> rtc
1698          * The less preferred source will only be tried if there is no better
1699          * usable source. The rtc part is handled separately in rtc core code.
1700          */
1701         cycle_now = tk_clock_read(&tk->tkr_mono);
1702         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1703                 cycle_now > tk->tkr_mono.cycle_last) {
1704                 u64 nsec, cyc_delta;
1705
1706                 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1707                                               tk->tkr_mono.mask);
1708                 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1709                 ts_delta = ns_to_timespec64(nsec);
1710                 sleeptime_injected = true;
1711         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1712                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1713                 sleeptime_injected = true;
1714         }
1715
1716         if (sleeptime_injected)
1717                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1718
1719         /* Re-base the last cycle value */
1720         tk->tkr_mono.cycle_last = cycle_now;
1721         tk->tkr_raw.cycle_last  = cycle_now;
1722
1723         tk->ntp_error = 0;
1724         timekeeping_suspended = 0;
1725         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1726         write_seqcount_end(&tk_core.seq);
1727         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1728
1729         touch_softlockup_watchdog();
1730
1731         tick_resume();
1732         hrtimers_resume();
1733 }
1734
1735 int timekeeping_suspend(void)
1736 {
1737         struct timekeeper *tk = &tk_core.timekeeper;
1738         unsigned long flags;
1739         struct timespec64               delta, delta_delta;
1740         static struct timespec64        old_delta;
1741
1742         read_persistent_clock64(&timekeeping_suspend_time);
1743
1744         /*
1745          * On some systems the persistent_clock can not be detected at
1746          * timekeeping_init by its return value, so if we see a valid
1747          * value returned, update the persistent_clock_exists flag.
1748          */
1749         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1750                 persistent_clock_exists = true;
1751
1752         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1753         write_seqcount_begin(&tk_core.seq);
1754         timekeeping_forward_now(tk);
1755         timekeeping_suspended = 1;
1756
1757         if (persistent_clock_exists) {
1758                 /*
1759                  * To avoid drift caused by repeated suspend/resumes,
1760                  * which each can add ~1 second drift error,
1761                  * try to compensate so the difference in system time
1762                  * and persistent_clock time stays close to constant.
1763                  */
1764                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1765                 delta_delta = timespec64_sub(delta, old_delta);
1766                 if (abs(delta_delta.tv_sec) >= 2) {
1767                         /*
1768                          * if delta_delta is too large, assume time correction
1769                          * has occurred and set old_delta to the current delta.
1770                          */
1771                         old_delta = delta;
1772                 } else {
1773                         /* Otherwise try to adjust old_system to compensate */
1774                         timekeeping_suspend_time =
1775                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1776                 }
1777         }
1778
1779         timekeeping_update(tk, TK_MIRROR);
1780         halt_fast_timekeeper(tk);
1781         write_seqcount_end(&tk_core.seq);
1782         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1783
1784         tick_suspend();
1785         clocksource_suspend();
1786         clockevents_suspend();
1787
1788         return 0;
1789 }
1790
1791 /* sysfs resume/suspend bits for timekeeping */
1792 static struct syscore_ops timekeeping_syscore_ops = {
1793         .resume         = timekeeping_resume,
1794         .suspend        = timekeeping_suspend,
1795 };
1796
1797 static int __init timekeeping_init_ops(void)
1798 {
1799         register_syscore_ops(&timekeeping_syscore_ops);
1800         return 0;
1801 }
1802 device_initcall(timekeeping_init_ops);
1803
1804 /*
1805  * Apply a multiplier adjustment to the timekeeper
1806  */
1807 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1808                                                          s64 offset,
1809                                                          s32 mult_adj)
1810 {
1811         s64 interval = tk->cycle_interval;
1812
1813         if (mult_adj == 0) {
1814                 return;
1815         } else if (mult_adj == -1) {
1816                 interval = -interval;
1817                 offset = -offset;
1818         } else if (mult_adj != 1) {
1819                 interval *= mult_adj;
1820                 offset *= mult_adj;
1821         }
1822
1823         /*
1824          * So the following can be confusing.
1825          *
1826          * To keep things simple, lets assume mult_adj == 1 for now.
1827          *
1828          * When mult_adj != 1, remember that the interval and offset values
1829          * have been appropriately scaled so the math is the same.
