psi: introduce state_mask to represent stalled psi states
[linux-2.6-microblaze.git] / kernel / time / timekeeping.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel timekeeping code and accessor functions. Based on code from
4  *  timer.c, moved in commit 8524070b7982.
5  */
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
11 #include <linux/mm.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/tick.h>
21 #include <linux/stop_machine.h>
22 #include <linux/pvclock_gtod.h>
23 #include <linux/compiler.h>
24 #include <linux/audit.h>
25
26 #include "tick-internal.h"
27 #include "ntp_internal.h"
28 #include "timekeeping_internal.h"
29
30 #define TK_CLEAR_NTP            (1 << 0)
31 #define TK_MIRROR               (1 << 1)
32 #define TK_CLOCK_WAS_SET        (1 << 2)
33
34 enum timekeeping_adv_mode {
35         /* Update timekeeper when a tick has passed */
36         TK_ADV_TICK,
37
38         /* Update timekeeper on a direct frequency change */
39         TK_ADV_FREQ
40 };
41
42 /*
43  * The most important data for readout fits into a single 64 byte
44  * cache line.
45  */
46 static struct {
47         seqcount_t              seq;
48         struct timekeeper       timekeeper;
49 } tk_core ____cacheline_aligned = {
50         .seq = SEQCNT_ZERO(tk_core.seq),
51 };
52
53 static DEFINE_RAW_SPINLOCK(timekeeper_lock);
54 static struct timekeeper shadow_timekeeper;
55
56 /**
57  * struct tk_fast - NMI safe timekeeper
58  * @seq:        Sequence counter for protecting updates. The lowest bit
59  *              is the index for the tk_read_base array
60  * @base:       tk_read_base array. Access is indexed by the lowest bit of
61  *              @seq.
62  *
63  * See @update_fast_timekeeper() below.
64  */
65 struct tk_fast {
66         seqcount_t              seq;
67         struct tk_read_base     base[2];
68 };
69
70 /* Suspend-time cycles value for halted fast timekeeper. */
71 static u64 cycles_at_suspend;
72
73 static u64 dummy_clock_read(struct clocksource *cs)
74 {
75         return cycles_at_suspend;
76 }
77
78 static struct clocksource dummy_clock = {
79         .read = dummy_clock_read,
80 };
81
82 static struct tk_fast tk_fast_mono ____cacheline_aligned = {
83         .base[0] = { .clock = &dummy_clock, },
84         .base[1] = { .clock = &dummy_clock, },
85 };
86
87 static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
88         .base[0] = { .clock = &dummy_clock, },
89         .base[1] = { .clock = &dummy_clock, },
90 };
91
92 /* flag for if timekeeping is suspended */
93 int __read_mostly timekeeping_suspended;
94
95 static inline void tk_normalize_xtime(struct timekeeper *tk)
96 {
97         while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
98                 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
99                 tk->xtime_sec++;
100         }
101         while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
102                 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
103                 tk->raw_sec++;
104         }
105 }
106
107 static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
108 {
109         struct timespec64 ts;
110
111         ts.tv_sec = tk->xtime_sec;
112         ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
113         return ts;
114 }
115
116 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
117 {
118         tk->xtime_sec = ts->tv_sec;
119         tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
120 }
121
122 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
123 {
124         tk->xtime_sec += ts->tv_sec;
125         tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
126         tk_normalize_xtime(tk);
127 }
128
129 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
130 {
131         struct timespec64 tmp;
132
133         /*
134          * Verify consistency of: offset_real = -wall_to_monotonic
135          * before modifying anything
136          */
137         set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
138                                         -tk->wall_to_monotonic.tv_nsec);
139         WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
140         tk->wall_to_monotonic = wtm;
141         set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
142         tk->offs_real = timespec64_to_ktime(tmp);
143         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
144 }
145
146 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
147 {
148         tk->offs_boot = ktime_add(tk->offs_boot, delta);
149 }
150
151 /*
152  * tk_clock_read - atomic clocksource read() helper
153  *
154  * This helper is necessary to use in the read paths because, while the
155  * seqlock ensures we don't return a bad value while structures are updated,
156  * it doesn't protect from potential crashes. There is the possibility that
157  * the tkr's clocksource may change between the read reference, and the
158  * clock reference passed to the read function.  This can cause crashes if
159  * the wrong clocksource is passed to the wrong read function.
160  * This isn't necessary to use when holding the timekeeper_lock or doing
161  * a read of the fast-timekeeper tkrs (which is protected by its own locking
162  * and update logic).
163  */
164 static inline u64 tk_clock_read(const struct tk_read_base *tkr)
165 {
166         struct clocksource *clock = READ_ONCE(tkr->clock);
167
168         return clock->read(clock);
169 }
170
171 #ifdef CONFIG_DEBUG_TIMEKEEPING
172 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
173
174 static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
175 {
176
177         u64 max_cycles = tk->tkr_mono.clock->max_cycles;
178         const char *name = tk->tkr_mono.clock->name;
179
180         if (offset > max_cycles) {
181                 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
182                                 offset, name, max_cycles);
183                 printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
184         } else {
185                 if (offset > (max_cycles >> 1)) {
186                         printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
187                                         offset, name, max_cycles >> 1);
188                         printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
189                 }
190         }
191
192         if (tk->underflow_seen) {
193                 if (jiffies - tk->last_warning > WARNING_FREQ) {
194                         printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
195                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
196                         printk_deferred("         Your kernel is probably still fine.\n");
197                         tk->last_warning = jiffies;
198                 }
199                 tk->underflow_seen = 0;
200         }
201
202         if (tk->overflow_seen) {
203                 if (jiffies - tk->last_warning > WARNING_FREQ) {
204                         printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
205                         printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
206                         printk_deferred("         Your kernel is probably still fine.\n");
207                         tk->last_warning = jiffies;
208                 }
209                 tk->overflow_seen = 0;
210         }
211 }
212
213 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
214 {
215         struct timekeeper *tk = &tk_core.timekeeper;
216         u64 now, last, mask, max, delta;
217         unsigned int seq;
218
219         /*
220          * Since we're called holding a seqlock, the data may shift
221          * under us while we're doing the calculation. This can cause
222          * false positives, since we'd note a problem but throw the
223          * results away. So nest another seqlock here to atomically
224          * grab the points we are checking with.
225          */
226         do {
227                 seq = read_seqcount_begin(&tk_core.seq);
228                 now = tk_clock_read(tkr);
229                 last = tkr->cycle_last;
230                 mask = tkr->mask;
231                 max = tkr->clock->max_cycles;
232         } while (read_seqcount_retry(&tk_core.seq, seq));
233
234         delta = clocksource_delta(now, last, mask);
235
236         /*
237          * Try to catch underflows by checking if we are seeing small
238          * mask-relative negative values.
239          */
240         if (unlikely((~delta & mask) < (mask >> 3))) {
241                 tk->underflow_seen = 1;
242                 delta = 0;
243         }
244
245         /* Cap delta value to the max_cycles values to avoid mult overflows */
246         if (unlikely(delta > max)) {
247                 tk->overflow_seen = 1;
248                 delta = tkr->clock->max_cycles;
249         }
250
251         return delta;
252 }
253 #else
254 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
255 {
256 }
257 static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
258 {
259         u64 cycle_now, delta;
260
261         /* read clocksource */
262         cycle_now = tk_clock_read(tkr);
263
264         /* calculate the delta since the last update_wall_time */
265         delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
266
267         return delta;
268 }
269 #endif
270
271 /**
272  * tk_setup_internals - Set up internals to use clocksource clock.
273  *
274  * @tk:         The target timekeeper to setup.
275  * @clock:              Pointer to clocksource.
276  *
277  * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
278  * pair and interval request.
279  *
280  * Unless you're the timekeeping code, you should not be using this!
281  */
282 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
283 {
284         u64 interval;
285         u64 tmp, ntpinterval;
286         struct clocksource *old_clock;
287
288         ++tk->cs_was_changed_seq;
289         old_clock = tk->tkr_mono.clock;
290         tk->tkr_mono.clock = clock;
291         tk->tkr_mono.mask = clock->mask;
292         tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
293
294         tk->tkr_raw.clock = clock;
295         tk->tkr_raw.mask = clock->mask;
296         tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
297
298         /* Do the ns -> cycle conversion first, using original mult */
299         tmp = NTP_INTERVAL_LENGTH;
300         tmp <<= clock->shift;
301         ntpinterval = tmp;
302         tmp += clock->mult/2;
303         do_div(tmp, clock->mult);
304         if (tmp == 0)
305                 tmp = 1;
306
307         interval = (u64) tmp;
308         tk->cycle_interval = interval;
309
310         /* Go back from cycles -> shifted ns */
311         tk->xtime_interval = interval * clock->mult;
312         tk->xtime_remainder = ntpinterval - tk->xtime_interval;
313         tk->raw_interval = interval * clock->mult;
314
315          /* if changing clocks, convert xtime_nsec shift units */
316         if (old_clock) {
317                 int shift_change = clock->shift - old_clock->shift;
318                 if (shift_change < 0) {
319                         tk->tkr_mono.xtime_nsec >>= -shift_change;
320                         tk->tkr_raw.xtime_nsec >>= -shift_change;
321                 } else {
322                         tk->tkr_mono.xtime_nsec <<= shift_change;
323                         tk->tkr_raw.xtime_nsec <<= shift_change;
324                 }
325         }
326
327         tk->tkr_mono.shift = clock->shift;
328         tk->tkr_raw.shift = clock->shift;
329
330         tk->ntp_error = 0;
331         tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
332         tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
333
334         /*
335          * The timekeeper keeps its own mult values for the currently
336          * active clocksource. These value will be adjusted via NTP
337          * to counteract clock drifting.
