Merge tag 'dax-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
[linux-2.6-microblaze.git] / kernel / time / timekeeping.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29
30 #define TK_CLEAR_NTP            (1 << 0)
31 #define TK_MIRROR               (1 << 1)
32 #define TK_CLOCK_WAS_SET        (1 << 2)
33
34 enum timekeeping_adv_mode {
35         /* Update timekeeper when a tick has passed */
36         TK_ADV_TICK,
37
38         /* Update timekeeper on a direct frequency change */
39         TK_ADV_FREQ
40 };
41
42 /*
43  * The most important data for readout fits into a single 64 byte
44  * cache line.
45  */
46 static struct {
47         seqcount_t              seq;
48         struct timekeeper       timekeeper;
49 } tk_core ____cacheline_aligned = {
50         .seq = SEQCNT_ZERO(tk_core.seq),
51 };
52
53 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
54 static struct timekeeper shadow_timekeeper;
55
56 /**
57  * struct tk_fast - NMI safe timekeeper
58  * @seq:        Sequence counter for protecting updates. The lowest bit
59  *              is the index for the tk_read_base array
60  * @base:       tk_read_base array. Access is indexed by the lowest bit of
61  *              @seq.
62  *
63  * See @update_fast_timekeeper() below.
64  */
65 struct tk_fast {
66         seqcount_t              seq;
67         struct tk_read_base     base[2];
68 };
69
70 /* Suspend-time cycles value for halted fast timekeeper. */
71 static u64 cycles_at_suspend;
72
73 static u64 dummy_clock_read(struct clocksource *cs)
74 {
75         return cycles_at_suspend;
76 }
77
78 static struct clocksource dummy_clock = {
79         .read = dummy_clock_read,
80 };
81
82 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
83         .base[0] = { .clock = &dummy_clock, },
84         .base[1] = { .clock = &dummy_clock, },
85 };
86
87 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
88         .base[0] = { .clock = &dummy_clock, },
89         .base[1] = { .clock = &dummy_clock, },
90 };
91
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
94
95 static inline void tk_normalize_xtime(struct timekeeper *tk)
96 {
97         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
98                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
99                 tk->xtime_sec++;
100         }
101         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
102                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
103                 tk->raw_sec++;
104         }
105 }
106
107 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
108 {
109         struct timespec64 ts;
110
111         ts.tv_sec = tk->xtime_sec;
112         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
113         return ts;
114 }
115
116 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
117 {
118         tk->xtime_sec = ts->tv_sec;
119         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
120 }
121
122 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
123 {
124         tk->xtime_sec += ts->tv_sec;
125         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
126         tk_normalize_xtime(tk);
127 }
128
129 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
130 {
131         struct timespec64 tmp;
132
133         /*
134          * Verify consistency of: offset_real = -wall_to_monotonic
135          * before modifying anything
136          */
137         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
138                                         -tk->wall_to_monotonic.tv_nsec);
139         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
140         tk->wall_to_monotonic = wtm;
141         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
142         tk->offs_real = timespec64_to_ktime(tmp);
143         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
144 }
145
146 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
147 {
148         tk->offs_boot = ktime_add(tk->offs_boot, delta);
149 }
150
151 /*
152  * tk_clock_read - atomic clocksource read() helper
153  *
154  * This helper is necessary to use in the read paths because, while the
155  * seqlock ensures we don't return a bad value while structures are updated,
156  * it doesn't protect from potential crashes. There is the possibility that
157  * the tkr's clocksource may change between the read reference, and the
158  * clock reference passed to the read function.  This can cause crashes if
159  * the wrong clocksource is passed to the wrong read function.
160  * This isn't necessary to use when holding the timekeeper_lock or doing
161  * a read of the fast-timekeeper tkrs (which is protected by its own locking
162  * and update logic).
163  */
164 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
165 {
166         struct clocksource *clock = READ_ONCE(tkr->clock);
167
168         return clock->read(clock);
169 }
170
171 #ifdef CONFIG_DEBUG_TIMEKEEPING
172 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
173
174 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
175 {
176
177         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
178         const char *name = tk->tkr_mono.clock->name;
179
180         if (offset > max_cycles) {
181                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
182                                 offset, name, max_cycles);
183                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
184         } else {
185                 if (offset > (max_cycles >> 1)) {
186                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
187                                         offset, name, max_cycles >> 1);
188                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
189                 }
190         }
191
192         if (tk->underflow_seen) {
193                 if (jiffies - tk->last_warning > WARNING_FREQ) {
194                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
195                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
196                         printk_deferred("         Your kernel is probably still fine.\n");
197                         tk->last_warning = jiffies;
198                 }
199                 tk->underflow_seen = 0;
200         }
201
202         if (tk->overflow_seen) {
203                 if (jiffies - tk->last_warning > WARNING_FREQ) {
204                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
205                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
206                         printk_deferred("         Your kernel is probably still fine.\n");
207                         tk->last_warning = jiffies;
208                 }
209                 tk->overflow_seen = 0;
210         }
211 }
212
213 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
214 {
215         struct timekeeper *tk = &tk_core.timekeeper;
216         u64 now, last, mask, max, delta;
217         unsigned int seq;
218
219         /*
220          * Since we're called holding a seqlock, the data may shift
221          * under us while we're doing the calculation. This can cause
222          * false positives, since we'd note a problem but throw the
223          * results away. So nest another seqlock here to atomically
224          * grab the points we are checking with.
225          */
226         do {
227                 seq = read_seqcount_begin(&tk_core.seq);
228                 now = tk_clock_read(tkr);
229                 last = tkr->cycle_last;
230                 mask = tkr->mask;
231                 max = tkr->clock->max_cycles;
232         } while (read_seqcount_retry(&tk_core.seq, seq));
233
234         delta = clocksource_delta(now, last, mask);
235
236         /*
237          * Try to catch underflows by checking if we are seeing small
238          * mask-relative negative values.
239          */
240         if (unlikely((~delta & mask) < (mask >> 3))) {
241                 tk->underflow_seen = 1;
242                 delta = 0;
243         }
244
245         /* Cap delta value to the max_cycles values to avoid mult overflows */
246         if (unlikely(delta > max)) {
247                 tk->overflow_seen = 1;
248                 delta = tkr->clock->max_cycles;
249         }
250
251         return delta;
252 }
253 #else
254 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
255 {
256 }
257 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
258 {
259         u64 cycle_now, delta;
260
261         /* read clocksource */
262         cycle_now = tk_clock_read(tkr);
263
264         /* calculate the delta since the last update_wall_time */
265         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
266
267         return delta;
268 }
269 #endif
270
271 /**
272  * tk_setup_internals - Set up internals to use clocksource clock.
273  *
274  * @tk:         The target timekeeper to setup.
275  * @clock:              Pointer to clocksource.
276  *
277  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
278  * pair and interval request.
279  *
280  * Unless you're the timekeeping code, you should not be using this!
281  */
282 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
283 {
284         u64 interval;
285         u64 tmp, ntpinterval;
286         struct clocksource *old_clock;
287
288         ++tk->cs_was_changed_seq;
289         old_clock = tk->tkr_mono.clock;
290         tk->tkr_mono.clock = clock;
291         tk->tkr_mono.mask = clock->mask;
292         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
293
294         tk->tkr_raw.clock = clock;
295         tk->tkr_raw.mask = clock->mask;
296         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
297
298         /* Do the ns -> cycle conversion first, using original mult */
299         tmp = NTP_INTERVAL_LENGTH;
300         tmp <<= clock->shift;
301         ntpinterval = tmp;
302         tmp += clock->mult/2;
303         do_div(tmp, clock->mult);
304         if (tmp == 0)
305                 tmp = 1;
306
307         interval = (u64) tmp;
308         tk->cycle_interval = interval;
309
310         /* Go back from cycles -> shifted ns */
311         tk->xtime_interval = interval * clock->mult;
312         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
313         tk->raw_interval = interval * clock->mult;
314
315          /* if changing clocks, convert xtime_nsec shift units */
316         if (old_clock) {
317                 int shift_change = clock->shift - old_clock->shift;
318                 if (shift_change < 0) {
319                         tk->tkr_mono.xtime_nsec >>= -shift_change;
320                         tk->tkr_raw.xtime_nsec >>= -shift_change;
321                 } else {
322                         tk->tkr_mono.xtime_nsec <<= shift_change;
323                         tk->tkr_raw.xtime_nsec <<= shift_change;
324                 }
325         }
326
327         tk->tkr_mono.shift = clock->shift;
328         tk->tkr_raw.shift = clock->shift;
329
330         tk->ntp_error = 0;
331         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
332         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
333
334         /*
335          * The timekeeper keeps its own mult values for the currently
336          * active clocksource. These value will be adjusted via NTP
337          * to counteract clock drifting.
