Merge tag 'drm-misc-next-fixes-2017-02-27' of git://anongit.freedesktop.org/git/drm...
[linux-2.6-microblaze.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/sched.h>
18 #include <linux/syscore_ops.h>
19 #include <linux/clocksource.h>
20 #include <linux/jiffies.h>
21 #include <linux/time.h>
22 #include <linux/tick.h>
23 #include <linux/stop_machine.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/compiler.h>
26
27 #include "tick-internal.h"
28 #include "ntp_internal.h"
29 #include "timekeeping_internal.h"
30
31 #define TK_CLEAR_NTP            (1 << 0)
32 #define TK_MIRROR               (1 << 1)
33 #define TK_CLOCK_WAS_SET        (1 << 2)
34
35 /*
36  * The most important data for readout fits into a single 64 byte
37  * cache line.
38  */
39 static struct {
40         seqcount_t              seq;
41         struct timekeeper       timekeeper;
42 } tk_core ____cacheline_aligned;
43
44 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
45 static struct timekeeper shadow_timekeeper;
46
47 /**
48  * struct tk_fast - NMI safe timekeeper
49  * @seq:        Sequence counter for protecting updates. The lowest bit
50  *              is the index for the tk_read_base array
51  * @base:       tk_read_base array. Access is indexed by the lowest bit of
52  *              @seq.
53  *
54  * See @update_fast_timekeeper() below.
55  */
56 struct tk_fast {
57         seqcount_t              seq;
58         struct tk_read_base     base[2];
59 };
60
61 static struct tk_fast tk_fast_mono ____cacheline_aligned;
62 static struct tk_fast tk_fast_raw  ____cacheline_aligned;
63
64 /* flag for if timekeeping is suspended */
65 int __read_mostly timekeeping_suspended;
66
67 static inline void tk_normalize_xtime(struct timekeeper *tk)
68 {
69         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
71                 tk->xtime_sec++;
72         }
73 }
74
75 static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76 {
77         struct timespec64 ts;
78
79         ts.tv_sec = tk->xtime_sec;
80         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
81         return ts;
82 }
83
84 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
85 {
86         tk->xtime_sec = ts->tv_sec;
87         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
88 }
89
90 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
91 {
92         tk->xtime_sec += ts->tv_sec;
93         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
94         tk_normalize_xtime(tk);
95 }
96
97 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
98 {
99         struct timespec64 tmp;
100
101         /*
102          * Verify consistency of: offset_real = -wall_to_monotonic
103          * before modifying anything
104          */
105         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
106                                         -tk->wall_to_monotonic.tv_nsec);
107         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
108         tk->wall_to_monotonic = wtm;
109         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110         tk->offs_real = timespec64_to_ktime(tmp);
111         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
112 }
113
114 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
115 {
116         tk->offs_boot = ktime_add(tk->offs_boot, delta);
117 }
118
119 #ifdef CONFIG_DEBUG_TIMEKEEPING
120 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
121
122 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
123 {
124
125         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
126         const char *name = tk->tkr_mono.clock->name;
127
128         if (offset > max_cycles) {
129                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
130                                 offset, name, max_cycles);
131                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
132         } else {
133                 if (offset > (max_cycles >> 1)) {
134                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
135                                         offset, name, max_cycles >> 1);
136                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137                 }
138         }
139
140         if (tk->underflow_seen) {
141                 if (jiffies - tk->last_warning > WARNING_FREQ) {
142                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
144                         printk_deferred("         Your kernel is probably still fine.\n");
145                         tk->last_warning = jiffies;
146                 }
147                 tk->underflow_seen = 0;
148         }
149
150         if (tk->overflow_seen) {
151                 if (jiffies - tk->last_warning > WARNING_FREQ) {
152                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
154                         printk_deferred("         Your kernel is probably still fine.\n");
155                         tk->last_warning = jiffies;
156                 }
157                 tk->overflow_seen = 0;
158         }
159 }
160
161 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
162 {
163         struct timekeeper *tk = &tk_core.timekeeper;
164         u64 now, last, mask, max, delta;
165         unsigned int seq;
166
167         /*
168          * Since we're called holding a seqlock, the data may shift
169          * under us while we're doing the calculation. This can cause
170          * false positives, since we'd note a problem but throw the
171          * results away. So nest another seqlock here to atomically
172          * grab the points we are checking with.
173          */
174         do {
175                 seq = read_seqcount_begin(&tk_core.seq);
176                 now = tkr->read(tkr->clock);
177                 last = tkr->cycle_last;
178                 mask = tkr->mask;
179                 max = tkr->clock->max_cycles;
180         } while (read_seqcount_retry(&tk_core.seq, seq));
181
182         delta = clocksource_delta(now, last, mask);
183
184         /*
185          * Try to catch underflows by checking if we are seeing small
186          * mask-relative negative values.
187          */
188         if (unlikely((~delta & mask) < (mask >> 3))) {
189                 tk->underflow_seen = 1;
190                 delta = 0;
191         }
192
193         /* Cap delta value to the max_cycles values to avoid mult overflows */
194         if (unlikely(delta > max)) {
195                 tk->overflow_seen = 1;
196                 delta = tkr->clock->max_cycles;
197         }
198
199         return delta;
200 }
201 #else
202 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
203 {
204 }
205 static inline u64 timekeeping_get_delta(struct tk_read_base *tkr)
206 {
207         u64 cycle_now, delta;
208
209         /* read clocksource */
210         cycle_now = tkr->read(tkr->clock);
211
212         /* calculate the delta since the last update_wall_time */
213         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215         return delta;
216 }
217 #endif
218
219 /**
220  * tk_setup_internals - Set up internals to use clocksource clock.
221  *
222  * @tk:         The target timekeeper to setup.
223  * @clock:              Pointer to clocksource.
224  *
225  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226  * pair and interval request.
227  *
228  * Unless you're the timekeeping code, you should not be using this!
229  */
230 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
231 {
232         u64 interval;
233         u64 tmp, ntpinterval;
234         struct clocksource *old_clock;
235
236         ++tk->cs_was_changed_seq;
237         old_clock = tk->tkr_mono.clock;
238         tk->tkr_mono.clock = clock;
239         tk->tkr_mono.read = clock->read;
240         tk->tkr_mono.mask = clock->mask;
241         tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
242
243         tk->tkr_raw.clock = clock;
244         tk->tkr_raw.read = clock->read;
245         tk->tkr_raw.mask = clock->mask;
246         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
248         /* Do the ns -> cycle conversion first, using original mult */
249         tmp = NTP_INTERVAL_LENGTH;
250         tmp <<= clock->shift;
251         ntpinterval = tmp;
252         tmp += clock->mult/2;
253         do_div(tmp, clock->mult);
254         if (tmp == 0)
255                 tmp = 1;
256
257         interval = (u64) tmp;
258         tk->cycle_interval = interval;
259
260         /* Go back from cycles -> shifted ns */
261         tk->xtime_interval = interval * clock->mult;
262         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263         tk->raw_interval = (interval * clock->mult) >> clock->shift;
264
265          /* if changing clocks, convert xtime_nsec shift units */
266         if (old_clock) {
267                 int shift_change = clock->shift - old_clock->shift;
268                 if (shift_change < 0)
269                         tk->tkr_mono.xtime_nsec >>= -shift_change;
270                 else
271                         tk->tkr_mono.xtime_nsec <<= shift_change;
272         }
273         tk->tkr_raw.xtime_nsec = 0;
274
275         tk->tkr_mono.shift = clock->shift;
276         tk->tkr_raw.shift = clock->shift;
277
278         tk->ntp_error = 0;
279         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
280         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
281
282         /*
283          * The timekeeper keeps its own mult values for the currently
284          * active clocksource. These value will be adjusted via NTP
285          * to counteract clock drifting.
286          */
287         tk->tkr_mono.mult = clock->mult;
288         tk->tkr_raw.mult = clock->mult;
289         tk->ntp_err_mult = 0;
290 }
291
292 /* Timekeeper helper functions. */
293
294 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
295 static u32 default_arch_gettimeoffset(void) { return 0; }
296 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
297 #else
298 static inline u32 arch_gettimeoffset(void) { return 0; }
299 #endif
300
301 static inline u64 timekeeping_delta_to_ns(struct tk_read_base *tkr, u64 delta)
302 {
303         u64 nsec;
304
305         nsec = delta * tkr->mult + tkr->xtime_nsec;
306         nsec >>= tkr->shift;
307
308         /* If arch requires, add in get_arch_timeoffset() */
309         return nsec + arch_gettimeoffset();
310 }
311
312 static inline u64 timekeeping_get_ns(struct tk_read_base *tkr)
313 {
314         u64 delta;
315
316         delta = timekeeping_get_delta(tkr);
317         return timekeeping_delta_to_ns(tkr, delta);
318 }
319
320 static inline u64 timekeeping_cycles_to_ns(struct tk_read_base *tkr, u64 cycles)
321 {
322         u64 delta;
323
324         /* calculate the delta since the last update_wall_time */
325         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
326         return timekeeping_delta_to_ns(tkr, delta);
327 }
328
329 /**
330  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
331  * @tkr: Timekeeping readout base from which we take the update
332  *
333  * We want to use this from any context including NMI and tracing /
334  * instrumenting the timekeeping code itself.
