Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-microblaze.git] / kernel / time / timekeeping.c
1 /*
2  *  linux/kernel/time/timekeeping.c
3  *
4  *  Kernel timekeeping code and accessor functions
5  *
6  *  This code was moved from linux/kernel/timer.c.
7  *  Please see that file for copyright and history logs.
8  *
9  */
10
11 #include <linux/timekeeper_internal.h>
12 #include <linux/module.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/nmi.h>
18 #include <linux/sched.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/clock.h>
21 #include <linux/syscore_ops.h>
22 #include <linux/clocksource.h>
23 #include <linux/jiffies.h>
24 #include <linux/time.h>
25 #include <linux/tick.h>
26 #include <linux/stop_machine.h>
27 #include <linux/pvclock_gtod.h>
28 #include <linux/compiler.h>
29
30 #include "tick-internal.h"
31 #include "ntp_internal.h"
32 #include "timekeeping_internal.h"
33
34 #define TK_CLEAR_NTP            (1 << 0)
35 #define TK_MIRROR               (1 << 1)
36 #define TK_CLOCK_WAS_SET        (1 << 2)
37
38 enum timekeeping_adv_mode {
39         /* Update timekeeper when a tick has passed */
40         TK_ADV_TICK,
41
42         /* Update timekeeper on a direct frequency change */
43         TK_ADV_FREQ
44 };
45
46 /*
47  * The most important data for readout fits into a single 64 byte
48  * cache line.
49  */
50 static struct {
51         seqcount_t              seq;
52         struct timekeeper       timekeeper;
53 } tk_core ____cacheline_aligned;
54
55 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
56 static struct timekeeper shadow_timekeeper;
57
58 /**
59  * struct tk_fast - NMI safe timekeeper
60  * @seq:        Sequence counter for protecting updates. The lowest bit
61  *              is the index for the tk_read_base array
62  * @base:       tk_read_base array. Access is indexed by the lowest bit of
63  *              @seq.
64  *
65  * See @update_fast_timekeeper() below.
66  */
67 struct tk_fast {
68         seqcount_t              seq;
69         struct tk_read_base     base[2];
70 };
71
72 /* Suspend-time cycles value for halted fast timekeeper. */
73 static u64 cycles_at_suspend;
74
75 static u64 dummy_clock_read(struct clocksource *cs)
76 {
77         return cycles_at_suspend;
78 }
79
80 static struct clocksource dummy_clock = {
81         .read = dummy_clock_read,
82 };
83
84 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
85         .base[0] = { .clock = &dummy_clock, },
86         .base[1] = { .clock = &dummy_clock, },
87 };
88
89 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
90         .base[0] = { .clock = &dummy_clock, },
91         .base[1] = { .clock = &dummy_clock, },
92 };
93
94 /* flag for if timekeeping is suspended */
95 int __read_mostly timekeeping_suspended;
96
97 static inline void tk_normalize_xtime(struct timekeeper *tk)
98 {
99         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
100                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
101                 tk->xtime_sec++;
102         }
103         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
104                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
105                 tk->raw_sec++;
106         }
107 }
108
109 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
110 {
111         struct timespec64 ts;
112
113         ts.tv_sec = tk->xtime_sec;
114         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
115         return ts;
116 }
117
118 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
119 {
120         tk->xtime_sec = ts->tv_sec;
121         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
122 }
123
124 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
125 {
126         tk->xtime_sec += ts->tv_sec;
127         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
128         tk_normalize_xtime(tk);
129 }
130
131 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
132 {
133         struct timespec64 tmp;
134
135         /*
136          * Verify consistency of: offset_real = -wall_to_monotonic
137          * before modifying anything
138          */
139         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
140                                         -tk->wall_to_monotonic.tv_nsec);
141         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
142         tk->wall_to_monotonic = wtm;
143         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
144         tk->offs_real = timespec64_to_ktime(tmp);
145         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
146 }
147
148 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
149 {
150         tk->offs_boot = ktime_add(tk->offs_boot, delta);
151 }
152
153 /*
154  * tk_clock_read - atomic clocksource read() helper
155  *
156  * This helper is necessary to use in the read paths because, while the
157  * seqlock ensures we don't return a bad value while structures are updated,
158  * it doesn't protect from potential crashes. There is the possibility that
159  * the tkr's clocksource may change between the read reference, and the
160  * clock reference passed to the read function.  This can cause crashes if
161  * the wrong clocksource is passed to the wrong read function.
162  * This isn't necessary to use when holding the timekeeper_lock or doing
163  * a read of the fast-timekeeper tkrs (which is protected by its own locking
164  * and update logic).
165  */
166 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
167 {
168         struct clocksource *clock = READ_ONCE(tkr->clock);
169
170         return clock->read(clock);
171 }
172
173 #ifdef CONFIG_DEBUG_TIMEKEEPING
174 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
175
176 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
177 {
178
179         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
180         const char *name = tk->tkr_mono.clock->name;
181
182         if (offset > max_cycles) {
183                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
184                                 offset, name, max_cycles);
185                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
186         } else {
187                 if (offset > (max_cycles >> 1)) {
188                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
189                                         offset, name, max_cycles >> 1);
190                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
191                 }
192         }
193
194         if (tk->underflow_seen) {
195                 if (jiffies - tk->last_warning > WARNING_FREQ) {
196                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
197                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
198                         printk_deferred("         Your kernel is probably still fine.\n");
199                         tk->last_warning = jiffies;
200                 }
201                 tk->underflow_seen = 0;
202         }
203
204         if (tk->overflow_seen) {
205                 if (jiffies - tk->last_warning > WARNING_FREQ) {
206                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
207                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
208                         printk_deferred("         Your kernel is probably still fine.\n");
209                         tk->last_warning = jiffies;
210                 }
211                 tk->overflow_seen = 0;
212         }
213 }
214
215 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
216 {
217         struct timekeeper *tk = &tk_core.timekeeper;
218         u64 now, last, mask, max, delta;
219         unsigned int seq;
220
221         /*
222          * Since we're called holding a seqlock, the data may shift
223          * under us while we're doing the calculation. This can cause
224          * false positives, since we'd note a problem but throw the
225          * results away. So nest another seqlock here to atomically
226          * grab the points we are checking with.
227          */
228         do {
229                 seq = read_seqcount_begin(&tk_core.seq);
230                 now = tk_clock_read(tkr);
231                 last = tkr->cycle_last;
232                 mask = tkr->mask;
233                 max = tkr->clock->max_cycles;
234         } while (read_seqcount_retry(&tk_core.seq, seq));
235
236         delta = clocksource_delta(now, last, mask);
237
238         /*
239          * Try to catch underflows by checking if we are seeing small
240          * mask-relative negative values.
241          */
242         if (unlikely((~delta & mask) < (mask >> 3))) {
243                 tk->underflow_seen = 1;
244                 delta = 0;
245         }
246
247         /* Cap delta value to the max_cycles values to avoid mult overflows */
248         if (unlikely(delta > max)) {
249                 tk->overflow_seen = 1;
250                 delta = tkr->clock->max_cycles;
251         }
252
253         return delta;
254 }
255 #else
256 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
257 {
258 }
259 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
260 {
261         u64 cycle_now, delta;
262
263         /* read clocksource */
264         cycle_now = tk_clock_read(tkr);
265
266         /* calculate the delta since the last update_wall_time */
267         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
268
269         return delta;
270 }
271 #endif
272
273 /**
274  * tk_setup_internals - Set up internals to use clocksource clock.
275  *
276  * @tk:         The target timekeeper to setup.
277  * @clock:              Pointer to clocksource.
278  *
279  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
280  * pair and interval request.
281  *
282  * Unless you're the timekeeping code, you should not be using this!
283  */
284 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
285 {
286         u64 interval;
287         u64 tmp, ntpinterval;
288         struct clocksource *old_clock;
289
290         ++tk->cs_was_changed_seq;
291         old_clock = tk->tkr_mono.clock;
292         tk->tkr_mono.clock = clock;
293         tk->tkr_mono.mask = clock->mask;
294         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
295
296         tk->tkr_raw.clock = clock;
297         tk->tkr_raw.mask = clock->mask;
298         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
299
300         /* Do the ns -> cycle conversion first, using original mult */
301         tmp = NTP_INTERVAL_LENGTH;
302         tmp <<= clock->shift;
303         ntpinterval = tmp;
304         tmp += clock->mult/2;
305         do_div(tmp, clock->mult);
306         if (tmp == 0)
307                 tmp = 1;
308
309         interval = (u64) tmp;
310         tk->cycle_interval = interval;
311
312         /* Go back from cycles -> shifted ns */
313         tk->xtime_interval = interval * clock->mult;
314         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
315         tk->raw_interval = interval * clock->mult;
316
317          /* if changing clocks, convert xtime_nsec shift units */
318         if (old_clock) {
319                 int shift_change = clock->shift - old_clock->shift;
320                 if (shift_change < 0) {
321                         tk->tkr_mono.xtime_nsec >>= -shift_change;
322                         tk->tkr_raw.xtime_nsec >>= -shift_change;
323                 } else {
324                         tk->tkr_mono.xtime_nsec <<= shift_change;
325                         tk->tkr_raw.xtime_nsec <<= shift_change;
326                 }
327         }
328
329         tk->tkr_mono.shift = clock->shift;
330         tk->tkr_raw.shift = clock->shift;
331
332         tk->ntp_error = 0;
333         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
334         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
335
336         /*
337          * The timekeeper keeps its own mult values for the currently
338          * active clocksource. These value will be adjusted via NTP
339          * to counteract clock drifting.
