Merge branch 'kvm-fixes' into 'next'
[linux-2.6-microblaze.git] / kernel / time / tick-broadcast.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains functions which emulate a local clock-event
4  * device via a broadcast event source.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/percpu.h>
15 #include <linux/profile.h>
16 #include <linux/sched.h>
17 #include <linux/smp.h>
18 #include <linux/module.h>
19
20 #include "tick-internal.h"
21
22 /*
23  * Broadcast support for broken x86 hardware, where the local apic
24  * timer stops in C3 state.
25  */
26
27 static struct tick_device tick_broadcast_device;
28 static cpumask_var_t tick_broadcast_mask __cpumask_var_read_mostly;
29 static cpumask_var_t tick_broadcast_on __cpumask_var_read_mostly;
30 static cpumask_var_t tmpmask __cpumask_var_read_mostly;
31 static int tick_broadcast_forced;
32
33 static __cacheline_aligned_in_smp DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
34
35 #ifdef CONFIG_TICK_ONESHOT
36 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc);
37 static void tick_broadcast_clear_oneshot(int cpu);
38 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc);
39 # ifdef CONFIG_HOTPLUG_CPU
40 static void tick_broadcast_oneshot_offline(unsigned int cpu);
41 # endif
42 #else
43 static inline void tick_broadcast_setup_oneshot(struct clock_event_device *bc) { BUG(); }
44 static inline void tick_broadcast_clear_oneshot(int cpu) { }
45 static inline void tick_resume_broadcast_oneshot(struct clock_event_device *bc) { }
46 # ifdef CONFIG_HOTPLUG_CPU
47 static inline void tick_broadcast_oneshot_offline(unsigned int cpu) { }
48 # endif
49 #endif
50
51 /*
52  * Debugging: see timer_list.c
53  */
54 struct tick_device *tick_get_broadcast_device(void)
55 {
56         return &tick_broadcast_device;
57 }
58
59 struct cpumask *tick_get_broadcast_mask(void)
60 {
61         return tick_broadcast_mask;
62 }
63
64 /*
65  * Start the device in periodic mode
66  */
67 static void tick_broadcast_start_periodic(struct clock_event_device *bc)
68 {
69         if (bc)
70                 tick_setup_periodic(bc, 1);
71 }
72
73 /*
74  * Check, if the device can be utilized as broadcast device:
75  */
76 static bool tick_check_broadcast_device(struct clock_event_device *curdev,
77                                         struct clock_event_device *newdev)
78 {
79         if ((newdev->features & CLOCK_EVT_FEAT_DUMMY) ||
80             (newdev->features & CLOCK_EVT_FEAT_PERCPU) ||
81             (newdev->features & CLOCK_EVT_FEAT_C3STOP))
82                 return false;
83
84         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT &&
85             !(newdev->features & CLOCK_EVT_FEAT_ONESHOT))
86                 return false;
87
88         return !curdev || newdev->rating > curdev->rating;
89 }
90
91 /*
92  * Conditionally install/replace broadcast device
93  */
94 void tick_install_broadcast_device(struct clock_event_device *dev)
95 {
96         struct clock_event_device *cur = tick_broadcast_device.evtdev;
97
98         if (!tick_check_broadcast_device(cur, dev))
99                 return;
100
101         if (!try_module_get(dev->owner))
102                 return;
103
104         clockevents_exchange_device(cur, dev);
105         if (cur)
106                 cur->event_handler = clockevents_handle_noop;
107         tick_broadcast_device.evtdev = dev;
108         if (!cpumask_empty(tick_broadcast_mask))
109                 tick_broadcast_start_periodic(dev);
110         /*
111          * Inform all cpus about this. We might be in a situation
112          * where we did not switch to oneshot mode because the per cpu
113          * devices are affected by CLOCK_EVT_FEAT_C3STOP and the lack
114          * of a oneshot capable broadcast device. Without that
115          * notification the systems stays stuck in periodic mode
116          * forever.