335  *
336  * Employ the latch technique; see @raw_write_seqcount_latch.
337  *
338  * So if a NMI hits the update of base[0] then it will use base[1]
339  * which is still consistent. In the worst case this can result is a
340  * slightly wrong timestamp (a few nanoseconds). See
341  * @ktime_get_mono_fast_ns.
342  */
343 static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
344 {
345         struct tk_read_base *base = tkf->base;
346
347         /* Force readers off to base[1] */
348         raw_write_seqcount_latch(&tkf->seq);
349
350         /* Update base[0] */
351         memcpy(base, tkr, sizeof(*base));
352
353         /* Force readers back to base[0] */
354         raw_write_seqcount_latch(&tkf->seq);
355
356         /* Update base[1] */
357         memcpy(base + 1, base, sizeof(*base));
358 }
359
360 /**
361  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
362  *
363  * This timestamp is not guaranteed to be monotonic across an update.
364  * The timestamp is calculated by:
365  *
366  *      now = base_mono + clock_delta * slope
367  *
368  * So if the update lowers the slope, readers who are forced to the
369  * not yet updated second array are still using the old steeper slope.
370  *
371  * tmono
372  * ^
373  * |    o  n
374  * |   o n
375  * |  u
376  * | o
377  * |o
378  * |12345678---> reader order
379  *
380  * o = old slope
381  * u = update
382  * n = new slope
383  *
384  * So reader 6 will observe time going backwards versus reader 5.
385  *
386  * While other CPUs are likely to be able observe that, the only way
387  * for a CPU local observation is when an NMI hits in the middle of
388  * the update. Timestamps taken from that NMI context might be ahead
389  * of the following timestamps. Callers need to be aware of that and
390  * deal with it.
391  */
392 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
393 {
394         struct tk_read_base *tkr;
395         unsigned int seq;
396         u64 now;
397
398         do {
399                 seq = raw_read_seqcount_latch(&tkf->seq);
400                 tkr = tkf->base + (seq & 0x01);
401                 now = ktime_to_ns(tkr->base);
402
403                 now += timekeeping_delta_to_ns(tkr,
404                                 clocksource_delta(
405                                         tkr->read(tkr->clock),
406                                         tkr->cycle_last,
407                                         tkr->mask));
408         } while (read_seqcount_retry(&tkf->seq, seq));
409
410         return now;
411 }
412
413 u64 ktime_get_mono_fast_ns(void)
414 {
415         return __ktime_get_fast_ns(&tk_fast_mono);
416 }
417 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
418
419 u64 ktime_get_raw_fast_ns(void)
420 {
421         return __ktime_get_fast_ns(&tk_fast_raw);
422 }
423 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
424
425 /**
426  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
427  *
428  * To keep it NMI safe since we're accessing from tracing, we're not using a
429  * separate timekeeper with updates to monotonic clock and boot offset
430  * protected with seqlocks. This has the following minor side effects:
431  *
432  * (1) Its possible that a timestamp be taken after the boot offset is updated
433  * but before the timekeeper is updated. If this happens, the new boot offset
434  * is added to the old timekeeping making the clock appear to update slightly
435  * earlier:
436  *    CPU 0                                        CPU 1
437  *    timekeeping_inject_sleeptime64()
438  *    __timekeeping_inject_sleeptime(tk, delta);
439  *                                                 timestamp();
440  *    timekeeping_update(tk, TK_CLEAR_NTP...);
441  *
442  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
443  * partially updated.  Since the tk->offs_boot update is a rare event, this
444  * should be a rare occurrence which postprocessing should be able to handle.
445  */
446 u64 notrace ktime_get_boot_fast_ns(void)
447 {
448         struct timekeeper *tk = &tk_core.timekeeper;
449
450         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
451 }
452 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
453
454 /* Suspend-time cycles value for halted fast timekeeper. */
455 static u64 cycles_at_suspend;
456
457 static u64 dummy_clock_read(struct clocksource *cs)
458 {
459         return cycles_at_suspend;
460 }
461
462 /**
463  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
464  * @tk: Timekeeper to snapshot.
465  *
466  * It generally is unsafe to access the clocksource after timekeeping has been
467  * suspended, so take a snapshot of the readout base of @tk and use it as the
468  * fast timekeeper's readout base while suspended.  It will return the same
469  * number of cycles every time until timekeeping is resumed at which time the
470  * proper readout base for the fast timekeeper will be restored automatically.
471  */
472 static void halt_fast_timekeeper(struct timekeeper *tk)
473 {
474         static struct tk_read_base tkr_dummy;
475         struct tk_read_base *tkr = &tk->tkr_mono;
476
477         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
478         cycles_at_suspend = tkr->read(tkr->clock);
479         tkr_dummy.read = dummy_clock_read;
480         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
481
482         tkr = &tk->tkr_raw;
483         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
484         tkr_dummy.read = dummy_clock_read;
485         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
486 }
487
488 #ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
489
490 static inline void update_vsyscall(struct timekeeper *tk)
491 {
492         struct timespec xt, wm;
493
494         xt = timespec64_to_timespec(tk_xtime(tk));
495         wm = timespec64_to_timespec(tk->wall_to_monotonic);
496         update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
497                             tk->tkr_mono.cycle_last);
498 }
499
500 static inline void old_vsyscall_fixup(struct timekeeper *tk)
501 {
502         s64 remainder;
503
504         /*
505         * Store only full nanoseconds into xtime_nsec after rounding
506         * it up and add the remainder to the error difference.
507         * XXX - This is necessary to avoid small 1ns inconsistnecies caused
508         * by truncating the remainder in vsyscalls. However, it causes
509         * additional work to be done in timekeeping_adjust(). Once
510         * the vsyscall implementations are converted to use xtime_nsec
511         * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
512         * users are removed, this can be killed.
513         */
514         remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
515         if (remainder != 0) {
516                 tk->tkr_mono.xtime_nsec -= remainder;
517                 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
518                 tk->ntp_error += remainder << tk->ntp_error_shift;
519                 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
520         }
521 }
522 #else
523 #define old_vsyscall_fixup(tk)
524 #endif
525
526 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
527
528 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
529 {
530         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
531 }
532
533 /**
534  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
535  */
536 int pvclock_gtod_register_notifier(struct notifier_block *nb)
537 {
538         struct timekeeper *tk = &tk_core.timekeeper;
539         unsigned long flags;
540         int ret;
541
542         raw_spin_lock_irqsave(&timekeeper_lock, flags);
543         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
544         update_pvclock_gtod(tk, true);
545         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
546
547         return ret;
548 }
549 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
550
551 /**
552  * pvclock_gtod_unregister_notifier - unregister a pvclock
553  * timedata update listener
554  */
555 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
556 {
557         unsigned long flags;
558         int ret;
559
560         raw_spin_lock_irqsave(&timekeeper_lock, flags);
561         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
562         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
563
564         return ret;
565 }
566 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
567
568 /*
569  * tk_update_leap_state - helper to update the next_leap_ktime
570  */
571 static inline void tk_update_leap_state(struct timekeeper *tk)
572 {
573         tk->next_leap_ktime = ntp_get_next_leap();
574         if (tk->next_leap_ktime != KTIME_MAX)
575                 /* Convert to monotonic time */
576                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
577 }
578
579 /*
580  * Update the ktime_t based scalar nsec members of the timekeeper
581  */
582 static inline void tk_update_ktime_data(struct timekeeper *tk)
583 {
584         u64 seconds;
585         u32 nsec;
586
587         /*
588          * The xtime based monotonic readout is:
589          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
590          * The ktime based monotonic readout is:
591          *      nsec = base_mono + now();
592          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
593          */
594         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
595         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
596         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
597
598         /* Update the monotonic raw base */
599         tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
600
601         /*
602          * The sum of the nanoseconds portions of xtime and
603          * wall_to_monotonic can be greater/equal one second. Take
604          * this into account before updating tk->ktime_sec.
605          */
606         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
607         if (nsec >= NSEC_PER_SEC)
608                 seconds++;
609         tk->ktime_sec = seconds;
610 }
611
612 /* must hold timekeeper_lock */
613 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
614 {
615         if (action & TK_CLEAR_NTP) {
616                 tk->ntp_error = 0;
617                 ntp_clear();
618         }
619
620         tk_update_leap_state(tk);
621         tk_update_ktime_data(tk);
622
623         update_vsyscall(tk);
624         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
625
626         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
627         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
628
629         if (action & TK_CLOCK_WAS_SET)
630                 tk->clock_was_set_seq++;
631         /*
632          * The mirroring of the data to the shadow-timekeeper needs
633          * to happen last here to ensure we don't over-write the
634          * timekeeper structure on the next update with stale data
635          */
636         if (action & TK_MIRROR)
637                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
638                        sizeof(tk_core.timekeeper));
639 }
640
641 /**
642  * timekeeping_forward_now - update clock to the current time
643  *
644  * Forward the current clock to update its state since the last call to
645  * update_wall_time(). This is useful before significant clock changes,
646  * as it avoids having to deal with this time offset explicitly.