340          */
341         tk->tkr_mono.mult = clock->mult;
342         tk->tkr_raw.mult = clock->mult;
343         tk->ntp_err_mult = 0;
344         tk->skip_second_overflow = 0;
345 }
346
347 /* Timekeeper helper functions. */
348
349 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
350 static u32 default_arch_gettimeoffset(void) { return 0; }
351 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
352 #else
353 static inline u32 arch_gettimeoffset(void) { return 0; }
354 #endif
355
356 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
357 {
358         u64 nsec;
359
360         nsec = delta * tkr->mult + tkr->xtime_nsec;
361         nsec >>= tkr->shift;
362
363         /* If arch requires, add in get_arch_timeoffset() */
364         return nsec + arch_gettimeoffset();
365 }
366
367 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
368 {
369         u64 delta;
370
371         delta = timekeeping_get_delta(tkr);
372         return timekeeping_delta_to_ns(tkr, delta);
373 }
374
375 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
376 {
377         u64 delta;
378
379         /* calculate the delta since the last update_wall_time */
380         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
381         return timekeeping_delta_to_ns(tkr, delta);
382 }
383
384 /**
385  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
386  * @tkr: Timekeeping readout base from which we take the update
387  *
388  * We want to use this from any context including NMI and tracing /
389  * instrumenting the timekeeping code itself.
390  *
391  * Employ the latch technique; see @raw_write_seqcount_latch.
392  *
393  * So if a NMI hits the update of base[0] then it will use base[1]
394  * which is still consistent. In the worst case this can result is a
395  * slightly wrong timestamp (a few nanoseconds). See
396  * @ktime_get_mono_fast_ns.
397  */
398 static void update_fast_timekeeper(const struct tk_read_base *tkr,
399                                    struct tk_fast *tkf)
400 {
401         struct tk_read_base *base = tkf->base;
402
403         /* Force readers off to base[1] */
404         raw_write_seqcount_latch(&tkf->seq);
405
406         /* Update base[0] */
407         memcpy(base, tkr, sizeof(*base));
408
409         /* Force readers back to base[0] */
410         raw_write_seqcount_latch(&tkf->seq);
411
412         /* Update base[1] */
413         memcpy(base + 1, base, sizeof(*base));
414 }
415
416 /**
417  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
418  *
419  * This timestamp is not guaranteed to be monotonic across an update.
420  * The timestamp is calculated by:
421  *
422  *      now = base_mono + clock_delta * slope
423  *
424  * So if the update lowers the slope, readers who are forced to the
425  * not yet updated second array are still using the old steeper slope.
426  *
427  * tmono
428  * ^
429  * |    o  n
430  * |   o n
431  * |  u
432  * | o
433  * |o
434  * |12345678---> reader order
435  *
436  * o = old slope
437  * u = update
438  * n = new slope
439  *
440  * So reader 6 will observe time going backwards versus reader 5.
441  *
442  * While other CPUs are likely to be able observe that, the only way
443  * for a CPU local observation is when an NMI hits in the middle of
444  * the update. Timestamps taken from that NMI context might be ahead
445  * of the following timestamps. Callers need to be aware of that and
446  * deal with it.
447  */
448 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
449 {
450         struct tk_read_base *tkr;
451         unsigned int seq;
452         u64 now;
453
454         do {
455                 seq = raw_read_seqcount_latch(&tkf->seq);
456                 tkr = tkf->base + (seq & 0x01);
457                 now = ktime_to_ns(tkr->base);
458
459                 now += timekeeping_delta_to_ns(tkr,
460                                 clocksource_delta(
461                                         tk_clock_read(tkr),
462                                         tkr->cycle_last,
463                                         tkr->mask));
464         } while (read_seqcount_retry(&tkf->seq, seq));
465
466         return now;
467 }
468
469 u64 ktime_get_mono_fast_ns(void)
470 {
471         return __ktime_get_fast_ns(&tk_fast_mono);
472 }
473 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
474
475 u64 ktime_get_raw_fast_ns(void)
476 {
477         return __ktime_get_fast_ns(&tk_fast_raw);
478 }
479 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
480
481 /**
482  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
483  *
484  * To keep it NMI safe since we're accessing from tracing, we're not using a
485  * separate timekeeper with updates to monotonic clock and boot offset
486  * protected with seqlocks. This has the following minor side effects:
487  *
488  * (1) Its possible that a timestamp be taken after the boot offset is updated
489  * but before the timekeeper is updated. If this happens, the new boot offset
490  * is added to the old timekeeping making the clock appear to update slightly
491  * earlier:
492  *    CPU 0                                        CPU 1
493  *    timekeeping_inject_sleeptime64()
494  *    __timekeeping_inject_sleeptime(tk, delta);
495  *                                                 timestamp();
496  *    timekeeping_update(tk, TK_CLEAR_NTP...);
497  *
498  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
499  * partially updated.  Since the tk->offs_boot update is a rare event, this
500  * should be a rare occurrence which postprocessing should be able to handle.
501  */
502 u64 notrace ktime_get_boot_fast_ns(void)
503 {
504         struct timekeeper *tk = &tk_core.timekeeper;
505
506         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
507 }
508 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
509
510
511 /*
512  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
513  */
514 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
515 {
516         struct tk_read_base *tkr;
517         unsigned int seq;
518         u64 now;
519
520         do {
521                 seq = raw_read_seqcount_latch(&tkf->seq);
522                 tkr = tkf->base + (seq & 0x01);
523                 now = ktime_to_ns(tkr->base_real);
524
525                 now += timekeeping_delta_to_ns(tkr,
526                                 clocksource_delta(
527                                         tk_clock_read(tkr),
528                                         tkr->cycle_last,
529                                         tkr->mask));
530         } while (read_seqcount_retry(&tkf->seq, seq));
531
532         return now;
533 }
534
535 /**
536  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
537  */
538 u64 ktime_get_real_fast_ns(void)
539 {
540         return __ktime_get_real_fast_ns(&tk_fast_mono);
541 }
542 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
543
544 /**
545  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
546  * @tk: Timekeeper to snapshot.
547  *
548  * It generally is unsafe to access the clocksource after timekeeping has been
549  * suspended, so take a snapshot of the readout base of @tk and use it as the
550  * fast timekeeper's readout base while suspended.  It will return the same
551  * number of cycles every time until timekeeping is resumed at which time the
552  * proper readout base for the fast timekeeper will be restored automatically.
553  */
554 static void halt_fast_timekeeper(const struct timekeeper *tk)
555 {
556         static struct tk_read_base tkr_dummy;
557         const struct tk_read_base *tkr = &tk->tkr_mono;
558
559         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
560         cycles_at_suspend = tk_clock_read(tkr);
561         tkr_dummy.clock = &dummy_clock;
562         tkr_dummy.base_real = tkr->base + tk->offs_real;
563         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
564
565         tkr = &tk->tkr_raw;
566         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
567         tkr_dummy.clock = &dummy_clock;
568         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
569 }
570
571 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
572
573 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
574 {
575         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
576 }
577
578 /**
579  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
580  */
581 int pvclock_gtod_register_notifier(struct notifier_block *nb)
582 {
583         struct timekeeper *tk = &tk_core.timekeeper;
584         unsigned long flags;
585         int ret;
586
587         raw_spin_lock_irqsave(&timekeeper_lock, flags);
588         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
589         update_pvclock_gtod(tk, true);
590         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
591
592         return ret;
593 }
594 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
595
596 /**
597  * pvclock_gtod_unregister_notifier - unregister a pvclock
598  * timedata update listener
599  */
600 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
601 {
602         unsigned long flags;
603         int ret;
604
605         raw_spin_lock_irqsave(&timekeeper_lock, flags);
606         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
607         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
608
609         return ret;
610 }
611 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
612
613 /*
614  * tk_update_leap_state - helper to update the next_leap_ktime
615  */
616 static inline void tk_update_leap_state(struct timekeeper *tk)
617 {
618         tk->next_leap_ktime = ntp_get_next_leap();
619         if (tk->next_leap_ktime != KTIME_MAX)
620                 /* Convert to monotonic time */
621                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
622 }
623
624 /*
625  * Update the ktime_t based scalar nsec members of the timekeeper
626  */
627 static inline void tk_update_ktime_data(struct timekeeper *tk)
628 {
629         u64 seconds;
630         u32 nsec;
631
632         /*
633          * The xtime based monotonic readout is:
634          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
635          * The ktime based monotonic readout is:
636          *      nsec = base_mono + now();
637          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
638          */
639         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
640         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
641         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
642
643         /*
644          * The sum of the nanoseconds portions of xtime and
645          * wall_to_monotonic can be greater/equal one second. Take
646          * this into account before updating tk->ktime_sec.