1830          *
1831          * The basic idea here is that we're increasing the multiplier
1832          * by one, this causes the xtime_interval to be incremented by
1833          * one cycle_interval. This is because:
1834          *      xtime_interval = cycle_interval * mult
1835          * So if mult is being incremented by one:
1836          *      xtime_interval = cycle_interval * (mult + 1)
1837          * Its the same as:
1838          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1839          * Which can be shortened to:
1840          *      xtime_interval += cycle_interval
1841          *
1842          * So offset stores the non-accumulated cycles. Thus the current
1843          * time (in shifted nanoseconds) is:
1844          *      now = (offset * adj) + xtime_nsec
1845          * Now, even though we're adjusting the clock frequency, we have
1846          * to keep time consistent. In other words, we can't jump back
1847          * in time, and we also want to avoid jumping forward in time.
1848          *
1849          * So given the same offset value, we need the time to be the same
1850          * both before and after the freq adjustment.
1851          *      now = (offset * adj_1) + xtime_nsec_1
1852          *      now = (offset * adj_2) + xtime_nsec_2
1853          * So:
1854          *      (offset * adj_1) + xtime_nsec_1 =
1855          *              (offset * adj_2) + xtime_nsec_2
1856          * And we know:
1857          *      adj_2 = adj_1 + 1
1858          * So:
1859          *      (offset * adj_1) + xtime_nsec_1 =
1860          *              (offset * (adj_1+1)) + xtime_nsec_2
1861          *      (offset * adj_1) + xtime_nsec_1 =
1862          *              (offset * adj_1) + offset + xtime_nsec_2
1863          * Canceling the sides:
1864          *      xtime_nsec_1 = offset + xtime_nsec_2
1865          * Which gives us:
1866          *      xtime_nsec_2 = xtime_nsec_1 - offset
1867          * Which simplfies to:
1868          *      xtime_nsec -= offset
1869          */
1870         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1871                 /* NTP adjustment caused clocksource mult overflow */
1872                 WARN_ON_ONCE(1);
1873                 return;
1874         }
1875
1876         tk->tkr_mono.mult += mult_adj;
1877         tk->xtime_interval += interval;
1878         tk->tkr_mono.xtime_nsec -= offset;
1879 }
1880
1881 /*
1882  * Adjust the timekeeper's multiplier to the correct frequency
1883  * and also to reduce the accumulated error value.
1884  */
1885 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1886 {
1887         u32 mult;
1888
1889         /*
1890          * Determine the multiplier from the current NTP tick length.
1891          * Avoid expensive division when the tick length doesn't change.
1892          */
1893         if (likely(tk->ntp_tick == ntp_tick_length())) {
1894                 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1895         } else {
1896                 tk->ntp_tick = ntp_tick_length();
1897                 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1898                                  tk->xtime_remainder, tk->cycle_interval);
1899         }
1900
1901         /*
1902          * If the clock is behind the NTP time, increase the multiplier by 1
1903          * to catch up with it. If it's ahead and there was a remainder in the
1904          * tick division, the clock will slow down. Otherwise it will stay
1905          * ahead until the tick length changes to a non-divisible value.
1906          */
1907         tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1908         mult += tk->ntp_err_mult;
1909
1910         timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1911
1912         if (unlikely(tk->tkr_mono.clock->maxadj &&
1913                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1914                         > tk->tkr_mono.clock->maxadj))) {
1915                 printk_once(KERN_WARNING
1916                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1917                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1918                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1919         }
1920
1921         /*
1922          * It may be possible that when we entered this function, xtime_nsec
1923          * was very small.  Further, if we're slightly speeding the clocksource
1924          * in the code above, its possible the required corrective factor to
1925          * xtime_nsec could cause it to underflow.
1926          *
1927          * Now, since we have already accumulated the second and the NTP
1928          * subsystem has been notified via second_overflow(), we need to skip
1929          * the next update.
1930          */
1931         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1932                 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1933                                                         tk->tkr_mono.shift;
1934                 tk->xtime_sec--;
1935                 tk->skip_second_overflow = 1;
1936         }
1937 }
1938
1939 /**
1940  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1941  *
1942  * Helper function that accumulates the nsecs greater than a second
1943  * from the xtime_nsec field to the xtime_secs field.
1944  * It also calls into the NTP code to handle leapsecond processing.