647  */
648 static void timekeeping_forward_now(struct timekeeper *tk)
649 {
650         struct clocksource *clock = tk->tkr_mono.clock;
651         u64 cycle_now, delta;
652         u64 nsec;
653
654         cycle_now = tk->tkr_mono.read(clock);
655         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
656         tk->tkr_mono.cycle_last = cycle_now;
657         tk->tkr_raw.cycle_last  = cycle_now;
658
659         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
660
661         /* If arch requires, add in get_arch_timeoffset() */
662         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
663
664         tk_normalize_xtime(tk);
665
666         nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
667         timespec64_add_ns(&tk->raw_time, nsec);
668 }
669
670 /**
671  * __getnstimeofday64 - Returns the time of day in a timespec64.
672  * @ts:         pointer to the timespec to be set
673  *
674  * Updates the time of day in the timespec.
675  * Returns 0 on success, or -ve when suspended (timespec will be undefined).
676  */
677 int __getnstimeofday64(struct timespec64 *ts)
678 {
679         struct timekeeper *tk = &tk_core.timekeeper;
680         unsigned long seq;
681         u64 nsecs;
682
683         do {
684                 seq = read_seqcount_begin(&tk_core.seq);
685
686                 ts->tv_sec = tk->xtime_sec;
687                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
688
689         } while (read_seqcount_retry(&tk_core.seq, seq));
690
691         ts->tv_nsec = 0;
692         timespec64_add_ns(ts, nsecs);
693
694         /*
695          * Do not bail out early, in case there were callers still using
696          * the value, even in the face of the WARN_ON.
697          */
698         if (unlikely(timekeeping_suspended))
699                 return -EAGAIN;
700         return 0;
701 }
702 EXPORT_SYMBOL(__getnstimeofday64);
703
704 /**
705  * getnstimeofday64 - Returns the time of day in a timespec64.
706  * @ts:         pointer to the timespec64 to be set
707  *
708  * Returns the time of day in a timespec64 (WARN if suspended).
709  */
710 void getnstimeofday64(struct timespec64 *ts)
711 {
712         WARN_ON(__getnstimeofday64(ts));
713 }
714 EXPORT_SYMBOL(getnstimeofday64);
715
716 ktime_t ktime_get(void)
717 {
718         struct timekeeper *tk = &tk_core.timekeeper;
719         unsigned int seq;
720         ktime_t base;
721         u64 nsecs;
722
723         WARN_ON(timekeeping_suspended);
724
725         do {
726                 seq = read_seqcount_begin(&tk_core.seq);
727                 base = tk->tkr_mono.base;
728                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
729
730         } while (read_seqcount_retry(&tk_core.seq, seq));
731
732         return ktime_add_ns(base, nsecs);
733 }
734 EXPORT_SYMBOL_GPL(ktime_get);
735
736 u32 ktime_get_resolution_ns(void)
737 {
738         struct timekeeper *tk = &tk_core.timekeeper;
739         unsigned int seq;
740         u32 nsecs;
741
742         WARN_ON(timekeeping_suspended);
743
744         do {
745                 seq = read_seqcount_begin(&tk_core.seq);
746                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
747         } while (read_seqcount_retry(&tk_core.seq, seq));
748
749         return nsecs;
750 }
751 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
752
753 static ktime_t *offsets[TK_OFFS_MAX] = {
754         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
755         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
756         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
757 };
758
759 ktime_t ktime_get_with_offset(enum tk_offsets offs)
760 {
761         struct timekeeper *tk = &tk_core.timekeeper;
762         unsigned int seq;
763         ktime_t base, *offset = offsets[offs];
764         u64 nsecs;
765
766         WARN_ON(timekeeping_suspended);
767
768         do {
769                 seq = read_seqcount_begin(&tk_core.seq);
770                 base = ktime_add(tk->tkr_mono.base, *offset);
771                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
772
773         } while (read_seqcount_retry(&tk_core.seq, seq));
774
775         return ktime_add_ns(base, nsecs);
776
777 }
778 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
779
780 /**
781  * ktime_mono_to_any() - convert mononotic time to any other time
782  * @tmono:      time to convert.
783  * @offs:       which offset to use
784  */
785 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
786 {
787         ktime_t *offset = offsets[offs];
788         unsigned long seq;
789         ktime_t tconv;
790
791         do {
792                 seq = read_seqcount_begin(&tk_core.seq);
793                 tconv = ktime_add(tmono, *offset);
794         } while (read_seqcount_retry(&tk_core.seq, seq));
795
796         return tconv;
797 }
798 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
799
800 /**
801  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
802  */
803 ktime_t ktime_get_raw(void)
804 {
805         struct timekeeper *tk = &tk_core.timekeeper;
806         unsigned int seq;
807         ktime_t base;
808         u64 nsecs;
809
810         do {
811                 seq = read_seqcount_begin(&tk_core.seq);
812                 base = tk->tkr_raw.base;
813                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
814
815         } while (read_seqcount_retry(&tk_core.seq, seq));
816
817         return ktime_add_ns(base, nsecs);
818 }
819 EXPORT_SYMBOL_GPL(ktime_get_raw);
820
821 /**
822  * ktime_get_ts64 - get the monotonic clock in timespec64 format
823  * @ts:         pointer to timespec variable
824  *
825  * The function calculates the monotonic clock from the realtime
826  * clock and the wall_to_monotonic offset and stores the result
827  * in normalized timespec64 format in the variable pointed to by @ts.
828  */
829 void ktime_get_ts64(struct timespec64 *ts)
830 {
831         struct timekeeper *tk = &tk_core.timekeeper;
832         struct timespec64 tomono;
833         unsigned int seq;
834         u64 nsec;
835
836         WARN_ON(timekeeping_suspended);
837
838         do {
839                 seq = read_seqcount_begin(&tk_core.seq);
840                 ts->tv_sec = tk->xtime_sec;
841                 nsec = timekeeping_get_ns(&tk->tkr_mono);
842                 tomono = tk->wall_to_monotonic;
843
844         } while (read_seqcount_retry(&tk_core.seq, seq));
845
846         ts->tv_sec += tomono.tv_sec;
847         ts->tv_nsec = 0;
848         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
849 }
850 EXPORT_SYMBOL_GPL(ktime_get_ts64);
851
852 /**
853  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
854  *
855  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
856  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
857  * works on both 32 and 64 bit systems. On 32 bit systems the readout
858  * covers ~136 years of uptime which should be enough to prevent
859  * premature wrap arounds.
860  */
861 time64_t ktime_get_seconds(void)
862 {
863         struct timekeeper *tk = &tk_core.timekeeper;
864
865         WARN_ON(timekeeping_suspended);
866         return tk->ktime_sec;
867 }
868 EXPORT_SYMBOL_GPL(ktime_get_seconds);
869
870 /**
871  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
872  *
873  * Returns the wall clock seconds since 1970. This replaces the
874  * get_seconds() interface which is not y2038 safe on 32bit systems.
875  *
876  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
877  * 32bit systems the access must be protected with the sequence
878  * counter to provide "atomic" access to the 64bit tk->xtime_sec
879  * value.
880  */
881 time64_t ktime_get_real_seconds(void)
882 {
883         struct timekeeper *tk = &tk_core.timekeeper;
884         time64_t seconds;
885         unsigned int seq;
886
887         if (IS_ENABLED(CONFIG_64BIT))
888                 return tk->xtime_sec;
889
890         do {
891                 seq = read_seqcount_begin(&tk_core.seq);
892                 seconds = tk->xtime_sec;
893
894         } while (read_seqcount_retry(&tk_core.seq, seq));
895
896         return seconds;
897 }
898 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
899
900 /**
901  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
902  * but without the sequence counter protect. This internal function
903  * is called just when timekeeping lock is already held.
