alarmtimer: Implement arm callback
[linux-2.6-microblaze.git] / kernel / time / alarmtimer.c
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/alarmtimer.h>
25 #include <linux/mutex.h>
26 #include <linux/platform_device.h>
27 #include <linux/posix-timers.h>
28 #include <linux/workqueue.h>
29 #include <linux/freezer.h>
30
31 #include "posix-timers.h"
32
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/alarmtimer.h>
35
36 /**
37  * struct alarm_base - Alarm timer bases
38  * @lock:               Lock for syncrhonized access to the base
39  * @timerqueue:         Timerqueue head managing the list of events
40  * @gettime:            Function to read the time correlating to the base
41  * @base_clockid:       clockid for the base
42  */
43 static struct alarm_base {
44         spinlock_t              lock;
45         struct timerqueue_head  timerqueue;
46         ktime_t                 (*gettime)(void);
47         clockid_t               base_clockid;
48 } alarm_bases[ALARM_NUMTYPE];
49
50 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS)
51 /* freezer information to handle clock_nanosleep triggered wakeups */
52 static enum alarmtimer_type freezer_alarmtype;
53 static ktime_t freezer_expires;
54 static ktime_t freezer_delta;
55 static DEFINE_SPINLOCK(freezer_delta_lock);
56 #endif
57
58 static struct wakeup_source *ws;
59
60 #ifdef CONFIG_RTC_CLASS
61 /* rtc timer and device for setting alarm wakeups at suspend */
62 static struct rtc_timer         rtctimer;
63 static struct rtc_device        *rtcdev;
64 static DEFINE_SPINLOCK(rtcdev_lock);
65
66 /**
67  * alarmtimer_get_rtcdev - Return selected rtcdevice
68  *
69  * This function returns the rtc device to use for wakealarms.
70  * If one has not already been chosen, it checks to see if a
71  * functional rtc device is available.
72  */
73 struct rtc_device *alarmtimer_get_rtcdev(void)
74 {
75         unsigned long flags;
76         struct rtc_device *ret;
77
78         spin_lock_irqsave(&rtcdev_lock, flags);
79         ret = rtcdev;
80         spin_unlock_irqrestore(&rtcdev_lock, flags);
81
82         return ret;
83 }
84 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
85
86 static int alarmtimer_rtc_add_device(struct device *dev,
87                                 struct class_interface *class_intf)
88 {
89         unsigned long flags;
90         struct rtc_device *rtc = to_rtc_device(dev);
91
92         if (rtcdev)
93                 return -EBUSY;
94
95         if (!rtc->ops->set_alarm)
96                 return -1;
97         if (!device_may_wakeup(rtc->dev.parent))
98                 return -1;
99
100         spin_lock_irqsave(&rtcdev_lock, flags);
101         if (!rtcdev) {
102                 rtcdev = rtc;
103                 /* hold a reference so it doesn't go away */
104                 get_device(dev);
105         }
106         spin_unlock_irqrestore(&rtcdev_lock, flags);
107         return 0;
108 }
109
110 static inline void alarmtimer_rtc_timer_init(void)
111 {
112         rtc_timer_init(&rtctimer, NULL, NULL);
113 }
114
115 static struct class_interface alarmtimer_rtc_interface = {
116         .add_dev = &alarmtimer_rtc_add_device,
117 };
118
119 static int alarmtimer_rtc_interface_setup(void)
120 {
121         alarmtimer_rtc_interface.class = rtc_class;
122         return class_interface_register(&alarmtimer_rtc_interface);
123 }
124 static void alarmtimer_rtc_interface_remove(void)
125 {
126         class_interface_unregister(&alarmtimer_rtc_interface);
127 }
128 #else
129 struct rtc_device *alarmtimer_get_rtcdev(void)
130 {
131         return NULL;
132 }
133 #define rtcdev (NULL)
134 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
135 static inline void alarmtimer_rtc_interface_remove(void) { }
136 static inline void alarmtimer_rtc_timer_init(void) { }
137 #endif
138
139 /**
140  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
141  * @base: pointer to the base where the timer is being run
142  * @alarm: pointer to alarm being enqueued.