647          */
648         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
649         if (nsec >= NSEC_PER_SEC)
650                 seconds++;
651         tk->ktime_sec = seconds;
652
653         /* Update the monotonic raw base */
654         tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
655 }
656
657 /* must hold timekeeper_lock */
658 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
659 {
660         if (action & TK_CLEAR_NTP) {
661                 tk->ntp_error = 0;
662                 ntp_clear();
663         }
664
665         tk_update_leap_state(tk);
666         tk_update_ktime_data(tk);
667
668         update_vsyscall(tk);
669         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
670
671         tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
672         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
673         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
674
675         if (action & TK_CLOCK_WAS_SET)
676                 tk->clock_was_set_seq++;
677         /*
678          * The mirroring of the data to the shadow-timekeeper needs
679          * to happen last here to ensure we don't over-write the
680          * timekeeper structure on the next update with stale data
681          */
682         if (action & TK_MIRROR)
683                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
684                        sizeof(tk_core.timekeeper));
685 }
686
687 /**
688  * timekeeping_forward_now - update clock to the current time
689  *
690  * Forward the current clock to update its state since the last call to
691  * update_wall_time(). This is useful before significant clock changes,
692  * as it avoids having to deal with this time offset explicitly.
693  */
694 static void timekeeping_forward_now(struct timekeeper *tk)
695 {
696         u64 cycle_now, delta;
697
698         cycle_now = tk_clock_read(&tk->tkr_mono);
699         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
700         tk->tkr_mono.cycle_last = cycle_now;
701         tk->tkr_raw.cycle_last  = cycle_now;
702
703         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
704
705         /* If arch requires, add in get_arch_timeoffset() */
706         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
707
708
709         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
710
711         /* If arch requires, add in get_arch_timeoffset() */
712         tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
713
714         tk_normalize_xtime(tk);
715 }
716
717 /**
718  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
719  * @ts:         pointer to the timespec to be set
720  *
721  * Returns the time of day in a timespec64 (WARN if suspended).
722  */
723 void ktime_get_real_ts64(struct timespec64 *ts)
724 {
725         struct timekeeper *tk = &tk_core.timekeeper;
726         unsigned long seq;
727         u64 nsecs;
728
729         WARN_ON(timekeeping_suspended);
730
731         do {
732                 seq = read_seqcount_begin(&tk_core.seq);
733
734                 ts->tv_sec = tk->xtime_sec;
735                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
736
737         } while (read_seqcount_retry(&tk_core.seq, seq));
738
739         ts->tv_nsec = 0;
740         timespec64_add_ns(ts, nsecs);
741 }
742 EXPORT_SYMBOL(ktime_get_real_ts64);
743
744 ktime_t ktime_get(void)
745 {
746         struct timekeeper *tk = &tk_core.timekeeper;
747         unsigned int seq;
748         ktime_t base;
749         u64 nsecs;
750
751         WARN_ON(timekeeping_suspended);
752
753         do {
754                 seq = read_seqcount_begin(&tk_core.seq);
755                 base = tk->tkr_mono.base;
756                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
757
758         } while (read_seqcount_retry(&tk_core.seq, seq));
759
760         return ktime_add_ns(base, nsecs);
761 }
762 EXPORT_SYMBOL_GPL(ktime_get);
763
764 u32 ktime_get_resolution_ns(void)
765 {
766         struct timekeeper *tk = &tk_core.timekeeper;
767         unsigned int seq;
768         u32 nsecs;
769
770         WARN_ON(timekeeping_suspended);
771
772         do {
773                 seq = read_seqcount_begin(&tk_core.seq);
774                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
775         } while (read_seqcount_retry(&tk_core.seq, seq));
776
777         return nsecs;
778 }
779 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
780
781 static ktime_t *offsets[TK_OFFS_MAX] = {
782         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
783         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
784         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
785 };
786
787 ktime_t ktime_get_with_offset(enum tk_offsets offs)
788 {
789         struct timekeeper *tk = &tk_core.timekeeper;
790         unsigned int seq;
791         ktime_t base, *offset = offsets[offs];
792         u64 nsecs;
793
794         WARN_ON(timekeeping_suspended);
795
796         do {
797                 seq = read_seqcount_begin(&tk_core.seq);
798                 base = ktime_add(tk->tkr_mono.base, *offset);
799                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
800
801         } while (read_seqcount_retry(&tk_core.seq, seq));
802
803         return ktime_add_ns(base, nsecs);
804
805 }
806 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
807
808 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
809 {
810         struct timekeeper *tk = &tk_core.timekeeper;
811         unsigned int seq;
812         ktime_t base, *offset = offsets[offs];
813
814         WARN_ON(timekeeping_suspended);
815
816         do {
817                 seq = read_seqcount_begin(&tk_core.seq);
818                 base = ktime_add(tk->tkr_mono.base, *offset);
819
820         } while (read_seqcount_retry(&tk_core.seq, seq));
821
822         return base;
823
824 }
825 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
826
827 /**
828  * ktime_mono_to_any() - convert mononotic time to any other time
829  * @tmono:      time to convert.
830  * @offs:       which offset to use
831  */
832 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
833 {
834         ktime_t *offset = offsets[offs];
835         unsigned long seq;
836         ktime_t tconv;
837
838         do {
839                 seq = read_seqcount_begin(&tk_core.seq);
840                 tconv = ktime_add(tmono, *offset);
841         } while (read_seqcount_retry(&tk_core.seq, seq));
842
843         return tconv;
844 }
845 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
846
847 /**
848  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
849  */
850 ktime_t ktime_get_raw(void)
851 {
852         struct timekeeper *tk = &tk_core.timekeeper;
853         unsigned int seq;
854         ktime_t base;
855         u64 nsecs;
856
857         do {
858                 seq = read_seqcount_begin(&tk_core.seq);
859                 base = tk->tkr_raw.base;
860                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
861
862         } while (read_seqcount_retry(&tk_core.seq, seq));
863
864         return ktime_add_ns(base, nsecs);
865 }
866 EXPORT_SYMBOL_GPL(ktime_get_raw);
867
868 /**
869  * ktime_get_ts64 - get the monotonic clock in timespec64 format
870  * @ts:         pointer to timespec variable
871  *
872  * The function calculates the monotonic clock from the realtime
873  * clock and the wall_to_monotonic offset and stores the result
874  * in normalized timespec64 format in the variable pointed to by @ts.
875  */
876 void ktime_get_ts64(struct timespec64 *ts)
877 {
878         struct timekeeper *tk = &tk_core.timekeeper;
879         struct timespec64 tomono;
880         unsigned int seq;
881         u64 nsec;
882
883         WARN_ON(timekeeping_suspended);
884
885         do {
886                 seq = read_seqcount_begin(&tk_core.seq);
887                 ts->tv_sec = tk->xtime_sec;
888                 nsec = timekeeping_get_ns(&tk->tkr_mono);
889                 tomono = tk->wall_to_monotonic;
890
891         } while (read_seqcount_retry(&tk_core.seq, seq));
892
893         ts->tv_sec += tomono.tv_sec;
894         ts->tv_nsec = 0;
895         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
896 }
897 EXPORT_SYMBOL_GPL(ktime_get_ts64);
898
899 /**
900  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
901  *
902  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
903  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
904  * works on both 32 and 64 bit systems. On 32 bit systems the readout
905  * covers ~136 years of uptime which should be enough to prevent
906  * premature wrap arounds.
907  */
908 time64_t ktime_get_seconds(void)
909 {
910         struct timekeeper *tk = &tk_core.timekeeper;
911
912         WARN_ON(timekeeping_suspended);
913         return tk->ktime_sec;
914 }
915 EXPORT_SYMBOL_GPL(ktime_get_seconds);
916
917 /**
918  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
919  *
920  * Returns the wall clock seconds since 1970. This replaces the
921  * get_seconds() interface which is not y2038 safe on 32bit systems.
922  *
923  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
924  * 32bit systems the access must be protected with the sequence
925  * counter to provide "atomic" access to the 64bit tk->xtime_sec
926  * value.
927  */
928 time64_t ktime_get_real_seconds(void)
929 {
930         struct timekeeper *tk = &tk_core.timekeeper;
931         time64_t seconds;
932         unsigned int seq;
933
934         if (IS_ENABLED(CONFIG_64BIT))
935                 return tk->xtime_sec;
936
937         do {
938                 seq = read_seqcount_begin(&tk_core.seq);
939                 seconds = tk->xtime_sec;
940
941         } while (read_seqcount_retry(&tk_core.seq, seq));
942
943         return seconds;
944 }
945 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
946
947 /**
948  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
949  * but without the sequence counter protect. This internal function
950  * is called just when timekeeping lock is already held.