338          */
339         tk->tkr_mono.mult = clock->mult;
340         tk->tkr_raw.mult = clock->mult;
341         tk->ntp_err_mult = 0;
342         tk->skip_second_overflow = 0;
343 }
344
345 /* Timekeeper helper functions. */
346
347 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
348 static u32 default_arch_gettimeoffset(void) { return 0; }
349 u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
350 #else
351 static inline u32 arch_gettimeoffset(void) { return 0; }
352 #endif
353
354 static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
355 {
356         u64 nsec;
357
358         nsec = delta * tkr->mult + tkr->xtime_nsec;
359         nsec >>= tkr->shift;
360
361         /* If arch requires, add in get_arch_timeoffset() */
362         return nsec + arch_gettimeoffset();
363 }
364
365 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
366 {
367         u64 delta;
368
369         delta = timekeeping_get_delta(tkr);
370         return timekeeping_delta_to_ns(tkr, delta);
371 }
372
373 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
374 {
375         u64 delta;
376
377         /* calculate the delta since the last update_wall_time */
378         delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
379         return timekeeping_delta_to_ns(tkr, delta);
380 }
381
382 /**
383  * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
384  * @tkr: Timekeeping readout base from which we take the update
385  *
386  * We want to use this from any context including NMI and tracing /
387  * instrumenting the timekeeping code itself.
388  *
389  * Employ the latch technique; see @raw_write_seqcount_latch.
390  *
391  * So if a NMI hits the update of base[0] then it will use base[1]
392  * which is still consistent. In the worst case this can result is a
393  * slightly wrong timestamp (a few nanoseconds). See
394  * @ktime_get_mono_fast_ns.
395  */
396 static void update_fast_timekeeper(const struct tk_read_base *tkr,
397                                    struct tk_fast *tkf)
398 {
399         struct tk_read_base *base = tkf->base;
400
401         /* Force readers off to base[1] */
402         raw_write_seqcount_latch(&tkf->seq);
403
404         /* Update base[0] */
405         memcpy(base, tkr, sizeof(*base));
406
407         /* Force readers back to base[0] */
408         raw_write_seqcount_latch(&tkf->seq);
409
410         /* Update base[1] */
411         memcpy(base + 1, base, sizeof(*base));
412 }
413
414 /**
415  * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
416  *
417  * This timestamp is not guaranteed to be monotonic across an update.
418  * The timestamp is calculated by:
419  *
420  *      now = base_mono + clock_delta * slope
421  *
422  * So if the update lowers the slope, readers who are forced to the
423  * not yet updated second array are still using the old steeper slope.
424  *
425  * tmono
426  * ^
427  * |    o  n
428  * |   o n
429  * |  u
430  * | o
431  * |o
432  * |12345678---> reader order
433  *
434  * o = old slope
435  * u = update
436  * n = new slope
437  *
438  * So reader 6 will observe time going backwards versus reader 5.
439  *
440  * While other CPUs are likely to be able observe that, the only way
441  * for a CPU local observation is when an NMI hits in the middle of
442  * the update. Timestamps taken from that NMI context might be ahead
443  * of the following timestamps. Callers need to be aware of that and
444  * deal with it.
445  */
446 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
447 {
448         struct tk_read_base *tkr;
449         unsigned int seq;
450         u64 now;
451
452         do {
453                 seq = raw_read_seqcount_latch(&tkf->seq);
454                 tkr = tkf->base + (seq & 0x01);
455                 now = ktime_to_ns(tkr->base);
456
457                 now += timekeeping_delta_to_ns(tkr,
458                                 clocksource_delta(
459                                         tk_clock_read(tkr),
460                                         tkr->cycle_last,
461                                         tkr->mask));
462         } while (read_seqcount_retry(&tkf->seq, seq));
463
464         return now;
465 }
466
467 u64 ktime_get_mono_fast_ns(void)
468 {
469         return __ktime_get_fast_ns(&tk_fast_mono);
470 }
471 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
472
473 u64 ktime_get_raw_fast_ns(void)
474 {
475         return __ktime_get_fast_ns(&tk_fast_raw);
476 }
477 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
478
479 /**
480  * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
481  *
482  * To keep it NMI safe since we're accessing from tracing, we're not using a
483  * separate timekeeper with updates to monotonic clock and boot offset
484  * protected with seqlocks. This has the following minor side effects:
485  *
486  * (1) Its possible that a timestamp be taken after the boot offset is updated
487  * but before the timekeeper is updated. If this happens, the new boot offset
488  * is added to the old timekeeping making the clock appear to update slightly
489  * earlier:
490  *    CPU 0                                        CPU 1
491  *    timekeeping_inject_sleeptime64()
492  *    __timekeeping_inject_sleeptime(tk, delta);
493  *                                                 timestamp();
494  *    timekeeping_update(tk, TK_CLEAR_NTP...);
495  *
496  * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
497  * partially updated.  Since the tk->offs_boot update is a rare event, this
498  * should be a rare occurrence which postprocessing should be able to handle.
499  */
500 u64 notrace ktime_get_boot_fast_ns(void)
501 {
502         struct timekeeper *tk = &tk_core.timekeeper;
503
504         return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
505 }
506 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
507
508
509 /*
510  * See comment for __ktime_get_fast_ns() vs. timestamp ordering
511  */
512 static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
513 {
514         struct tk_read_base *tkr;
515         unsigned int seq;
516         u64 now;
517
518         do {
519                 seq = raw_read_seqcount_latch(&tkf->seq);
520                 tkr = tkf->base + (seq & 0x01);
521                 now = ktime_to_ns(tkr->base_real);
522
523                 now += timekeeping_delta_to_ns(tkr,
524                                 clocksource_delta(
525                                         tk_clock_read(tkr),
526                                         tkr->cycle_last,
527                                         tkr->mask));
528         } while (read_seqcount_retry(&tkf->seq, seq));
529
530         return now;
531 }
532
533 /**
534  * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
535  */
536 u64 ktime_get_real_fast_ns(void)
537 {
538         return __ktime_get_real_fast_ns(&tk_fast_mono);
539 }
540 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
541
542 /**
543  * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
544  * @tk: Timekeeper to snapshot.
545  *
546  * It generally is unsafe to access the clocksource after timekeeping has been
547  * suspended, so take a snapshot of the readout base of @tk and use it as the
548  * fast timekeeper's readout base while suspended.  It will return the same
549  * number of cycles every time until timekeeping is resumed at which time the
550  * proper readout base for the fast timekeeper will be restored automatically.
551  */
552 static void halt_fast_timekeeper(const struct timekeeper *tk)
553 {
554         static struct tk_read_base tkr_dummy;
555         const struct tk_read_base *tkr = &tk->tkr_mono;
556
557         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
558         cycles_at_suspend = tk_clock_read(tkr);
559         tkr_dummy.clock = &dummy_clock;
560         tkr_dummy.base_real = tkr->base + tk->offs_real;
561         update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
562
563         tkr = &tk->tkr_raw;
564         memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
565         tkr_dummy.clock = &dummy_clock;
566         update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
567 }
568
569 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
570
571 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
572 {
573         raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
574 }
575
576 /**
577  * pvclock_gtod_register_notifier - register a pvclock timedata update listener
578  */
579 int pvclock_gtod_register_notifier(struct notifier_block *nb)
580 {
581         struct timekeeper *tk = &tk_core.timekeeper;
582         unsigned long flags;
583         int ret;
584
585         raw_spin_lock_irqsave(&timekeeper_lock, flags);
586         ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
587         update_pvclock_gtod(tk, true);
588         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
589
590         return ret;
591 }
592 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
593
594 /**
595  * pvclock_gtod_unregister_notifier - unregister a pvclock
596  * timedata update listener
597  */
598 int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
599 {
600         unsigned long flags;
601         int ret;
602
603         raw_spin_lock_irqsave(&timekeeper_lock, flags);
604         ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
605         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
606
607         return ret;
608 }
609 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
610
611 /*
612  * tk_update_leap_state - helper to update the next_leap_ktime
613  */
614 static inline void tk_update_leap_state(struct timekeeper *tk)
615 {
616         tk->next_leap_ktime = ntp_get_next_leap();
617         if (tk->next_leap_ktime != KTIME_MAX)
618                 /* Convert to monotonic time */
619                 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
620 }
621
622 /*
623  * Update the ktime_t based scalar nsec members of the timekeeper
624  */
625 static inline void tk_update_ktime_data(struct timekeeper *tk)
626 {
627         u64 seconds;
628         u32 nsec;
629
630         /*
631          * The xtime based monotonic readout is:
632          *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
633          * The ktime based monotonic readout is:
634          *      nsec = base_mono + now();
635          * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
636          */
637         seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
638         nsec = (u32) tk->wall_to_monotonic.tv_nsec;
639         tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
640
641         /*
642          * The sum of the nanoseconds portions of xtime and
643          * wall_to_monotonic can be greater/equal one second. Take
644          * this into account before updating tk->ktime_sec.