143  *
144  * Adds alarm to a alarm_base timerqueue
145  *
146  * Must hold base->lock when calling.
147  */
148 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
149 {
150         if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
151                 timerqueue_del(&base->timerqueue, &alarm->node);
152
153         timerqueue_add(&base->timerqueue, &alarm->node);
154         alarm->state |= ALARMTIMER_STATE_ENQUEUED;
155 }
156
157 /**
158  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
159  * @base: pointer to the base where the timer is running
160  * @alarm: pointer to alarm being removed
161  *
162  * Removes alarm to a alarm_base timerqueue
163  *
164  * Must hold base->lock when calling.
165  */
166 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
167 {
168         if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
169                 return;
170
171         timerqueue_del(&base->timerqueue, &alarm->node);
172         alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
173 }
174
175
176 /**
177  * alarmtimer_fired - Handles alarm hrtimer being fired.
178  * @timer: pointer to hrtimer being run
179  *
180  * When a alarm timer fires, this runs through the timerqueue to
181  * see which alarms expired, and runs those. If there are more alarm
182  * timers queued for the future, we set the hrtimer to fire when
183  * when the next future alarm timer expires.
184  */
185 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
186 {
187         struct alarm *alarm = container_of(timer, struct alarm, timer);
188         struct alarm_base *base = &alarm_bases[alarm->type];
189         unsigned long flags;
190         int ret = HRTIMER_NORESTART;
191         int restart = ALARMTIMER_NORESTART;
192
193         spin_lock_irqsave(&base->lock, flags);
194         alarmtimer_dequeue(base, alarm);
195         spin_unlock_irqrestore(&base->lock, flags);
196
197         if (alarm->function)
198                 restart = alarm->function(alarm, base->gettime());
199
200         spin_lock_irqsave(&base->lock, flags);
201         if (restart != ALARMTIMER_NORESTART) {
202                 hrtimer_set_expires(&alarm->timer, alarm->node.expires);
203                 alarmtimer_enqueue(base, alarm);
204                 ret = HRTIMER_RESTART;
205         }
206         spin_unlock_irqrestore(&base->lock, flags);
207
208         trace_alarmtimer_fired(alarm, base->gettime());
209         return ret;
210
211 }
212
213 ktime_t alarm_expires_remaining(const struct alarm *alarm)
214 {
215         struct alarm_base *base = &alarm_bases[alarm->type];
216         return ktime_sub(alarm->node.expires, base->gettime());
217 }
218 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
219
220 #ifdef CONFIG_RTC_CLASS
221 /**
222  * alarmtimer_suspend - Suspend time callback
223  * @dev: unused
224  * @state: unused
225  *
226  * When we are going into suspend, we look through the bases
227  * to see which is the soonest timer to expire. We then
228  * set an rtc timer to fire that far into the future, which
229  * will wake us from suspend.