951  */
952 time64_t __ktime_get_real_seconds(void)
953 {
954         struct timekeeper *tk = &tk_core.timekeeper;
955
956         return tk->xtime_sec;
957 }
958
959 /**
960  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
961  * @systime_snapshot:   pointer to struct receiving the system time snapshot
962  */
963 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
964 {
965         struct timekeeper *tk = &tk_core.timekeeper;
966         unsigned long seq;
967         ktime_t base_raw;
968         ktime_t base_real;
969         u64 nsec_raw;
970         u64 nsec_real;
971         u64 now;
972
973         WARN_ON_ONCE(timekeeping_suspended);
974
975         do {
976                 seq = read_seqcount_begin(&tk_core.seq);
977                 now = tk_clock_read(&tk->tkr_mono);
978                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
979                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
980                 base_real = ktime_add(tk->tkr_mono.base,
981                                       tk_core.timekeeper.offs_real);
982                 base_raw = tk->tkr_raw.base;
983                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
984                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
985         } while (read_seqcount_retry(&tk_core.seq, seq));
986
987         systime_snapshot->cycles = now;
988         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
989         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
990 }
991 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
992
993 /* Scale base by mult/div checking for overflow */
994 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
995 {
996         u64 tmp, rem;
997
998         tmp = div64_u64_rem(*base, div, &rem);
999
1000         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1001             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1002                 return -EOVERFLOW;
1003         tmp *= mult;
1004         rem *= mult;
1005
1006         do_div(rem, div);
1007         *base = tmp + rem;
1008         return 0;
1009 }
1010
1011 /**
1012  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1013  * @history:                    Snapshot representing start of history
1014  * @partial_history_cycles:     Cycle offset into history (fractional part)
1015  * @total_history_cycles:       Total history length in cycles
1016  * @discontinuity:              True indicates clock was set on history period
1017  * @ts:                         Cross timestamp that should be adjusted using
1018  *      partial/total ratio
1019  *
1020  * Helper function used by get_device_system_crosststamp() to correct the
1021  * crosstimestamp corresponding to the start of the current interval to the
1022  * system counter value (timestamp point) provided by the driver. The
1023  * total_history_* quantities are the total history starting at the provided
1024  * reference point and ending at the start of the current interval. The cycle
1025  * count between the driver timestamp point and the start of the current
1026  * interval is partial_history_cycles.
1027  */
1028 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1029                                          u64 partial_history_cycles,
1030                                          u64 total_history_cycles,
1031                                          bool discontinuity,
1032                                          struct system_device_crosststamp *ts)
1033 {
1034         struct timekeeper *tk = &tk_core.timekeeper;
1035         u64 corr_raw, corr_real;
1036         bool interp_forward;
1037         int ret;
1038
1039         if (total_history_cycles == 0 || partial_history_cycles == 0)
1040                 return 0;
1041
1042         /* Interpolate shortest distance from beginning or end of history */
1043         interp_forward = partial_history_cycles > total_history_cycles / 2;
1044         partial_history_cycles = interp_forward ?
1045                 total_history_cycles - partial_history_cycles :
1046                 partial_history_cycles;
1047
1048         /*
1049          * Scale the monotonic raw time delta by:
1050          *      partial_history_cycles / total_history_cycles
1051          */
1052         corr_raw = (u64)ktime_to_ns(
1053                 ktime_sub(ts->sys_monoraw, history->raw));
1054         ret = scale64_check_overflow(partial_history_cycles,
1055                                      total_history_cycles, &corr_raw);
1056         if (ret)
1057                 return ret;
1058
1059         /*
1060          * If there is a discontinuity in the history, scale monotonic raw
1061          *      correction by:
1062          *      mult(real)/mult(raw) yielding the realtime correction
1063          * Otherwise, calculate the realtime correction similar to monotonic
1064          *      raw calculation
1065          */
1066         if (discontinuity) {
1067                 corr_real = mul_u64_u32_div
1068                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1069         } else {
1070                 corr_real = (u64)ktime_to_ns(
1071                         ktime_sub(ts->sys_realtime, history->real));
1072                 ret = scale64_check_overflow(partial_history_cycles,
1073                                              total_history_cycles, &corr_real);
1074                 if (ret)
1075                         return ret;
1076         }
1077
1078         /* Fixup monotonic raw and real time time values */
1079         if (interp_forward) {
1080                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1081                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1082         } else {
1083                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1084                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1085         }
1086
1087         return 0;
1088 }
1089
1090 /*
1091  * cycle_between - true if test occurs chronologically between before and after
1092  */
1093 static bool cycle_between(u64 before, u64 test, u64 after)
1094 {
1095         if (test > before && test < after)
1096                 return true;
1097         if (test < before && before > after)
1098                 return true;
1099         return false;
1100 }
1101
1102 /**
1103  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1104  * @get_time_fn:        Callback to get simultaneous device time and
1105  *      system counter from the device driver
1106  * @ctx:                Context passed to get_time_fn()
1107  * @history_begin:      Historical reference point used to interpolate system
1108  *      time when counter provided by the driver is before the current interval
1109  * @xtstamp:            Receives simultaneously captured system and device time
1110  *
1111  * Reads a timestamp from a device and correlates it to system time
1112  */
1113 int get_device_system_crosststamp(int (*get_time_fn)
1114                                   (ktime_t *device_time,
1115                                    struct system_counterval_t *sys_counterval,
1116                                    void *ctx),
1117                                   void *ctx,
1118                                   struct system_time_snapshot *history_begin,
1119                                   struct system_device_crosststamp *xtstamp)
1120 {
1121         struct system_counterval_t system_counterval;
1122         struct timekeeper *tk = &tk_core.timekeeper;
1123         u64 cycles, now, interval_start;
1124         unsigned int clock_was_set_seq = 0;
1125         ktime_t base_real, base_raw;
1126         u64 nsec_real, nsec_raw;
1127         u8 cs_was_changed_seq;
1128         unsigned long seq;
1129         bool do_interp;
1130         int ret;
1131
1132         do {
1133                 seq = read_seqcount_begin(&tk_core.seq);
1134                 /*
1135                  * Try to synchronously capture device time and a system
1136                  * counter value calling back into the device driver
1137                  */
1138                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1139                 if (ret)
1140                         return ret;
1141
1142                 /*
1143                  * Verify that the clocksource associated with the captured
1144                  * system counter value is the same as the currently installed
1145                  * timekeeper clocksource
1146                  */
1147                 if (tk->tkr_mono.clock != system_counterval.cs)
1148                         return -ENODEV;
1149                 cycles = system_counterval.cycles;
1150
1151                 /*
1152                  * Check whether the system counter value provided by the
1153                  * device driver is on the current timekeeping interval.
1154                  */
1155                 now = tk_clock_read(&tk->tkr_mono);
1156                 interval_start = tk->tkr_mono.cycle_last;
1157                 if (!cycle_between(interval_start, cycles, now)) {
1158                         clock_was_set_seq = tk->clock_was_set_seq;
1159                         cs_was_changed_seq = tk->cs_was_changed_seq;
1160                         cycles = interval_start;
1161                         do_interp = true;
1162                 } else {
1163                         do_interp = false;
1164                 }
1165
1166                 base_real = ktime_add(tk->tkr_mono.base,
1167                                       tk_core.timekeeper.offs_real);
1168                 base_raw = tk->tkr_raw.base;
1169
1170                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1171                                                      system_counterval.cycles);
1172                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1173                                                     system_counterval.cycles);
1174         } while (read_seqcount_retry(&tk_core.seq, seq));
1175
1176         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1177         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1178
1179         /*
1180          * Interpolate if necessary, adjusting back from the start of the
1181          * current interval
1182          */
1183         if (do_interp) {
1184                 u64 partial_history_cycles, total_history_cycles;
1185                 bool discontinuity;
1186
1187                 /*
1188                  * Check that the counter value occurs after the provided
1189                  * history reference and that the history doesn't cross a
1190                  * clocksource change
1191                  */
1192                 if (!history_begin ||
1193                     !cycle_between(history_begin->cycles,
1194                                    system_counterval.cycles, cycles) ||
1195                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1196                         return -EINVAL;
1197                 partial_history_cycles = cycles - system_counterval.cycles;
1198                 total_history_cycles = cycles - history_begin->cycles;
1199                 discontinuity =
1200                         history_begin->clock_was_set_seq != clock_was_set_seq;
1201
1202                 ret = adjust_historical_crosststamp(history_begin,
1203                                                     partial_history_cycles,
1204                                                     total_history_cycles,
1205                                                     discontinuity, xtstamp);
1206                 if (ret)
1207                         return ret;
1208         }
1209
1210         return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1213
1214 /**
1215  * do_gettimeofday - Returns the time of day in a timeval
1216  * @tv:         pointer to the timeval to be set
1217  *
1218  * NOTE: Users should be converted to using getnstimeofday()
1219  */
1220 void do_gettimeofday(struct timeval *tv)
1221 {
1222         struct timespec64 now;
1223
1224         getnstimeofday64(&now);
1225         tv->tv_sec = now.tv_sec;
1226         tv->tv_usec = now.tv_nsec/1000;
1227 }
1228 EXPORT_SYMBOL(do_gettimeofday);
1229
1230 /**
1231  * do_settimeofday64 - Sets the time of day.
1232  * @ts:     pointer to the timespec64 variable containing the new time
1233  *
1234  * Sets the time of day to the new time and update NTP and notify hrtimers
1235  */
1236 int do_settimeofday64(const struct timespec64 *ts)
1237 {
1238         struct timekeeper *tk = &tk_core.timekeeper;
1239         struct timespec64 ts_delta, xt;
1240         unsigned long flags;
1241         int ret = 0;
1242
1243         if (!timespec64_valid_strict(ts))
1244                 return -EINVAL;
1245
1246         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1247         write_seqcount_begin(&tk_core.seq);
1248
1249         timekeeping_forward_now(tk);
1250
1251         xt = tk_xtime(tk);
1252         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1253         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1254
1255         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1256                 ret = -EINVAL;
1257                 goto out;
1258         }
1259
1260         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1261
1262         tk_set_xtime(tk, ts);
1263 out:
1264         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1265
1266         write_seqcount_end(&tk_core.seq);
1267         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1268
1269         /* signal hrtimers about time change */
1270         clock_was_set();
1271
1272         return ret;
1273 }
1274 EXPORT_SYMBOL(do_settimeofday64);
1275
1276 /**
1277  * timekeeping_inject_offset - Adds or subtracts from the current time.