904  */
905 time64_t __ktime_get_real_seconds(void)
906 {
907         struct timekeeper *tk = &tk_core.timekeeper;
908
909         return tk->xtime_sec;
910 }
911
912 /**
913  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
914  * @systime_snapshot:   pointer to struct receiving the system time snapshot
915  */
916 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
917 {
918         struct timekeeper *tk = &tk_core.timekeeper;
919         unsigned long seq;
920         ktime_t base_raw;
921         ktime_t base_real;
922         u64 nsec_raw;
923         u64 nsec_real;
924         u64 now;
925
926         WARN_ON_ONCE(timekeeping_suspended);
927
928         do {
929                 seq = read_seqcount_begin(&tk_core.seq);
930
931                 now = tk->tkr_mono.read(tk->tkr_mono.clock);
932                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
933                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
934                 base_real = ktime_add(tk->tkr_mono.base,
935                                       tk_core.timekeeper.offs_real);
936                 base_raw = tk->tkr_raw.base;
937                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
938                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
939         } while (read_seqcount_retry(&tk_core.seq, seq));
940
941         systime_snapshot->cycles = now;
942         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
943         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
944 }
945 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
946
947 /* Scale base by mult/div checking for overflow */
948 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
949 {
950         u64 tmp, rem;
951
952         tmp = div64_u64_rem(*base, div, &rem);
953
954         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
955             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
956                 return -EOVERFLOW;
957         tmp *= mult;
958         rem *= mult;
959
960         do_div(rem, div);
961         *base = tmp + rem;
962         return 0;
963 }
964
965 /**
966  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
967  * @history:                    Snapshot representing start of history
968  * @partial_history_cycles:     Cycle offset into history (fractional part)
969  * @total_history_cycles:       Total history length in cycles
970  * @discontinuity:              True indicates clock was set on history period
971  * @ts:                         Cross timestamp that should be adjusted using
972  *      partial/total ratio
973  *
974  * Helper function used by get_device_system_crosststamp() to correct the
975  * crosstimestamp corresponding to the start of the current interval to the
976  * system counter value (timestamp point) provided by the driver. The
977  * total_history_* quantities are the total history starting at the provided
978  * reference point and ending at the start of the current interval. The cycle
979  * count between the driver timestamp point and the start of the current
980  * interval is partial_history_cycles.
981  */
982 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
983                                          u64 partial_history_cycles,
984                                          u64 total_history_cycles,
985                                          bool discontinuity,
986                                          struct system_device_crosststamp *ts)
987 {
988         struct timekeeper *tk = &tk_core.timekeeper;
989         u64 corr_raw, corr_real;
990         bool interp_forward;
991         int ret;
992
993         if (total_history_cycles == 0 || partial_history_cycles == 0)
994                 return 0;
995
996         /* Interpolate shortest distance from beginning or end of history */
997         interp_forward = partial_history_cycles > total_history_cycles/2 ?
998                 true : false;
999         partial_history_cycles = interp_forward ?
1000                 total_history_cycles - partial_history_cycles :
1001                 partial_history_cycles;
1002
1003         /*
1004          * Scale the monotonic raw time delta by:
1005          *      partial_history_cycles / total_history_cycles
1006          */
1007         corr_raw = (u64)ktime_to_ns(
1008                 ktime_sub(ts->sys_monoraw, history->raw));
1009         ret = scale64_check_overflow(partial_history_cycles,
1010                                      total_history_cycles, &corr_raw);
1011         if (ret)
1012                 return ret;
1013
1014         /*
1015          * If there is a discontinuity in the history, scale monotonic raw
1016          *      correction by:
1017          *      mult(real)/mult(raw) yielding the realtime correction
1018          * Otherwise, calculate the realtime correction similar to monotonic
1019          *      raw calculation
1020          */
1021         if (discontinuity) {
1022                 corr_real = mul_u64_u32_div
1023                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1024         } else {
1025                 corr_real = (u64)ktime_to_ns(
1026                         ktime_sub(ts->sys_realtime, history->real));
1027                 ret = scale64_check_overflow(partial_history_cycles,
1028                                              total_history_cycles, &corr_real);
1029                 if (ret)
1030                         return ret;
1031         }
1032
1033         /* Fixup monotonic raw and real time time values */
1034         if (interp_forward) {
1035                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1036                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1037         } else {
1038                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1039                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1040         }
1041
1042         return 0;
1043 }
1044
1045 /*
1046  * cycle_between - true if test occurs chronologically between before and after
1047  */
1048 static bool cycle_between(u64 before, u64 test, u64 after)
1049 {
1050         if (test > before && test < after)
1051                 return true;
1052         if (test < before && before > after)
1053                 return true;
1054         return false;
1055 }
1056
1057 /**
1058  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1059  * @get_time_fn:        Callback to get simultaneous device time and
1060  *      system counter from the device driver
1061  * @ctx:                Context passed to get_time_fn()
1062  * @history_begin:      Historical reference point used to interpolate system
1063  *      time when counter provided by the driver is before the current interval
1064  * @xtstamp:            Receives simultaneously captured system and device time
1065  *
1066  * Reads a timestamp from a device and correlates it to system time
1067  */
1068 int get_device_system_crosststamp(int (*get_time_fn)
1069                                   (ktime_t *device_time,
1070                                    struct system_counterval_t *sys_counterval,
1071                                    void *ctx),
1072                                   void *ctx,
1073                                   struct system_time_snapshot *history_begin,
1074                                   struct system_device_crosststamp *xtstamp)
1075 {
1076         struct system_counterval_t system_counterval;
1077         struct timekeeper *tk = &tk_core.timekeeper;
1078         u64 cycles, now, interval_start;
1079         unsigned int clock_was_set_seq = 0;
1080         ktime_t base_real, base_raw;
1081         u64 nsec_real, nsec_raw;
1082         u8 cs_was_changed_seq;
1083         unsigned long seq;
1084         bool do_interp;
1085         int ret;
1086
1087         do {
1088                 seq = read_seqcount_begin(&tk_core.seq);
1089                 /*
1090                  * Try to synchronously capture device time and a system
1091                  * counter value calling back into the device driver
1092                  */
1093                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1094                 if (ret)
1095                         return ret;
1096
1097                 /*
1098                  * Verify that the clocksource associated with the captured
1099                  * system counter value is the same as the currently installed
1100                  * timekeeper clocksource
1101                  */
1102                 if (tk->tkr_mono.clock != system_counterval.cs)
1103                         return -ENODEV;
1104                 cycles = system_counterval.cycles;
1105
1106                 /*
1107                  * Check whether the system counter value provided by the
1108                  * device driver is on the current timekeeping interval.
1109                  */
1110                 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1111                 interval_start = tk->tkr_mono.cycle_last;
1112                 if (!cycle_between(interval_start, cycles, now)) {
1113                         clock_was_set_seq = tk->clock_was_set_seq;
1114                         cs_was_changed_seq = tk->cs_was_changed_seq;
1115                         cycles = interval_start;
1116                         do_interp = true;
1117                 } else {
1118                         do_interp = false;
1119                 }
1120
1121                 base_real = ktime_add(tk->tkr_mono.base,
1122                                       tk_core.timekeeper.offs_real);
1123                 base_raw = tk->tkr_raw.base;
1124
1125                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1126                                                      system_counterval.cycles);
1127                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1128                                                     system_counterval.cycles);
1129         } while (read_seqcount_retry(&tk_core.seq, seq));
1130
1131         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1132         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1133
1134         /*
1135          * Interpolate if necessary, adjusting back from the start of the
1136          * current interval
1137          */
1138         if (do_interp) {
1139                 u64 partial_history_cycles, total_history_cycles;
1140                 bool discontinuity;
1141
1142                 /*
1143                  * Check that the counter value occurs after the provided
1144                  * history reference and that the history doesn't cross a
1145                  * clocksource change
1146                  */
1147                 if (!history_begin ||
1148                     !cycle_between(history_begin->cycles,
1149                                    system_counterval.cycles, cycles) ||
1150                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1151                         return -EINVAL;
1152                 partial_history_cycles = cycles - system_counterval.cycles;
1153                 total_history_cycles = cycles - history_begin->cycles;
1154                 discontinuity =
1155                         history_begin->clock_was_set_seq != clock_was_set_seq;
1156
1157                 ret = adjust_historical_crosststamp(history_begin,
1158                                                     partial_history_cycles,
1159                                                     total_history_cycles,
1160                                                     discontinuity, xtstamp);
1161                 if (ret)
1162                         return ret;
1163         }
1164
1165         return 0;
1166 }
1167 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1168
1169 /**
1170  * do_gettimeofday - Returns the time of day in a timeval
1171  * @tv:         pointer to the timeval to be set
1172  *
1173  * NOTE: Users should be converted to using getnstimeofday()
1174  */
1175 void do_gettimeofday(struct timeval *tv)
1176 {
1177         struct timespec64 now;
1178
1179         getnstimeofday64(&now);
1180         tv->tv_sec = now.tv_sec;
1181         tv->tv_usec = now.tv_nsec/1000;
1182 }
1183 EXPORT_SYMBOL(do_gettimeofday);
1184
1185 /**
1186  * do_settimeofday64 - Sets the time of day.