645          */
646         nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
647         if (nsec >= NSEC_PER_SEC)
648                 seconds++;
649         tk->ktime_sec = seconds;
650
651         /* Update the monotonic raw base */
652         tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
653 }
654
655 /* must hold timekeeper_lock */
656 static void timekeeping_update(struct timekeeper *tk, unsigned int action)
657 {
658         if (action & TK_CLEAR_NTP) {
659                 tk->ntp_error = 0;
660                 ntp_clear();
661         }
662
663         tk_update_leap_state(tk);
664         tk_update_ktime_data(tk);
665
666         update_vsyscall(tk);
667         update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
668
669         tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
670         update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
671         update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
672
673         if (action & TK_CLOCK_WAS_SET)
674                 tk->clock_was_set_seq++;
675         /*
676          * The mirroring of the data to the shadow-timekeeper needs
677          * to happen last here to ensure we don't over-write the
678          * timekeeper structure on the next update with stale data
679          */
680         if (action & TK_MIRROR)
681                 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
682                        sizeof(tk_core.timekeeper));
683 }
684
685 /**
686  * timekeeping_forward_now - update clock to the current time
687  *
688  * Forward the current clock to update its state since the last call to
689  * update_wall_time(). This is useful before significant clock changes,
690  * as it avoids having to deal with this time offset explicitly.
691  */
692 static void timekeeping_forward_now(struct timekeeper *tk)
693 {
694         u64 cycle_now, delta;
695
696         cycle_now = tk_clock_read(&tk->tkr_mono);
697         delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
698         tk->tkr_mono.cycle_last = cycle_now;
699         tk->tkr_raw.cycle_last  = cycle_now;
700
701         tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
702
703         /* If arch requires, add in get_arch_timeoffset() */
704         tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
705
706
707         tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
708
709         /* If arch requires, add in get_arch_timeoffset() */
710         tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
711
712         tk_normalize_xtime(tk);
713 }
714
715 /**
716  * ktime_get_real_ts64 - Returns the time of day in a timespec64.
717  * @ts:         pointer to the timespec to be set
718  *
719  * Returns the time of day in a timespec64 (WARN if suspended).
720  */
721 void ktime_get_real_ts64(struct timespec64 *ts)
722 {
723         struct timekeeper *tk = &tk_core.timekeeper;
724         unsigned int seq;
725         u64 nsecs;
726
727         WARN_ON(timekeeping_suspended);
728
729         do {
730                 seq = read_seqcount_begin(&tk_core.seq);
731
732                 ts->tv_sec = tk->xtime_sec;
733                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
734
735         } while (read_seqcount_retry(&tk_core.seq, seq));
736
737         ts->tv_nsec = 0;
738         timespec64_add_ns(ts, nsecs);
739 }
740 EXPORT_SYMBOL(ktime_get_real_ts64);
741
742 ktime_t ktime_get(void)
743 {
744         struct timekeeper *tk = &tk_core.timekeeper;
745         unsigned int seq;
746         ktime_t base;
747         u64 nsecs;
748
749         WARN_ON(timekeeping_suspended);
750
751         do {
752                 seq = read_seqcount_begin(&tk_core.seq);
753                 base = tk->tkr_mono.base;
754                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
755
756         } while (read_seqcount_retry(&tk_core.seq, seq));
757
758         return ktime_add_ns(base, nsecs);
759 }
760 EXPORT_SYMBOL_GPL(ktime_get);
761
762 u32 ktime_get_resolution_ns(void)
763 {
764         struct timekeeper *tk = &tk_core.timekeeper;
765         unsigned int seq;
766         u32 nsecs;
767
768         WARN_ON(timekeeping_suspended);
769
770         do {
771                 seq = read_seqcount_begin(&tk_core.seq);
772                 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
773         } while (read_seqcount_retry(&tk_core.seq, seq));
774
775         return nsecs;
776 }
777 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
778
779 static ktime_t *offsets[TK_OFFS_MAX] = {
780         [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
781         [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
782         [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
783 };
784
785 ktime_t ktime_get_with_offset(enum tk_offsets offs)
786 {
787         struct timekeeper *tk = &tk_core.timekeeper;
788         unsigned int seq;
789         ktime_t base, *offset = offsets[offs];
790         u64 nsecs;
791
792         WARN_ON(timekeeping_suspended);
793
794         do {
795                 seq = read_seqcount_begin(&tk_core.seq);
796                 base = ktime_add(tk->tkr_mono.base, *offset);
797                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
798
799         } while (read_seqcount_retry(&tk_core.seq, seq));
800
801         return ktime_add_ns(base, nsecs);
802
803 }
804 EXPORT_SYMBOL_GPL(ktime_get_with_offset);
805
806 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
807 {
808         struct timekeeper *tk = &tk_core.timekeeper;
809         unsigned int seq;
810         ktime_t base, *offset = offsets[offs];
811
812         WARN_ON(timekeeping_suspended);
813
814         do {
815                 seq = read_seqcount_begin(&tk_core.seq);
816                 base = ktime_add(tk->tkr_mono.base, *offset);
817
818         } while (read_seqcount_retry(&tk_core.seq, seq));
819
820         return base;
821
822 }
823 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
824
825 /**
826  * ktime_mono_to_any() - convert mononotic time to any other time
827  * @tmono:      time to convert.
828  * @offs:       which offset to use
829  */
830 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
831 {
832         ktime_t *offset = offsets[offs];
833         unsigned int seq;
834         ktime_t tconv;
835
836         do {
837                 seq = read_seqcount_begin(&tk_core.seq);
838                 tconv = ktime_add(tmono, *offset);
839         } while (read_seqcount_retry(&tk_core.seq, seq));
840
841         return tconv;
842 }
843 EXPORT_SYMBOL_GPL(ktime_mono_to_any);
844
845 /**
846  * ktime_get_raw - Returns the raw monotonic time in ktime_t format
847  */
848 ktime_t ktime_get_raw(void)
849 {
850         struct timekeeper *tk = &tk_core.timekeeper;
851         unsigned int seq;
852         ktime_t base;
853         u64 nsecs;
854
855         do {
856                 seq = read_seqcount_begin(&tk_core.seq);
857                 base = tk->tkr_raw.base;
858                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
859
860         } while (read_seqcount_retry(&tk_core.seq, seq));
861
862         return ktime_add_ns(base, nsecs);
863 }
864 EXPORT_SYMBOL_GPL(ktime_get_raw);
865
866 /**
867  * ktime_get_ts64 - get the monotonic clock in timespec64 format
868  * @ts:         pointer to timespec variable
869  *
870  * The function calculates the monotonic clock from the realtime
871  * clock and the wall_to_monotonic offset and stores the result
872  * in normalized timespec64 format in the variable pointed to by @ts.
873  */
874 void ktime_get_ts64(struct timespec64 *ts)
875 {
876         struct timekeeper *tk = &tk_core.timekeeper;
877         struct timespec64 tomono;
878         unsigned int seq;
879         u64 nsec;
880
881         WARN_ON(timekeeping_suspended);
882
883         do {
884                 seq = read_seqcount_begin(&tk_core.seq);
885                 ts->tv_sec = tk->xtime_sec;
886                 nsec = timekeeping_get_ns(&tk->tkr_mono);
887                 tomono = tk->wall_to_monotonic;
888
889         } while (read_seqcount_retry(&tk_core.seq, seq));
890
891         ts->tv_sec += tomono.tv_sec;
892         ts->tv_nsec = 0;
893         timespec64_add_ns(ts, nsec + tomono.tv_nsec);
894 }
895 EXPORT_SYMBOL_GPL(ktime_get_ts64);
896
897 /**
898  * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
899  *
900  * Returns the seconds portion of CLOCK_MONOTONIC with a single non
901  * serialized read. tk->ktime_sec is of type 'unsigned long' so this
902  * works on both 32 and 64 bit systems. On 32 bit systems the readout
903  * covers ~136 years of uptime which should be enough to prevent
904  * premature wrap arounds.
905  */
906 time64_t ktime_get_seconds(void)
907 {
908         struct timekeeper *tk = &tk_core.timekeeper;
909
910         WARN_ON(timekeeping_suspended);
911         return tk->ktime_sec;
912 }
913 EXPORT_SYMBOL_GPL(ktime_get_seconds);
914
915 /**
916  * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
917  *
918  * Returns the wall clock seconds since 1970. This replaces the
919  * get_seconds() interface which is not y2038 safe on 32bit systems.
920  *
921  * For 64bit systems the fast access to tk->xtime_sec is preserved. On
922  * 32bit systems the access must be protected with the sequence
923  * counter to provide "atomic" access to the 64bit tk->xtime_sec
924  * value.
925  */
926 time64_t ktime_get_real_seconds(void)
927 {
928         struct timekeeper *tk = &tk_core.timekeeper;
929         time64_t seconds;
930         unsigned int seq;
931
932         if (IS_ENABLED(CONFIG_64BIT))
933                 return tk->xtime_sec;
934
935         do {
936                 seq = read_seqcount_begin(&tk_core.seq);
937                 seconds = tk->xtime_sec;
938
939         } while (read_seqcount_retry(&tk_core.seq, seq));
940
941         return seconds;
942 }
943 EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
944
945 /**
946  * __ktime_get_real_seconds - The same as ktime_get_real_seconds
947  * but without the sequence counter protect. This internal function
948  * is called just when timekeeping lock is already held.