117          */
118         if (dev->features & CLOCK_EVT_FEAT_ONESHOT)
119                 tick_clock_notify();
120 }
121
122 /*
123  * Check, if the device is the broadcast device
124  */
125 int tick_is_broadcast_device(struct clock_event_device *dev)
126 {
127         return (dev && tick_broadcast_device.evtdev == dev);
128 }
129
130 int tick_broadcast_update_freq(struct clock_event_device *dev, u32 freq)
131 {
132         int ret = -ENODEV;
133
134         if (tick_is_broadcast_device(dev)) {
135                 raw_spin_lock(&tick_broadcast_lock);
136                 ret = __clockevents_update_freq(dev, freq);
137                 raw_spin_unlock(&tick_broadcast_lock);
138         }
139         return ret;
140 }
141
142
143 static void err_broadcast(const struct cpumask *mask)
144 {
145         pr_crit_once("Failed to broadcast timer tick. Some CPUs may be unresponsive.\n");
146 }
147
148 static void tick_device_setup_broadcast_func(struct clock_event_device *dev)
149 {
150         if (!dev->broadcast)
151                 dev->broadcast = tick_broadcast;
152         if (!dev->broadcast) {
153                 pr_warn_once("%s depends on broadcast, but no broadcast function available\n",
154                              dev->name);
155                 dev->broadcast = err_broadcast;
156         }
157 }
158
159 /*
160  * Check, if the device is disfunctional and a place holder, which
161  * needs to be handled by the broadcast device.
162  */
163 int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
164 {
165         struct clock_event_device *bc = tick_broadcast_device.evtdev;
166         unsigned long flags;
167         int ret = 0;
168
169         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
170
171         /*
172          * Devices might be registered with both periodic and oneshot
173          * mode disabled. This signals, that the device needs to be
174          * operated from the broadcast device and is a placeholder for
175          * the cpu local device.
176          */
177         if (!tick_device_is_functional(dev)) {
178                 dev->event_handler = tick_handle_periodic;
179                 tick_device_setup_broadcast_func(dev);
180                 cpumask_set_cpu(cpu, tick_broadcast_mask);
181                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
182                         tick_broadcast_start_periodic(bc);
183                 else
184                         tick_broadcast_setup_oneshot(bc);
185                 ret = 1;
186         } else {
187                 /*
188                  * Clear the broadcast bit for this cpu if the
189                  * device is not power state affected.
190                  */
191                 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
192                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
193                 else
194                         tick_device_setup_broadcast_func(dev);
195
196                 /*
197                  * Clear the broadcast bit if the CPU is not in
198                  * periodic broadcast on state.
199                  */
200                 if (!cpumask_test_cpu(cpu, tick_broadcast_on))
201                         cpumask_clear_cpu(cpu, tick_broadcast_mask);
202
203                 switch (tick_broadcast_device.mode) {
204                 case TICKDEV_MODE_ONESHOT:
205                         /*
206                          * If the system is in oneshot mode we can
207                          * unconditionally clear the oneshot mask bit,
208                          * because the CPU is running and therefore
209                          * not in an idle state which causes the power
210                          * state affected device to stop. Let the
211                          * caller initialize the device.
212                          */
213                         tick_broadcast_clear_oneshot(cpu);
214                         ret = 0;
215                         break;
216
217                 case TICKDEV_MODE_PERIODIC:
218                         /*
219                          * If the system is in periodic mode, check
220                          * whether the broadcast device can be
221                          * switched off now.
222                          */
223                         if (cpumask_empty(tick_broadcast_mask) && bc)
224                                 clockevents_shutdown(bc);
225                         /*
226                          * If we kept the cpu in the broadcast mask,
227                          * tell the caller to leave the per cpu device
228                          * in shutdown state. The periodic interrupt
229                          * is delivered by the broadcast device, if
230                          * the broadcast device exists and is not
231                          * hrtimer based.
232                          */
233                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER))
234                                 ret = cpumask_test_cpu(cpu, tick_broadcast_mask);
235                         break;
236                 default:
237                         break;
238                 }
239         }
240         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
241         return ret;
242 }
243
244 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
245 int tick_receive_broadcast(void)
246 {
247         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
248         struct clock_event_device *evt = td->evtdev;
249
250         if (!evt)
251                 return -ENODEV;
252
253         if (!evt->event_handler)
254                 return -EINVAL;
255
256         evt->event_handler(evt);
257         return 0;
258 }
259 #endif
260
261 /*
262  * Broadcast the event to the cpus, which are set in the mask (mangled).