338          */
339         tk->tkr_mono.mult = clock->mult;
340         tk->tkr_raw.mult = clock->mult;
341         tk->ntp_err_mult = 0;
342         tk->skip_second_overflow = 0;
343 }
344
345 /* Timekeeper helper functions. */
346
347 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
348 static u32 default_arch_gettimeoffset(void) { return 0; }
349 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
350 #else
351 static inline u32 arch_gettimeoffset(void) { return 0; }
352 #endif
353
354 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
355 {
356         u64 nsec;
357
358         nsec = delta * tkr->mult + tkr->xtime_nsec;
359         nsec >>= tkr->shift;
360
361         /* If arch requires, add in get_arch_timeoffset() */
362         return nsec + arch_gettimeoffset();
363 }
364
365 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
366 {
367         u64 delta;
368
369         delta = timekeeping_get_delta(tkr);
370         return timekeeping_delta_to_ns(tkr, delta);
371 }
372
373 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
374 {
375         u64 delta;
376
377         /* calculate the delta since the last update_wall_time */
378         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
379         return timekeeping_delta_to_ns(tkr, delta);
380 }
381
382 /**
383  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
384  * @tkr: Timekeeping readout base from which we take the update
385  *
386  * We want to use this from any context including NMI and tracing /
387  * instrumenting the timekeeping code itself.
388  *
389  * Employ the latch technique; see @raw_write_seqcount_latch.
390  *
391  * So if a NMI hits the update of base[0] then it will use base[1]
392  * which is still consistent. In the worst case this can result is a
393  * slightly wrong timestamp (a few nanoseconds). See
394  * @ktime_get_mono_fast_ns.
395  */
396 static void update_fast_timekeeper(const struct tk_read_base *tkr,
397                                    struct tk_fast *tkf)
398 {
399         struct tk_read_base *base = tkf->base;
400
401         /* Force readers off to base[1] */
402         raw_write_seqcount_latch(&tkf->seq);
403
404         /* Update base[0] */
405         memcpy(base, tkr, sizeof(*base));
406
407         /* Force readers back to base[0] */
408         raw_write_seqcount_latch(&tkf->seq);
409
410         /* Update base[1] */
411         memcpy(base + 1, base, sizeof(*base));
412 }
413
414 /**
415  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
416  *
417  * This timestamp is not guaranteed to be monotonic across an update.
418  * The timestamp is calculated by:
419  *
420  *      now = base_mono + clock_delta * slope
421  *
422  * So if the update lowers the slope, readers who are forced to the
423  * not yet updated second array are still using the old steeper slope.
424  *
425  * tmono
426  * ^
427  * |    o  n
428  * |   o n
429  * |  u
430  * | o
431  * |o
432  * |12345678---> reader order
433  *
434  * o = old slope
435  * u = update
436  * n = new slope
437  *
438  * So reader 6 will observe time going backwards versus reader 5.
439  *
440  * While other CPUs are likely to be able observe that, the only way
441  * for a CPU local observation is when an NMI hits in the middle of
442  * the update. Timestamps taken from that NMI context might be ahead
443  * of the following timestamps. Callers need to be aware of that and
444  * deal with it.
445  */
446 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
447 {
448         struct tk_read_base *tkr;
449         unsigned int seq;
450         u64 now;
451
452         do {
453                 seq = raw_read_seqcount_latch(&tkf->seq);
454                 tkr = tkf->base + (seq & 0x01);
455                 now = ktime_to_ns(tkr->base);
456
457                 now += timekeeping_delta_to_ns(tkr,
458                                 clocksource_delta(
459                                         tk_clock_read(tkr),
460                                         tkr->cycle_last,
461                                         tkr->mask));
462         } while (read_seqcount_retry(&tkf->seq, seq));
463
464         return now;
465 }
466
467 u64 ktime_get_mono_fast_ns(void)
468 {
469         return __ktime_get_fast_ns(&tk_fast_mono);
470 }
471 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
472
473 u64 ktime_get_raw_fast_ns(void)
474 {
475         return __ktime_get_fast_ns(&tk_fast_raw);
476 }
477 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
478
479 /**
480  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
481  *
482  * To keep it NMI safe since we're accessing from tracing, we're not using a
483  * separate timekeeper with updates to monotonic clock and boot offset
484  * protected with seqlocks. This has the following minor side effects:
485  *
486  * (1) Its possible that a timestamp be taken after the boot offset is updated
487  * but before the timekeeper is updated. If this happens, the new boot offset
488  * is added to the old timekeeping making the clock appear to update slightly
489  * earlier:
490  *    CPU 0                                        CPU 1
491  *    timekeeping_inject_sleeptime64()
492  *    __timekeeping_inject_sleeptime(tk, delta);
493  *                                                 timestamp();
494  *    timekeeping_update(tk, TK_CLEAR_NTP...);
495  *
496  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
497  * partially updated.  Since the tk->offs_boot update is a rare event, this
498  * should be a rare occurrence which postprocessing should be able to handle.
499  */
500 u64 notrace ktime_get_boot_fast_ns(void)
501 {
502         struct timekeeper *tk = &tk_core.timekeeper;
503
504         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
505 }
506 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
507
508
509 /*
510  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
511  */
512 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
513 {
514         struct tk_read_base *tkr;
515         unsigned int seq;
516         u64 now;
517
518         do {
519                 seq = raw_read_seqcount_latch(&tkf->seq);
520                 tkr = tkf->base + (seq & 0x01);
521                 now = ktime_to_ns(tkr->base_real);
522
523                 now += timekeeping_delta_to_ns(tkr,
524                                 clocksource_delta(
525                                         tk_clock_read(tkr),
526                                         tkr->cycle_last,
527                                         tkr->mask));
528         } while (read_seqcount_retry(&tkf->seq, seq));
529
530         return now;
531 }
532
533 /**
534  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
535  */
536 u64 ktime_get_real_fast_ns(void)
537 {
538         return __ktime_get_real_fast_ns(&tk_fast_mono);
539 }
540 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
541
542 /**
543  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
544  * @tk: Timekeeper to snapshot.
545  *
546  * It generally is unsafe to access the clocksource after timekeeping has been
547  * suspended, so take a snapshot of the readout base of @tk and use it as the
548  * fast timekeeper's readout base while suspended.  It will return the same
549  * number of cycles every time until timekeeping is resumed at which time the
550  * proper readout base for the fast timekeeper will be restored automatically.
551  */
552 static void halt_fast_timekeeper(const struct timekeeper *tk)
553 {
554         static struct tk_read_base tkr_dummy;
555         const struct tk_read_base *tkr = &tk->tkr_mono;
556
557         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
558         cycles_at_suspend = tk_clock_read(tkr);
559         tkr_dummy.clock = &dummy_clock;
560         tkr_dummy.base_real = tkr->base + tk->offs_real;
561         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
562
563         tkr = &tk->tkr_raw;
564         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
565         tkr_dummy.clock = &dummy_clock;
566         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
567 }
568
569 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
570
571 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
572 {
573         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
574 }
575
576 /**
577  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
578  */
579 int pvclock_gtod_register_notifier(struct notifier_block *nb)
580 {
581         struct timekeeper *tk = &tk_core.timekeeper;
582         unsigned long flags;
583         int ret;
584
585         raw_spin_lock_irqsave(&timekeeper_lock, flags);
586         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
587         update_pvclock_gtod(tk, true);
588         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
589
590         return ret;
591 }
592 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
593
594 /**
595  * pvclock_gtod_unregister_notifier - unregister a pvclock
596  * timedata update listener
597  */
598 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
599 {
600         unsigned long flags;
601         int ret;
602
603         raw_spin_lock_irqsave(&timekeeper_lock, flags);
604         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
605         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
606
607         return ret;
608 }
609 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
610
611 /*
612  * tk_update_leap_state - helper to update the next_leap_ktime
613  */
614 static inline void tk_update_leap_state(struct timekeeper *tk)
615 {
616         tk->next_leap_ktime = ntp_get_next_leap();
617         if (tk->next_leap_ktime != KTIME_MAX)
618                 /* Convert to monotonic time */
619                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
620 }
621
622 /*
623  * Update the ktime_t based scalar nsec members of the timekeeper
624  */
625 static inline void tk_update_ktime_data(struct timekeeper *tk)
626 {
627         u64 seconds;
628         u32 nsec;
629
630         /*
631          * The xtime based monotonic readout is:
632          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
633          * The ktime based monotonic readout is:
634          *      nsec = base_mono + now();
635          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
636          */
637         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
638         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
639         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
640
641         /*
642          * The sum of the nanoseconds portions of xtime and
643          * wall_to_monotonic can be greater/equal one second. Take
644          * this into account before updating tk->ktime_sec.
645          */
646         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
647         if (nsec >= NSEC_PER_SEC)
648                 seconds++;
649         tk->ktime_sec = seconds;
650
651         /* Update the monotonic raw base */
652         tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
653 }
654
655 /* must hold timekeeper_lock */
656 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
657 {
658         if (action & TK_CLEAR_NTP) {
659                 tk->ntp_error = 0;
660                 ntp_clear();
661         }
662
663         tk_update_leap_state(tk);
664         tk_update_ktime_data(tk);
665
666         update_vsyscall(tk);
667         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
668
669         tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
670         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
671         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
672
673         if (action & TK_CLOCK_WAS_SET)
674                 tk->clock_was_set_seq++;
675         /*
676          * The mirroring of the data to the shadow-timekeeper needs
677          * to happen last here to ensure we don't over-write the
678          * timekeeper structure on the next update with stale data
679          */
680         if (action & TK_MIRROR)
681                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
682                        sizeof(tk_core.timekeeper));
683 }
684
685 /**
686  * timekeeping_forward_now - update clock to the current time
687  *
688  * Forward the current clock to update its state since the last call to
689  * update_wall_time(). This is useful before significant clock changes,
690  * as it avoids having to deal with this time offset explicitly.