949  */
950 time64_t __ktime_get_real_seconds(void)
951 {
952         struct timekeeper *tk = &tk_core.timekeeper;
953
954         return tk->xtime_sec;
955 }
956
957 /**
958  * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
959  * @systime_snapshot:   pointer to struct receiving the system time snapshot
960  */
961 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
962 {
963         struct timekeeper *tk = &tk_core.timekeeper;
964         unsigned int seq;
965         ktime_t base_raw;
966         ktime_t base_real;
967         u64 nsec_raw;
968         u64 nsec_real;
969         u64 now;
970
971         WARN_ON_ONCE(timekeeping_suspended);
972
973         do {
974                 seq = read_seqcount_begin(&tk_core.seq);
975                 now = tk_clock_read(&tk->tkr_mono);
976                 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
977                 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
978                 base_real = ktime_add(tk->tkr_mono.base,
979                                       tk_core.timekeeper.offs_real);
980                 base_raw = tk->tkr_raw.base;
981                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
982                 nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
983         } while (read_seqcount_retry(&tk_core.seq, seq));
984
985         systime_snapshot->cycles = now;
986         systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
987         systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
988 }
989 EXPORT_SYMBOL_GPL(ktime_get_snapshot);
990
991 /* Scale base by mult/div checking for overflow */
992 static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
993 {
994         u64 tmp, rem;
995
996         tmp = div64_u64_rem(*base, div, &rem);
997
998         if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
999             ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1000                 return -EOVERFLOW;
1001         tmp *= mult;
1002         rem *= mult;
1003
1004         do_div(rem, div);
1005         *base = tmp + rem;
1006         return 0;
1007 }
1008
1009 /**
1010  * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1011  * @history:                    Snapshot representing start of history
1012  * @partial_history_cycles:     Cycle offset into history (fractional part)
1013  * @total_history_cycles:       Total history length in cycles
1014  * @discontinuity:              True indicates clock was set on history period
1015  * @ts:                         Cross timestamp that should be adjusted using
1016  *      partial/total ratio
1017  *
1018  * Helper function used by get_device_system_crosststamp() to correct the
1019  * crosstimestamp corresponding to the start of the current interval to the
1020  * system counter value (timestamp point) provided by the driver. The
1021  * total_history_* quantities are the total history starting at the provided
1022  * reference point and ending at the start of the current interval. The cycle
1023  * count between the driver timestamp point and the start of the current
1024  * interval is partial_history_cycles.
1025  */
1026 static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1027                                          u64 partial_history_cycles,
1028                                          u64 total_history_cycles,
1029                                          bool discontinuity,
1030                                          struct system_device_crosststamp *ts)
1031 {
1032         struct timekeeper *tk = &tk_core.timekeeper;
1033         u64 corr_raw, corr_real;
1034         bool interp_forward;
1035         int ret;
1036
1037         if (total_history_cycles == 0 || partial_history_cycles == 0)
1038                 return 0;
1039
1040         /* Interpolate shortest distance from beginning or end of history */
1041         interp_forward = partial_history_cycles > total_history_cycles / 2;
1042         partial_history_cycles = interp_forward ?
1043                 total_history_cycles - partial_history_cycles :
1044                 partial_history_cycles;
1045
1046         /*
1047          * Scale the monotonic raw time delta by:
1048          *      partial_history_cycles / total_history_cycles
1049          */
1050         corr_raw = (u64)ktime_to_ns(
1051                 ktime_sub(ts->sys_monoraw, history->raw));
1052         ret = scale64_check_overflow(partial_history_cycles,
1053                                      total_history_cycles, &corr_raw);
1054         if (ret)
1055                 return ret;
1056
1057         /*
1058          * If there is a discontinuity in the history, scale monotonic raw
1059          *      correction by:
1060          *      mult(real)/mult(raw) yielding the realtime correction
1061          * Otherwise, calculate the realtime correction similar to monotonic
1062          *      raw calculation
1063          */
1064         if (discontinuity) {
1065                 corr_real = mul_u64_u32_div
1066                         (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1067         } else {
1068                 corr_real = (u64)ktime_to_ns(
1069                         ktime_sub(ts->sys_realtime, history->real));
1070                 ret = scale64_check_overflow(partial_history_cycles,
1071                                              total_history_cycles, &corr_real);
1072                 if (ret)
1073                         return ret;
1074         }
1075
1076         /* Fixup monotonic raw and real time time values */
1077         if (interp_forward) {
1078                 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1079                 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1080         } else {
1081                 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1082                 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1083         }
1084
1085         return 0;
1086 }
1087
1088 /*
1089  * cycle_between - true if test occurs chronologically between before and after
1090  */
1091 static bool cycle_between(u64 before, u64 test, u64 after)
1092 {
1093         if (test > before && test < after)
1094                 return true;
1095         if (test < before && before > after)
1096                 return true;
1097         return false;
1098 }
1099
1100 /**
1101  * get_device_system_crosststamp - Synchronously capture system/device timestamp
1102  * @get_time_fn:        Callback to get simultaneous device time and
1103  *      system counter from the device driver
1104  * @ctx:                Context passed to get_time_fn()
1105  * @history_begin:      Historical reference point used to interpolate system
1106  *      time when counter provided by the driver is before the current interval
1107  * @xtstamp:            Receives simultaneously captured system and device time
1108  *
1109  * Reads a timestamp from a device and correlates it to system time
1110  */
1111 int get_device_system_crosststamp(int (*get_time_fn)
1112                                   (ktime_t *device_time,
1113                                    struct system_counterval_t *sys_counterval,
1114                                    void *ctx),
1115                                   void *ctx,
1116                                   struct system_time_snapshot *history_begin,
1117                                   struct system_device_crosststamp *xtstamp)
1118 {
1119         struct system_counterval_t system_counterval;
1120         struct timekeeper *tk = &tk_core.timekeeper;
1121         u64 cycles, now, interval_start;
1122         unsigned int clock_was_set_seq = 0;
1123         ktime_t base_real, base_raw;
1124         u64 nsec_real, nsec_raw;
1125         u8 cs_was_changed_seq;
1126         unsigned int seq;
1127         bool do_interp;
1128         int ret;
1129
1130         do {
1131                 seq = read_seqcount_begin(&tk_core.seq);
1132                 /*
1133                  * Try to synchronously capture device time and a system
1134                  * counter value calling back into the device driver
1135                  */
1136                 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1137                 if (ret)
1138                         return ret;
1139
1140                 /*
1141                  * Verify that the clocksource associated with the captured
1142                  * system counter value is the same as the currently installed
1143                  * timekeeper clocksource
1144                  */
1145                 if (tk->tkr_mono.clock != system_counterval.cs)
1146                         return -ENODEV;
1147                 cycles = system_counterval.cycles;
1148
1149                 /*
1150                  * Check whether the system counter value provided by the
1151                  * device driver is on the current timekeeping interval.
1152                  */
1153                 now = tk_clock_read(&tk->tkr_mono);
1154                 interval_start = tk->tkr_mono.cycle_last;
1155                 if (!cycle_between(interval_start, cycles, now)) {
1156                         clock_was_set_seq = tk->clock_was_set_seq;
1157                         cs_was_changed_seq = tk->cs_was_changed_seq;
1158                         cycles = interval_start;
1159                         do_interp = true;
1160                 } else {
1161                         do_interp = false;
1162                 }
1163
1164                 base_real = ktime_add(tk->tkr_mono.base,
1165                                       tk_core.timekeeper.offs_real);
1166                 base_raw = tk->tkr_raw.base;
1167
1168                 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1169                                                      system_counterval.cycles);
1170                 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1171                                                     system_counterval.cycles);
1172         } while (read_seqcount_retry(&tk_core.seq, seq));
1173
1174         xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1175         xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1176
1177         /*
1178          * Interpolate if necessary, adjusting back from the start of the
1179          * current interval
1180          */
1181         if (do_interp) {
1182                 u64 partial_history_cycles, total_history_cycles;
1183                 bool discontinuity;
1184
1185                 /*
1186                  * Check that the counter value occurs after the provided
1187                  * history reference and that the history doesn't cross a
1188                  * clocksource change
1189                  */
1190                 if (!history_begin ||
1191                     !cycle_between(history_begin->cycles,
1192                                    system_counterval.cycles, cycles) ||
1193                     history_begin->cs_was_changed_seq != cs_was_changed_seq)
1194                         return -EINVAL;
1195                 partial_history_cycles = cycles - system_counterval.cycles;
1196                 total_history_cycles = cycles - history_begin->cycles;
1197                 discontinuity =
1198                         history_begin->clock_was_set_seq != clock_was_set_seq;
1199
1200                 ret = adjust_historical_crosststamp(history_begin,
1201                                                     partial_history_cycles,
1202                                                     total_history_cycles,
1203                                                     discontinuity, xtstamp);
1204                 if (ret)
1205                         return ret;
1206         }
1207
1208         return 0;
1209 }
1210 EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1211
1212 /**
1213  * do_settimeofday64 - Sets the time of day.
1214  * @ts:     pointer to the timespec64 variable containing the new time
1215  *
1216  * Sets the time of day to the new time and update NTP and notify hrtimers
1217  */
1218 int do_settimeofday64(const struct timespec64 *ts)
1219 {
1220         struct timekeeper *tk = &tk_core.timekeeper;
1221         struct timespec64 ts_delta, xt;
1222         unsigned long flags;
1223         int ret = 0;
1224
1225         if (!timespec64_valid_settod(ts))
1226                 return -EINVAL;
1227
1228         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1229         write_seqcount_begin(&tk_core.seq);
1230
1231         timekeeping_forward_now(tk);
1232
1233         xt = tk_xtime(tk);
1234         ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1235         ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1236
1237         if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1238                 ret = -EINVAL;
1239                 goto out;
1240         }
1241
1242         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1243
1244         tk_set_xtime(tk, ts);
1245 out:
1246         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1247
1248         write_seqcount_end(&tk_core.seq);
1249         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1250
1251         /* signal hrtimers about time change */
1252         clock_was_set();
1253
1254         if (!ret)
1255                 audit_tk_injoffset(ts_delta);
1256
1257         return ret;
1258 }
1259 EXPORT_SYMBOL(do_settimeofday64);
1260
1261 /**
1262  * timekeeping_inject_offset - Adds or subtracts from the current time.