263  */
264 static bool tick_do_broadcast(struct cpumask *mask)
265 {
266         int cpu = smp_processor_id();
267         struct tick_device *td;
268         bool local = false;
269
270         /*
271          * Check, if the current cpu is in the mask
272          */
273         if (cpumask_test_cpu(cpu, mask)) {
274                 struct clock_event_device *bc = tick_broadcast_device.evtdev;
275
276                 cpumask_clear_cpu(cpu, mask);
277                 /*
278                  * We only run the local handler, if the broadcast
279                  * device is not hrtimer based. Otherwise we run into
280                  * a hrtimer recursion.
281                  *
282                  * local timer_interrupt()
283                  *   local_handler()
284                  *     expire_hrtimers()
285                  *       bc_handler()
286                  *         local_handler()
287                  *           expire_hrtimers()
288                  */
289                 local = !(bc->features & CLOCK_EVT_FEAT_HRTIMER);
290         }
291
292         if (!cpumask_empty(mask)) {
293                 /*
294                  * It might be necessary to actually check whether the devices
295                  * have different broadcast functions. For now, just use the
296                  * one of the first device. This works as long as we have this
297                  * misfeature only on x86 (lapic)
298                  */
299                 td = &per_cpu(tick_cpu_device, cpumask_first(mask));
300                 td->evtdev->broadcast(mask);
301         }
302         return local;
303 }
304
305 /*
306  * Periodic broadcast:
307  * - invoke the broadcast handlers
308  */
309 static bool tick_do_periodic_broadcast(void)
310 {
311         cpumask_and(tmpmask, cpu_online_mask, tick_broadcast_mask);
312         return tick_do_broadcast(tmpmask);
313 }
314
315 /*
316  * Event handler for periodic broadcast ticks
317  */
318 static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
319 {
320         struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
321         bool bc_local;
322
323         raw_spin_lock(&tick_broadcast_lock);
324
325         /* Handle spurious interrupts gracefully */
326         if (clockevent_state_shutdown(tick_broadcast_device.evtdev)) {
327                 raw_spin_unlock(&tick_broadcast_lock);
328                 return;
329         }
330
331         bc_local = tick_do_periodic_broadcast();
332
333         if (clockevent_state_oneshot(dev)) {
334                 ktime_t next = ktime_add(dev->next_event, tick_period);
335
336                 clockevents_program_event(dev, next, true);
337         }
338         raw_spin_unlock(&tick_broadcast_lock);
339
340         /*
341          * We run the handler of the local cpu after dropping
342          * tick_broadcast_lock because the handler might deadlock when
343          * trying to switch to oneshot mode.
344          */
345         if (bc_local)
346                 td->evtdev->event_handler(td->evtdev);
347 }
348
349 /**
350  * tick_broadcast_control - Enable/disable or force broadcast mode
351  * @mode:       The selected broadcast mode
352  *
353  * Called when the system enters a state where affected tick devices
354  * might stop. Note: TICK_BROADCAST_FORCE cannot be undone.
355  */
356 void tick_broadcast_control(enum tick_broadcast_mode mode)
357 {
358         struct clock_event_device *bc, *dev;
359         struct tick_device *td;
360         int cpu, bc_stopped;
361         unsigned long flags;
362
363         /* Protects also the local clockevent device. */
364         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
365         td = this_cpu_ptr(&tick_cpu_device);
366         dev = td->evtdev;
367
368         /*
369          * Is the device not affected by the powerstate ?