691  */
692 static void timekeeping_forward_now(struct timekeeper *tk)
693 {
694         u64 cycle_now, delta;
695
696         cycle_now = tk_clock_read(&tk->tkr_mono);
697         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
698         tk->tkr_mono.cycle_last = cycle_now;
699         tk->tkr_raw.cycle_last  = cycle_now;
700
701         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
702
703         /* If arch requires, add in get_arch_timeoffset() */
704         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
705
706
707         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
708
709         /* If arch requires, add in get_arch_timeoffset() */
710         tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
711
712         tk_normalize_xtime(tk);
713 }
714
715 /**
716  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
717  * @ts:         pointer to the timespec to be set
718  *
719  * Returns the time of day in a timespec64 (WARN if suspended).
720  */
721 void ktime_get_real_ts64(struct timespec64 *ts)
722 {
723         struct timekeeper *tk = &tk_core.timekeeper;
724         unsigned int seq;
725         u64 nsecs;
726
727         WARN_ON(timekeeping_suspended);
728
729         do {
730                 seq = read_seqcount_begin(&tk_core.seq);
731
732                 ts->tv_sec = tk->xtime_sec;
733                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
734
735         } while (read_seqcount_retry(&tk_core.seq, seq));
736
737         ts->tv_nsec = 0;
738         timespec64_add_ns(ts, nsecs);
739 }
740 EXPORT_SYMBOL(ktime_get_real_ts64);
741
742 ktime_t ktime_get(void)
743 {
744         struct timekeeper *tk = &tk_core.timekeeper;
745         unsigned int seq;
746         ktime_t base;
747         u64 nsecs;
748
749         WARN_ON(timekeeping_suspended);
750
751         do {
752                 seq = read_seqcount_begin(&tk_core.seq);
753                 base = tk->tkr_mono.base;
754                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
755
756         } while (read_seqcount_retry(&tk_core.seq, seq));
757
758         return ktime_add_ns(base, nsecs);
759 }
760 EXPORT_SYMBOL_GPL(ktime_get);
761
762 u32 ktime_get_resolution_ns(void)
763 {
764         struct timekeeper *tk = &tk_core.timekeeper;
765         unsigned int seq;
766         u32 nsecs;
767
768         WARN_ON(timekeeping_suspended);
769
770         do {
771                 seq = read_seqcount_begin(&tk_core.seq);
772                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
773         } while (read_seqcount_retry(&tk_core.seq, seq));
774
775         return nsecs;
776 }
777 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
778
779 static ktime_t *offsets[TK_OFFS_MAX] = {
780         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
781         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
782         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
783 };
784
785 ktime_t ktime_get_with_offset(enum tk_offsets offs)
786 {
787         struct timekeeper *tk = &tk_core.timekeeper;
788         unsigned int seq;
789         ktime_t base, *offset = offsets[offs];
790         u64 nsecs;
791
792         WARN_ON(timekeeping_suspended);
793
794         do {
795                 seq = read_seqcount_begin(&tk_core.seq);
796                 base = ktime_add(tk->tkr_mono.base, *offset);
797                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
798
799         } while (read_seqcount_retry(&tk_core.seq, seq));
800
801         return ktime_add_ns(base, nsecs);
802
803 }
804 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
805
806 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
807 {
808         struct timekeeper *tk = &tk_core.timekeeper;
809         unsigned int seq;
810         ktime_t base, *offset = offsets[offs];
811         u64 nsecs;
812
813         WARN_ON(timekeeping_suspended);
814
815         do {
816                 seq = read_seqcount_begin(&tk_core.seq);
817                 base = ktime_add(tk->tkr_mono.base, *offset);
818                 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift;
819
820         } while (read_seqcount_retry(&tk_core.seq, seq));
821
822         return ktime_add_ns(base, nsecs);
823 }
824 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
825
826 /**
827  * ktime_mono_to_any() - convert mononotic time to any other time
828  * @tmono:      time to convert.
829  * @offs:       which offset to use
830  */
831 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
832 {
833         ktime_t *offset = offsets[offs];
834         unsigned int seq;
835         ktime_t tconv;
836
837         do {
838                 seq = read_seqcount_begin(&tk_core.seq);
839                 tconv = ktime_add(tmono, *offset);
840         } while (read_seqcount_retry(&tk_core.seq, seq));
841
842         return tconv;
843 }
844 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
845
846 /**
847  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
848  */
849 ktime_t ktime_get_raw(void)
850 {
851         struct timekeeper *tk = &tk_core.timekeeper;
852         unsigned int seq;
853         ktime_t base;
854         u64 nsecs;
855
856         do {
857                 seq = read_seqcount_begin(&tk_core.seq);
858                 base = tk->tkr_raw.base;
859                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
860
861         } while (read_seqcount_retry(&tk_core.seq, seq));
862
863         return ktime_add_ns(base, nsecs);
864 }
865 EXPORT_SYMBOL_GPL(ktime_get_raw);
866
867 /**
868  * ktime_get_ts64 - get the monotonic clock in timespec64 format
869  * @ts:         pointer to timespec variable
870  *
871  * The function calculates the monotonic clock from the realtime
872  * clock and the wall_to_monotonic offset and stores the result
873  * in normalized timespec64 format in the variable pointed to by @ts.
874  */
875 void ktime_get_ts64(struct timespec64 *ts)
876 {
877         struct timekeeper *tk = &tk_core.timekeeper;
878         struct timespec64 tomono;
879         unsigned int seq;
880         u64 nsec;
881
882         WARN_ON(timekeeping_suspended);
883
884         do {
885                 seq = read_seqcount_begin(&tk_core.seq);
886                 ts->tv_sec = tk->xtime_sec;
887                 nsec = timekeeping_get_ns(&tk->tkr_mono);
888                 tomono = tk->wall_to_monotonic;
889
890         } while (read_seqcount_retry(&tk_core.seq, seq));
891
892         ts->tv_sec += tomono.tv_sec;
893         ts->tv_nsec = 0;
894         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
895 }
896 EXPORT_SYMBOL_GPL(ktime_get_ts64);
897
898 /**
899  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
900  *
901  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
902  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
903  * works on both 32 and 64 bit systems. On 32 bit systems the readout
904  * covers ~136 years of uptime which should be enough to prevent
905  * premature wrap arounds.
906  */
907 time64_t ktime_get_seconds(void)
908 {
909         struct timekeeper *tk = &tk_core.timekeeper;
910
911         WARN_ON(timekeeping_suspended);
912         return tk->ktime_sec;
913 }
914 EXPORT_SYMBOL_GPL(ktime_get_seconds);
915
916 /**
917  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
918  *
919  * Returns the wall clock seconds since 1970. This replaces the
920  * get_seconds() interface which is not y2038 safe on 32bit systems.
921  *
922  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
923  * 32bit systems the access must be protected with the sequence
924  * counter to provide "atomic" access to the 64bit tk->xtime_sec
925  * value.
926  */
927 time64_t ktime_get_real_seconds(void)
928 {
929         struct timekeeper *tk = &tk_core.timekeeper;
930         time64_t seconds;
931         unsigned int seq;
932
933         if (IS_ENABLED(CONFIG_64BIT))
934                 return tk->xtime_sec;
935
936         do {
937                 seq = read_seqcount_begin(&tk_core.seq);
938                 seconds = tk->xtime_sec;
939
940         } while (read_seqcount_retry(&tk_core.seq, seq));
941
942         return seconds;
943 }
944 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
945
946 /**
947  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
948  * but without the sequence counter protect. This internal function
949  * is called just when timekeeping lock is already held.
950  */
951 time64_t __ktime_get_real_seconds(void)
952 {
953         struct timekeeper *tk = &tk_core.timekeeper;
954
955         return tk->xtime_sec;
956 }
957
958 /**
959  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
960  * @systime_snapshot:   pointer to struct receiving the system time snapshot
961  */
962 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
963 {
964         struct timekeeper *tk = &tk_core.timekeeper;
965         unsigned int seq;
966         ktime_t base_raw;
967         ktime_t base_real;
968         u64 nsec_raw;
969         u64 nsec_real;
970         u64 now;
971
972         WARN_ON_ONCE(timekeeping_suspended);
973
974         do {
975                 seq = read_seqcount_begin(&tk_core.seq);
976                 now = tk_clock_read(&tk->tkr_mono);
977                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
978                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
979                 base_real = ktime_add(tk->tkr_mono.base,
980                                       tk_core.timekeeper.offs_real);
981                 base_raw = tk->tkr_raw.base;
982                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
983                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
984         } while (read_seqcount_retry(&tk_core.seq, seq));
985
986         systime_snapshot->cycles = now;
987         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
988         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
989 }
990 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
991
992 /* Scale base by mult/div checking for overflow */
993 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
994 {
995         u64 tmp, rem;
996
997         tmp = div64_u64_rem(*base, div, &rem);
998
999         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1000             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1001                 return -EOVERFLOW;
1002         tmp *= mult;
1003         rem *= mult;
1004
1005         do_div(rem, div);
1006         *base = tmp + rem;
1007         return 0;
1008 }
1009
1010 /**
1011  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1012  * @history:                    Snapshot representing start of history
1013  * @partial_history_cycles:     Cycle offset into history (fractional part)
1014  * @total_history_cycles:       Total history length in cycles
1015  * @discontinuity:              True indicates clock was set on history period
1016  * @ts:                         Cross timestamp that should be adjusted using
1017  *      partial/total ratio
1018  *
1019  * Helper function used by get_device_system_crosststamp() to correct the
1020  * crosstimestamp corresponding to the start of the current interval to the
1021  * system counter value (timestamp point) provided by the driver. The
1022  * total_history_* quantities are the total history starting at the provided
1023  * reference point and ending at the start of the current interval. The cycle
1024  * count between the driver timestamp point and the start of the current
1025  * interval is partial_history_cycles.