1263  * @tv:         pointer to the timespec variable containing the offset
1264  *
1265  * Adds or subtracts an offset value from the current time.
1266  */
1267 static int timekeeping_inject_offset(const struct timespec64 *ts)
1268 {
1269         struct timekeeper *tk = &tk_core.timekeeper;
1270         unsigned long flags;
1271         struct timespec64 tmp;
1272         int ret = 0;
1273
1274         if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1275                 return -EINVAL;
1276
1277         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1278         write_seqcount_begin(&tk_core.seq);
1279
1280         timekeeping_forward_now(tk);
1281
1282         /* Make sure the proposed value is valid */
1283         tmp = timespec64_add(tk_xtime(tk), *ts);
1284         if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1285             !timespec64_valid_settod(&tmp)) {
1286                 ret = -EINVAL;
1287                 goto error;
1288         }
1289
1290         tk_xtime_add(tk, ts);
1291         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1292
1293 error: /* even if we error out, we forwarded the time, so call update */
1294         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1295
1296         write_seqcount_end(&tk_core.seq);
1297         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1298
1299         /* signal hrtimers about time change */
1300         clock_was_set();
1301
1302         return ret;
1303 }
1304
1305 /*
1306  * Indicates if there is an offset between the system clock and the hardware
1307  * clock/persistent clock/rtc.
1308  */
1309 int persistent_clock_is_local;
1310
1311 /*
1312  * Adjust the time obtained from the CMOS to be UTC time instead of
1313  * local time.
1314  *
1315  * This is ugly, but preferable to the alternatives.  Otherwise we
1316  * would either need to write a program to do it in /etc/rc (and risk
1317  * confusion if the program gets run more than once; it would also be
1318  * hard to make the program warp the clock precisely n hours)  or
1319  * compile in the timezone information into the kernel.  Bad, bad....
1320  *
1321  *                                              - TYT, 1992-01-01
1322  *
1323  * The best thing to do is to keep the CMOS clock in universal time (UTC)
1324  * as real UNIX machines always do it. This avoids all headaches about
1325  * daylight saving times and warping kernel clocks.
1326  */
1327 void timekeeping_warp_clock(void)
1328 {
1329         if (sys_tz.tz_minuteswest != 0) {
1330                 struct timespec64 adjust;
1331
1332                 persistent_clock_is_local = 1;
1333                 adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1334                 adjust.tv_nsec = 0;
1335                 timekeeping_inject_offset(&adjust);
1336         }
1337 }
1338
1339 /**
1340  * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1341  *
1342  */
1343 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1344 {
1345         tk->tai_offset = tai_offset;
1346         tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1347 }
1348
1349 /**
1350  * change_clocksource - Swaps clocksources if a new one is available
1351  *
1352  * Accumulates current time interval and initializes new clocksource
1353  */
1354 static int change_clocksource(void *data)
1355 {
1356         struct timekeeper *tk = &tk_core.timekeeper;
1357         struct clocksource *new, *old;
1358         unsigned long flags;
1359
1360         new = (struct clocksource *) data;
1361
1362         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1363         write_seqcount_begin(&tk_core.seq);
1364
1365         timekeeping_forward_now(tk);
1366         /*
1367          * If the cs is in module, get a module reference. Succeeds
1368          * for built-in code (owner == NULL) as well.
1369          */
1370         if (try_module_get(new->owner)) {
1371                 if (!new->enable || new->enable(new) == 0) {
1372                         old = tk->tkr_mono.clock;
1373                         tk_setup_internals(tk, new);
1374                         if (old->disable)
1375                                 old->disable(old);
1376                         module_put(old->owner);
1377                 } else {
1378                         module_put(new->owner);
1379                 }
1380         }
1381         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1382
1383         write_seqcount_end(&tk_core.seq);
1384         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1385
1386         return 0;
1387 }
1388
1389 /**
1390  * timekeeping_notify - Install a new clock source
1391  * @clock:              pointer to the clock source
1392  *
1393  * This function is called from clocksource.c after a new, better clock
1394  * source has been registered. The caller holds the clocksource_mutex.
1395  */
1396 int timekeeping_notify(struct clocksource *clock)
1397 {
1398         struct timekeeper *tk = &tk_core.timekeeper;
1399
1400         if (tk->tkr_mono.clock == clock)
1401                 return 0;
1402         stop_machine(change_clocksource, clock, NULL);
1403         tick_clock_notify();
1404         return tk->tkr_mono.clock == clock ? 0 : -1;
1405 }
1406
1407 /**
1408  * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1409  * @ts:         pointer to the timespec64 to be set
1410  *
1411  * Returns the raw monotonic time (completely un-modified by ntp)
1412  */
1413 void ktime_get_raw_ts64(struct timespec64 *ts)
1414 {
1415         struct timekeeper *tk = &tk_core.timekeeper;
1416         unsigned int seq;
1417         u64 nsecs;
1418
1419         do {
1420                 seq = read_seqcount_begin(&tk_core.seq);
1421                 ts->tv_sec = tk->raw_sec;
1422                 nsecs = timekeeping_get_ns(&tk->tkr_raw);
1423
1424         } while (read_seqcount_retry(&tk_core.seq, seq));
1425
1426         ts->tv_nsec = 0;
1427         timespec64_add_ns(ts, nsecs);
1428 }
1429 EXPORT_SYMBOL(ktime_get_raw_ts64);
1430
1431
1432 /**
1433  * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1434  */
1435 int timekeeping_valid_for_hres(void)
1436 {
1437         struct timekeeper *tk = &tk_core.timekeeper;
1438         unsigned int seq;
1439         int ret;
1440
1441         do {
1442                 seq = read_seqcount_begin(&tk_core.seq);
1443
1444                 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1445
1446         } while (read_seqcount_retry(&tk_core.seq, seq));
1447
1448         return ret;
1449 }
1450
1451 /**
1452  * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1453  */
1454 u64 timekeeping_max_deferment(void)
1455 {
1456         struct timekeeper *tk = &tk_core.timekeeper;
1457         unsigned int seq;
1458         u64 ret;
1459
1460         do {
1461                 seq = read_seqcount_begin(&tk_core.seq);
1462
1463                 ret = tk->tkr_mono.clock->max_idle_ns;
1464
1465         } while (read_seqcount_retry(&tk_core.seq, seq));
1466
1467         return ret;
1468 }
1469
1470 /**
1471  * read_persistent_clock64 -  Return time from the persistent clock.
1472  *
1473  * Weak dummy function for arches that do not yet support it.
1474  * Reads the time from the battery backed persistent clock.
1475  * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1476  *
1477  *  XXX - Do be sure to remove it once all arches implement it.
1478  */
1479 void __weak read_persistent_clock64(struct timespec64 *ts)
1480 {
1481         ts->tv_sec = 0;
1482         ts->tv_nsec = 0;
1483 }
1484
1485 /**
1486  * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1487  *                                        from the boot.
1488  *
1489  * Weak dummy function for arches that do not yet support it.
1490  * wall_time    - current time as returned by persistent clock
1491  * boot_offset  - offset that is defined as wall_time - boot_time
1492  * The default function calculates offset based on the current value of
1493  * local_clock(). This way architectures that support sched_clock() but don't
1494  * support dedicated boot time clock will provide the best estimate of the
1495  * boot time.
1496  */
1497 void __weak __init
1498 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1499                                      struct timespec64 *boot_offset)
1500 {
1501         read_persistent_clock64(wall_time);
1502         *boot_offset = ns_to_timespec64(local_clock());
1503 }
1504
1505 /*
1506  * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1507  *
1508  * The flag starts of false and is only set when a suspend reaches
1509  * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1510  * timekeeper clocksource is not stopping across suspend and has been
1511  * used to update sleep time. If the timekeeper clocksource has stopped
1512  * then the flag stays true and is used by the RTC resume code to decide
1513  * whether sleeptime must be injected and if so the flag gets false then.
1514  *
1515  * If a suspend fails before reaching timekeeping_resume() then the flag
1516  * stays false and prevents erroneous sleeptime injection.
1517  */
1518 static bool suspend_timing_needed;
1519
1520 /* Flag for if there is a persistent clock on this platform */
1521 static bool persistent_clock_exists;
1522
1523 /*
1524  * timekeeping_init - Initializes the clocksource and common timekeeping values
1525  */
1526 void __init timekeeping_init(void)
1527 {
1528         struct timespec64 wall_time, boot_offset, wall_to_mono;
1529         struct timekeeper *tk = &tk_core.timekeeper;
1530         struct clocksource *clock;
1531         unsigned long flags;
1532
1533         read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1534         if (timespec64_valid_settod(&wall_time) &&
1535             timespec64_to_ns(&wall_time) > 0) {
1536                 persistent_clock_exists = true;
1537         } else if (timespec64_to_ns(&wall_time) != 0) {
1538                 pr_warn("Persistent clock returned invalid value");
1539                 wall_time = (struct timespec64){0};
1540         }
1541
1542         if (timespec64_compare(&wall_time, &boot_offset) < 0)
1543                 boot_offset = (struct timespec64){0};
1544
1545         /*
1546          * We want set wall_to_mono, so the following is true:
1547          * wall time + wall_to_mono = boot time
1548          */
1549         wall_to_mono = timespec64_sub(boot_offset, wall_time);
1550
1551         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1552         write_seqcount_begin(&tk_core.seq);
1553         ntp_init();
1554
1555         clock = clocksource_default_clock();
1556         if (clock->enable)
1557                 clock->enable(clock);
1558         tk_setup_internals(tk, clock);
1559
1560         tk_set_xtime(tk, &wall_time);
1561         tk->raw_sec = 0;
1562
1563         tk_set_wall_to_mono(tk, wall_to_mono);
1564
1565         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1566
1567         write_seqcount_end(&tk_core.seq);
1568         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1569 }
1570
1571 /* time in seconds when suspend began for persistent clock */
1572 static struct timespec64 timekeeping_suspend_time;
1573
1574 /**
1575  * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1576  * @delta: pointer to a timespec delta value
1577  *
1578  * Takes a timespec offset measuring a suspend interval and properly
1579  * adds the sleep offset to the timekeeping variables.