1945  *
1946  */
1947 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1948 {
1949         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1950         unsigned int clock_set = 0;
1951
1952         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1953                 int leap;
1954
1955                 tk->tkr_mono.xtime_nsec -= nsecps;
1956                 tk->xtime_sec++;
1957
1958                 /*
1959                  * Skip NTP update if this second was accumulated before,
1960                  * i.e. xtime_nsec underflowed in timekeeping_adjust()
1961                  */
1962                 if (unlikely(tk->skip_second_overflow)) {
1963                         tk->skip_second_overflow = 0;
1964                         continue;
1965                 }
1966
1967                 /* Figure out if its a leap sec and apply if needed */
1968                 leap = second_overflow(tk->xtime_sec);
1969                 if (unlikely(leap)) {
1970                         struct timespec64 ts;
1971
1972                         tk->xtime_sec += leap;
1973
1974                         ts.tv_sec = leap;
1975                         ts.tv_nsec = 0;
1976                         tk_set_wall_to_mono(tk,
1977                                 timespec64_sub(tk->wall_to_monotonic, ts));
1978
1979                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1980
1981                         clock_set = TK_CLOCK_WAS_SET;
1982                 }
1983         }
1984         return clock_set;
1985 }
1986
1987 /**
1988  * logarithmic_accumulation - shifted accumulation of cycles
1989  *
1990  * This functions accumulates a shifted interval of cycles into
1991  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1992  * loop.
1993  *
1994  * Returns the unconsumed cycles.
1995  */
1996 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1997                                     u32 shift, unsigned int *clock_set)
1998 {
1999         u64 interval = tk->cycle_interval << shift;
2000         u64 snsec_per_sec;
2001
2002         /* If the offset is smaller than a shifted interval, do nothing */
2003         if (offset < interval)
2004                 return offset;
2005
2006         /* Accumulate one shifted interval */
2007         offset -= interval;
2008         tk->tkr_mono.cycle_last += interval;
2009         tk->tkr_raw.cycle_last  += interval;
2010
2011         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2012         *clock_set |= accumulate_nsecs_to_secs(tk);
2013
2014         /* Accumulate raw time */
2015         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2016         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2017         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2018                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2019                 tk->raw_sec++;
2020         }
2021
2022         /* Accumulate error between NTP and clock interval */
2023         tk->ntp_error += tk->ntp_tick << shift;
2024         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2025                                                 (tk->ntp_error_shift + shift);
2026
2027         return offset;
2028 }
2029
2030 /**
2031  * update_wall_time - Uses the current clocksource to increment the wall time
2032  *
2033  */
2034 void update_wall_time(void)
2035 {
2036         struct timekeeper *real_tk = &tk_core.timekeeper;
2037         struct timekeeper *tk = &shadow_timekeeper;
2038         u64 offset;
2039         int shift = 0, maxshift;
2040         unsigned int clock_set = 0;
2041         unsigned long flags;
2042
2043         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2044
2045         /* Make sure we're fully resumed: */
2046         if (unlikely(timekeeping_suspended))
2047                 goto out;
2048
2049 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2050         offset = real_tk->cycle_interval;
2051 #else
2052         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2053                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2054 #endif
2055
2056         /* Check if there's really nothing to do */
2057         if (offset < real_tk->cycle_interval)
2058                 goto out;
2059
2060         /* Do some additional sanity checking */
2061         timekeeping_check_update(tk, offset);
2062
2063         /*
2064          * With NO_HZ we may have to accumulate many cycle_intervals
2065          * (think "ticks") worth of time at once. To do this efficiently,
2066          * we calculate the largest doubling multiple of cycle_intervals
2067          * that is smaller than the offset.  We then accumulate that
2068          * chunk in one go, and then try to consume the next smaller
2069          * doubled multiple.
2070          */
2071         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2072         shift = max(0, shift);
2073         /* Bound shift to one less than what overflows tick_length */
2074         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2075         shift = min(shift, maxshift);
2076         while (offset >= tk->cycle_interval) {
2077                 offset = logarithmic_accumulation(tk, offset, shift,
2078                                                         &clock_set);
2079                 if (offset < tk->cycle_interval<<shift)
2080                         shift--;
2081         }
2082
2083         /* Adjust the multiplier to correct NTP error */
2084         timekeeping_adjust(tk, offset);
2085
2086         /*
2087          * Finally, make sure that after the rounding
2088          * xtime_nsec isn't larger than NSEC_PER_SEC
2089          */
2090         clock_set |= accumulate_nsecs_to_secs(tk);
2091
2092         write_seqcount_begin(&tk_core.seq);
2093         /*
2094          * Update the real timekeeper.
2095          *
2096          * We could avoid this memcpy by switching pointers, but that
2097          * requires changes to all other timekeeper usage sites as
2098          * well, i.e. move the timekeeper pointer getter into the
2099          * spinlocked/seqcount protected sections. And we trade this
2100          * memcpy under the tk_core.seq against one before we start
2101          * updating.
2102          */
2103         timekeeping_update(tk, clock_set);
2104         memcpy(real_tk, tk, sizeof(*tk));
2105         /* The memcpy must come last. Do not put anything here! */
2106         write_seqcount_end(&tk_core.seq);
2107 out:
2108         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2109         if (clock_set)
2110                 /* Have to call _delayed version, since in irq context*/
2111                 clock_was_set_delayed();
2112 }
2113
2114 /**
2115  * getboottime64 - Return the real time of system boot.