1278  * @tv:         pointer to the timespec variable containing the offset
1279  *
1280  * Adds or subtracts an offset value from the current time.
1281  */
1282 static int timekeeping_inject_offset(const struct timespec64 *ts)
1283 {
1284         struct timekeeper *tk = &tk_core.timekeeper;
1285         unsigned long flags;
1286         struct timespec64 tmp;
1287         int ret = 0;
1288
1289         if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1290                 return -EINVAL;
1291
1292         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1293         write_seqcount_begin(&tk_core.seq);
1294
1295         timekeeping_forward_now(tk);
1296
1297         /* Make sure the proposed value is valid */
1298         tmp = timespec64_add(tk_xtime(tk), *ts);
1299         if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1300             !timespec64_valid_strict(&tmp)) {
1301                 ret = -EINVAL;
1302                 goto error;
1303         }
1304
1305         tk_xtime_add(tk, ts);
1306         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1307
1308 error: /* even if we error out, we forwarded the time, so call update */
1309         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1310
1311         write_seqcount_end(&tk_core.seq);
1312         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1313
1314         /* signal hrtimers about time change */
1315         clock_was_set();
1316
1317         return ret;
1318 }
1319
1320 /*
1321  * Indicates if there is an offset between the system clock and the hardware
1322  * clock/persistent clock/rtc.
1323  */
1324 int persistent_clock_is_local;
1325
1326 /*
1327  * Adjust the time obtained from the CMOS to be UTC time instead of
1328  * local time.
1329  *
1330  * This is ugly, but preferable to the alternatives.  Otherwise we
1331  * would either need to write a program to do it in /etc/rc (and risk
1332  * confusion if the program gets run more than once; it would also be
1333  * hard to make the program warp the clock precisely n hours)  or
1334  * compile in the timezone information into the kernel.  Bad, bad....
1335  *
1336  *                                              - TYT, 1992-01-01
1337  *
1338  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1339  * as real UNIX machines always do it. This avoids all headaches about
1340  * daylight saving times and warping kernel clocks.
1341  */
1342 void timekeeping_warp_clock(void)
1343 {
1344         if (sys_tz.tz_minuteswest != 0) {
1345                 struct timespec64 adjust;
1346
1347                 persistent_clock_is_local = 1;
1348                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1349                 adjust.tv_nsec = 0;
1350                 timekeeping_inject_offset(&adjust);
1351         }
1352 }
1353
1354 /**
1355  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1356  *
1357  */
1358 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1359 {
1360         tk->tai_offset = tai_offset;
1361         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1362 }
1363
1364 /**
1365  * change_clocksource - Swaps clocksources if a new one is available
1366  *
1367  * Accumulates current time interval and initializes new clocksource
1368  */
1369 static int change_clocksource(void *data)
1370 {
1371         struct timekeeper *tk = &tk_core.timekeeper;
1372         struct clocksource *new, *old;
1373         unsigned long flags;
1374
1375         new = (struct clocksource *) data;
1376
1377         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1378         write_seqcount_begin(&tk_core.seq);
1379
1380         timekeeping_forward_now(tk);
1381         /*
1382          * If the cs is in module, get a module reference. Succeeds
1383          * for built-in code (owner == NULL) as well.
1384          */
1385         if (try_module_get(new->owner)) {
1386                 if (!new->enable || new->enable(new) == 0) {
1387                         old = tk->tkr_mono.clock;
1388                         tk_setup_internals(tk, new);
1389                         if (old->disable)
1390                                 old->disable(old);
1391                         module_put(old->owner);
1392                 } else {
1393                         module_put(new->owner);
1394                 }
1395         }
1396         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1397
1398         write_seqcount_end(&tk_core.seq);
1399         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1400
1401         return 0;
1402 }
1403
1404 /**
1405  * timekeeping_notify - Install a new clock source
1406  * @clock:              pointer to the clock source
1407  *
1408  * This function is called from clocksource.c after a new, better clock
1409  * source has been registered. The caller holds the clocksource_mutex.
1410  */
1411 int timekeeping_notify(struct clocksource *clock)
1412 {
1413         struct timekeeper *tk = &tk_core.timekeeper;
1414
1415         if (tk->tkr_mono.clock == clock)
1416                 return 0;
1417         stop_machine(change_clocksource, clock, NULL);
1418         tick_clock_notify();
1419         return tk->tkr_mono.clock == clock ? 0 : -1;
1420 }
1421
1422 /**
1423  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1424  * @ts:         pointer to the timespec64 to be set
1425  *
1426  * Returns the raw monotonic time (completely un-modified by ntp)
1427  */
1428 void ktime_get_raw_ts64(struct timespec64 *ts)
1429 {
1430         struct timekeeper *tk = &tk_core.timekeeper;
1431         unsigned long seq;
1432         u64 nsecs;
1433
1434         do {
1435                 seq = read_seqcount_begin(&tk_core.seq);
1436                 ts->tv_sec = tk->raw_sec;
1437                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1438
1439         } while (read_seqcount_retry(&tk_core.seq, seq));
1440
1441         ts->tv_nsec = 0;
1442         timespec64_add_ns(ts, nsecs);
1443 }
1444 EXPORT_SYMBOL(ktime_get_raw_ts64);
1445
1446
1447 /**
1448  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1449  */
1450 int timekeeping_valid_for_hres(void)
1451 {
1452         struct timekeeper *tk = &tk_core.timekeeper;
1453         unsigned long seq;
1454         int ret;
1455
1456         do {
1457                 seq = read_seqcount_begin(&tk_core.seq);
1458
1459                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1460
1461         } while (read_seqcount_retry(&tk_core.seq, seq));
1462
1463         return ret;
1464 }
1465
1466 /**
1467  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1468  */
1469 u64 timekeeping_max_deferment(void)
1470 {
1471         struct timekeeper *tk = &tk_core.timekeeper;
1472         unsigned long seq;
1473         u64 ret;
1474
1475         do {
1476                 seq = read_seqcount_begin(&tk_core.seq);
1477
1478                 ret = tk->tkr_mono.clock->max_idle_ns;
1479
1480         } while (read_seqcount_retry(&tk_core.seq, seq));
1481
1482         return ret;
1483 }
1484
1485 /**
1486  * read_persistent_clock -  Return time from the persistent clock.
1487  *
1488  * Weak dummy function for arches that do not yet support it.
1489  * Reads the time from the battery backed persistent clock.
1490  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1491  *
1492  *  XXX - Do be sure to remove it once all arches implement it.
1493  */
1494 void __weak read_persistent_clock(struct timespec *ts)
1495 {
1496         ts->tv_sec = 0;
1497         ts->tv_nsec = 0;
1498 }
1499
1500 void __weak read_persistent_clock64(struct timespec64 *ts64)
1501 {
1502         struct timespec ts;
1503
1504         read_persistent_clock(&ts);
1505         *ts64 = timespec_to_timespec64(ts);
1506 }
1507
1508 /**
1509  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1510  *                                        from the boot.
1511  *
1512  * Weak dummy function for arches that do not yet support it.
1513  * wall_time    - current time as returned by persistent clock
1514  * boot_offset  - offset that is defined as wall_time - boot_time
1515  * The default function calculates offset based on the current value of
1516  * local_clock(). This way architectures that support sched_clock() but don't
1517  * support dedicated boot time clock will provide the best estimate of the
1518  * boot time.
1519  */
1520 void __weak __init
1521 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1522                                      struct timespec64 *boot_offset)
1523 {
1524         read_persistent_clock64(wall_time);
1525         *boot_offset = ns_to_timespec64(local_clock());
1526 }
1527
1528 /*
1529  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1530  *
1531  * The flag starts of false and is only set when a suspend reaches
1532  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1533  * timekeeper clocksource is not stopping across suspend and has been
1534  * used to update sleep time. If the timekeeper clocksource has stopped
1535  * then the flag stays true and is used by the RTC resume code to decide
1536  * whether sleeptime must be injected and if so the flag gets false then.
1537  *
1538  * If a suspend fails before reaching timekeeping_resume() then the flag
1539  * stays false and prevents erroneous sleeptime injection.