1580  */
1581 static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1582                                            const struct timespec64 *delta)
1583 {
1584         if (!timespec64_valid_strict(delta)) {
1585                 printk_deferred(KERN_WARNING
1586                                 "__timekeeping_inject_sleeptime: Invalid "
1587                                 "sleep delta value!\n");
1588                 return;
1589         }
1590         tk_xtime_add(tk, delta);
1591         tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1592         tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1593         tk_debug_account_sleep_time(delta);
1594 }
1595
1596 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1597 /**
1598  * We have three kinds of time sources to use for sleep time
1599  * injection, the preference order is:
1600  * 1) non-stop clocksource
1601  * 2) persistent clock (ie: RTC accessible when irqs are off)
1602  * 3) RTC
1603  *
1604  * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1605  * If system has neither 1) nor 2), 3) will be used finally.
1606  *
1607  *
1608  * If timekeeping has injected sleeptime via either 1) or 2),
1609  * 3) becomes needless, so in this case we don't need to call
1610  * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1611  * means.
1612  */
1613 bool timekeeping_rtc_skipresume(void)
1614 {
1615         return !suspend_timing_needed;
1616 }
1617
1618 /**
1619  * 1) can be determined whether to use or not only when doing
1620  * timekeeping_resume() which is invoked after rtc_suspend(),
1621  * so we can't skip rtc_suspend() surely if system has 1).
1622  *
1623  * But if system has 2), 2) will definitely be used, so in this
1624  * case we don't need to call rtc_suspend(), and this is what
1625  * timekeeping_rtc_skipsuspend() means.
1626  */
1627 bool timekeeping_rtc_skipsuspend(void)
1628 {
1629         return persistent_clock_exists;
1630 }
1631
1632 /**
1633  * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1634  * @delta: pointer to a timespec64 delta value
1635  *
1636  * This hook is for architectures that cannot support read_persistent_clock64
1637  * because their RTC/persistent clock is only accessible when irqs are enabled.
1638  * and also don't have an effective nonstop clocksource.
1639  *
1640  * This function should only be called by rtc_resume(), and allows
1641  * a suspend offset to be injected into the timekeeping values.
1642  */
1643 void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1644 {
1645         struct timekeeper *tk = &tk_core.timekeeper;
1646         unsigned long flags;
1647
1648         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1649         write_seqcount_begin(&tk_core.seq);
1650
1651         suspend_timing_needed = false;
1652
1653         timekeeping_forward_now(tk);
1654
1655         __timekeeping_inject_sleeptime(tk, delta);
1656
1657         timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1658
1659         write_seqcount_end(&tk_core.seq);
1660         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1661
1662         /* signal hrtimers about time change */
1663         clock_was_set();
1664 }
1665 #endif
1666
1667 /**
1668  * timekeeping_resume - Resumes the generic timekeeping subsystem.
1669  */
1670 void timekeeping_resume(void)
1671 {
1672         struct timekeeper *tk = &tk_core.timekeeper;
1673         struct clocksource *clock = tk->tkr_mono.clock;
1674         unsigned long flags;
1675         struct timespec64 ts_new, ts_delta;
1676         u64 cycle_now, nsec;
1677         bool inject_sleeptime = false;
1678
1679         read_persistent_clock64(&ts_new);
1680
1681         clockevents_resume();
1682         clocksource_resume();
1683
1684         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1685         write_seqcount_begin(&tk_core.seq);
1686
1687         /*
1688          * After system resumes, we need to calculate the suspended time and
1689          * compensate it for the OS time. There are 3 sources that could be
1690          * used: Nonstop clocksource during suspend, persistent clock and rtc
1691          * device.
1692          *
1693          * One specific platform may have 1 or 2 or all of them, and the
1694          * preference will be:
1695          *      suspend-nonstop clocksource -> persistent clock -> rtc
1696          * The less preferred source will only be tried if there is no better
1697          * usable source. The rtc part is handled separately in rtc core code.
1698          */
1699         cycle_now = tk_clock_read(&tk->tkr_mono);
1700         nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1701         if (nsec > 0) {
1702                 ts_delta = ns_to_timespec64(nsec);
1703                 inject_sleeptime = true;
1704         } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1705                 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1706                 inject_sleeptime = true;
1707         }
1708
1709         if (inject_sleeptime) {
1710                 suspend_timing_needed = false;
1711                 __timekeeping_inject_sleeptime(tk, &ts_delta);
1712         }
1713
1714         /* Re-base the last cycle value */
1715         tk->tkr_mono.cycle_last = cycle_now;
1716         tk->tkr_raw.cycle_last  = cycle_now;
1717
1718         tk->ntp_error = 0;
1719         timekeeping_suspended = 0;
1720         timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1721         write_seqcount_end(&tk_core.seq);
1722         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1723
1724         touch_softlockup_watchdog();
1725
1726         tick_resume();
1727         hrtimers_resume();
1728 }
1729
1730 int timekeeping_suspend(void)
1731 {
1732         struct timekeeper *tk = &tk_core.timekeeper;
1733         unsigned long flags;
1734         struct timespec64               delta, delta_delta;
1735         static struct timespec64        old_delta;
1736         struct clocksource *curr_clock;
1737         u64 cycle_now;
1738
1739         read_persistent_clock64(&timekeeping_suspend_time);
1740
1741         /*
1742          * On some systems the persistent_clock can not be detected at
1743          * timekeeping_init by its return value, so if we see a valid
1744          * value returned, update the persistent_clock_exists flag.
1745          */
1746         if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1747                 persistent_clock_exists = true;
1748
1749         suspend_timing_needed = true;
1750
1751         raw_spin_lock_irqsave(&timekeeper_lock, flags);
1752         write_seqcount_begin(&tk_core.seq);
1753         timekeeping_forward_now(tk);
1754         timekeeping_suspended = 1;
1755
1756         /*
1757          * Since we've called forward_now, cycle_last stores the value
1758          * just read from the current clocksource. Save this to potentially
1759          * use in suspend timing.
1760          */
1761         curr_clock = tk->tkr_mono.clock;
1762         cycle_now = tk->tkr_mono.cycle_last;
1763         clocksource_start_suspend_timing(curr_clock, cycle_now);
1764
1765         if (persistent_clock_exists) {
1766                 /*
1767                  * To avoid drift caused by repeated suspend/resumes,
1768                  * which each can add ~1 second drift error,
1769                  * try to compensate so the difference in system time
1770                  * and persistent_clock time stays close to constant.
1771                  */
1772                 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1773                 delta_delta = timespec64_sub(delta, old_delta);
1774                 if (abs(delta_delta.tv_sec) >= 2) {
1775                         /*
1776                          * if delta_delta is too large, assume time correction
1777                          * has occurred and set old_delta to the current delta.
1778                          */
1779                         old_delta = delta;
1780                 } else {
1781                         /* Otherwise try to adjust old_system to compensate */
1782                         timekeeping_suspend_time =
1783                                 timespec64_add(timekeeping_suspend_time, delta_delta);
1784                 }
1785         }
1786
1787         timekeeping_update(tk, TK_MIRROR);
1788         halt_fast_timekeeper(tk);
1789         write_seqcount_end(&tk_core.seq);
1790         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1791
1792         tick_suspend();
1793         clocksource_suspend();
1794         clockevents_suspend();
1795
1796         return 0;
1797 }
1798
1799 /* sysfs resume/suspend bits for timekeeping */
1800 static struct syscore_ops timekeeping_syscore_ops = {
1801         .resume         = timekeeping_resume,
1802         .suspend        = timekeeping_suspend,
1803 };
1804
1805 static int __init timekeeping_init_ops(void)
1806 {
1807         register_syscore_ops(&timekeeping_syscore_ops);
1808         return 0;
1809 }
1810 device_initcall(timekeeping_init_ops);
1811
1812 /*
1813  * Apply a multiplier adjustment to the timekeeper
1814  */
1815 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1816                                                          s64 offset,
1817                                                          s32 mult_adj)
1818 {
1819         s64 interval = tk->cycle_interval;
1820
1821         if (mult_adj == 0) {
1822                 return;
1823         } else if (mult_adj == -1) {
1824                 interval = -interval;
1825                 offset = -offset;
1826         } else if (mult_adj != 1) {
1827                 interval *= mult_adj;
1828                 offset *= mult_adj;
1829         }
1830
1831         /*
1832          * So the following can be confusing.
1833          *
1834          * To keep things simple, lets assume mult_adj == 1 for now.
1835          *
1836          * When mult_adj != 1, remember that the interval and offset values
1837          * have been appropriately scaled so the math is the same.