230  */
231 static int alarmtimer_suspend(struct device *dev)
232 {
233         ktime_t min, now, expires;
234         int i, ret, type;
235         struct rtc_device *rtc;
236         unsigned long flags;
237         struct rtc_time tm;
238
239         spin_lock_irqsave(&freezer_delta_lock, flags);
240         min = freezer_delta;
241         expires = freezer_expires;
242         type = freezer_alarmtype;
243         freezer_delta = 0;
244         spin_unlock_irqrestore(&freezer_delta_lock, flags);
245
246         rtc = alarmtimer_get_rtcdev();
247         /* If we have no rtcdev, just return */
248         if (!rtc)
249                 return 0;
250
251         /* Find the soonest timer to expire*/
252         for (i = 0; i < ALARM_NUMTYPE; i++) {
253                 struct alarm_base *base = &alarm_bases[i];
254                 struct timerqueue_node *next;
255                 ktime_t delta;
256
257                 spin_lock_irqsave(&base->lock, flags);
258                 next = timerqueue_getnext(&base->timerqueue);
259                 spin_unlock_irqrestore(&base->lock, flags);
260                 if (!next)
261                         continue;
262                 delta = ktime_sub(next->expires, base->gettime());
263                 if (!min || (delta < min)) {
264                         expires = next->expires;
265                         min = delta;
266                         type = i;
267                 }
268         }
269         if (min == 0)
270                 return 0;
271
272         if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
273                 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
274                 return -EBUSY;
275         }
276
277         trace_alarmtimer_suspend(expires, type);
278
279         /* Setup an rtc timer to fire that far in the future */
280         rtc_timer_cancel(rtc, &rtctimer);
281         rtc_read_time(rtc, &tm);
282         now = rtc_tm_to_ktime(tm);
283         now = ktime_add(now, min);
284
285         /* Set alarm, if in the past reject suspend briefly to handle */
286         ret = rtc_timer_start(rtc, &rtctimer, now, 0);
287         if (ret < 0)
288                 __pm_wakeup_event(ws, MSEC_PER_SEC);
289         return ret;
290 }
291
292 static int alarmtimer_resume(struct device *dev)
293 {
294         struct rtc_device *rtc;
295
296         rtc = alarmtimer_get_rtcdev();
297         if (rtc)
298                 rtc_timer_cancel(rtc, &rtctimer);
299         return 0;
300 }
301
302 #else
303 static int alarmtimer_suspend(struct device *dev)
304 {
305         return 0;
306 }
307
308 static int alarmtimer_resume(struct device *dev)
309 {
310         return 0;
311 }
312 #endif
313
314 /**
315  * alarm_init - Initialize an alarm structure
316  * @alarm: ptr to alarm to be initialized
317  * @type: the type of the alarm
318  * @function: callback that is run when the alarm fires
319  */
320 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
321                 enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
322 {
323         timerqueue_init(&alarm->node);
324         hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
325                         HRTIMER_MODE_ABS);
326         alarm->timer.function = alarmtimer_fired;
327         alarm->function = function;
328         alarm->type = type;
329         alarm->state = ALARMTIMER_STATE_INACTIVE;
330 }
331 EXPORT_SYMBOL_GPL(alarm_init);
332
333 /**
334  * alarm_start - Sets an absolute alarm to fire
335  * @alarm: ptr to alarm to set
336  * @start: time to run the alarm
337  */
338 void alarm_start(struct alarm *alarm, ktime_t start)
339 {
340         struct alarm_base *base = &alarm_bases[alarm->type];
341         unsigned long flags;
342
343         spin_lock_irqsave(&base->lock, flags);
344         alarm->node.expires = start;
345         alarmtimer_enqueue(base, alarm);
346         hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
347         spin_unlock_irqrestore(&base->lock, flags);
348
349         trace_alarmtimer_start(alarm, base->gettime());
350 }
351 EXPORT_SYMBOL_GPL(alarm_start);
352
353 /**
354  * alarm_start_relative - Sets a relative alarm to fire
355  * @alarm: ptr to alarm to set
356  * @start: time relative to now to run the alarm
357  */
358 void alarm_start_relative(struct alarm *alarm, ktime_t start)
359 {
360         struct alarm_base *base = &alarm_bases[alarm->type];