370          */
371         if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
372                 goto out;
373
374         if (!tick_device_is_functional(dev))
375                 goto out;
376
377         cpu = smp_processor_id();
378         bc = tick_broadcast_device.evtdev;
379         bc_stopped = cpumask_empty(tick_broadcast_mask);
380
381         switch (mode) {
382         case TICK_BROADCAST_FORCE:
383                 tick_broadcast_forced = 1;
384                 fallthrough;
385         case TICK_BROADCAST_ON:
386                 cpumask_set_cpu(cpu, tick_broadcast_on);
387                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_mask)) {
388                         /*
389                          * Only shutdown the cpu local device, if:
390                          *
391                          * - the broadcast device exists
392                          * - the broadcast device is not a hrtimer based one
393                          * - the broadcast device is in periodic mode to
394                          *   avoid a hickup during switch to oneshot mode
395                          */
396                         if (bc && !(bc->features & CLOCK_EVT_FEAT_HRTIMER) &&
397                             tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
398                                 clockevents_shutdown(dev);
399                 }
400                 break;
401
402         case TICK_BROADCAST_OFF:
403                 if (tick_broadcast_forced)
404                         break;
405                 cpumask_clear_cpu(cpu, tick_broadcast_on);
406                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_mask)) {
407                         if (tick_broadcast_device.mode ==
408                             TICKDEV_MODE_PERIODIC)
409                                 tick_setup_periodic(dev, 0);
410                 }
411                 break;
412         }
413
414         if (bc) {
415                 if (cpumask_empty(tick_broadcast_mask)) {
416                         if (!bc_stopped)
417                                 clockevents_shutdown(bc);
418                 } else if (bc_stopped) {
419                         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
420                                 tick_broadcast_start_periodic(bc);
421                         else
422                                 tick_broadcast_setup_oneshot(bc);
423                 }
424         }
425 out:
426         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
427 }
428 EXPORT_SYMBOL_GPL(tick_broadcast_control);
429
430 /*
431  * Set the periodic handler depending on broadcast on/off
432  */
433 void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
434 {
435         if (!broadcast)
436                 dev->event_handler = tick_handle_periodic;
437         else
438                 dev->event_handler = tick_handle_periodic_broadcast;
439 }
440
441 #ifdef CONFIG_HOTPLUG_CPU
442 static void tick_shutdown_broadcast(void)
443 {
444         struct clock_event_device *bc = tick_broadcast_device.evtdev;
445
446         if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
447                 if (bc && cpumask_empty(tick_broadcast_mask))
448                         clockevents_shutdown(bc);
449         }
450 }
451
452 /*
453  * Remove a CPU from broadcasting
454  */
455 void tick_broadcast_offline(unsigned int cpu)
456 {
457         raw_spin_lock(&tick_broadcast_lock);
458         cpumask_clear_cpu(cpu, tick_broadcast_mask);
459         cpumask_clear_cpu(cpu, tick_broadcast_on);
460         tick_broadcast_oneshot_offline(cpu);
461         tick_shutdown_broadcast();
462         raw_spin_unlock(&tick_broadcast_lock);
463 }
464
465 #endif
466
467 void tick_suspend_broadcast(void)
468 {
469         struct clock_event_device *bc;
470         unsigned long flags;
471
472         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
473
474         bc = tick_broadcast_device.evtdev;
475         if (bc)
476                 clockevents_shutdown(bc);
477
478         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
479 }
480
481 /*
482  * This is called from tick_resume_local() on a resuming CPU. That's
483  * called from the core resume function, tick_unfreeze() and the magic XEN
484  * resume hackery.
485  *
486  * In none of these cases the broadcast device mode can change and the
487  * bit of the resuming CPU in the broadcast mask is safe as well.
488  */
489 bool tick_resume_check_broadcast(void)
490 {
491         if (tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT)
492                 return false;
493         else
494                 return cpumask_test_cpu(smp_processor_id(), tick_broadcast_mask);
495 }
496
497 void tick_resume_broadcast(void)
498 {
499         struct clock_event_device *bc;
500         unsigned long flags;
501
502         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
503
504         bc = tick_broadcast_device.evtdev;
505
506         if (bc) {
507                 clockevents_tick_resume(bc);
508
509                 switch (tick_broadcast_device.mode) {
510                 case TICKDEV_MODE_PERIODIC:
511                         if (!cpumask_empty(tick_broadcast_mask))
512                                 tick_broadcast_start_periodic(bc);
513                         break;
514                 case TICKDEV_MODE_ONESHOT:
515                         if (!cpumask_empty(tick_broadcast_mask))
516                                 tick_resume_broadcast_oneshot(bc);
517                         break;
518                 }
519         }
520         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
521 }
522
523 #ifdef CONFIG_TICK_ONESHOT
524
525 static cpumask_var_t tick_broadcast_oneshot_mask __cpumask_var_read_mostly;
526 static cpumask_var_t tick_broadcast_pending_mask __cpumask_var_read_mostly;
527 static cpumask_var_t tick_broadcast_force_mask __cpumask_var_read_mostly;
528
529 /*
530  * Exposed for debugging: see timer_list.c
531  */
532 struct cpumask *tick_get_broadcast_oneshot_mask(void)
533 {
534         return tick_broadcast_oneshot_mask;
535 }
536
537 /*
538  * Called before going idle with interrupts disabled. Checks whether a
539  * broadcast event from the other core is about to happen. We detected
540  * that in tick_broadcast_oneshot_control(). The callsite can use this
541  * to avoid a deep idle transition as we are about to get the
542  * broadcast IPI right away.