1187  * @ts:     pointer to the timespec64 variable containing the new time
1188  *
1189  * Sets the time of day to the new time and update NTP and notify hrtimers
1190  */
1191 int do_settimeofday64(const struct timespec64 *ts)
1192 {
1193         struct timekeeper *tk = &tk_core.timekeeper;
1194         struct timespec64 ts_delta, xt;
1195         unsigned long flags;
1196         int ret = 0;
1197
1198         if (!timespec64_valid_strict(ts))
1199                 return -EINVAL;
1200
1201         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1202         write_seqcount_begin(&tk_core.seq);
1203
1204         timekeeping_forward_now(tk);
1205
1206         xt = tk_xtime(tk);
1207         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1208         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1209
1210         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1211                 ret = -EINVAL;
1212                 goto out;
1213         }
1214
1215         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1216
1217         tk_set_xtime(tk, ts);
1218 out:
1219         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1220
1221         write_seqcount_end(&tk_core.seq);
1222         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1223
1224         /* signal hrtimers about time change */
1225         clock_was_set();
1226
1227         return ret;
1228 }
1229 EXPORT_SYMBOL(do_settimeofday64);
1230
1231 /**
1232  * timekeeping_inject_offset - Adds or subtracts from the current time.
1233  * @tv:         pointer to the timespec variable containing the offset
1234  *
1235  * Adds or subtracts an offset value from the current time.
1236  */
1237 int timekeeping_inject_offset(struct timespec *ts)
1238 {
1239         struct timekeeper *tk = &tk_core.timekeeper;
1240         unsigned long flags;
1241         struct timespec64 ts64, tmp;
1242         int ret = 0;
1243
1244         if (!timespec_inject_offset_valid(ts))
1245                 return -EINVAL;
1246
1247         ts64 = timespec_to_timespec64(*ts);
1248
1249         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1250         write_seqcount_begin(&tk_core.seq);
1251
1252         timekeeping_forward_now(tk);
1253
1254         /* Make sure the proposed value is valid */
1255         tmp = timespec64_add(tk_xtime(tk),  ts64);
1256         if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1257             !timespec64_valid_strict(&tmp)) {
1258                 ret = -EINVAL;
1259                 goto error;
1260         }
1261
1262         tk_xtime_add(tk, &ts64);
1263         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
1264
1265 error: /* even if we error out, we forwarded the time, so call update */
1266         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1267
1268         write_seqcount_end(&tk_core.seq);
1269         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1270
1271         /* signal hrtimers about time change */
1272         clock_was_set();
1273
1274         return ret;
1275 }
1276 EXPORT_SYMBOL(timekeeping_inject_offset);
1277
1278 /**
1279  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1280  *
1281  */
1282 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1283 {
1284         tk->tai_offset = tai_offset;
1285         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1286 }
1287
1288 /**
1289  * change_clocksource - Swaps clocksources if a new one is available
1290  *
1291  * Accumulates current time interval and initializes new clocksource
1292  */
1293 static int change_clocksource(void *data)
1294 {
1295         struct timekeeper *tk = &tk_core.timekeeper;
1296         struct clocksource *new, *old;
1297         unsigned long flags;
1298
1299         new = (struct clocksource *) data;
1300
1301         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1302         write_seqcount_begin(&tk_core.seq);
1303
1304         timekeeping_forward_now(tk);
1305         /*
1306          * If the cs is in module, get a module reference. Succeeds
1307          * for built-in code (owner == NULL) as well.
1308          */
1309         if (try_module_get(new->owner)) {
1310                 if (!new->enable || new->enable(new) == 0) {
1311                         old = tk->tkr_mono.clock;
1312                         tk_setup_internals(tk, new);
1313                         if (old->disable)
1314                                 old->disable(old);
1315                         module_put(old->owner);
1316                 } else {
1317                         module_put(new->owner);
1318                 }
1319         }
1320         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1321
1322         write_seqcount_end(&tk_core.seq);
1323         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1324
1325         return 0;
1326 }
1327
1328 /**
1329  * timekeeping_notify - Install a new clock source
1330  * @clock:              pointer to the clock source
1331  *
1332  * This function is called from clocksource.c after a new, better clock
1333  * source has been registered. The caller holds the clocksource_mutex.
1334  */
1335 int timekeeping_notify(struct clocksource *clock)
1336 {
1337         struct timekeeper *tk = &tk_core.timekeeper;
1338
1339         if (tk->tkr_mono.clock == clock)
1340                 return 0;
1341         stop_machine(change_clocksource, clock, NULL);
1342         tick_clock_notify();
1343         return tk->tkr_mono.clock == clock ? 0 : -1;
1344 }
1345
1346 /**
1347  * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1348  * @ts:         pointer to the timespec64 to be set
1349  *
1350  * Returns the raw monotonic time (completely un-modified by ntp)
1351  */
1352 void getrawmonotonic64(struct timespec64 *ts)
1353 {
1354         struct timekeeper *tk = &tk_core.timekeeper;
1355         struct timespec64 ts64;
1356         unsigned long seq;
1357         u64 nsecs;
1358
1359         do {
1360                 seq = read_seqcount_begin(&tk_core.seq);
1361                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1362                 ts64 = tk->raw_time;
1363
1364         } while (read_seqcount_retry(&tk_core.seq, seq));
1365
1366         timespec64_add_ns(&ts64, nsecs);
1367         *ts = ts64;
1368 }
1369 EXPORT_SYMBOL(getrawmonotonic64);
1370
1371
1372 /**
1373  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1374  */
1375 int timekeeping_valid_for_hres(void)
1376 {
1377         struct timekeeper *tk = &tk_core.timekeeper;
1378         unsigned long seq;
1379         int ret;
1380
1381         do {
1382                 seq = read_seqcount_begin(&tk_core.seq);
1383
1384                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1385
1386         } while (read_seqcount_retry(&tk_core.seq, seq));
1387
1388         return ret;
1389 }
1390
1391 /**
1392  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1393  */
1394 u64 timekeeping_max_deferment(void)
1395 {
1396         struct timekeeper *tk = &tk_core.timekeeper;
1397         unsigned long seq;
1398         u64 ret;
1399
1400         do {
1401                 seq = read_seqcount_begin(&tk_core.seq);
1402
1403                 ret = tk->tkr_mono.clock->max_idle_ns;
1404
1405         } while (read_seqcount_retry(&tk_core.seq, seq));
1406
1407         return ret;
1408 }
1409
1410 /**
1411  * read_persistent_clock -  Return time from the persistent clock.
1412  *
1413  * Weak dummy function for arches that do not yet support it.
1414  * Reads the time from the battery backed persistent clock.
1415  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1416  *
1417  *  XXX - Do be sure to remove it once all arches implement it.
1418  */
1419 void __weak read_persistent_clock(struct timespec *ts)
1420 {
1421         ts->tv_sec = 0;
1422         ts->tv_nsec = 0;
1423 }
1424
1425 void __weak read_persistent_clock64(struct timespec64 *ts64)
1426 {
1427         struct timespec ts;
1428
1429         read_persistent_clock(&ts);
1430         *ts64 = timespec_to_timespec64(ts);
1431 }
1432
1433 /**
1434  * read_boot_clock64 -  Return time of the system start.
1435  *
1436  * Weak dummy function for arches that do not yet support it.
1437  * Function to read the exact time the system has been started.
1438  * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
1439  *
1440  *  XXX - Do be sure to remove it once all arches implement it.
1441  */
1442 void __weak read_boot_clock64(struct timespec64 *ts)
1443 {
1444         ts->tv_sec = 0;
1445         ts->tv_nsec = 0;
1446 }
1447
1448 /* Flag for if timekeeping_resume() has injected sleeptime */
1449 static bool sleeptime_injected;
1450
1451 /* Flag for if there is a persistent clock on this platform */
1452 static bool persistent_clock_exists;
1453
1454 /*
1455  * timekeeping_init - Initializes the clocksource and common timekeeping values
1456  */
1457 void __init timekeeping_init(void)
1458 {
1459         struct timekeeper *tk = &tk_core.timekeeper;
1460         struct clocksource *clock;
1461         unsigned long flags;
1462         struct timespec64 now, boot, tmp;
1463
1464         read_persistent_clock64(&now);
1465         if (!timespec64_valid_strict(&now)) {
1466                 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1467                         "         Check your CMOS/BIOS settings.\n");
1468                 now.tv_sec = 0;
1469                 now.tv_nsec = 0;
1470         } else if (now.tv_sec || now.tv_nsec)
1471                 persistent_clock_exists = true;
1472
1473         read_boot_clock64(&boot);
1474         if (!timespec64_valid_strict(&boot)) {
1475                 pr_warn("WARNING: Boot clock returned invalid value!\n"
1476                         "         Check your CMOS/BIOS settings.\n");
1477                 boot.tv_sec = 0;
1478                 boot.tv_nsec = 0;
1479         }
1480
1481         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1482         write_seqcount_begin(&tk_core.seq);
1483         ntp_init();
1484
1485         clock = clocksource_default_clock();
1486         if (clock->enable)
1487                 clock->enable(clock);
1488         tk_setup_internals(tk, clock);
1489
1490         tk_set_xtime(tk, &now);
1491         tk->raw_time.tv_sec = 0;
1492         tk->raw_time.tv_nsec = 0;
1493         if (boot.tv_sec == 0 && boot.tv_nsec == 0)
1494                 boot = tk_xtime(tk);
1495
1496         set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
1497         tk_set_wall_to_mono(tk, tmp);
1498
1499         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1500
1501         write_seqcount_end(&tk_core.seq);
1502         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1503 }
1504
1505 /* time in seconds when suspend began for persistent clock */
1506 static struct timespec64 timekeeping_suspend_time;
1507
1508 /**
1509  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1510  * @delta: pointer to a timespec delta value
1511  *
1512  * Takes a timespec offset measuring a suspend interval and properly
1513  * adds the sleep offset to the timekeeping variables.