1838          *
1839          * The basic idea here is that we're increasing the multiplier
1840          * by one, this causes the xtime_interval to be incremented by
1841          * one cycle_interval. This is because:
1842          *      xtime_interval = cycle_interval * mult
1843          * So if mult is being incremented by one:
1844          *      xtime_interval = cycle_interval * (mult + 1)
1845          * Its the same as:
1846          *      xtime_interval = (cycle_interval * mult) + cycle_interval
1847          * Which can be shortened to:
1848          *      xtime_interval += cycle_interval
1849          *
1850          * So offset stores the non-accumulated cycles. Thus the current
1851          * time (in shifted nanoseconds) is:
1852          *      now = (offset * adj) + xtime_nsec
1853          * Now, even though we're adjusting the clock frequency, we have
1854          * to keep time consistent. In other words, we can't jump back
1855          * in time, and we also want to avoid jumping forward in time.
1856          *
1857          * So given the same offset value, we need the time to be the same
1858          * both before and after the freq adjustment.
1859          *      now = (offset * adj_1) + xtime_nsec_1
1860          *      now = (offset * adj_2) + xtime_nsec_2
1861          * So:
1862          *      (offset * adj_1) + xtime_nsec_1 =
1863          *              (offset * adj_2) + xtime_nsec_2
1864          * And we know:
1865          *      adj_2 = adj_1 + 1
1866          * So:
1867          *      (offset * adj_1) + xtime_nsec_1 =
1868          *              (offset * (adj_1+1)) + xtime_nsec_2
1869          *      (offset * adj_1) + xtime_nsec_1 =
1870          *              (offset * adj_1) + offset + xtime_nsec_2
1871          * Canceling the sides:
1872          *      xtime_nsec_1 = offset + xtime_nsec_2
1873          * Which gives us:
1874          *      xtime_nsec_2 = xtime_nsec_1 - offset
1875          * Which simplfies to:
1876          *      xtime_nsec -= offset
1877          */
1878         if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1879                 /* NTP adjustment caused clocksource mult overflow */
1880                 WARN_ON_ONCE(1);
1881                 return;
1882         }
1883
1884         tk->tkr_mono.mult += mult_adj;
1885         tk->xtime_interval += interval;
1886         tk->tkr_mono.xtime_nsec -= offset;
1887 }
1888
1889 /*
1890  * Adjust the timekeeper's multiplier to the correct frequency
1891  * and also to reduce the accumulated error value.
1892  */
1893 static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1894 {
1895         u32 mult;
1896
1897         /*
1898          * Determine the multiplier from the current NTP tick length.
1899          * Avoid expensive division when the tick length doesn't change.
1900          */
1901         if (likely(tk->ntp_tick == ntp_tick_length())) {
1902                 mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1903         } else {
1904                 tk->ntp_tick = ntp_tick_length();
1905                 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1906                                  tk->xtime_remainder, tk->cycle_interval);
1907         }
1908
1909         /*
1910          * If the clock is behind the NTP time, increase the multiplier by 1
1911          * to catch up with it. If it's ahead and there was a remainder in the
1912          * tick division, the clock will slow down. Otherwise it will stay
1913          * ahead until the tick length changes to a non-divisible value.
1914          */
1915         tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1916         mult += tk->ntp_err_mult;
1917
1918         timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1919
1920         if (unlikely(tk->tkr_mono.clock->maxadj &&
1921                 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1922                         > tk->tkr_mono.clock->maxadj))) {
1923                 printk_once(KERN_WARNING
1924                         "Adjusting %s more than 11%% (%ld vs %ld)\n",
1925                         tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1926                         (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1927         }
1928
1929         /*
1930          * It may be possible that when we entered this function, xtime_nsec
1931          * was very small.  Further, if we're slightly speeding the clocksource
1932          * in the code above, its possible the required corrective factor to
1933          * xtime_nsec could cause it to underflow.
1934          *
1935          * Now, since we have already accumulated the second and the NTP
1936          * subsystem has been notified via second_overflow(), we need to skip
1937          * the next update.
1938          */
1939         if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1940                 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1941                                                         tk->tkr_mono.shift;
1942                 tk->xtime_sec--;
1943                 tk->skip_second_overflow = 1;
1944         }
1945 }
1946
1947 /**
1948  * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1949  *
1950  * Helper function that accumulates the nsecs greater than a second
1951  * from the xtime_nsec field to the xtime_secs field.
1952  * It also calls into the NTP code to handle leapsecond processing.
1953  *
1954  */
1955 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1956 {
1957         u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1958         unsigned int clock_set = 0;
1959
1960         while (tk->tkr_mono.xtime_nsec >= nsecps) {
1961                 int leap;
1962
1963                 tk->tkr_mono.xtime_nsec -= nsecps;
1964                 tk->xtime_sec++;
1965
1966                 /*
1967                  * Skip NTP update if this second was accumulated before,
1968                  * i.e. xtime_nsec underflowed in timekeeping_adjust()
1969                  */
1970                 if (unlikely(tk->skip_second_overflow)) {
1971                         tk->skip_second_overflow = 0;
1972                         continue;
1973                 }
1974
1975                 /* Figure out if its a leap sec and apply if needed */
1976                 leap = second_overflow(tk->xtime_sec);
1977                 if (unlikely(leap)) {
1978                         struct timespec64 ts;
1979
1980                         tk->xtime_sec += leap;
1981
1982                         ts.tv_sec = leap;
1983                         ts.tv_nsec = 0;
1984                         tk_set_wall_to_mono(tk,
1985                                 timespec64_sub(tk->wall_to_monotonic, ts));
1986
1987                         __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1988
1989                         clock_set = TK_CLOCK_WAS_SET;
1990                 }
1991         }
1992         return clock_set;
1993 }
1994
1995 /**
1996  * logarithmic_accumulation - shifted accumulation of cycles
1997  *
1998  * This functions accumulates a shifted interval of cycles into
1999  * into a shifted interval nanoseconds. Allows for O(log) accumulation
2000  * loop.
2001  *
2002  * Returns the unconsumed cycles.
2003  */
2004 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2005                                     u32 shift, unsigned int *clock_set)
2006 {
2007         u64 interval = tk->cycle_interval << shift;
2008         u64 snsec_per_sec;
2009
2010         /* If the offset is smaller than a shifted interval, do nothing */
2011         if (offset < interval)
2012                 return offset;
2013
2014         /* Accumulate one shifted interval */
2015         offset -= interval;
2016         tk->tkr_mono.cycle_last += interval;
2017         tk->tkr_raw.cycle_last  += interval;
2018
2019         tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2020         *clock_set |= accumulate_nsecs_to_secs(tk);
2021
2022         /* Accumulate raw time */
2023         tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2024         snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2025         while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2026                 tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2027                 tk->raw_sec++;
2028         }
2029
2030         /* Accumulate error between NTP and clock interval */
2031         tk->ntp_error += tk->ntp_tick << shift;
2032         tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2033                                                 (tk->ntp_error_shift + shift);
2034
2035         return offset;
2036 }
2037
2038 /*
2039  * timekeeping_advance - Updates the timekeeper to the current time and
2040  * current NTP tick length
2041  */
2042 static void timekeeping_advance(enum timekeeping_adv_mode mode)
2043 {
2044         struct timekeeper *real_tk = &tk_core.timekeeper;
2045         struct timekeeper *tk = &shadow_timekeeper;
2046         u64 offset;
2047         int shift = 0, maxshift;
2048         unsigned int clock_set = 0;
2049         unsigned long flags;
2050
2051         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2052
2053         /* Make sure we're fully resumed: */
2054         if (unlikely(timekeeping_suspended))
2055                 goto out;
2056
2057 #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2058         offset = real_tk->cycle_interval;
2059
2060         if (mode != TK_ADV_TICK)
2061                 goto out;
2062 #else
2063         offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2064                                    tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2065
2066         /* Check if there's really nothing to do */
2067         if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2068                 goto out;
2069 #endif
2070
2071         /* Do some additional sanity checking */
2072         timekeeping_check_update(tk, offset);
2073
2074         /*
2075          * With NO_HZ we may have to accumulate many cycle_intervals
2076          * (think "ticks") worth of time at once. To do this efficiently,
2077          * we calculate the largest doubling multiple of cycle_intervals
2078          * that is smaller than the offset.  We then accumulate that
2079          * chunk in one go, and then try to consume the next smaller
2080          * doubled multiple.
2081          */
2082         shift = ilog2(offset) - ilog2(tk->cycle_interval);
2083         shift = max(0, shift);
2084         /* Bound shift to one less than what overflows tick_length */
2085         maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2086         shift = min(shift, maxshift);
2087         while (offset >= tk->cycle_interval) {
2088                 offset = logarithmic_accumulation(tk, offset, shift,
2089                                                         &clock_set);
2090                 if (offset < tk->cycle_interval<<shift)
2091                         shift--;
2092         }
2093
2094         /* Adjust the multiplier to correct NTP error */
2095         timekeeping_adjust(tk, offset);
2096
2097         /*
2098          * Finally, make sure that after the rounding
2099          * xtime_nsec isn't larger than NSEC_PER_SEC
2100          */
2101         clock_set |= accumulate_nsecs_to_secs(tk);
2102
2103         write_seqcount_begin(&tk_core.seq);
2104         /*
2105          * Update the real timekeeper.
2106          *
2107          * We could avoid this memcpy by switching pointers, but that
2108          * requires changes to all other timekeeper usage sites as
2109          * well, i.e. move the timekeeper pointer getter into the
2110          * spinlocked/seqcount protected sections. And we trade this
2111          * memcpy under the tk_core.seq against one before we start
2112          * updating.