543  */
544 int tick_check_broadcast_expired(void)
545 {
546         return cpumask_test_cpu(smp_processor_id(), tick_broadcast_force_mask);
547 }
548
549 /*
550  * Set broadcast interrupt affinity
551  */
552 static void tick_broadcast_set_affinity(struct clock_event_device *bc,
553                                         const struct cpumask *cpumask)
554 {
555         if (!(bc->features & CLOCK_EVT_FEAT_DYNIRQ))
556                 return;
557
558         if (cpumask_equal(bc->cpumask, cpumask))
559                 return;
560
561         bc->cpumask = cpumask;
562         irq_set_affinity(bc->irq, bc->cpumask);
563 }
564
565 static void tick_broadcast_set_event(struct clock_event_device *bc, int cpu,
566                                      ktime_t expires)
567 {
568         if (!clockevent_state_oneshot(bc))
569                 clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
570
571         clockevents_program_event(bc, expires, 1);
572         tick_broadcast_set_affinity(bc, cpumask_of(cpu));
573 }
574
575 static void tick_resume_broadcast_oneshot(struct clock_event_device *bc)
576 {
577         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
578 }
579
580 /*
581  * Called from irq_enter() when idle was interrupted to reenable the
582  * per cpu device.
583  */
584 void tick_check_oneshot_broadcast_this_cpu(void)
585 {
586         if (cpumask_test_cpu(smp_processor_id(), tick_broadcast_oneshot_mask)) {
587                 struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
588
589                 /*
590                  * We might be in the middle of switching over from
591                  * periodic to oneshot. If the CPU has not yet
592                  * switched over, leave the device alone.
593                  */
594                 if (td->mode == TICKDEV_MODE_ONESHOT) {
595                         clockevents_switch_state(td->evtdev,
596                                               CLOCK_EVT_STATE_ONESHOT);
597                 }
598         }
599 }
600
601 /*
602  * Handle oneshot mode broadcasting
603  */
604 static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
605 {
606         struct tick_device *td;
607         ktime_t now, next_event;
608         int cpu, next_cpu = 0;
609         bool bc_local;
610
611         raw_spin_lock(&tick_broadcast_lock);
612         dev->next_event = KTIME_MAX;
613         next_event = KTIME_MAX;
614         cpumask_clear(tmpmask);
615         now = ktime_get();
616         /* Find all expired events */
617         for_each_cpu(cpu, tick_broadcast_oneshot_mask) {
618                 /*
619                  * Required for !SMP because for_each_cpu() reports
620                  * unconditionally CPU0 as set on UP kernels.
621                  */
622                 if (!IS_ENABLED(CONFIG_SMP) &&
623                     cpumask_empty(tick_broadcast_oneshot_mask))
624                         break;
625
626                 td = &per_cpu(tick_cpu_device, cpu);
627                 if (td->evtdev->next_event <= now) {
628                         cpumask_set_cpu(cpu, tmpmask);
629                         /*
630                          * Mark the remote cpu in the pending mask, so
631                          * it can avoid reprogramming the cpu local
632                          * timer in tick_broadcast_oneshot_control().
633                          */
634                         cpumask_set_cpu(cpu, tick_broadcast_pending_mask);
635                 } else if (td->evtdev->next_event < next_event) {
636                         next_event = td->evtdev->next_event;
637                         next_cpu = cpu;
638                 }
639         }
640
641         /*
642          * Remove the current cpu from the pending mask. The event is
643          * delivered immediately in tick_do_broadcast() !
644          */
645         cpumask_clear_cpu(smp_processor_id(), tick_broadcast_pending_mask);
646
647         /* Take care of enforced broadcast requests */
648         cpumask_or(tmpmask, tmpmask, tick_broadcast_force_mask);
649         cpumask_clear(tick_broadcast_force_mask);
650
651         /*
652          * Sanity check. Catch the case where we try to broadcast to
653          * offline cpus.