1026  */
1027 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1028                                          u64 partial_history_cycles,
1029                                          u64 total_history_cycles,
1030                                          bool discontinuity,
1031                                          struct system_device_crosststamp *ts)
1032 {
1033         struct timekeeper *tk = &tk_core.timekeeper;
1034         u64 corr_raw, corr_real;
1035         bool interp_forward;
1036         int ret;
1037
1038         if (total_history_cycles == 0 || partial_history_cycles == 0)
1039                 return 0;
1040
1041         /* Interpolate shortest distance from beginning or end of history */
1042         interp_forward = partial_history_cycles > total_history_cycles / 2;
1043         partial_history_cycles = interp_forward ?
1044                 total_history_cycles - partial_history_cycles :
1045                 partial_history_cycles;
1046
1047         /*
1048          * Scale the monotonic raw time delta by:
1049          *      partial_history_cycles / total_history_cycles
1050          */
1051         corr_raw = (u64)ktime_to_ns(
1052                 ktime_sub(ts->sys_monoraw, history->raw));
1053         ret = scale64_check_overflow(partial_history_cycles,
1054                                      total_history_cycles, &corr_raw);
1055         if (ret)
1056                 return ret;
1057
1058         /*
1059          * If there is a discontinuity in the history, scale monotonic raw
1060          *      correction by:
1061          *      mult(real)/mult(raw) yielding the realtime correction
1062          * Otherwise, calculate the realtime correction similar to monotonic
1063          *      raw calculation
1064          */
1065         if (discontinuity) {
1066                 corr_real = mul_u64_u32_div
1067                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1068         } else {
1069                 corr_real = (u64)ktime_to_ns(
1070                         ktime_sub(ts->sys_realtime, history->real));
1071                 ret = scale64_check_overflow(partial_history_cycles,
1072                                              total_history_cycles, &corr_real);
1073                 if (ret)
1074                         return ret;
1075         }
1076
1077         /* Fixup monotonic raw and real time time values */
1078         if (interp_forward) {
1079                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1080                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1081         } else {
1082                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1083                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1084         }
1085
1086         return 0;
1087 }
1088
1089 /*
1090  * cycle_between - true if test occurs chronologically between before and after
1091  */
1092 static bool cycle_between(u64 before, u64 test, u64 after)
1093 {
1094         if (test > before && test < after)
1095                 return true;
1096         if (test < before && before > after)
1097                 return true;
1098         return false;
1099 }
1100
1101 /**
1102  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1103  * @get_time_fn:        Callback to get simultaneous device time and
1104  *      system counter from the device driver
1105  * @ctx:                Context passed to get_time_fn()
1106  * @history_begin:      Historical reference point used to interpolate system
1107  *      time when counter provided by the driver is before the current interval
1108  * @xtstamp:            Receives simultaneously captured system and device time
1109  *
1110  * Reads a timestamp from a device and correlates it to system time
1111  */
1112 int get_device_system_crosststamp(int (*get_time_fn)
1113                                   (ktime_t *device_time,
1114                                    struct system_counterval_t *sys_counterval,
1115                                    void *ctx),
1116                                   void *ctx,
1117                                   struct system_time_snapshot *history_begin,
1118                                   struct system_device_crosststamp *xtstamp)
1119 {
1120         struct system_counterval_t system_counterval;
1121         struct timekeeper *tk = &tk_core.timekeeper;
1122         u64 cycles, now, interval_start;
1123         unsigned int clock_was_set_seq = 0;
1124         ktime_t base_real, base_raw;
1125         u64 nsec_real, nsec_raw;
1126         u8 cs_was_changed_seq;
1127         unsigned int seq;
1128         bool do_interp;
1129         int ret;
1130
1131         do {
1132                 seq = read_seqcount_begin(&tk_core.seq);
1133                 /*
1134                  * Try to synchronously capture device time and a system
1135                  * counter value calling back into the device driver
1136                  */
1137                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1138                 if (ret)
1139                         return ret;
1140
1141                 /*
1142                  * Verify that the clocksource associated with the captured
1143                  * system counter value is the same as the currently installed
1144                  * timekeeper clocksource
1145                  */
1146                 if (tk->tkr_mono.clock != system_counterval.cs)
1147                         return -ENODEV;
1148                 cycles = system_counterval.cycles;
1149
1150                 /*
1151                  * Check whether the system counter value provided by the
1152                  * device driver is on the current timekeeping interval.
1153                  */
1154                 now = tk_clock_read(&tk->tkr_mono);
1155                 interval_start = tk->tkr_mono.cycle_last;
1156                 if (!cycle_between(interval_start, cycles, now)) {
1157                         clock_was_set_seq = tk->clock_was_set_seq;
1158                         cs_was_changed_seq = tk->cs_was_changed_seq;
1159                         cycles = interval_start;
1160                         do_interp = true;
1161                 } else {
1162                         do_interp = false;
1163                 }
1164
1165                 base_real = ktime_add(tk->tkr_mono.base,
1166                                       tk_core.timekeeper.offs_real);
1167                 base_raw = tk->tkr_raw.base;
1168
1169                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1170                                                      system_counterval.cycles);
1171                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1172                                                     system_counterval.cycles);
1173         } while (read_seqcount_retry(&tk_core.seq, seq));
1174
1175         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1176         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1177
1178         /*
1179          * Interpolate if necessary, adjusting back from the start of the
1180          * current interval
1181          */
1182         if (do_interp) {
1183                 u64 partial_history_cycles, total_history_cycles;
1184                 bool discontinuity;
1185
1186                 /*
1187                  * Check that the counter value occurs after the provided
1188                  * history reference and that the history doesn't cross a
1189                  * clocksource change
1190                  */
1191                 if (!history_begin ||
1192                     !cycle_between(history_begin->cycles,
1193                                    system_counterval.cycles, cycles) ||
1194                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1195                         return -EINVAL;
1196                 partial_history_cycles = cycles - system_counterval.cycles;
1197                 total_history_cycles = cycles - history_begin->cycles;
1198                 discontinuity =
1199                         history_begin->clock_was_set_seq != clock_was_set_seq;
1200
1201                 ret = adjust_historical_crosststamp(history_begin,
1202                                                     partial_history_cycles,
1203                                                     total_history_cycles,
1204                                                     discontinuity, xtstamp);
1205                 if (ret)
1206                         return ret;
1207         }
1208
1209         return 0;
1210 }
1211 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1212
1213 /**
1214  * do_settimeofday64 - Sets the time of day.
1215  * @ts:     pointer to the timespec64 variable containing the new time
1216  *
1217  * Sets the time of day to the new time and update NTP and notify hrtimers
1218  */
1219 int do_settimeofday64(const struct timespec64 *ts)
1220 {
1221         struct timekeeper *tk = &tk_core.timekeeper;
1222         struct timespec64 ts_delta, xt;
1223         unsigned long flags;
1224         int ret = 0;
1225
1226         if (!timespec64_valid_settod(ts))
1227                 return -EINVAL;
1228
1229         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1230         write_seqcount_begin(&tk_core.seq);
1231
1232         timekeeping_forward_now(tk);
1233
1234         xt = tk_xtime(tk);
1235         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1236         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1237
1238         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1239                 ret = -EINVAL;
1240                 goto out;
1241         }
1242
1243         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1244
1245         tk_set_xtime(tk, ts);
1246 out:
1247         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1248
1249         write_seqcount_end(&tk_core.seq);
1250         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1251
1252         /* signal hrtimers about time change */
1253         clock_was_set();
1254
1255         if (!ret)
1256                 audit_tk_injoffset(ts_delta);
1257
1258         return ret;
1259 }
1260 EXPORT_SYMBOL(do_settimeofday64);
1261
1262 /**
1263  * timekeeping_inject_offset - Adds or subtracts from the current time.
1264  * @tv:         pointer to the timespec variable containing the offset
1265  *
1266  * Adds or subtracts an offset value from the current time.