361
362         start = ktime_add_safe(start, base->gettime());
363         alarm_start(alarm, start);
364 }
365 EXPORT_SYMBOL_GPL(alarm_start_relative);
366
367 void alarm_restart(struct alarm *alarm)
368 {
369         struct alarm_base *base = &alarm_bases[alarm->type];
370         unsigned long flags;
371
372         spin_lock_irqsave(&base->lock, flags);
373         hrtimer_set_expires(&alarm->timer, alarm->node.expires);
374         hrtimer_restart(&alarm->timer);
375         alarmtimer_enqueue(base, alarm);
376         spin_unlock_irqrestore(&base->lock, flags);
377 }
378 EXPORT_SYMBOL_GPL(alarm_restart);
379
380 /**
381  * alarm_try_to_cancel - Tries to cancel an alarm timer
382  * @alarm: ptr to alarm to be canceled
383  *
384  * Returns 1 if the timer was canceled, 0 if it was not running,
385  * and -1 if the callback was running
386  */
387 int alarm_try_to_cancel(struct alarm *alarm)
388 {
389         struct alarm_base *base = &alarm_bases[alarm->type];
390         unsigned long flags;
391         int ret;
392
393         spin_lock_irqsave(&base->lock, flags);
394         ret = hrtimer_try_to_cancel(&alarm->timer);
395         if (ret >= 0)
396                 alarmtimer_dequeue(base, alarm);
397         spin_unlock_irqrestore(&base->lock, flags);
398
399         trace_alarmtimer_cancel(alarm, base->gettime());
400         return ret;
401 }
402 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
403
404
405 /**
406  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
407  * @alarm: ptr to alarm to be canceled
408  *
409  * Returns 1 if the timer was canceled, 0 if it was not active.
410  */
411 int alarm_cancel(struct alarm *alarm)
412 {
413         for (;;) {
414                 int ret = alarm_try_to_cancel(alarm);
415                 if (ret >= 0)
416                         return ret;
417                 cpu_relax();
418         }
419 }
420 EXPORT_SYMBOL_GPL(alarm_cancel);
421
422
423 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
424 {
425         u64 overrun = 1;
426         ktime_t delta;
427
428         delta = ktime_sub(now, alarm->node.expires);
429
430         if (delta < 0)
431                 return 0;
432
433         if (unlikely(delta >= interval)) {
434                 s64 incr = ktime_to_ns(interval);
435
436                 overrun = ktime_divns(delta, incr);
437
438                 alarm->node.expires = ktime_add_ns(alarm->node.expires,
439                                                         incr*overrun);
440
441                 if (alarm->node.expires > now)
442                         return overrun;
443                 /*
444                  * This (and the ktime_add() below) is the
445                  * correction for exact:
446                  */
447                 overrun++;
448         }
449
450         alarm->node.expires = ktime_add_safe(alarm->node.expires, interval);
451         return overrun;
452 }
453 EXPORT_SYMBOL_GPL(alarm_forward);
454
455 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
456 {
457         struct alarm_base *base = &alarm_bases[alarm->type];
458
459         return alarm_forward(alarm, base->gettime(), interval);
460 }
461 EXPORT_SYMBOL_GPL(alarm_forward_now);
462
463 #ifdef CONFIG_POSIX_TIMERS
464
465 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
466 {
467         struct alarm_base *base;
468         unsigned long flags;
469         ktime_t delta;
470
471         switch(type) {
472         case ALARM_REALTIME:
473                 base = &alarm_bases[ALARM_REALTIME];
474                 type = ALARM_REALTIME_FREEZER;
475                 break;
476         case ALARM_BOOTTIME:
477                 base = &alarm_bases[ALARM_BOOTTIME];
478                 type = ALARM_BOOTTIME_FREEZER;
479                 break;
480         default:
481                 WARN_ONCE(1, "Invalid alarm type: %d\n", type);
482                 return;
483         }
484
485         delta = ktime_sub(absexp, base->gettime());
486
487         spin_lock_irqsave(&freezer_delta_lock, flags);
488         if (!freezer_delta || (delta < freezer_delta)) {
489                 freezer_delta = delta;
490                 freezer_expires = absexp;
491                 freezer_alarmtype = type;
492         }
493         spin_unlock_irqrestore(&freezer_delta_lock, flags);
494 }
495
496 /**
497  * clock2alarm - helper that converts from clockid to alarmtypes
498  * @clockid: clockid.