1540  */
1541 static bool suspend_timing_needed;
1542
1543 /* Flag for if there is a persistent clock on this platform */
1544 static bool persistent_clock_exists;
1545
1546 /*
1547  * timekeeping_init - Initializes the clocksource and common timekeeping values
1548  */
1549 void __init timekeeping_init(void)
1550 {
1551         struct timespec64 wall_time, boot_offset, wall_to_mono;
1552         struct timekeeper *tk = &tk_core.timekeeper;
1553         struct clocksource *clock;
1554         unsigned long flags;
1555
1556         read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1557         if (timespec64_valid_strict(&wall_time) &&
1558             timespec64_to_ns(&wall_time) > 0) {
1559                 persistent_clock_exists = true;
1560         } else if (timespec64_to_ns(&wall_time) != 0) {
1561                 pr_warn("Persistent clock returned invalid value");
1562                 wall_time = (struct timespec64){0};
1563         }
1564
1565         if (timespec64_compare(&wall_time, &boot_offset) < 0)
1566                 boot_offset = (struct timespec64){0};
1567
1568         /*
1569          * We want set wall_to_mono, so the following is true:
1570          * wall time + wall_to_mono = boot time
1571          */
1572         wall_to_mono = timespec64_sub(boot_offset, wall_time);
1573
1574         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1575         write_seqcount_begin(&tk_core.seq);
1576         ntp_init();
1577
1578         clock = clocksource_default_clock();
1579         if (clock->enable)
1580                 clock->enable(clock);
1581         tk_setup_internals(tk, clock);
1582
1583         tk_set_xtime(tk, &wall_time);
1584         tk->raw_sec = 0;
1585
1586         tk_set_wall_to_mono(tk, wall_to_mono);
1587
1588         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1589
1590         write_seqcount_end(&tk_core.seq);
1591         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1592 }
1593
1594 /* time in seconds when suspend began for persistent clock */
1595 static struct timespec64 timekeeping_suspend_time;
1596
1597 /**
1598  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1599  * @delta: pointer to a timespec delta value
1600  *
1601  * Takes a timespec offset measuring a suspend interval and properly
1602  * adds the sleep offset to the timekeeping variables.
1603  */
1604 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1605                                            const struct timespec64 *delta)
1606 {
1607         if (!timespec64_valid_strict(delta)) {
1608                 printk_deferred(KERN_WARNING
1609                                 "__timekeeping_inject_sleeptime: Invalid "
1610                                 "sleep delta value!\n");
1611                 return;
1612         }
1613         tk_xtime_add(tk, delta);
1614         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1615         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1616         tk_debug_account_sleep_time(delta);
1617 }
1618
1619 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1620 /**
1621  * We have three kinds of time sources to use for sleep time
1622  * injection, the preference order is:
1623  * 1) non-stop clocksource
1624  * 2) persistent clock (ie: RTC accessible when irqs are off)
1625  * 3) RTC
1626  *
1627  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1628  * If system has neither 1) nor 2), 3) will be used finally.
1629  *
1630  *
1631  * If timekeeping has injected sleeptime via either 1) or 2),
1632  * 3) becomes needless, so in this case we don't need to call
1633  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1634  * means.
1635  */
1636 bool timekeeping_rtc_skipresume(void)
1637 {
1638         return !suspend_timing_needed;
1639 }
1640
1641 /**
1642  * 1) can be determined whether to use or not only when doing
1643  * timekeeping_resume() which is invoked after rtc_suspend(),
1644  * so we can't skip rtc_suspend() surely if system has 1).
1645  *
1646  * But if system has 2), 2) will definitely be used, so in this
1647  * case we don't need to call rtc_suspend(), and this is what
1648  * timekeeping_rtc_skipsuspend() means.
1649  */
1650 bool timekeeping_rtc_skipsuspend(void)
1651 {
1652         return persistent_clock_exists;
1653 }
1654
1655 /**
1656  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1657  * @delta: pointer to a timespec64 delta value
1658  *
1659  * This hook is for architectures that cannot support read_persistent_clock64
1660  * because their RTC/persistent clock is only accessible when irqs are enabled.
1661  * and also don't have an effective nonstop clocksource.
1662  *
1663  * This function should only be called by rtc_resume(), and allows
1664  * a suspend offset to be injected into the timekeeping values.
1665  */
1666 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1667 {
1668         struct timekeeper *tk = &tk_core.timekeeper;
1669         unsigned long flags;
1670
1671         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1672         write_seqcount_begin(&tk_core.seq);
1673
1674         suspend_timing_needed = false;
1675
1676         timekeeping_forward_now(tk);
1677
1678         __timekeeping_inject_sleeptime(tk, delta);
1679
1680         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1681
1682         write_seqcount_end(&tk_core.seq);
1683         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1684
1685         /* signal hrtimers about time change */
1686         clock_was_set();
1687 }
1688 #endif
1689
1690 /**
1691  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1692  */
1693 void timekeeping_resume(void)
1694 {
1695         struct timekeeper *tk = &tk_core.timekeeper;
1696         struct clocksource *clock = tk->tkr_mono.clock;
1697         unsigned long flags;
1698         struct timespec64 ts_new, ts_delta;
1699         u64 cycle_now, nsec;
1700         bool inject_sleeptime = false;
1701
1702         read_persistent_clock64(&ts_new);
1703
1704         clockevents_resume();
1705         clocksource_resume();
1706
1707         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1708         write_seqcount_begin(&tk_core.seq);
1709
1710         /*
1711          * After system resumes, we need to calculate the suspended time and
1712          * compensate it for the OS time. There are 3 sources that could be
1713          * used: Nonstop clocksource during suspend, persistent clock and rtc
1714          * device.
1715          *
1716          * One specific platform may have 1 or 2 or all of them, and the
1717          * preference will be:
1718          *      suspend-nonstop clocksource -> persistent clock -> rtc
1719          * The less preferred source will only be tried if there is no better
1720          * usable source. The rtc part is handled separately in rtc core code.
1721          */
1722         cycle_now = tk_clock_read(&tk->tkr_mono);
1723         nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1724         if (nsec > 0) {
1725                 ts_delta = ns_to_timespec64(nsec);
1726                 inject_sleeptime = true;
1727         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1728                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1729                 inject_sleeptime = true;
1730         }
1731
1732         if (inject_sleeptime) {
1733                 suspend_timing_needed = false;
1734                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1735         }
1736
1737         /* Re-base the last cycle value */
1738         tk->tkr_mono.cycle_last = cycle_now;
1739         tk->tkr_raw.cycle_last  = cycle_now;
1740
1741         tk->ntp_error = 0;
1742         timekeeping_suspended = 0;
1743         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1744         write_seqcount_end(&tk_core.seq);
1745         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1746
1747         touch_softlockup_watchdog();
1748
1749         tick_resume();
1750         hrtimers_resume();
1751 }
1752
1753 int timekeeping_suspend(void)
1754 {
1755         struct timekeeper *tk = &tk_core.timekeeper;
1756         unsigned long flags;
1757         struct timespec64               delta, delta_delta;
1758         static struct timespec64        old_delta;
1759         struct clocksource *curr_clock;
1760         u64 cycle_now;
1761
1762         read_persistent_clock64(&timekeeping_suspend_time);
1763
1764         /*
1765          * On some systems the persistent_clock can not be detected at
1766          * timekeeping_init by its return value, so if we see a valid
1767          * value returned, update the persistent_clock_exists flag.
1768          */
1769         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1770                 persistent_clock_exists = true;
1771
1772         suspend_timing_needed = true;
1773
1774         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1775         write_seqcount_begin(&tk_core.seq);
1776         timekeeping_forward_now(tk);
1777         timekeeping_suspended = 1;
1778
1779         /*
1780          * Since we've called forward_now, cycle_last stores the value
1781          * just read from the current clocksource. Save this to potentially
1782          * use in suspend timing.
1783          */
1784         curr_clock = tk->tkr_mono.clock;
1785         cycle_now = tk->tkr_mono.cycle_last;
1786         clocksource_start_suspend_timing(curr_clock, cycle_now);
1787
1788         if (persistent_clock_exists) {
1789                 /*
1790                  * To avoid drift caused by repeated suspend/resumes,
1791                  * which each can add ~1 second drift error,
1792                  * try to compensate so the difference in system time
1793                  * and persistent_clock time stays close to constant.
1794                  */
1795                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1796                 delta_delta = timespec64_sub(delta, old_delta);
1797                 if (abs(delta_delta.tv_sec) >= 2) {
1798                         /*
1799                          * if delta_delta is too large, assume time correction
1800                          * has occurred and set old_delta to the current delta.
1801                          */
1802                         old_delta = delta;
1803                 } else {
1804                         /* Otherwise try to adjust old_system to compensate */
1805                         timekeeping_suspend_time =
1806                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1807                 }
1808         }
1809
1810         timekeeping_update(tk, TK_MIRROR);
1811         halt_fast_timekeeper(tk);
1812         write_seqcount_end(&tk_core.seq);
1813         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1814
1815         tick_suspend();
1816         clocksource_suspend();
1817         clockevents_suspend();
1818
1819         return 0;
1820 }
1821
1822 /* sysfs resume/suspend bits for timekeeping */
1823 static struct syscore_ops timekeeping_syscore_ops = {
1824         .resume         = timekeeping_resume,
1825         .suspend        = timekeeping_suspend,
1826 };
1827
1828 static int __init timekeeping_init_ops(void)
1829 {
1830         register_syscore_ops(&timekeeping_syscore_ops);
1831         return 0;
1832 }
1833 device_initcall(timekeeping_init_ops);
1834
1835 /*
1836  * Apply a multiplier adjustment to the timekeeper
1837  */
1838 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1839                                                          s64 offset,
1840                                                          s32 mult_adj)
1841 {
1842         s64 interval = tk->cycle_interval;
1843
1844         if (mult_adj == 0) {
1845                 return;
1846         } else if (mult_adj == -1) {
1847                 interval = -interval;
1848                 offset = -offset;
1849         } else if (mult_adj != 1) {
1850                 interval *= mult_adj;
1851                 offset *= mult_adj;
1852         }
1853
1854         /*
1855          * So the following can be confusing.
1856          *
1857          * To keep things simple, lets assume mult_adj == 1 for now.