1267  */
1268 static int timekeeping_inject_offset(const struct timespec64 *ts)
1269 {
1270         struct timekeeper *tk = &tk_core.timekeeper;
1271         unsigned long flags;
1272         struct timespec64 tmp;
1273         int ret = 0;
1274
1275         if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1276                 return -EINVAL;
1277
1278         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1279         write_seqcount_begin(&tk_core.seq);
1280
1281         timekeeping_forward_now(tk);
1282
1283         /* Make sure the proposed value is valid */
1284         tmp = timespec64_add(tk_xtime(tk), *ts);
1285         if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1286             !timespec64_valid_settod(&tmp)) {
1287                 ret = -EINVAL;
1288                 goto error;
1289         }
1290
1291         tk_xtime_add(tk, ts);
1292         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1293
1294 error: /* even if we error out, we forwarded the time, so call update */
1295         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1296
1297         write_seqcount_end(&tk_core.seq);
1298         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1299
1300         /* signal hrtimers about time change */
1301         clock_was_set();
1302
1303         return ret;
1304 }
1305
1306 /*
1307  * Indicates if there is an offset between the system clock and the hardware
1308  * clock/persistent clock/rtc.
1309  */
1310 int persistent_clock_is_local;
1311
1312 /*
1313  * Adjust the time obtained from the CMOS to be UTC time instead of
1314  * local time.
1315  *
1316  * This is ugly, but preferable to the alternatives.  Otherwise we
1317  * would either need to write a program to do it in /etc/rc (and risk
1318  * confusion if the program gets run more than once; it would also be
1319  * hard to make the program warp the clock precisely n hours)  or
1320  * compile in the timezone information into the kernel.  Bad, bad....
1321  *
1322  *                                              - TYT, 1992-01-01
1323  *
1324  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1325  * as real UNIX machines always do it. This avoids all headaches about
1326  * daylight saving times and warping kernel clocks.
1327  */
1328 void timekeeping_warp_clock(void)
1329 {
1330         if (sys_tz.tz_minuteswest != 0) {
1331                 struct timespec64 adjust;
1332
1333                 persistent_clock_is_local = 1;
1334                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1335                 adjust.tv_nsec = 0;
1336                 timekeeping_inject_offset(&adjust);
1337         }
1338 }
1339
1340 /**
1341  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1342  *
1343  */
1344 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1345 {
1346         tk->tai_offset = tai_offset;
1347         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1348 }
1349
1350 /**
1351  * change_clocksource - Swaps clocksources if a new one is available
1352  *
1353  * Accumulates current time interval and initializes new clocksource
1354  */
1355 static int change_clocksource(void *data)
1356 {
1357         struct timekeeper *tk = &tk_core.timekeeper;
1358         struct clocksource *new, *old;
1359         unsigned long flags;
1360
1361         new = (struct clocksource *) data;
1362
1363         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1364         write_seqcount_begin(&tk_core.seq);
1365
1366         timekeeping_forward_now(tk);
1367         /*
1368          * If the cs is in module, get a module reference. Succeeds
1369          * for built-in code (owner == NULL) as well.
1370          */
1371         if (try_module_get(new->owner)) {
1372                 if (!new->enable || new->enable(new) == 0) {
1373                         old = tk->tkr_mono.clock;
1374                         tk_setup_internals(tk, new);
1375                         if (old->disable)
1376                                 old->disable(old);
1377                         module_put(old->owner);
1378                 } else {
1379                         module_put(new->owner);
1380                 }
1381         }
1382         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1383
1384         write_seqcount_end(&tk_core.seq);
1385         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1386
1387         return 0;
1388 }
1389
1390 /**
1391  * timekeeping_notify - Install a new clock source
1392  * @clock:              pointer to the clock source
1393  *
1394  * This function is called from clocksource.c after a new, better clock
1395  * source has been registered. The caller holds the clocksource_mutex.
1396  */
1397 int timekeeping_notify(struct clocksource *clock)
1398 {
1399         struct timekeeper *tk = &tk_core.timekeeper;
1400
1401         if (tk->tkr_mono.clock == clock)
1402                 return 0;
1403         stop_machine(change_clocksource, clock, NULL);
1404         tick_clock_notify();
1405         return tk->tkr_mono.clock == clock ? 0 : -1;
1406 }
1407
1408 /**
1409  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1410  * @ts:         pointer to the timespec64 to be set
1411  *
1412  * Returns the raw monotonic time (completely un-modified by ntp)
1413  */
1414 void ktime_get_raw_ts64(struct timespec64 *ts)
1415 {
1416         struct timekeeper *tk = &tk_core.timekeeper;
1417         unsigned int seq;
1418         u64 nsecs;
1419
1420         do {
1421                 seq = read_seqcount_begin(&tk_core.seq);
1422                 ts->tv_sec = tk->raw_sec;
1423                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1424
1425         } while (read_seqcount_retry(&tk_core.seq, seq));
1426
1427         ts->tv_nsec = 0;
1428         timespec64_add_ns(ts, nsecs);
1429 }
1430 EXPORT_SYMBOL(ktime_get_raw_ts64);
1431
1432
1433 /**
1434  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1435  */
1436 int timekeeping_valid_for_hres(void)
1437 {
1438         struct timekeeper *tk = &tk_core.timekeeper;
1439         unsigned int seq;
1440         int ret;
1441
1442         do {
1443                 seq = read_seqcount_begin(&tk_core.seq);
1444
1445                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1446
1447         } while (read_seqcount_retry(&tk_core.seq, seq));
1448
1449         return ret;
1450 }
1451
1452 /**
1453  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1454  */
1455 u64 timekeeping_max_deferment(void)
1456 {
1457         struct timekeeper *tk = &tk_core.timekeeper;
1458         unsigned int seq;
1459         u64 ret;
1460
1461         do {
1462                 seq = read_seqcount_begin(&tk_core.seq);
1463
1464                 ret = tk->tkr_mono.clock->max_idle_ns;
1465
1466         } while (read_seqcount_retry(&tk_core.seq, seq));
1467
1468         return ret;
1469 }
1470
1471 /**
1472  * read_persistent_clock64 -  Return time from the persistent clock.
1473  *
1474  * Weak dummy function for arches that do not yet support it.
1475  * Reads the time from the battery backed persistent clock.
1476  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1477  *
1478  *  XXX - Do be sure to remove it once all arches implement it.
1479  */
1480 void __weak read_persistent_clock64(struct timespec64 *ts)
1481 {
1482         ts->tv_sec = 0;
1483         ts->tv_nsec = 0;
1484 }
1485
1486 /**
1487  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1488  *                                        from the boot.
1489  *
1490  * Weak dummy function for arches that do not yet support it.
1491  * wall_time    - current time as returned by persistent clock
1492  * boot_offset  - offset that is defined as wall_time - boot_time
1493  * The default function calculates offset based on the current value of
1494  * local_clock(). This way architectures that support sched_clock() but don't
1495  * support dedicated boot time clock will provide the best estimate of the
1496  * boot time.
1497  */
1498 void __weak __init
1499 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1500                                      struct timespec64 *boot_offset)
1501 {
1502         read_persistent_clock64(wall_time);
1503         *boot_offset = ns_to_timespec64(local_clock());
1504 }
1505
1506 /*
1507  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1508  *
1509  * The flag starts of false and is only set when a suspend reaches
1510  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1511  * timekeeper clocksource is not stopping across suspend and has been
1512  * used to update sleep time. If the timekeeper clocksource has stopped
1513  * then the flag stays true and is used by the RTC resume code to decide
1514  * whether sleeptime must be injected and if so the flag gets false then.
1515  *
1516  * If a suspend fails before reaching timekeeping_resume() then the flag
1517  * stays false and prevents erroneous sleeptime injection.
1518  */
1519 static bool suspend_timing_needed;
1520
1521 /* Flag for if there is a persistent clock on this platform */
1522 static bool persistent_clock_exists;
1523
1524 /*
1525  * timekeeping_init - Initializes the clocksource and common timekeeping values
1526  */
1527 void __init timekeeping_init(void)
1528 {
1529         struct timespec64 wall_time, boot_offset, wall_to_mono;
1530         struct timekeeper *tk = &tk_core.timekeeper;
1531         struct clocksource *clock;
1532         unsigned long flags;
1533
1534         read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1535         if (timespec64_valid_settod(&wall_time) &&
1536             timespec64_to_ns(&wall_time) > 0) {
1537                 persistent_clock_exists = true;
1538         } else if (timespec64_to_ns(&wall_time) != 0) {
1539                 pr_warn("Persistent clock returned invalid value");
1540                 wall_time = (struct timespec64){0};
1541         }
1542
1543         if (timespec64_compare(&wall_time, &boot_offset) < 0)
1544                 boot_offset = (struct timespec64){0};
1545
1546         /*
1547          * We want set wall_to_mono, so the following is true:
1548          * wall time + wall_to_mono = boot time
1549          */
1550         wall_to_mono = timespec64_sub(boot_offset, wall_time);
1551
1552         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1553         write_seqcount_begin(&tk_core.seq);
1554         ntp_init();
1555
1556         clock = clocksource_default_clock();
1557         if (clock->enable)
1558                 clock->enable(clock);
1559         tk_setup_internals(tk, clock);
1560
1561         tk_set_xtime(tk, &wall_time);
1562         tk->raw_sec = 0;
1563
1564         tk_set_wall_to_mono(tk, wall_to_mono);
1565
1566         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1567
1568         write_seqcount_end(&tk_core.seq);
1569         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1570 }
1571
1572 /* time in seconds when suspend began for persistent clock */
1573 static struct timespec64 timekeeping_suspend_time;
1574
1575 /**
1576  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1577  * @delta: pointer to a timespec delta value
1578  *
1579  * Takes a timespec offset measuring a suspend interval and properly
1580  * adds the sleep offset to the timekeeping variables.