2116  * @ts:         pointer to the timespec64 to be set
2117  *
2118  * Returns the wall-time of boot in a timespec64.
2119  *
2120  * This is based on the wall_to_monotonic offset and the total suspend
2121  * time. Calls to settimeofday will affect the value returned (which
2122  * basically means that however wrong your real time clock is at boot time,
2123  * you get the right time here).
2124  */
2125 void getboottime64(struct timespec64 *ts)
2126 {
2127         struct timekeeper *tk = &tk_core.timekeeper;
2128         ktime_t t = ktime_sub(tk->offs_real, tk->time_suspended);
2129
2130         *ts = ktime_to_timespec64(t);
2131 }
2132 EXPORT_SYMBOL_GPL(getboottime64);
2133
2134 unsigned long get_seconds(void)
2135 {
2136         struct timekeeper *tk = &tk_core.timekeeper;
2137
2138         return tk->xtime_sec;
2139 }
2140 EXPORT_SYMBOL(get_seconds);
2141
2142 struct timespec __current_kernel_time(void)
2143 {
2144         struct timekeeper *tk = &tk_core.timekeeper;
2145
2146         return timespec64_to_timespec(tk_xtime(tk));
2147 }
2148
2149 struct timespec64 current_kernel_time64(void)
2150 {
2151         struct timekeeper *tk = &tk_core.timekeeper;
2152         struct timespec64 now;
2153         unsigned long seq;
2154
2155         do {
2156                 seq = read_seqcount_begin(&tk_core.seq);
2157
2158                 now = tk_xtime(tk);
2159         } while (read_seqcount_retry(&tk_core.seq, seq));
2160
2161         return now;
2162 }
2163 EXPORT_SYMBOL(current_kernel_time64);
2164
2165 struct timespec64 get_monotonic_coarse64(void)
2166 {
2167         struct timekeeper *tk = &tk_core.timekeeper;
2168         struct timespec64 now, mono;
2169         unsigned long seq;
2170
2171         do {
2172                 seq = read_seqcount_begin(&tk_core.seq);
2173
2174                 now = tk_xtime(tk);
2175                 mono = tk->wall_to_monotonic;
2176         } while (read_seqcount_retry(&tk_core.seq, seq));
2177
2178         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2179                                 now.tv_nsec + mono.tv_nsec);
2180
2181         return now;
2182 }
2183 EXPORT_SYMBOL(get_monotonic_coarse64);
2184
2185 /*
2186  * Must hold jiffies_lock
2187  */
2188 void do_timer(unsigned long ticks)
2189 {
2190         jiffies_64 += ticks;
2191         calc_global_load(ticks);
2192 }
2193
2194 /**
2195  * ktime_get_update_offsets_now - hrtimer helper
2196  * @cwsseq:     pointer to check and store the clock was set sequence number
2197  * @offs_real:  pointer to storage for monotonic -> realtime offset
2198  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2199  *
2200  * Returns current monotonic time and updates the offsets if the
2201  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2202  * different.
2203  *
2204  * Called from hrtimer_interrupt() or retrigger_next_event()
2205  */
2206 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2207                                      ktime_t *offs_tai)
2208 {
2209         struct timekeeper *tk = &tk_core.timekeeper;
2210         unsigned int seq;
2211         ktime_t base;
2212         u64 nsecs;
2213
2214         do {
2215                 seq = read_seqcount_begin(&tk_core.seq);
2216
2217                 base = tk->tkr_mono.base;
2218                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2219                 base = ktime_add_ns(base, nsecs);
2220
2221                 if (*cwsseq != tk->clock_was_set_seq) {
2222                         *cwsseq = tk->clock_was_set_seq;
2223                         *offs_real = tk->offs_real;
2224                         *offs_tai = tk->offs_tai;
2225                 }
2226
2227                 /* Handle leapsecond insertion adjustments */
2228                 if (unlikely(base >= tk->next_leap_ktime))
2229                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2230
2231         } while (read_seqcount_retry(&tk_core.seq, seq));
2232
2233         return base;
2234 }
2235
2236 /**
2237  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2238  */
2239 static int timekeeping_validate_timex(struct timex *txc)
2240 {
2241         if (txc->modes & ADJ_ADJTIME) {
2242                 /* singleshot must not be used with any other mode bits */
2243                 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2244                         return -EINVAL;
2245                 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2246                     !capable(CAP_SYS_TIME))
2247                         return -EPERM;
2248         } else {
2249                 /* In order to modify anything, you gotta be super-user! */
2250                 if (txc->modes && !capable(CAP_SYS_TIME))
2251                         return -EPERM;
2252                 /*
2253                  * if the quartz is off by more than 10% then
2254                  * something is VERY wrong!