2113          */
2114         timekeeping_update(tk, clock_set);
2115         memcpy(real_tk, tk, sizeof(*tk));
2116         /* The memcpy must come last. Do not put anything here! */
2117         write_seqcount_end(&tk_core.seq);
2118 out:
2119         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2120         if (clock_set)
2121                 /* Have to call _delayed version, since in irq context*/
2122                 clock_was_set_delayed();
2123 }
2124
2125 /**
2126  * update_wall_time - Uses the current clocksource to increment the wall time
2127  *
2128  */
2129 void update_wall_time(void)
2130 {
2131         timekeeping_advance(TK_ADV_TICK);
2132 }
2133
2134 /**
2135  * getboottime64 - Return the real time of system boot.
2136  * @ts:         pointer to the timespec64 to be set
2137  *
2138  * Returns the wall-time of boot in a timespec64.
2139  *
2140  * This is based on the wall_to_monotonic offset and the total suspend
2141  * time. Calls to settimeofday will affect the value returned (which
2142  * basically means that however wrong your real time clock is at boot time,
2143  * you get the right time here).
2144  */
2145 void getboottime64(struct timespec64 *ts)
2146 {
2147         struct timekeeper *tk = &tk_core.timekeeper;
2148         ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2149
2150         *ts = ktime_to_timespec64(t);
2151 }
2152 EXPORT_SYMBOL_GPL(getboottime64);
2153
2154 void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2155 {
2156         struct timekeeper *tk = &tk_core.timekeeper;
2157         unsigned int seq;
2158
2159         do {
2160                 seq = read_seqcount_begin(&tk_core.seq);
2161
2162                 *ts = tk_xtime(tk);
2163         } while (read_seqcount_retry(&tk_core.seq, seq));
2164 }
2165 EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2166
2167 void ktime_get_coarse_ts64(struct timespec64 *ts)
2168 {
2169         struct timekeeper *tk = &tk_core.timekeeper;
2170         struct timespec64 now, mono;
2171         unsigned int seq;
2172
2173         do {
2174                 seq = read_seqcount_begin(&tk_core.seq);
2175
2176                 now = tk_xtime(tk);
2177                 mono = tk->wall_to_monotonic;
2178         } while (read_seqcount_retry(&tk_core.seq, seq));
2179
2180         set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2181                                 now.tv_nsec + mono.tv_nsec);
2182 }
2183 EXPORT_SYMBOL(ktime_get_coarse_ts64);
2184
2185 /*
2186  * Must hold jiffies_lock
2187  */
2188 void do_timer(unsigned long ticks)
2189 {
2190         jiffies_64 += ticks;
2191         calc_global_load(ticks);
2192 }
2193
2194 /**
2195  * ktime_get_update_offsets_now - hrtimer helper
2196  * @cwsseq:     pointer to check and store the clock was set sequence number
2197  * @offs_real:  pointer to storage for monotonic -> realtime offset
2198  * @offs_boot:  pointer to storage for monotonic -> boottime offset
2199  * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2200  *
2201  * Returns current monotonic time and updates the offsets if the
2202  * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2203  * different.
2204  *
2205  * Called from hrtimer_interrupt() or retrigger_next_event()
2206  */
2207 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2208                                      ktime_t *offs_boot, ktime_t *offs_tai)
2209 {
2210         struct timekeeper *tk = &tk_core.timekeeper;
2211         unsigned int seq;
2212         ktime_t base;
2213         u64 nsecs;
2214
2215         do {
2216                 seq = read_seqcount_begin(&tk_core.seq);
2217
2218                 base = tk->tkr_mono.base;
2219                 nsecs = timekeeping_get_ns(&tk->tkr_mono);
2220                 base = ktime_add_ns(base, nsecs);
2221
2222                 if (*cwsseq != tk->clock_was_set_seq) {
2223                         *cwsseq = tk->clock_was_set_seq;
2224                         *offs_real = tk->offs_real;
2225                         *offs_boot = tk->offs_boot;
2226                         *offs_tai = tk->offs_tai;
2227                 }
2228
2229                 /* Handle leapsecond insertion adjustments */
2230                 if (unlikely(base >= tk->next_leap_ktime))
2231                         *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2232
2233         } while (read_seqcount_retry(&tk_core.seq, seq));
2234
2235         return base;
2236 }
2237
2238 /**
2239  * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2240  */
2241 static int timekeeping_validate_timex(const struct __kernel_timex *txc)
2242 {
2243         if (txc->modes & ADJ_ADJTIME) {
2244                 /* singleshot must not be used with any other mode bits */
2245                 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2246                         return -EINVAL;
2247                 if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2248                     !capable(CAP_SYS_TIME))
2249                         return -EPERM;
2250         } else {
2251                 /* In order to modify anything, you gotta be super-user! */
2252                 if (txc->modes && !capable(CAP_SYS_TIME))
2253                         return -EPERM;
2254                 /*
2255                  * if the quartz is off by more than 10% then
2256                  * something is VERY wrong!
2257                  */
2258                 if (txc->modes & ADJ_TICK &&
2259                     (txc->tick <  900000/USER_HZ ||
2260                      txc->tick > 1100000/USER_HZ))
2261                         return -EINVAL;
2262         }
2263
2264         if (txc->modes & ADJ_SETOFFSET) {
2265                 /* In order to inject time, you gotta be super-user! */
2266                 if (!capable(CAP_SYS_TIME))
2267                         return -EPERM;
2268
2269                 /*
2270                  * Validate if a timespec/timeval used to inject a time
2271                  * offset is valid.  Offsets can be postive or negative, so
2272                  * we don't check tv_sec. The value of the timeval/timespec
2273                  * is the sum of its fields,but *NOTE*:
2274                  * The field tv_usec/tv_nsec must always be non-negative and
2275                  * we can't have more nanoseconds/microseconds than a second.
2276                  */
2277                 if (txc->time.tv_usec < 0)
2278                         return -EINVAL;
2279
2280                 if (txc->modes & ADJ_NANO) {
2281                         if (txc->time.tv_usec >= NSEC_PER_SEC)
2282                                 return -EINVAL;
2283                 } else {
2284                         if (txc->time.tv_usec >= USEC_PER_SEC)
2285                                 return -EINVAL;
2286                 }
2287         }
2288
2289         /*
2290          * Check for potential multiplication overflows that can
2291          * only happen on 64-bit systems:
2292          */
2293         if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2294                 if (LLONG_MIN / PPM_SCALE > txc->freq)
2295                         return -EINVAL;
2296                 if (LLONG_MAX / PPM_SCALE < txc->freq)
2297                         return -EINVAL;
2298         }
2299
2300         return 0;
2301 }
2302
2303
2304 /**
2305  * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2306  */
2307 int do_adjtimex(struct __kernel_timex *txc)
2308 {
2309         struct timekeeper *tk = &tk_core.timekeeper;
2310         struct audit_ntp_data ad;
2311         unsigned long flags;
2312         struct timespec64 ts;
2313         s32 orig_tai, tai;
2314         int ret;
2315
2316         /* Validate the data before disabling interrupts */
2317         ret = timekeeping_validate_timex(txc);
2318         if (ret)
2319                 return ret;
2320
2321         if (txc->modes & ADJ_SETOFFSET) {
2322                 struct timespec64 delta;
2323                 delta.tv_sec  = txc->time.tv_sec;
2324                 delta.tv_nsec = txc->time.tv_usec;
2325                 if (!(txc->modes & ADJ_NANO))
2326                         delta.tv_nsec *= 1000;
2327                 ret = timekeeping_inject_offset(&delta);
2328                 if (ret)
2329                         return ret;
2330
2331                 audit_tk_injoffset(delta);
2332         }
2333
2334         audit_ntp_init(&ad);
2335
2336         ktime_get_real_ts64(&ts);
2337
2338         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2339         write_seqcount_begin(&tk_core.seq);
2340
2341         orig_tai = tai = tk->tai_offset;
2342         ret = __do_adjtimex(txc, &ts, &tai, &ad);
2343
2344         if (tai != orig_tai) {
2345                 __timekeeping_set_tai_offset(tk, tai);
2346                 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2347         }
2348         tk_update_leap_state(tk);
2349
2350         write_seqcount_end(&tk_core.seq);
2351         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2352
2353         audit_ntp_log(&ad);
2354
2355         /* Update the multiplier immediately if frequency was set directly */
2356         if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2357                 timekeeping_advance(TK_ADV_FREQ);
2358
2359         if (tai != orig_tai)
2360                 clock_was_set();
2361
2362         ntp_notify_cmos_timer();
2363
2364         return ret;
2365 }
2366
2367 #ifdef CONFIG_NTP_PPS
2368 /**
2369  * hardpps() - Accessor function to NTP __hardpps function
2370  */
2371 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2372 {
2373         unsigned long flags;
2374
2375         raw_spin_lock_irqsave(&timekeeper_lock, flags);
2376         write_seqcount_begin(&tk_core.seq);
2377
2378         __hardpps(phase_ts, raw_ts);
2379
2380         write_seqcount_end(&tk_core.seq);
2381         raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2382 }
2383 EXPORT_SYMBOL(hardpps);
2384 #endif /* CONFIG_NTP_PPS */
2385
2386 /**
2387  * xtime_update() - advances the timekeeping infrastructure
2388  * @ticks:      number of ticks, that have elapsed since the last call.
2389  *
2390  * Must be called with interrupts disabled.
2391  */
2392 void xtime_update(unsigned long ticks)
2393 {
2394         write_seqlock(&jiffies_lock);
2395         do_timer(ticks);
2396         write_sequnlock(&jiffies_lock);
2397         update_wall_time();
2398 }