1514  */
1515 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1516                                            struct timespec64 *delta)
1517 {
1518         if (!timespec64_valid_strict(delta)) {
1519                 printk_deferred(KERN_WARNING
1520                                 "__timekeeping_inject_sleeptime: Invalid "
1521                                 "sleep delta value!\n");
1522                 return;
1523         }
1524         tk_xtime_add(tk, delta);
1525         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1526         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1527         tk_debug_account_sleep_time(delta);
1528 }
1529
1530 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1531 /**
1532  * We have three kinds of time sources to use for sleep time
1533  * injection, the preference order is:
1534  * 1) non-stop clocksource
1535  * 2) persistent clock (ie: RTC accessible when irqs are off)
1536  * 3) RTC
1537  *
1538  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1539  * If system has neither 1) nor 2), 3) will be used finally.
1540  *
1541  *
1542  * If timekeeping has injected sleeptime via either 1) or 2),
1543  * 3) becomes needless, so in this case we don't need to call
1544  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1545  * means.
1546  */
1547 bool timekeeping_rtc_skipresume(void)
1548 {
1549         return sleeptime_injected;
1550 }
1551
1552 /**
1553  * 1) can be determined whether to use or not only when doing
1554  * timekeeping_resume() which is invoked after rtc_suspend(),
1555  * so we can't skip rtc_suspend() surely if system has 1).
1556  *
1557  * But if system has 2), 2) will definitely be used, so in this
1558  * case we don't need to call rtc_suspend(), and this is what
1559  * timekeeping_rtc_skipsuspend() means.
1560  */
1561 bool timekeeping_rtc_skipsuspend(void)
1562 {
1563         return persistent_clock_exists;
1564 }
1565
1566 /**
1567  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1568  * @delta: pointer to a timespec64 delta value
1569  *
1570  * This hook is for architectures that cannot support read_persistent_clock64
1571  * because their RTC/persistent clock is only accessible when irqs are enabled.
1572  * and also don't have an effective nonstop clocksource.
1573  *
1574  * This function should only be called by rtc_resume(), and allows
1575  * a suspend offset to be injected into the timekeeping values.
1576  */
1577 void timekeeping_inject_sleeptime64(struct timespec64 *delta)
1578 {
1579         struct timekeeper *tk = &tk_core.timekeeper;
1580         unsigned long flags;
1581
1582         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1583         write_seqcount_begin(&tk_core.seq);
1584
1585         timekeeping_forward_now(tk);
1586
1587         __timekeeping_inject_sleeptime(tk, delta);
1588
1589         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1590
1591         write_seqcount_end(&tk_core.seq);
1592         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1593
1594         /* signal hrtimers about time change */
1595         clock_was_set();
1596 }
1597 #endif
1598
1599 /**
1600  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1601  */
1602 void timekeeping_resume(void)
1603 {
1604         struct timekeeper *tk = &tk_core.timekeeper;
1605         struct clocksource *clock = tk->tkr_mono.clock;
1606         unsigned long flags;
1607         struct timespec64 ts_new, ts_delta;
1608         u64 cycle_now;
1609
1610         sleeptime_injected = false;
1611         read_persistent_clock64(&ts_new);
1612
1613         clockevents_resume();
1614         clocksource_resume();
1615
1616         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1617         write_seqcount_begin(&tk_core.seq);
1618
1619         /*
1620          * After system resumes, we need to calculate the suspended time and
1621          * compensate it for the OS time. There are 3 sources that could be
1622          * used: Nonstop clocksource during suspend, persistent clock and rtc
1623          * device.
1624          *
1625          * One specific platform may have 1 or 2 or all of them, and the
1626          * preference will be:
1627          *      suspend-nonstop clocksource -> persistent clock -> rtc
1628          * The less preferred source will only be tried if there is no better
1629          * usable source. The rtc part is handled separately in rtc core code.
1630          */
1631         cycle_now = tk->tkr_mono.read(clock);
1632         if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
1633                 cycle_now > tk->tkr_mono.cycle_last) {
1634                 u64 nsec, cyc_delta;
1635
1636                 cyc_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1637                                               tk->tkr_mono.mask);
1638                 nsec = mul_u64_u32_shr(cyc_delta, clock->mult, clock->shift);
1639                 ts_delta = ns_to_timespec64(nsec);
1640                 sleeptime_injected = true;
1641         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1642                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1643                 sleeptime_injected = true;
1644         }
1645
1646         if (sleeptime_injected)
1647                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1648
1649         /* Re-base the last cycle value */
1650         tk->tkr_mono.cycle_last = cycle_now;
1651         tk->tkr_raw.cycle_last  = cycle_now;
1652
1653         tk->ntp_error = 0;
1654         timekeeping_suspended = 0;
1655         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1656         write_seqcount_end(&tk_core.seq);
1657         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1658
1659         touch_softlockup_watchdog();
1660
1661         tick_resume();
1662         hrtimers_resume();
1663 }
1664
1665 int timekeeping_suspend(void)
1666 {
1667         struct timekeeper *tk = &tk_core.timekeeper;
1668         unsigned long flags;
1669         struct timespec64               delta, delta_delta;
1670         static struct timespec64        old_delta;
1671
1672         read_persistent_clock64(&timekeeping_suspend_time);
1673
1674         /*
1675          * On some systems the persistent_clock can not be detected at
1676          * timekeeping_init by its return value, so if we see a valid
1677          * value returned, update the persistent_clock_exists flag.
1678          */
1679         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1680                 persistent_clock_exists = true;
1681
1682         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1683         write_seqcount_begin(&tk_core.seq);
1684         timekeeping_forward_now(tk);
1685         timekeeping_suspended = 1;
1686
1687         if (persistent_clock_exists) {
1688                 /*
1689                  * To avoid drift caused by repeated suspend/resumes,
1690                  * which each can add ~1 second drift error,
1691                  * try to compensate so the difference in system time
1692                  * and persistent_clock time stays close to constant.
1693                  */
1694                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1695                 delta_delta = timespec64_sub(delta, old_delta);
1696                 if (abs(delta_delta.tv_sec) >= 2) {
1697                         /*
1698                          * if delta_delta is too large, assume time correction
1699                          * has occurred and set old_delta to the current delta.
1700                          */
1701                         old_delta = delta;
1702                 } else {
1703                         /* Otherwise try to adjust old_system to compensate */
1704                         timekeeping_suspend_time =
1705                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1706                 }
1707         }
1708
1709         timekeeping_update(tk, TK_MIRROR);
1710         halt_fast_timekeeper(tk);
1711         write_seqcount_end(&tk_core.seq);
1712         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1713
1714         tick_suspend();
1715         clocksource_suspend();
1716         clockevents_suspend();
1717
1718         return 0;
1719 }
1720
1721 /* sysfs resume/suspend bits for timekeeping */
1722 static struct syscore_ops timekeeping_syscore_ops = {
1723         .resume         = timekeeping_resume,
1724         .suspend        = timekeeping_suspend,
1725 };
1726
1727 static int __init timekeeping_init_ops(void)
1728 {
1729         register_syscore_ops(&timekeeping_syscore_ops);
1730         return 0;
1731 }
1732 device_initcall(timekeeping_init_ops);
1733
1734 /*
1735  * Apply a multiplier adjustment to the timekeeper
1736  */
1737 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1738                                                          s64 offset,
1739                                                          bool negative,
1740                                                          int adj_scale)
1741 {
1742         s64 interval = tk->cycle_interval;
1743         s32 mult_adj = 1;
1744
1745         if (negative) {
1746                 mult_adj = -mult_adj;
1747                 interval = -interval;
1748                 offset  = -offset;
1749         }
1750         mult_adj <<= adj_scale;
1751         interval <<= adj_scale;
1752         offset <<= adj_scale;
1753
1754         /*
1755          * So the following can be confusing.
1756          *
1757          * To keep things simple, lets assume mult_adj == 1 for now.
1758          *
1759          * When mult_adj != 1, remember that the interval and offset values
1760          * have been appropriately scaled so the math is the same.
1761          *
1762          * The basic idea here is that we're increasing the multiplier
1763          * by one, this causes the xtime_interval to be incremented by
1764          * one cycle_interval. This is because:
1765          *      xtime_interval = cycle_interval * mult
1766          * So if mult is being incremented by one:
1767          *      xtime_interval = cycle_interval * (mult + 1)
1768          * Its the same as:
1769          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1770          * Which can be shortened to:
1771          *      xtime_interval += cycle_interval
1772          *
1773          * So offset stores the non-accumulated cycles. Thus the current
1774          * time (in shifted nanoseconds) is:
1775          *      now = (offset * adj) + xtime_nsec
1776          * Now, even though we're adjusting the clock frequency, we have
1777          * to keep time consistent. In other words, we can't jump back
1778          * in time, and we also want to avoid jumping forward in time.