654          */
655         if (WARN_ON_ONCE(!cpumask_subset(tmpmask, cpu_online_mask)))
656                 cpumask_and(tmpmask, tmpmask, cpu_online_mask);
657
658         /*
659          * Wakeup the cpus which have an expired event.
660          */
661         bc_local = tick_do_broadcast(tmpmask);
662
663         /*
664          * Two reasons for reprogram:
665          *
666          * - The global event did not expire any CPU local
667          * events. This happens in dyntick mode, as the maximum PIT
668          * delta is quite small.
669          *
670          * - There are pending events on sleeping CPUs which were not
671          * in the event mask
672          */
673         if (next_event != KTIME_MAX)
674                 tick_broadcast_set_event(dev, next_cpu, next_event);
675
676         raw_spin_unlock(&tick_broadcast_lock);
677
678         if (bc_local) {
679                 td = this_cpu_ptr(&tick_cpu_device);
680                 td->evtdev->event_handler(td->evtdev);
681         }
682 }
683
684 static int broadcast_needs_cpu(struct clock_event_device *bc, int cpu)
685 {
686         if (!(bc->features & CLOCK_EVT_FEAT_HRTIMER))
687                 return 0;
688         if (bc->next_event == KTIME_MAX)
689                 return 0;
690         return bc->bound_on == cpu ? -EBUSY : 0;
691 }
692
693 static void broadcast_shutdown_local(struct clock_event_device *bc,
694                                      struct clock_event_device *dev)
695 {
696         /*
697          * For hrtimer based broadcasting we cannot shutdown the cpu
698          * local device if our own event is the first one to expire or
699          * if we own the broadcast timer.
700          */
701         if (bc->features & CLOCK_EVT_FEAT_HRTIMER) {
702                 if (broadcast_needs_cpu(bc, smp_processor_id()))
703                         return;
704                 if (dev->next_event < bc->next_event)
705                         return;
706         }
707         clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
708 }
709
710 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
711 {
712         struct clock_event_device *bc, *dev;
713         int cpu, ret = 0;
714         ktime_t now;
715
716         /*
717          * If there is no broadcast device, tell the caller not to go
718          * into deep idle.
719          */
720         if (!tick_broadcast_device.evtdev)
721                 return -EBUSY;
722
723         dev = this_cpu_ptr(&tick_cpu_device)->evtdev;
724
725         raw_spin_lock(&tick_broadcast_lock);
726         bc = tick_broadcast_device.evtdev;
727         cpu = smp_processor_id();
728
729         if (state == TICK_BROADCAST_ENTER) {
730                 /*
731                  * If the current CPU owns the hrtimer broadcast
732                  * mechanism, it cannot go deep idle and we do not add
733                  * the CPU to the broadcast mask. We don't have to go
734                  * through the EXIT path as the local timer is not
735                  * shutdown.
736                  */
737                 ret = broadcast_needs_cpu(bc, cpu);
738                 if (ret)
739                         goto out;
740
741                 /*
742                  * If the broadcast device is in periodic mode, we
743                  * return.
744                  */
745                 if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
746                         /* If it is a hrtimer based broadcast, return busy */
747                         if (bc->features & CLOCK_EVT_FEAT_HRTIMER)
748                                 ret = -EBUSY;
749                         goto out;
750                 }
751
752                 if (!cpumask_test_and_set_cpu(cpu, tick_broadcast_oneshot_mask)) {
753                         WARN_ON_ONCE(cpumask_test_cpu(cpu, tick_broadcast_pending_mask));
754
755                         /* Conditionally shut down the local timer. */
756                         broadcast_shutdown_local(bc, dev);
757
758                         /*
759                          * We only reprogram the broadcast timer if we
760                          * did not mark ourself in the force mask and
761                          * if the cpu local event is earlier than the
762                          * broadcast event. If the current CPU is in
763                          * the force mask, then we are going to be
764                          * woken by the IPI right away; we return
765                          * busy, so the CPU does not try to go deep
766                          * idle.