1581  */
1582 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1583                                            const struct timespec64 *delta)
1584 {
1585         if (!timespec64_valid_strict(delta)) {
1586                 printk_deferred(KERN_WARNING
1587                                 "__timekeeping_inject_sleeptime: Invalid "
1588                                 "sleep delta value!\n");
1589                 return;
1590         }
1591         tk_xtime_add(tk, delta);
1592         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1593         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1594         tk_debug_account_sleep_time(delta);
1595 }
1596
1597 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1598 /**
1599  * We have three kinds of time sources to use for sleep time
1600  * injection, the preference order is:
1601  * 1) non-stop clocksource
1602  * 2) persistent clock (ie: RTC accessible when irqs are off)
1603  * 3) RTC
1604  *
1605  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1606  * If system has neither 1) nor 2), 3) will be used finally.
1607  *
1608  *
1609  * If timekeeping has injected sleeptime via either 1) or 2),
1610  * 3) becomes needless, so in this case we don't need to call
1611  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1612  * means.
1613  */
1614 bool timekeeping_rtc_skipresume(void)
1615 {
1616         return !suspend_timing_needed;
1617 }
1618
1619 /**
1620  * 1) can be determined whether to use or not only when doing
1621  * timekeeping_resume() which is invoked after rtc_suspend(),
1622  * so we can't skip rtc_suspend() surely if system has 1).
1623  *
1624  * But if system has 2), 2) will definitely be used, so in this
1625  * case we don't need to call rtc_suspend(), and this is what
1626  * timekeeping_rtc_skipsuspend() means.
1627  */
1628 bool timekeeping_rtc_skipsuspend(void)
1629 {
1630         return persistent_clock_exists;
1631 }
1632
1633 /**
1634  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1635  * @delta: pointer to a timespec64 delta value
1636  *
1637  * This hook is for architectures that cannot support read_persistent_clock64
1638  * because their RTC/persistent clock is only accessible when irqs are enabled.
1639  * and also don't have an effective nonstop clocksource.
1640  *
1641  * This function should only be called by rtc_resume(), and allows
1642  * a suspend offset to be injected into the timekeeping values.
1643  */
1644 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1645 {
1646         struct timekeeper *tk = &tk_core.timekeeper;
1647         unsigned long flags;
1648
1649         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1650         write_seqcount_begin(&tk_core.seq);
1651
1652         suspend_timing_needed = false;
1653
1654         timekeeping_forward_now(tk);
1655
1656         __timekeeping_inject_sleeptime(tk, delta);
1657
1658         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1659
1660         write_seqcount_end(&tk_core.seq);
1661         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1662
1663         /* signal hrtimers about time change */
1664         clock_was_set();
1665 }
1666 #endif
1667
1668 /**
1669  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1670  */
1671 void timekeeping_resume(void)
1672 {
1673         struct timekeeper *tk = &tk_core.timekeeper;
1674         struct clocksource *clock = tk->tkr_mono.clock;
1675         unsigned long flags;
1676         struct timespec64 ts_new, ts_delta;
1677         u64 cycle_now, nsec;
1678         bool inject_sleeptime = false;
1679
1680         read_persistent_clock64(&ts_new);
1681
1682         clockevents_resume();
1683         clocksource_resume();
1684
1685         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1686         write_seqcount_begin(&tk_core.seq);
1687
1688         /*
1689          * After system resumes, we need to calculate the suspended time and
1690          * compensate it for the OS time. There are 3 sources that could be
1691          * used: Nonstop clocksource during suspend, persistent clock and rtc
1692          * device.
1693          *
1694          * One specific platform may have 1 or 2 or all of them, and the
1695          * preference will be:
1696          *      suspend-nonstop clocksource -> persistent clock -> rtc
1697          * The less preferred source will only be tried if there is no better
1698          * usable source. The rtc part is handled separately in rtc core code.
1699          */
1700         cycle_now = tk_clock_read(&tk->tkr_mono);
1701         nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1702         if (nsec > 0) {
1703                 ts_delta = ns_to_timespec64(nsec);
1704                 inject_sleeptime = true;
1705         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1706                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1707                 inject_sleeptime = true;
1708         }
1709
1710         if (inject_sleeptime) {
1711                 suspend_timing_needed = false;
1712                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1713         }
1714
1715         /* Re-base the last cycle value */
1716         tk->tkr_mono.cycle_last = cycle_now;
1717         tk->tkr_raw.cycle_last  = cycle_now;
1718
1719         tk->ntp_error = 0;
1720         timekeeping_suspended = 0;
1721         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1722         write_seqcount_end(&tk_core.seq);
1723         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1724
1725         touch_softlockup_watchdog();
1726
1727         tick_resume();
1728         hrtimers_resume();
1729 }
1730
1731 int timekeeping_suspend(void)
1732 {
1733         struct timekeeper *tk = &tk_core.timekeeper;
1734         unsigned long flags;
1735         struct timespec64               delta, delta_delta;
1736         static struct timespec64        old_delta;
1737         struct clocksource *curr_clock;
1738         u64 cycle_now;
1739
1740         read_persistent_clock64(&timekeeping_suspend_time);
1741
1742         /*
1743          * On some systems the persistent_clock can not be detected at
1744          * timekeeping_init by its return value, so if we see a valid
1745          * value returned, update the persistent_clock_exists flag.
1746          */
1747         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1748                 persistent_clock_exists = true;
1749
1750         suspend_timing_needed = true;
1751
1752         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1753         write_seqcount_begin(&tk_core.seq);
1754         timekeeping_forward_now(tk);
1755         timekeeping_suspended = 1;
1756
1757         /*
1758          * Since we've called forward_now, cycle_last stores the value
1759          * just read from the current clocksource. Save this to potentially
1760          * use in suspend timing.
1761          */
1762         curr_clock = tk->tkr_mono.clock;
1763         cycle_now = tk->tkr_mono.cycle_last;
1764         clocksource_start_suspend_timing(curr_clock, cycle_now);
1765
1766         if (persistent_clock_exists) {
1767                 /*
1768                  * To avoid drift caused by repeated suspend/resumes,
1769                  * which each can add ~1 second drift error,
1770                  * try to compensate so the difference in system time
1771                  * and persistent_clock time stays close to constant.
1772                  */
1773                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1774                 delta_delta = timespec64_sub(delta, old_delta);
1775                 if (abs(delta_delta.tv_sec) >= 2) {
1776                         /*
1777                          * if delta_delta is too large, assume time correction
1778                          * has occurred and set old_delta to the current delta.
1779                          */
1780                         old_delta = delta;
1781                 } else {
1782                         /* Otherwise try to adjust old_system to compensate */
1783                         timekeeping_suspend_time =
1784                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1785                 }
1786         }
1787
1788         timekeeping_update(tk, TK_MIRROR);
1789         halt_fast_timekeeper(tk);
1790         write_seqcount_end(&tk_core.seq);
1791         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1792
1793         tick_suspend();
1794         clocksource_suspend();
1795         clockevents_suspend();
1796
1797         return 0;
1798 }
1799
1800 /* sysfs resume/suspend bits for timekeeping */
1801 static struct syscore_ops timekeeping_syscore_ops = {
1802         .resume         = timekeeping_resume,
1803         .suspend        = timekeeping_suspend,
1804 };
1805
1806 static int __init timekeeping_init_ops(void)
1807 {
1808         register_syscore_ops(&timekeeping_syscore_ops);
1809         return 0;
1810 }
1811 device_initcall(timekeeping_init_ops);
1812
1813 /*
1814  * Apply a multiplier adjustment to the timekeeper
1815  */
1816 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1817                                                          s64 offset,
1818                                                          s32 mult_adj)
1819 {
1820         s64 interval = tk->cycle_interval;
1821
1822         if (mult_adj == 0) {
1823                 return;
1824         } else if (mult_adj == -1) {
1825                 interval = -interval;
1826                 offset = -offset;
1827         } else if (mult_adj != 1) {
1828                 interval *= mult_adj;
1829                 offset *= mult_adj;
1830         }
1831
1832         /*
1833          * So the following can be confusing.
1834          *
1835          * To keep things simple, lets assume mult_adj == 1 for now.
1836          *
1837          * When mult_adj != 1, remember that the interval and offset values
1838          * have been appropriately scaled so the math is the same.