1779          *
1780          * So given the same offset value, we need the time to be the same
1781          * both before and after the freq adjustment.
1782          *      now = (offset * adj_1) + xtime_nsec_1
1783          *      now = (offset * adj_2) + xtime_nsec_2
1784          * So:
1785          *      (offset * adj_1) + xtime_nsec_1 =
1786          *              (offset * adj_2) + xtime_nsec_2
1787          * And we know:
1788          *      adj_2 = adj_1 + 1
1789          * So:
1790          *      (offset * adj_1) + xtime_nsec_1 =
1791          *              (offset * (adj_1+1)) + xtime_nsec_2
1792          *      (offset * adj_1) + xtime_nsec_1 =
1793          *              (offset * adj_1) + offset + xtime_nsec_2
1794          * Canceling the sides:
1795          *      xtime_nsec_1 = offset + xtime_nsec_2
1796          * Which gives us:
1797          *      xtime_nsec_2 = xtime_nsec_1 - offset
1798          * Which simplfies to:
1799          *      xtime_nsec -= offset
1800          *
1801          * XXX - TODO: Doc ntp_error calculation.
1802          */
1803         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1804                 /* NTP adjustment caused clocksource mult overflow */
1805                 WARN_ON_ONCE(1);
1806                 return;
1807         }
1808
1809         tk->tkr_mono.mult += mult_adj;
1810         tk->xtime_interval += interval;
1811         tk->tkr_mono.xtime_nsec -= offset;
1812         tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
1813 }
1814
1815 /*
1816  * Calculate the multiplier adjustment needed to match the frequency
1817  * specified by NTP
1818  */
1819 static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1820                                                         s64 offset)
1821 {
1822         s64 interval = tk->cycle_interval;
1823         s64 xinterval = tk->xtime_interval;
1824         u32 base = tk->tkr_mono.clock->mult;
1825         u32 max = tk->tkr_mono.clock->maxadj;
1826         u32 cur_adj = tk->tkr_mono.mult;
1827         s64 tick_error;
1828         bool negative;
1829         u32 adj_scale;
1830
1831         /* Remove any current error adj from freq calculation */
1832         if (tk->ntp_err_mult)
1833                 xinterval -= tk->cycle_interval;
1834
1835         tk->ntp_tick = ntp_tick_length();
1836
1837         /* Calculate current error per tick */
1838         tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1839         tick_error -= (xinterval + tk->xtime_remainder);
1840
1841         /* Don't worry about correcting it if its small */
1842         if (likely((tick_error >= 0) && (tick_error <= interval)))
1843                 return;
1844
1845         /* preserve the direction of correction */
1846         negative = (tick_error < 0);
1847
1848         /* If any adjustment would pass the max, just return */
1849         if (negative && (cur_adj - 1) <= (base - max))
1850                 return;
1851         if (!negative && (cur_adj + 1) >= (base + max))
1852                 return;
1853         /*
1854          * Sort out the magnitude of the correction, but
1855          * avoid making so large a correction that we go
1856          * over the max adjustment.
1857          */
1858         adj_scale = 0;
1859         tick_error = abs(tick_error);
1860         while (tick_error > interval) {
1861                 u32 adj = 1 << (adj_scale + 1);
1862
1863                 /* Check if adjustment gets us within 1 unit from the max */
1864                 if (negative && (cur_adj - adj) <= (base - max))
1865                         break;
1866                 if (!negative && (cur_adj + adj) >= (base + max))
1867                         break;
1868
1869                 adj_scale++;
1870                 tick_error >>= 1;
1871         }
1872
1873         /* scale the corrections */
1874         timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
1875 }
1876
1877 /*
1878  * Adjust the timekeeper's multiplier to the correct frequency
1879  * and also to reduce the accumulated error value.
1880  */
1881 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1882 {
1883         /* Correct for the current frequency error */
1884         timekeeping_freqadjust(tk, offset);
1885
1886         /* Next make a small adjustment to fix any cumulative error */
1887         if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1888                 tk->ntp_err_mult = 1;
1889                 timekeeping_apply_adjustment(tk, offset, 0, 0);
1890         } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1891                 /* Undo any existing error adjustment */
1892                 timekeeping_apply_adjustment(tk, offset, 1, 0);
1893                 tk->ntp_err_mult = 0;
1894         }
1895
1896         if (unlikely(tk->tkr_mono.clock->maxadj &&
1897                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1898                         > tk->tkr_mono.clock->maxadj))) {
1899                 printk_once(KERN_WARNING
1900                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1901                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1902                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1903         }
1904
1905         /*
1906          * It may be possible that when we entered this function, xtime_nsec
1907          * was very small.  Further, if we're slightly speeding the clocksource
1908          * in the code above, its possible the required corrective factor to
1909          * xtime_nsec could cause it to underflow.
1910          *
1911          * Now, since we already accumulated the second, cannot simply roll
1912          * the accumulated second back, since the NTP subsystem has been
1913          * notified via second_overflow. So instead we push xtime_nsec forward
1914          * by the amount we underflowed, and add that amount into the error.
1915          *
1916          * We'll correct this error next time through this function, when
1917          * xtime_nsec is not as small.
1918          */
1919         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1920                 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1921                 tk->tkr_mono.xtime_nsec = 0;
1922                 tk->ntp_error += neg << tk->ntp_error_shift;
1923         }
1924 }
1925
1926 /**
1927  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1928  *
1929  * Helper function that accumulates the nsecs greater than a second
1930  * from the xtime_nsec field to the xtime_secs field.
1931  * It also calls into the NTP code to handle leapsecond processing.
1932  *
1933  */
1934 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1935 {
1936         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1937         unsigned int clock_set = 0;
1938
1939         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1940                 int leap;
1941
1942                 tk->tkr_mono.xtime_nsec -= nsecps;
1943                 tk->xtime_sec++;
1944
1945                 /* Figure out if its a leap sec and apply if needed */
1946                 leap = second_overflow(tk->xtime_sec);
1947                 if (unlikely(leap)) {
1948                         struct timespec64 ts;
1949
1950                         tk->xtime_sec += leap;
1951
1952                         ts.tv_sec = leap;
1953                         ts.tv_nsec = 0;
1954                         tk_set_wall_to_mono(tk,
1955                                 timespec64_sub(tk->wall_to_monotonic, ts));
1956
1957                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1958
1959                         clock_set = TK_CLOCK_WAS_SET;
1960                 }
1961         }
1962         return clock_set;
1963 }
1964
1965 /**
1966  * logarithmic_accumulation - shifted accumulation of cycles
1967  *
1968  * This functions accumulates a shifted interval of cycles into
1969  * into a shifted interval nanoseconds. Allows for O(log) accumulation
1970  * loop.
1971  *
1972  * Returns the unconsumed cycles.
1973  */
1974 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
1975                                     u32 shift, unsigned int *clock_set)
1976 {
1977         u64 interval = tk->cycle_interval << shift;
1978         u64 raw_nsecs;
1979
1980         /* If the offset is smaller than a shifted interval, do nothing */
1981         if (offset < interval)
1982                 return offset;
1983
1984         /* Accumulate one shifted interval */
1985         offset -= interval;
1986         tk->tkr_mono.cycle_last += interval;
1987         tk->tkr_raw.cycle_last  += interval;
1988
1989         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
1990         *clock_set |= accumulate_nsecs_to_secs(tk);
1991
1992         /* Accumulate raw time */
1993         raw_nsecs = (u64)tk->raw_interval << shift;
1994         raw_nsecs += tk->raw_time.tv_nsec;
1995         if (raw_nsecs >= NSEC_PER_SEC) {
1996                 u64 raw_secs = raw_nsecs;
1997                 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
1998                 tk->raw_time.tv_sec += raw_secs;
1999         }
2000         tk->raw_time.tv_nsec = raw_nsecs;
2001
2002         /* Accumulate error between NTP and clock interval */
2003         tk->ntp_error += tk->ntp_tick << shift;
2004         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2005                                                 (tk->ntp_error_shift + shift);
2006
2007         return offset;
2008 }
2009
2010 /**
2011  * update_wall_time - Uses the current clocksource to increment the wall time
2012  *
2013  */
2014 void update_wall_time(void)
2015 {
2016         struct timekeeper *real_tk = &tk_core.timekeeper;
2017         struct timekeeper *tk = &shadow_timekeeper;
2018         u64 offset;
2019         int shift = 0, maxshift;
2020         unsigned int clock_set = 0;
2021         unsigned long flags;
2022
2023         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2024
2025         /* Make sure we're fully resumed: */
2026         if (unlikely(timekeeping_suspended))
2027                 goto out;
2028
2029 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2030         offset = real_tk->cycle_interval;
2031 #else
2032         offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2033                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2034 #endif
2035
2036         /* Check if there's really nothing to do */
2037         if (offset < real_tk->cycle_interval)
2038                 goto out;
2039
2040         /* Do some additional sanity checking */
2041         timekeeping_check_update(real_tk, offset);
2042
2043         /*
2044          * With NO_HZ we may have to accumulate many cycle_intervals
2045          * (think "ticks") worth of time at once. To do this efficiently,
2046          * we calculate the largest doubling multiple of cycle_intervals
2047          * that is smaller than the offset.  We then accumulate that
2048          * chunk in one go, and then try to consume the next smaller
2049          * doubled multiple.