1858          *
1859          * When mult_adj != 1, remember that the interval and offset values
1860          * have been appropriately scaled so the math is the same.
1861          *
1862          * The basic idea here is that we're increasing the multiplier
1863          * by one, this causes the xtime_interval to be incremented by
1864          * one cycle_interval. This is because:
1865          *      xtime_interval = cycle_interval * mult
1866          * So if mult is being incremented by one:
1867          *      xtime_interval = cycle_interval * (mult + 1)
1868          * Its the same as:
1869          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1870          * Which can be shortened to:
1871          *      xtime_interval += cycle_interval
1872          *
1873          * So offset stores the non-accumulated cycles. Thus the current
1874          * time (in shifted nanoseconds) is:
1875          *      now = (offset * adj) + xtime_nsec
1876          * Now, even though we're adjusting the clock frequency, we have
1877          * to keep time consistent. In other words, we can't jump back
1878          * in time, and we also want to avoid jumping forward in time.
1879          *
1880          * So given the same offset value, we need the time to be the same
1881          * both before and after the freq adjustment.
1882          *      now = (offset * adj_1) + xtime_nsec_1
1883          *      now = (offset * adj_2) + xtime_nsec_2
1884          * So:
1885          *      (offset * adj_1) + xtime_nsec_1 =
1886          *              (offset * adj_2) + xtime_nsec_2
1887          * And we know:
1888          *      adj_2 = adj_1 + 1
1889          * So:
1890          *      (offset * adj_1) + xtime_nsec_1 =
1891          *              (offset * (adj_1+1)) + xtime_nsec_2
1892          *      (offset * adj_1) + xtime_nsec_1 =
1893          *              (offset * adj_1) + offset + xtime_nsec_2
1894          * Canceling the sides:
1895          *      xtime_nsec_1 = offset + xtime_nsec_2
1896          * Which gives us:
1897          *      xtime_nsec_2 = xtime_nsec_1 - offset
1898          * Which simplfies to:
1899          *      xtime_nsec -= offset
1900          */
1901         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1902                 /* NTP adjustment caused clocksource mult overflow */
1903                 WARN_ON_ONCE(1);
1904                 return;
1905         }
1906
1907         tk->tkr_mono.mult += mult_adj;
1908         tk->xtime_interval += interval;
1909         tk->tkr_mono.xtime_nsec -= offset;
1910 }
1911
1912 /*
1913  * Adjust the timekeeper's multiplier to the correct frequency
1914  * and also to reduce the accumulated error value.
1915  */
1916 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1917 {
1918         u32 mult;
1919
1920         /*
1921          * Determine the multiplier from the current NTP tick length.
1922          * Avoid expensive division when the tick length doesn't change.
1923          */
1924         if (likely(tk->ntp_tick == ntp_tick_length())) {
1925                 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1926         } else {
1927                 tk->ntp_tick = ntp_tick_length();
1928                 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1929                                  tk->xtime_remainder, tk->cycle_interval);
1930         }
1931
1932         /*
1933          * If the clock is behind the NTP time, increase the multiplier by 1
1934          * to catch up with it. If it's ahead and there was a remainder in the
1935          * tick division, the clock will slow down. Otherwise it will stay
1936          * ahead until the tick length changes to a non-divisible value.
1937          */
1938         tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1939         mult += tk->ntp_err_mult;
1940
1941         timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1942
1943         if (unlikely(tk->tkr_mono.clock->maxadj &&
1944                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1945                         > tk->tkr_mono.clock->maxadj))) {
1946                 printk_once(KERN_WARNING
1947                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1948                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1949                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1950         }
1951
1952         /*
1953          * It may be possible that when we entered this function, xtime_nsec
1954          * was very small.  Further, if we're slightly speeding the clocksource
1955          * in the code above, its possible the required corrective factor to
1956          * xtime_nsec could cause it to underflow.
1957          *
1958          * Now, since we have already accumulated the second and the NTP
1959          * subsystem has been notified via second_overflow(), we need to skip
1960          * the next update.
1961          */
1962         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1963                 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1964                                                         tk->tkr_mono.shift;
1965                 tk->xtime_sec--;
1966                 tk->skip_second_overflow = 1;
1967         }
1968 }
1969
1970 /**
1971  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1972  *
1973  * Helper function that accumulates the nsecs greater than a second
1974  * from the xtime_nsec field to the xtime_secs field.
1975  * It also calls into the NTP code to handle leapsecond processing.
1976  *
1977  */
1978 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1979 {
1980         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1981         unsigned int clock_set = 0;
1982
1983         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1984                 int leap;
1985
1986                 tk->tkr_mono.xtime_nsec -= nsecps;
1987                 tk->xtime_sec++;
1988
1989                 /*
1990                  * Skip NTP update if this second was accumulated before,
1991                  * i.e. xtime_nsec underflowed in timekeeping_adjust()
1992                  */
1993                 if (unlikely(tk->skip_second_overflow)) {
1994                         tk->skip_second_overflow = 0;
1995                         continue;
1996                 }
1997
1998                 /* Figure out if its a leap sec and apply if needed */
1999                 leap = second_overflow(tk->xtime_sec);
2000                 if (unlikely(leap)) {
2001                         struct timespec64 ts;
2002
2003                         tk->xtime_sec += leap;
2004
2005                         ts.tv_sec = leap;
2006                         ts.tv_nsec = 0;
2007                         tk_set_wall_to_mono(tk,
2008                                 timespec64_sub(tk->wall_to_monotonic, ts));
2009
2010                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2011
2012                         clock_set = TK_CLOCK_WAS_SET;
2013                 }
2014         }
2015         return clock_set;
2016 }
2017
2018 /**
2019  * logarithmic_accumulation - shifted accumulation of cycles
2020  *
2021  * This functions accumulates a shifted interval of cycles into
2022  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2023  * loop.
2024  *
2025  * Returns the unconsumed cycles.
2026  */
2027 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2028                                     u32 shift, unsigned int *clock_set)
2029 {
2030         u64 interval = tk->cycle_interval << shift;
2031         u64 snsec_per_sec;
2032
2033         /* If the offset is smaller than a shifted interval, do nothing */
2034         if (offset < interval)
2035                 return offset;
2036
2037         /* Accumulate one shifted interval */
2038         offset -= interval;
2039         tk->tkr_mono.cycle_last += interval;
2040         tk->tkr_raw.cycle_last  += interval;
2041
2042         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2043         *clock_set |= accumulate_nsecs_to_secs(tk);
2044
2045         /* Accumulate raw time */
2046         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2047         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2048         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2049                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2050                 tk->raw_sec++;
2051         }
2052
2053         /* Accumulate error between NTP and clock interval */
2054         tk->ntp_error += tk->ntp_tick << shift;
2055         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2056                                                 (tk->ntp_error_shift + shift);
2057
2058         return offset;
2059 }
2060
2061 /*
2062  * timekeeping_advance - Updates the timekeeper to the current time and
2063  * current NTP tick length
2064  */
2065 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2066 {
2067         struct timekeeper *real_tk = &tk_core.timekeeper;
2068         struct timekeeper *tk = &shadow_timekeeper;
2069         u64 offset;
2070         int shift = 0, maxshift;
2071         unsigned int clock_set = 0;
2072         unsigned long flags;
2073
2074         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2075
2076         /* Make sure we're fully resumed: */
2077         if (unlikely(timekeeping_suspended))
2078                 goto out;
2079
2080 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2081         offset = real_tk->cycle_interval;
2082
2083         if (mode != TK_ADV_TICK)
2084                 goto out;
2085 #else
2086         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2087                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2088
2089         /* Check if there's really nothing to do */
2090         if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2091                 goto out;
2092 #endif
2093
2094         /* Do some additional sanity checking */
2095         timekeeping_check_update(tk, offset);
2096
2097         /*
2098          * With NO_HZ we may have to accumulate many cycle_intervals
2099          * (think "ticks") worth of time at once. To do this efficiently,
2100          * we calculate the largest doubling multiple of cycle_intervals
2101          * that is smaller than the offset.  We then accumulate that
2102          * chunk in one go, and then try to consume the next smaller
2103          * doubled multiple.
2104          */
2105         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2106         shift = max(0, shift);
2107         /* Bound shift to one less than what overflows tick_length */
2108         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2109         shift = min(shift, maxshift);
2110         while (offset >= tk->cycle_interval) {
2111                 offset = logarithmic_accumulation(tk, offset, shift,
2112                                                         &clock_set);
2113                 if (offset < tk->cycle_interval<<shift)
2114                         shift--;
2115         }
2116
2117         /* Adjust the multiplier to correct NTP error */
2118         timekeeping_adjust(tk, offset);
2119
2120         /*
2121          * Finally, make sure that after the rounding
2122          * xtime_nsec isn't larger than NSEC_PER_SEC
2123          */
2124         clock_set |= accumulate_nsecs_to_secs(tk);
2125
2126         write_seqcount_begin(&tk_core.seq);
2127         /*
2128          * Update the real timekeeper.
2129          *
2130          * We could avoid this memcpy by switching pointers, but that
2131          * requires changes to all other timekeeper usage sites as
2132          * well, i.e. move the timekeeper pointer getter into the
2133          * spinlocked/seqcount protected sections. And we trade this
2134          * memcpy under the tk_core.seq against one before we start
2135          * updating.