1839          *
1840          * The basic idea here is that we're increasing the multiplier
1841          * by one, this causes the xtime_interval to be incremented by
1842          * one cycle_interval. This is because:
1843          *      xtime_interval = cycle_interval * mult
1844          * So if mult is being incremented by one:
1845          *      xtime_interval = cycle_interval * (mult + 1)
1846          * Its the same as:
1847          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1848          * Which can be shortened to:
1849          *      xtime_interval += cycle_interval
1850          *
1851          * So offset stores the non-accumulated cycles. Thus the current
1852          * time (in shifted nanoseconds) is:
1853          *      now = (offset * adj) + xtime_nsec
1854          * Now, even though we're adjusting the clock frequency, we have
1855          * to keep time consistent. In other words, we can't jump back
1856          * in time, and we also want to avoid jumping forward in time.
1857          *
1858          * So given the same offset value, we need the time to be the same
1859          * both before and after the freq adjustment.
1860          *      now = (offset * adj_1) + xtime_nsec_1
1861          *      now = (offset * adj_2) + xtime_nsec_2
1862          * So:
1863          *      (offset * adj_1) + xtime_nsec_1 =
1864          *              (offset * adj_2) + xtime_nsec_2
1865          * And we know:
1866          *      adj_2 = adj_1 + 1
1867          * So:
1868          *      (offset * adj_1) + xtime_nsec_1 =
1869          *              (offset * (adj_1+1)) + xtime_nsec_2
1870          *      (offset * adj_1) + xtime_nsec_1 =
1871          *              (offset * adj_1) + offset + xtime_nsec_2
1872          * Canceling the sides:
1873          *      xtime_nsec_1 = offset + xtime_nsec_2
1874          * Which gives us:
1875          *      xtime_nsec_2 = xtime_nsec_1 - offset
1876          * Which simplfies to:
1877          *      xtime_nsec -= offset
1878          */
1879         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1880                 /* NTP adjustment caused clocksource mult overflow */
1881                 WARN_ON_ONCE(1);
1882                 return;
1883         }
1884
1885         tk->tkr_mono.mult += mult_adj;
1886         tk->xtime_interval += interval;
1887         tk->tkr_mono.xtime_nsec -= offset;
1888 }
1889
1890 /*
1891  * Adjust the timekeeper's multiplier to the correct frequency
1892  * and also to reduce the accumulated error value.
1893  */
1894 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1895 {
1896         u32 mult;
1897
1898         /*
1899          * Determine the multiplier from the current NTP tick length.
1900          * Avoid expensive division when the tick length doesn't change.
1901          */
1902         if (likely(tk->ntp_tick == ntp_tick_length())) {
1903                 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1904         } else {
1905                 tk->ntp_tick = ntp_tick_length();
1906                 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1907                                  tk->xtime_remainder, tk->cycle_interval);
1908         }
1909
1910         /*
1911          * If the clock is behind the NTP time, increase the multiplier by 1
1912          * to catch up with it. If it's ahead and there was a remainder in the
1913          * tick division, the clock will slow down. Otherwise it will stay
1914          * ahead until the tick length changes to a non-divisible value.
1915          */
1916         tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1917         mult += tk->ntp_err_mult;
1918
1919         timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1920
1921         if (unlikely(tk->tkr_mono.clock->maxadj &&
1922                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1923                         > tk->tkr_mono.clock->maxadj))) {
1924                 printk_once(KERN_WARNING
1925                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1926                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1927                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1928         }
1929
1930         /*
1931          * It may be possible that when we entered this function, xtime_nsec
1932          * was very small.  Further, if we're slightly speeding the clocksource
1933          * in the code above, its possible the required corrective factor to
1934          * xtime_nsec could cause it to underflow.
1935          *
1936          * Now, since we have already accumulated the second and the NTP
1937          * subsystem has been notified via second_overflow(), we need to skip
1938          * the next update.
1939          */
1940         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1941                 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1942                                                         tk->tkr_mono.shift;
1943                 tk->xtime_sec--;
1944                 tk->skip_second_overflow = 1;
1945         }
1946 }
1947
1948 /**
1949  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1950  *
1951  * Helper function that accumulates the nsecs greater than a second
1952  * from the xtime_nsec field to the xtime_secs field.
1953  * It also calls into the NTP code to handle leapsecond processing.
1954  *
1955  */
1956 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1957 {
1958         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1959         unsigned int clock_set = 0;
1960
1961         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1962                 int leap;
1963
1964                 tk->tkr_mono.xtime_nsec -= nsecps;
1965                 tk->xtime_sec++;
1966
1967                 /*
1968                  * Skip NTP update if this second was accumulated before,
1969                  * i.e. xtime_nsec underflowed in timekeeping_adjust()
1970                  */
1971                 if (unlikely(tk->skip_second_overflow)) {
1972                         tk->skip_second_overflow = 0;
1973                         continue;
1974                 }
1975
1976                 /* Figure out if its a leap sec and apply if needed */
1977                 leap = second_overflow(tk->xtime_sec);
1978                 if (unlikely(leap)) {
1979                         struct timespec64 ts;
1980
1981                         tk->xtime_sec += leap;
1982
1983                         ts.tv_sec = leap;
1984                         ts.tv_nsec = 0;
1985                         tk_set_wall_to_mono(tk,
1986                                 timespec64_sub(tk->wall_to_monotonic, ts));
1987
1988                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1989
1990                         clock_set = TK_CLOCK_WAS_SET;
1991                 }
1992         }
1993         return clock_set;
1994 }
1995
1996 /**
1997  * logarithmic_accumulation - shifted accumulation of cycles
1998  *
1999  * This functions accumulates a shifted interval of cycles into
2000  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2001  * loop.
2002  *
2003  * Returns the unconsumed cycles.
2004  */
2005 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2006                                     u32 shift, unsigned int *clock_set)
2007 {
2008         u64 interval = tk->cycle_interval << shift;
2009         u64 snsec_per_sec;
2010
2011         /* If the offset is smaller than a shifted interval, do nothing */
2012         if (offset < interval)
2013                 return offset;
2014
2015         /* Accumulate one shifted interval */
2016         offset -= interval;
2017         tk->tkr_mono.cycle_last += interval;
2018         tk->tkr_raw.cycle_last  += interval;
2019
2020         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2021         *clock_set |= accumulate_nsecs_to_secs(tk);
2022
2023         /* Accumulate raw time */
2024         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2025         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2026         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2027                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2028                 tk->raw_sec++;
2029         }
2030
2031         /* Accumulate error between NTP and clock interval */
2032         tk->ntp_error += tk->ntp_tick << shift;
2033         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2034                                                 (tk->ntp_error_shift + shift);
2035
2036         return offset;
2037 }
2038
2039 /*
2040  * timekeeping_advance - Updates the timekeeper to the current time and
2041  * current NTP tick length
2042  */
2043 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2044 {
2045         struct timekeeper *real_tk = &tk_core.timekeeper;
2046         struct timekeeper *tk = &shadow_timekeeper;
2047         u64 offset;
2048         int shift = 0, maxshift;
2049         unsigned int clock_set = 0;
2050         unsigned long flags;
2051
2052         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2053
2054         /* Make sure we're fully resumed: */
2055         if (unlikely(timekeeping_suspended))
2056                 goto out;
2057
2058 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2059         offset = real_tk->cycle_interval;
2060
2061         if (mode != TK_ADV_TICK)
2062                 goto out;
2063 #else
2064         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2065                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2066
2067         /* Check if there's really nothing to do */
2068         if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2069                 goto out;
2070 #endif
2071
2072         /* Do some additional sanity checking */
2073         timekeeping_check_update(tk, offset);
2074
2075         /*
2076          * With NO_HZ we may have to accumulate many cycle_intervals
2077          * (think "ticks") worth of time at once. To do this efficiently,
2078          * we calculate the largest doubling multiple of cycle_intervals
2079          * that is smaller than the offset.  We then accumulate that
2080          * chunk in one go, and then try to consume the next smaller
2081          * doubled multiple.
2082          */
2083         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2084         shift = max(0, shift);
2085         /* Bound shift to one less than what overflows tick_length */
2086         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2087         shift = min(shift, maxshift);
2088         while (offset >= tk->cycle_interval) {
2089                 offset = logarithmic_accumulation(tk, offset, shift,
2090                                                         &clock_set);
2091                 if (offset < tk->cycle_interval<<shift)
2092                         shift--;
2093         }
2094
2095         /* Adjust the multiplier to correct NTP error */
2096         timekeeping_adjust(tk, offset);
2097
2098         /*
2099          * Finally, make sure that after the rounding
2100          * xtime_nsec isn't larger than NSEC_PER_SEC
2101          */
2102         clock_set |= accumulate_nsecs_to_secs(tk);
2103
2104         write_seqcount_begin(&tk_core.seq);
2105         /*
2106          * Update the real timekeeper.
2107          *
2108          * We could avoid this memcpy by switching pointers, but that
2109          * requires changes to all other timekeeper usage sites as
2110          * well, i.e. move the timekeeper pointer getter into the
2111          * spinlocked/seqcount protected sections. And we trade this
2112          * memcpy under the tk_core.seq against one before we start
2113          * updating.