767                          */
768                         if (cpumask_test_cpu(cpu, tick_broadcast_force_mask)) {
769                                 ret = -EBUSY;
770                         } else if (dev->next_event < bc->next_event) {
771                                 tick_broadcast_set_event(bc, cpu, dev->next_event);
772                                 /*
773                                  * In case of hrtimer broadcasts the
774                                  * programming might have moved the
775                                  * timer to this cpu. If yes, remove
776                                  * us from the broadcast mask and
777                                  * return busy.
778                                  */
779                                 ret = broadcast_needs_cpu(bc, cpu);
780                                 if (ret) {
781                                         cpumask_clear_cpu(cpu,
782                                                 tick_broadcast_oneshot_mask);
783                                 }
784                         }
785                 }
786         } else {
787                 if (cpumask_test_and_clear_cpu(cpu, tick_broadcast_oneshot_mask)) {
788                         clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
789                         /*
790                          * The cpu which was handling the broadcast
791                          * timer marked this cpu in the broadcast
792                          * pending mask and fired the broadcast
793                          * IPI. So we are going to handle the expired
794                          * event anyway via the broadcast IPI
795                          * handler. No need to reprogram the timer
796                          * with an already expired event.
797                          */
798                         if (cpumask_test_and_clear_cpu(cpu,
799                                        tick_broadcast_pending_mask))
800                                 goto out;
801
802                         /*
803                          * Bail out if there is no next event.
804                          */
805                         if (dev->next_event == KTIME_MAX)
806                                 goto out;
807                         /*
808                          * If the pending bit is not set, then we are
809                          * either the CPU handling the broadcast
810                          * interrupt or we got woken by something else.
811                          *
812                          * We are no longer in the broadcast mask, so
813                          * if the cpu local expiry time is already
814                          * reached, we would reprogram the cpu local
815                          * timer with an already expired event.
816                          *
817                          * This can lead to a ping-pong when we return
818                          * to idle and therefore rearm the broadcast
819                          * timer before the cpu local timer was able
820                          * to fire. This happens because the forced
821                          * reprogramming makes sure that the event
822                          * will happen in the future and depending on
823                          * the min_delta setting this might be far
824                          * enough out that the ping-pong starts.
825                          *
826                          * If the cpu local next_event has expired
827                          * then we know that the broadcast timer
828                          * next_event has expired as well and
829                          * broadcast is about to be handled. So we
830                          * avoid reprogramming and enforce that the
831                          * broadcast handler, which did not run yet,
832                          * will invoke the cpu local handler.
833                          *
834                          * We cannot call the handler directly from
835                          * here, because we might be in a NOHZ phase
836                          * and we did not go through the irq_enter()
837                          * nohz fixups.
838                          */
839                         now = ktime_get();
840                         if (dev->next_event <= now) {
841                                 cpumask_set_cpu(cpu, tick_broadcast_force_mask);
842                                 goto out;
843                         }
844                         /*
845                          * We got woken by something else. Reprogram
846                          * the cpu local timer device.
847                          */
848                         tick_program_event(dev->next_event, 1);
849                 }
850         }
851 out:
852         raw_spin_unlock(&tick_broadcast_lock);
853         return ret;
854 }
855
856 /*
857  * Reset the one shot broadcast for a cpu
858  *
859  * Called with tick_broadcast_lock held
860  */
861 static void tick_broadcast_clear_oneshot(int cpu)
862 {
863         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
864         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
865 }
866
867 static void tick_broadcast_init_next_event(struct cpumask *mask,
868                                            ktime_t expires)
869 {
870         struct tick_device *td;
871         int cpu;
872
873         for_each_cpu(cpu, mask) {
874                 td = &per_cpu(tick_cpu_device, cpu);
875                 if (td->evtdev)
876                         td->evtdev->next_event = expires;
877         }
878 }
879
880 /**
881  * tick_broadcast_setup_oneshot - setup the broadcast device
882  */
883 static void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
884 {
885         int cpu = smp_processor_id();
886
887         if (!bc)
888                 return;
889
890         /* Set it up only once ! */
891         if (bc->event_handler != tick_handle_oneshot_broadcast) {
892                 int was_periodic = clockevent_state_periodic(bc);
893
894                 bc->event_handler = tick_handle_oneshot_broadcast;
895
896                 /*
897                  * We must be careful here. There might be other CPUs
898                  * waiting for periodic broadcast. We need to set the
899                  * oneshot_mask bits for those and program the
900                  * broadcast device to fire.