2050          */
2051         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2052         shift = max(0, shift);
2053         /* Bound shift to one less than what overflows tick_length */
2054         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2055         shift = min(shift, maxshift);
2056         while (offset >= tk->cycle_interval) {
2057                 offset = logarithmic_accumulation(tk, offset, shift,
2058                                                         &clock_set);
2059                 if (offset < tk->cycle_interval<<shift)
2060                         shift--;
2061         }
2062
2063         /* correct the clock when NTP error is too big */
2064         timekeeping_adjust(tk, offset);
2065
2066         /*
2067          * XXX This can be killed once everyone converts
2068          * to the new update_vsyscall.
2069          */
2070         old_vsyscall_fixup(tk);
2071
2072         /*
2073          * Finally, make sure that after the rounding
2074          * xtime_nsec isn't larger than NSEC_PER_SEC
2075          */
2076         clock_set |= accumulate_nsecs_to_secs(tk);
2077
2078         write_seqcount_begin(&tk_core.seq);
2079         /*
2080          * Update the real timekeeper.
2081          *
2082          * We could avoid this memcpy by switching pointers, but that
2083          * requires changes to all other timekeeper usage sites as
2084          * well, i.e. move the timekeeper pointer getter into the
2085          * spinlocked/seqcount protected sections. And we trade this
2086          * memcpy under the tk_core.seq against one before we start
2087          * updating.
2088          */
2089         timekeeping_update(tk, clock_set);
2090         memcpy(real_tk, tk, sizeof(*tk));
2091         /* The memcpy must come last. Do not put anything here! */
2092         write_seqcount_end(&tk_core.seq);
2093 out:
2094         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2095         if (clock_set)
2096                 /* Have to call _delayed version, since in irq context*/
2097                 clock_was_set_delayed();
2098 }
2099
2100 /**
2101  * getboottime64 - Return the real time of system boot.
2102  * @ts:         pointer to the timespec64 to be set
2103  *
2104  * Returns the wall-time of boot in a timespec64.
2105  *
2106  * This is based on the wall_to_monotonic offset and the total suspend
2107  * time. Calls to settimeofday will affect the value returned (which
2108  * basically means that however wrong your real time clock is at boot time,
2109  * you get the right time here).
2110  */
2111 void getboottime64(struct timespec64 *ts)
2112 {
2113         struct timekeeper *tk = &tk_core.timekeeper;
2114         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2115
2116         *ts = ktime_to_timespec64(t);
2117 }
2118 EXPORT_SYMBOL_GPL(getboottime64);
2119
2120 unsigned long get_seconds(void)
2121 {
2122         struct timekeeper *tk = &tk_core.timekeeper;
2123
2124         return tk->xtime_sec;
2125 }
2126 EXPORT_SYMBOL(get_seconds);
2127
2128 struct timespec __current_kernel_time(void)
2129 {
2130         struct timekeeper *tk = &tk_core.timekeeper;
2131
2132         return timespec64_to_timespec(tk_xtime(tk));
2133 }
2134
2135 struct timespec64 current_kernel_time64(void)
2136 {
2137         struct timekeeper *tk = &tk_core.timekeeper;
2138         struct timespec64 now;
2139         unsigned long seq;
2140
2141         do {
2142                 seq = read_seqcount_begin(&tk_core.seq);
2143
2144                 now = tk_xtime(tk);
2145         } while (read_seqcount_retry(&tk_core.seq, seq));
2146
2147         return now;
2148 }
2149 EXPORT_SYMBOL(current_kernel_time64);
2150
2151 struct timespec64 get_monotonic_coarse64(void)
2152 {
2153         struct timekeeper *tk = &tk_core.timekeeper;
2154         struct timespec64 now, mono;
2155         unsigned long seq;
2156
2157         do {
2158                 seq = read_seqcount_begin(&tk_core.seq);
2159
2160                 now = tk_xtime(tk);
2161                 mono = tk->wall_to_monotonic;
2162         } while (read_seqcount_retry(&tk_core.seq, seq));
2163
2164         set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
2165                                 now.tv_nsec + mono.tv_nsec);
2166
2167         return now;
2168 }
2169 EXPORT_SYMBOL(get_monotonic_coarse64);
2170
2171 /*
2172  * Must hold jiffies_lock
2173  */
2174 void do_timer(unsigned long ticks)
2175 {
2176         jiffies_64 += ticks;
2177         calc_global_load(ticks);
2178 }
2179
2180 /**
2181  * ktime_get_update_offsets_now - hrtimer helper
2182  * @cwsseq:     pointer to check and store the clock was set sequence number
2183  * @offs_real:  pointer to storage for monotonic -> realtime offset
2184  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2185  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2186  *
2187  * Returns current monotonic time and updates the offsets if the
2188  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2189  * different.
2190  *
2191  * Called from hrtimer_interrupt() or retrigger_next_event()
2192  */
2193 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2194                                      ktime_t *offs_boot, ktime_t *offs_tai)
2195 {
2196         struct timekeeper *tk = &tk_core.timekeeper;
2197         unsigned int seq;
2198         ktime_t base;
2199         u64 nsecs;
2200
2201         do {
2202                 seq = read_seqcount_begin(&tk_core.seq);
2203
2204                 base = tk->tkr_mono.base;
2205                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2206                 base = ktime_add_ns(base, nsecs);
2207
2208                 if (*cwsseq != tk->clock_was_set_seq) {
2209                         *cwsseq = tk->clock_was_set_seq;
2210                         *offs_real = tk->offs_real;
2211                         *offs_boot = tk->offs_boot;
2212                         *offs_tai = tk->offs_tai;
2213                 }
2214
2215                 /* Handle leapsecond insertion adjustments */
2216                 if (unlikely(base >= tk->next_leap_ktime))
2217                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2218
2219         } while (read_seqcount_retry(&tk_core.seq, seq));
2220
2221         return base;
2222 }
2223
2224 /**
2225  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2226  */
2227 int do_adjtimex(struct timex *txc)
2228 {
2229         struct timekeeper *tk = &tk_core.timekeeper;
2230         unsigned long flags;
2231         struct timespec64 ts;
2232         s32 orig_tai, tai;
2233         int ret;
2234
2235         /* Validate the data before disabling interrupts */
2236         ret = ntp_validate_timex(txc);
2237         if (ret)
2238                 return ret;
2239
2240         if (txc->modes & ADJ_SETOFFSET) {
2241                 struct timespec delta;
2242                 delta.tv_sec  = txc->time.tv_sec;
2243                 delta.tv_nsec = txc->time.tv_usec;
2244                 if (!(txc->modes & ADJ_NANO))
2245                         delta.tv_nsec *= 1000;
2246                 ret = timekeeping_inject_offset(&delta);
2247                 if (ret)
2248                         return ret;
2249         }
2250
2251         getnstimeofday64(&ts);
2252
2253         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2254         write_seqcount_begin(&tk_core.seq);
2255
2256         orig_tai = tai = tk->tai_offset;
2257         ret = __do_adjtimex(txc, &ts, &tai);
2258
2259         if (tai != orig_tai) {
2260                 __timekeeping_set_tai_offset(tk, tai);
2261                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2262         }
2263         tk_update_leap_state(tk);
2264
2265         write_seqcount_end(&tk_core.seq);
2266         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2267
2268         if (tai != orig_tai)
2269                 clock_was_set();
2270
2271         ntp_notify_cmos_timer();
2272
2273         return ret;
2274 }
2275
2276 #ifdef CONFIG_NTP_PPS
2277 /**
2278  * hardpps() - Accessor function to NTP __hardpps function
2279  */
2280 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2281 {
2282         unsigned long flags;
2283
2284         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2285         write_seqcount_begin(&tk_core.seq);
2286
2287         __hardpps(phase_ts, raw_ts);
2288
2289         write_seqcount_end(&tk_core.seq);
2290         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2291 }
2292 EXPORT_SYMBOL(hardpps);
2293 #endif
2294
2295 /**
2296  * xtime_update() - advances the timekeeping infrastructure
2297  * @ticks:      number of ticks, that have elapsed since the last call.
2298  *
2299  * Must be called with interrupts disabled.
2300  */
2301 void xtime_update(unsigned long ticks)
2302 {
2303         write_seqlock(&jiffies_lock);
2304         do_timer(ticks);
2305         write_sequnlock(&jiffies_lock);
2306         update_wall_time();
2307 }