2114          */
2115         timekeeping_update(tk, clock_set);
2116         memcpy(real_tk, tk, sizeof(*tk));
2117         /* The memcpy must come last. Do not put anything here! */
2118         write_seqcount_end(&tk_core.seq);
2119 out:
2120         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2121         if (clock_set)
2122                 /* Have to call _delayed version, since in irq context*/
2123                 clock_was_set_delayed();
2124 }
2125
2126 /**
2127  * update_wall_time - Uses the current clocksource to increment the wall time
2128  *
2129  */
2130 void update_wall_time(void)
2131 {
2132         timekeeping_advance(TK_ADV_TICK);
2133 }
2134
2135 /**
2136  * getboottime64 - Return the real time of system boot.
2137  * @ts:         pointer to the timespec64 to be set
2138  *
2139  * Returns the wall-time of boot in a timespec64.
2140  *
2141  * This is based on the wall_to_monotonic offset and the total suspend
2142  * time. Calls to settimeofday will affect the value returned (which
2143  * basically means that however wrong your real time clock is at boot time,
2144  * you get the right time here).
2145  */
2146 void getboottime64(struct timespec64 *ts)
2147 {
2148         struct timekeeper *tk = &tk_core.timekeeper;
2149         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2150
2151         *ts = ktime_to_timespec64(t);
2152 }
2153 EXPORT_SYMBOL_GPL(getboottime64);
2154
2155 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2156 {
2157         struct timekeeper *tk = &tk_core.timekeeper;
2158         unsigned int seq;
2159
2160         do {
2161                 seq = read_seqcount_begin(&tk_core.seq);
2162
2163                 *ts = tk_xtime(tk);
2164         } while (read_seqcount_retry(&tk_core.seq, seq));
2165 }
2166 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2167
2168 void ktime_get_coarse_ts64(struct timespec64 *ts)
2169 {
2170         struct timekeeper *tk = &tk_core.timekeeper;
2171         struct timespec64 now, mono;
2172         unsigned int seq;
2173
2174         do {
2175                 seq = read_seqcount_begin(&tk_core.seq);
2176
2177                 now = tk_xtime(tk);
2178                 mono = tk->wall_to_monotonic;
2179         } while (read_seqcount_retry(&tk_core.seq, seq));
2180
2181         set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2182                                 now.tv_nsec + mono.tv_nsec);
2183 }
2184 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2185
2186 /*
2187  * Must hold jiffies_lock
2188  */
2189 void do_timer(unsigned long ticks)
2190 {
2191         jiffies_64 += ticks;
2192         calc_global_load(ticks);
2193 }
2194
2195 /**
2196  * ktime_get_update_offsets_now - hrtimer helper
2197  * @cwsseq:     pointer to check and store the clock was set sequence number
2198  * @offs_real:  pointer to storage for monotonic -> realtime offset
2199  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2200  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2201  *
2202  * Returns current monotonic time and updates the offsets if the
2203  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2204  * different.
2205  *
2206  * Called from hrtimer_interrupt() or retrigger_next_event()
2207  */
2208 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2209                                      ktime_t *offs_boot, ktime_t *offs_tai)
2210 {
2211         struct timekeeper *tk = &tk_core.timekeeper;
2212         unsigned int seq;
2213         ktime_t base;
2214         u64 nsecs;
2215
2216         do {
2217                 seq = read_seqcount_begin(&tk_core.seq);
2218
2219                 base = tk->tkr_mono.base;
2220                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2221                 base = ktime_add_ns(base, nsecs);
2222
2223                 if (*cwsseq != tk->clock_was_set_seq) {
2224                         *cwsseq = tk->clock_was_set_seq;
2225                         *offs_real = tk->offs_real;
2226                         *offs_boot = tk->offs_boot;
2227                         *offs_tai = tk->offs_tai;
2228                 }
2229
2230                 /* Handle leapsecond insertion adjustments */
2231                 if (unlikely(base >= tk->next_leap_ktime))
2232                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2233
2234         } while (read_seqcount_retry(&tk_core.seq, seq));
2235
2236         return base;
2237 }
2238
2239 /**
2240  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2241  */
2242 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2243 {
2244         if (txc->modes & ADJ_ADJTIME) {
2245                 /* singleshot must not be used with any other mode bits */
2246                 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2247                         return -EINVAL;
2248                 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2249                     !capable(CAP_SYS_TIME))
2250                         return -EPERM;
2251         } else {
2252                 /* In order to modify anything, you gotta be super-user! */
2253                 if (txc->modes && !capable(CAP_SYS_TIME))
2254                         return -EPERM;
2255                 /*
2256                  * if the quartz is off by more than 10% then
2257                  * something is VERY wrong!
2258                  */
2259                 if (txc->modes & ADJ_TICK &&
2260                     (txc->tick <  900000/USER_HZ ||
2261                      txc->tick > 1100000/USER_HZ))
2262                         return -EINVAL;
2263         }
2264
2265         if (txc->modes & ADJ_SETOFFSET) {
2266                 /* In order to inject time, you gotta be super-user! */
2267                 if (!capable(CAP_SYS_TIME))
2268                         return -EPERM;
2269
2270                 /*
2271                  * Validate if a timespec/timeval used to inject a time
2272                  * offset is valid.  Offsets can be postive or negative, so
2273                  * we don't check tv_sec. The value of the timeval/timespec
2274                  * is the sum of its fields,but *NOTE*:
2275                  * The field tv_usec/tv_nsec must always be non-negative and
2276                  * we can't have more nanoseconds/microseconds than a second.
2277                  */
2278                 if (txc->time.tv_usec < 0)
2279                         return -EINVAL;
2280
2281                 if (txc->modes & ADJ_NANO) {
2282                         if (txc->time.tv_usec >= NSEC_PER_SEC)
2283                                 return -EINVAL;
2284                 } else {
2285                         if (txc->time.tv_usec >= USEC_PER_SEC)
2286                                 return -EINVAL;
2287                 }
2288         }
2289
2290         /*
2291          * Check for potential multiplication overflows that can
2292          * only happen on 64-bit systems:
2293          */
2294         if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2295                 if (LLONG_MIN / PPM_SCALE > txc->freq)
2296                         return -EINVAL;
2297                 if (LLONG_MAX / PPM_SCALE < txc->freq)
2298                         return -EINVAL;
2299         }
2300
2301         return 0;
2302 }
2303
2304
2305 /**
2306  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2307  */
2308 int do_adjtimex(struct __kernel_timex *txc)
2309 {
2310         struct timekeeper *tk = &tk_core.timekeeper;
2311         struct audit_ntp_data ad;
2312         unsigned long flags;
2313         struct timespec64 ts;
2314         s32 orig_tai, tai;
2315         int ret;
2316
2317         /* Validate the data before disabling interrupts */
2318         ret = timekeeping_validate_timex(txc);
2319         if (ret)
2320                 return ret;
2321
2322         if (txc->modes & ADJ_SETOFFSET) {
2323                 struct timespec64 delta;
2324                 delta.tv_sec  = txc->time.tv_sec;
2325                 delta.tv_nsec = txc->time.tv_usec;
2326                 if (!(txc->modes & ADJ_NANO))
2327                         delta.tv_nsec *= 1000;
2328                 ret = timekeeping_inject_offset(&delta);
2329                 if (ret)
2330                         return ret;
2331
2332                 audit_tk_injoffset(delta);
2333         }
2334
2335         audit_ntp_init(&ad);
2336
2337         ktime_get_real_ts64(&ts);
2338
2339         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2340         write_seqcount_begin(&tk_core.seq);
2341
2342         orig_tai = tai = tk->tai_offset;
2343         ret = __do_adjtimex(txc, &ts, &tai, &ad);
2344
2345         if (tai != orig_tai) {
2346                 __timekeeping_set_tai_offset(tk, tai);
2347                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2348         }
2349         tk_update_leap_state(tk);
2350
2351         write_seqcount_end(&tk_core.seq);
2352         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2353
2354         audit_ntp_log(&ad);
2355
2356         /* Update the multiplier immediately if frequency was set directly */
2357         if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2358                 timekeeping_advance(TK_ADV_FREQ);
2359
2360         if (tai != orig_tai)
2361                 clock_was_set();
2362
2363         ntp_notify_cmos_timer();
2364
2365         return ret;
2366 }
2367
2368 #ifdef CONFIG_NTP_PPS
2369 /**
2370  * hardpps() - Accessor function to NTP __hardpps function
2371  */
2372 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2373 {
2374         unsigned long flags;
2375
2376         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2377         write_seqcount_begin(&tk_core.seq);
2378
2379         __hardpps(phase_ts, raw_ts);
2380
2381         write_seqcount_end(&tk_core.seq);
2382         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2383 }
2384 EXPORT_SYMBOL(hardpps);
2385 #endif /* CONFIG_NTP_PPS */
2386
2387 /**
2388  * xtime_update() - advances the timekeeping infrastructure
2389  * @ticks:      number of ticks, that have elapsed since the last call.
2390  *
2391  * Must be called with interrupts disabled.
2392  */
2393 void xtime_update(unsigned long ticks)
2394 {
2395         write_seqlock(&jiffies_lock);
2396         do_timer(ticks);
2397         write_sequnlock(&jiffies_lock);
2398         update_wall_time();
2399 }