901                  */
902                 cpumask_copy(tmpmask, tick_broadcast_mask);
903                 cpumask_clear_cpu(cpu, tmpmask);
904                 cpumask_or(tick_broadcast_oneshot_mask,
905                            tick_broadcast_oneshot_mask, tmpmask);
906
907                 if (was_periodic && !cpumask_empty(tmpmask)) {
908                         clockevents_switch_state(bc, CLOCK_EVT_STATE_ONESHOT);
909                         tick_broadcast_init_next_event(tmpmask,
910                                                        tick_next_period);
911                         tick_broadcast_set_event(bc, cpu, tick_next_period);
912                 } else
913                         bc->next_event = KTIME_MAX;
914         } else {
915                 /*
916                  * The first cpu which switches to oneshot mode sets
917                  * the bit for all other cpus which are in the general
918                  * (periodic) broadcast mask. So the bit is set and
919                  * would prevent the first broadcast enter after this
920                  * to program the bc device.
921                  */
922                 tick_broadcast_clear_oneshot(cpu);
923         }
924 }
925
926 /*
927  * Select oneshot operating mode for the broadcast device
928  */
929 void tick_broadcast_switch_to_oneshot(void)
930 {
931         struct clock_event_device *bc;
932         unsigned long flags;
933
934         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
935
936         tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
937         bc = tick_broadcast_device.evtdev;
938         if (bc)
939                 tick_broadcast_setup_oneshot(bc);
940
941         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
942 }
943
944 #ifdef CONFIG_HOTPLUG_CPU
945 void hotplug_cpu__broadcast_tick_pull(int deadcpu)
946 {
947         struct clock_event_device *bc;
948         unsigned long flags;
949
950         raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
951         bc = tick_broadcast_device.evtdev;
952
953         if (bc && broadcast_needs_cpu(bc, deadcpu)) {
954                 /* This moves the broadcast assignment to this CPU: */
955                 clockevents_program_event(bc, bc->next_event, 1);
956         }
957         raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
958 }
959
960 /*
961  * Remove a dying CPU from broadcasting
962  */
963 static void tick_broadcast_oneshot_offline(unsigned int cpu)
964 {
965         /*
966          * Clear the broadcast masks for the dead cpu, but do not stop
967          * the broadcast device!
968          */
969         cpumask_clear_cpu(cpu, tick_broadcast_oneshot_mask);
970         cpumask_clear_cpu(cpu, tick_broadcast_pending_mask);
971         cpumask_clear_cpu(cpu, tick_broadcast_force_mask);
972 }
973 #endif
974
975 /*
976  * Check, whether the broadcast device is in one shot mode
977  */
978 int tick_broadcast_oneshot_active(void)
979 {
980         return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
981 }
982
983 /*
984  * Check whether the broadcast device supports oneshot.
985  */
986 bool tick_broadcast_oneshot_available(void)
987 {
988         struct clock_event_device *bc = tick_broadcast_device.evtdev;
989
990         return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
991 }
992
993 #else
994 int __tick_broadcast_oneshot_control(enum tick_broadcast_state state)
995 {
996         struct clock_event_device *bc = tick_broadcast_device.evtdev;
997
998         if (!bc || (bc->features & CLOCK_EVT_FEAT_HRTIMER))
999                 return -EBUSY;
1000
1001         return 0;
1002 }
1003 #endif
1004
1005 void __init tick_broadcast_init(void)
1006 {
1007         zalloc_cpumask_var(&tick_broadcast_mask, GFP_NOWAIT);
1008         zalloc_cpumask_var(&tick_broadcast_on, GFP_NOWAIT);
1009         zalloc_cpumask_var(&tmpmask, GFP_NOWAIT);
1010 #ifdef CONFIG_TICK_ONESHOT
1011         zalloc_cpumask_var(&tick_broadcast_oneshot_mask, GFP_NOWAIT);
1012         zalloc_cpumask_var(&tick_broadcast_pending_mask, GFP_NOWAIT);
1013         zalloc_cpumask_var(&tick_broadcast_force_mask, GFP_NOWAIT);
1014 #endif
1015 }