2136          */
2137         timekeeping_update(tk, clock_set);
2138         memcpy(real_tk, tk, sizeof(*tk));
2139         /* The memcpy must come last. Do not put anything here! */
2140         write_seqcount_end(&tk_core.seq);
2141 out:
2142         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2143         if (clock_set)
2144                 /* Have to call _delayed version, since in irq context*/
2145                 clock_was_set_delayed();
2146 }
2147
2148 /**
2149  * update_wall_time - Uses the current clocksource to increment the wall time
2150  *
2151  */
2152 void update_wall_time(void)
2153 {
2154         timekeeping_advance(TK_ADV_TICK);
2155 }
2156
2157 /**
2158  * getboottime64 - Return the real time of system boot.
2159  * @ts:         pointer to the timespec64 to be set
2160  *
2161  * Returns the wall-time of boot in a timespec64.
2162  *
2163  * This is based on the wall_to_monotonic offset and the total suspend
2164  * time. Calls to settimeofday will affect the value returned (which
2165  * basically means that however wrong your real time clock is at boot time,
2166  * you get the right time here).
2167  */
2168 void getboottime64(struct timespec64 *ts)
2169 {
2170         struct timekeeper *tk = &tk_core.timekeeper;
2171         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2172
2173         *ts = ktime_to_timespec64(t);
2174 }
2175 EXPORT_SYMBOL_GPL(getboottime64);
2176
2177 unsigned long get_seconds(void)
2178 {
2179         struct timekeeper *tk = &tk_core.timekeeper;
2180
2181         return tk->xtime_sec;
2182 }
2183 EXPORT_SYMBOL(get_seconds);
2184
2185 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2186 {
2187         struct timekeeper *tk = &tk_core.timekeeper;
2188         unsigned long seq;
2189
2190         do {
2191                 seq = read_seqcount_begin(&tk_core.seq);
2192
2193                 *ts = tk_xtime(tk);
2194         } while (read_seqcount_retry(&tk_core.seq, seq));
2195 }
2196 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2197
2198 void ktime_get_coarse_ts64(struct timespec64 *ts)
2199 {
2200         struct timekeeper *tk = &tk_core.timekeeper;
2201         struct timespec64 now, mono;
2202         unsigned long seq;
2203
2204         do {
2205                 seq = read_seqcount_begin(&tk_core.seq);
2206
2207                 now = tk_xtime(tk);
2208                 mono = tk->wall_to_monotonic;
2209         } while (read_seqcount_retry(&tk_core.seq, seq));
2210
2211         set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2212                                 now.tv_nsec + mono.tv_nsec);
2213 }
2214 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2215
2216 /*
2217  * Must hold jiffies_lock
2218  */
2219 void do_timer(unsigned long ticks)
2220 {
2221         jiffies_64 += ticks;
2222         calc_global_load(ticks);
2223 }
2224
2225 /**
2226  * ktime_get_update_offsets_now - hrtimer helper
2227  * @cwsseq:     pointer to check and store the clock was set sequence number
2228  * @offs_real:  pointer to storage for monotonic -> realtime offset
2229  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2230  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2231  *
2232  * Returns current monotonic time and updates the offsets if the
2233  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2234  * different.
2235  *
2236  * Called from hrtimer_interrupt() or retrigger_next_event()
2237  */
2238 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2239                                      ktime_t *offs_boot, ktime_t *offs_tai)
2240 {
2241         struct timekeeper *tk = &tk_core.timekeeper;
2242         unsigned int seq;
2243         ktime_t base;
2244         u64 nsecs;
2245
2246         do {
2247                 seq = read_seqcount_begin(&tk_core.seq);
2248
2249                 base = tk->tkr_mono.base;
2250                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2251                 base = ktime_add_ns(base, nsecs);
2252
2253                 if (*cwsseq != tk->clock_was_set_seq) {
2254                         *cwsseq = tk->clock_was_set_seq;
2255                         *offs_real = tk->offs_real;
2256                         *offs_boot = tk->offs_boot;
2257                         *offs_tai = tk->offs_tai;
2258                 }
2259
2260                 /* Handle leapsecond insertion adjustments */
2261                 if (unlikely(base >= tk->next_leap_ktime))
2262                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2263
2264         } while (read_seqcount_retry(&tk_core.seq, seq));
2265
2266         return base;
2267 }
2268
2269 /**
2270  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2271  */
2272 static int timekeeping_validate_timex(const struct timex *txc)
2273 {
2274         if (txc->modes & ADJ_ADJTIME) {
2275                 /* singleshot must not be used with any other mode bits */
2276                 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2277                         return -EINVAL;
2278                 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2279                     !capable(CAP_SYS_TIME))
2280                         return -EPERM;
2281         } else {
2282                 /* In order to modify anything, you gotta be super-user! */
2283                 if (txc->modes && !capable(CAP_SYS_TIME))
2284                         return -EPERM;
2285                 /*
2286                  * if the quartz is off by more than 10% then
2287                  * something is VERY wrong!
2288                  */
2289                 if (txc->modes & ADJ_TICK &&
2290                     (txc->tick <  900000/USER_HZ ||
2291                      txc->tick > 1100000/USER_HZ))
2292                         return -EINVAL;
2293         }
2294
2295         if (txc->modes & ADJ_SETOFFSET) {
2296                 /* In order to inject time, you gotta be super-user! */
2297                 if (!capable(CAP_SYS_TIME))
2298                         return -EPERM;
2299
2300                 /*
2301                  * Validate if a timespec/timeval used to inject a time
2302                  * offset is valid.  Offsets can be postive or negative, so
2303                  * we don't check tv_sec. The value of the timeval/timespec
2304                  * is the sum of its fields,but *NOTE*:
2305                  * The field tv_usec/tv_nsec must always be non-negative and
2306                  * we can't have more nanoseconds/microseconds than a second.
2307                  */
2308                 if (txc->time.tv_usec < 0)
2309                         return -EINVAL;
2310
2311                 if (txc->modes & ADJ_NANO) {
2312                         if (txc->time.tv_usec >= NSEC_PER_SEC)
2313                                 return -EINVAL;
2314                 } else {
2315                         if (txc->time.tv_usec >= USEC_PER_SEC)
2316                                 return -EINVAL;
2317                 }
2318         }
2319
2320         /*
2321          * Check for potential multiplication overflows that can
2322          * only happen on 64-bit systems:
2323          */
2324         if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2325                 if (LLONG_MIN / PPM_SCALE > txc->freq)
2326                         return -EINVAL;
2327                 if (LLONG_MAX / PPM_SCALE < txc->freq)
2328                         return -EINVAL;
2329         }
2330
2331         return 0;
2332 }
2333
2334
2335 /**
2336  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2337  */
2338 int do_adjtimex(struct timex *txc)
2339 {
2340         struct timekeeper *tk = &tk_core.timekeeper;
2341         unsigned long flags;
2342         struct timespec64 ts;
2343         s32 orig_tai, tai;
2344         int ret;
2345
2346         /* Validate the data before disabling interrupts */
2347         ret = timekeeping_validate_timex(txc);
2348         if (ret)
2349                 return ret;
2350
2351         if (txc->modes & ADJ_SETOFFSET) {
2352                 struct timespec64 delta;
2353                 delta.tv_sec  = txc->time.tv_sec;
2354                 delta.tv_nsec = txc->time.tv_usec;
2355                 if (!(txc->modes & ADJ_NANO))
2356                         delta.tv_nsec *= 1000;
2357                 ret = timekeeping_inject_offset(&delta);
2358                 if (ret)
2359                         return ret;
2360         }
2361
2362         ktime_get_real_ts64(&ts);
2363
2364         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2365         write_seqcount_begin(&tk_core.seq);
2366
2367         orig_tai = tai = tk->tai_offset;
2368         ret = __do_adjtimex(txc, &ts, &tai);
2369
2370         if (tai != orig_tai) {
2371                 __timekeeping_set_tai_offset(tk, tai);
2372                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2373         }
2374         tk_update_leap_state(tk);
2375
2376         write_seqcount_end(&tk_core.seq);
2377         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2378
2379         /* Update the multiplier immediately if frequency was set directly */
2380         if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2381                 timekeeping_advance(TK_ADV_FREQ);
2382
2383         if (tai != orig_tai)
2384                 clock_was_set();
2385
2386         ntp_notify_cmos_timer();
2387
2388         return ret;
2389 }
2390
2391 #ifdef CONFIG_NTP_PPS
2392 /**
2393  * hardpps() - Accessor function to NTP __hardpps function
2394  */
2395 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2396 {
2397         unsigned long flags;
2398
2399         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2400         write_seqcount_begin(&tk_core.seq);
2401
2402         __hardpps(phase_ts, raw_ts);
2403
2404         write_seqcount_end(&tk_core.seq);
2405         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2406 }
2407 EXPORT_SYMBOL(hardpps);
2408 #endif /* CONFIG_NTP_PPS */
2409
2410 /**
2411  * xtime_update() - advances the timekeeping infrastructure
2412  * @ticks:      number of ticks, that have elapsed since the last call.
2413  *
2414  * Must be called with interrupts disabled.
2415  */
2416 void xtime_update(unsigned long ticks)
2417 {
2418         write_seqlock(&jiffies_lock);
2419         do_timer(ticks);
2420         write_sequnlock(&jiffies_lock);
2421         update_wall_time();
2422 }