2255                  */
2256                 if (txc->modes & ADJ_TICK &&
2257                     (txc->tick <  900000/USER_HZ ||
2258                      txc->tick > 1100000/USER_HZ))
2259                         return -EINVAL;
2260         }
2261
2262         if (txc->modes & ADJ_SETOFFSET) {
2263                 /* In order to inject time, you gotta be super-user! */
2264                 if (!capable(CAP_SYS_TIME))
2265                         return -EPERM;
2266
2267                 /*
2268                  * Validate if a timespec/timeval used to inject a time
2269                  * offset is valid.  Offsets can be postive or negative, so
2270                  * we don't check tv_sec. The value of the timeval/timespec
2271                  * is the sum of its fields,but *NOTE*:
2272                  * The field tv_usec/tv_nsec must always be non-negative and
2273                  * we can't have more nanoseconds/microseconds than a second.
2274                  */
2275                 if (txc->time.tv_usec < 0)
2276                         return -EINVAL;
2277
2278                 if (txc->modes & ADJ_NANO) {
2279                         if (txc->time.tv_usec >= NSEC_PER_SEC)
2280                                 return -EINVAL;
2281                 } else {
2282                         if (txc->time.tv_usec >= USEC_PER_SEC)
2283                                 return -EINVAL;
2284                 }
2285         }
2286
2287         /*
2288          * Check for potential multiplication overflows that can
2289          * only happen on 64-bit systems:
2290          */
2291         if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2292                 if (LLONG_MIN / PPM_SCALE > txc->freq)
2293                         return -EINVAL;
2294                 if (LLONG_MAX / PPM_SCALE < txc->freq)
2295                         return -EINVAL;
2296         }
2297
2298         return 0;
2299 }
2300
2301
2302 /**
2303  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2304  */
2305 int do_adjtimex(struct timex *txc)
2306 {
2307         struct timekeeper *tk = &tk_core.timekeeper;
2308         unsigned long flags;
2309         struct timespec64 ts;
2310         s32 orig_tai, tai;
2311         int ret;
2312
2313         /* Validate the data before disabling interrupts */
2314         ret = timekeeping_validate_timex(txc);
2315         if (ret)
2316                 return ret;
2317
2318         if (txc->modes & ADJ_SETOFFSET) {
2319                 struct timespec64 delta;
2320                 delta.tv_sec  = txc->time.tv_sec;
2321                 delta.tv_nsec = txc->time.tv_usec;
2322                 if (!(txc->modes & ADJ_NANO))
2323                         delta.tv_nsec *= 1000;
2324                 ret = timekeeping_inject_offset(&delta);
2325                 if (ret)
2326                         return ret;
2327         }
2328
2329         getnstimeofday64(&ts);
2330
2331         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2332         write_seqcount_begin(&tk_core.seq);
2333
2334         orig_tai = tai = tk->tai_offset;
2335         ret = __do_adjtimex(txc, &ts, &tai);
2336
2337         if (tai != orig_tai) {
2338                 __timekeeping_set_tai_offset(tk, tai);
2339                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2340         }
2341         tk_update_leap_state(tk);
2342
2343         write_seqcount_end(&tk_core.seq);
2344         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2345
2346         if (tai != orig_tai)
2347                 clock_was_set();
2348
2349         ntp_notify_cmos_timer();
2350
2351         return ret;
2352 }
2353
2354 #ifdef CONFIG_NTP_PPS
2355 /**
2356  * hardpps() - Accessor function to NTP __hardpps function
2357  */
2358 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2359 {
2360         unsigned long flags;
2361
2362         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2363         write_seqcount_begin(&tk_core.seq);
2364
2365         __hardpps(phase_ts, raw_ts);
2366
2367         write_seqcount_end(&tk_core.seq);
2368         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2369 }
2370 EXPORT_SYMBOL(hardpps);
2371 #endif /* CONFIG_NTP_PPS */
2372
2373 /**
2374  * xtime_update() - advances the timekeeping infrastructure
2375  * @ticks:      number of ticks, that have elapsed since the last call.
2376  *
2377  * Must be called with interrupts disabled.
2378  */
2379 void xtime_update(unsigned long ticks)
2380 {
2381         write_seqlock(&jiffies_lock);
2382         do_timer(ticks);
2383         write_sequnlock(&jiffies_lock);
2384         update_wall_time();
2385 }