499  */
500 static enum alarmtimer_type clock2alarm(clockid_t clockid)
501 {
502         if (clockid == CLOCK_REALTIME_ALARM)
503                 return ALARM_REALTIME;
504         if (clockid == CLOCK_BOOTTIME_ALARM)
505                 return ALARM_BOOTTIME;
506         return -1;
507 }
508
509 /**
510  * alarm_handle_timer - Callback for posix timers
511  * @alarm: alarm that fired
512  *
513  * Posix timer callback for expired alarm timers.
514  */
515 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
516                                                         ktime_t now)
517 {
518         unsigned long flags;
519         struct k_itimer *ptr = container_of(alarm, struct k_itimer,
520                                                 it.alarm.alarmtimer);
521         enum alarmtimer_restart result = ALARMTIMER_NORESTART;
522
523         spin_lock_irqsave(&ptr->it_lock, flags);
524         if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
525                 if (posix_timer_event(ptr, 0))
526                         ptr->it_overrun++;
527         }
528
529         /* Re-add periodic timers */
530         if (ptr->it_interval) {
531                 ptr->it_overrun += alarm_forward(alarm, now, ptr->it_interval);
532                 result = ALARMTIMER_RESTART;
533         }
534         spin_unlock_irqrestore(&ptr->it_lock, flags);
535
536         return result;
537 }
538
539 /**
540  * alarm_timer_rearm - Posix timer callback for rearming timer
541  * @timr:       Pointer to the posixtimer data struct
542  */
543 static void alarm_timer_rearm(struct k_itimer *timr)
544 {
545         struct alarm *alarm = &timr->it.alarm.alarmtimer;
546
547         timr->it_overrun += alarm_forward_now(alarm, timr->it_interval);
548         alarm_start(alarm, alarm->node.expires);
549 }
550
551 /**
552  * alarm_timer_forward - Posix timer callback for forwarding timer
553  * @timr:       Pointer to the posixtimer data struct
554  * @now:        Current time to forward the timer against
555  */
556 static int alarm_timer_forward(struct k_itimer *timr, ktime_t now)
557 {
558         struct alarm *alarm = &timr->it.alarm.alarmtimer;
559
560         return (int) alarm_forward(alarm, timr->it_interval, now);
561 }
562
563 /**
564  * alarm_timer_remaining - Posix timer callback to retrieve remaining time
565  * @timr:       Pointer to the posixtimer data struct
566  * @now:        Current time to calculate against
567  */
568 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now)
569 {
570         struct alarm *alarm = &timr->it.alarm.alarmtimer;
571
572         return ktime_sub(now, alarm->node.expires);
573 }
574
575 /**
576  * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer
577  * @timr:       Pointer to the posixtimer data struct
578  */
579 static int alarm_timer_try_to_cancel(struct k_itimer *timr)
580 {
581         return alarm_try_to_cancel(&timr->it.alarm.alarmtimer);
582 }
583
584 /**
585  * alarm_timer_arm - Posix timer callback to arm a timer
586  * @timr:       Pointer to the posixtimer data struct
587  * @expires:    The new expiry time
588  * @absolute:   Expiry value is absolute time
589  * @sigev_none: Posix timer does not deliver signals
590  */
591 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires,
592                             bool absolute, bool sigev_none)
593 {
594         struct alarm *alarm = &timr->it.alarm.alarmtimer;
595         struct alarm_base *base = &alarm_bases[alarm->type];
596
597         if (!absolute)
598                 expires = ktime_add_safe(expires, base->gettime());
599         if (sigev_none)
600                 alarm->node.expires = expires;
601         else
602                 alarm_start(&timr->it.alarm.alarmtimer, expires);
603 }
604
605 /**
606  * alarm_clock_getres - posix getres interface
607  * @which_clock: clockid
608  * @tp: timespec to fill
609  *
610  * Returns the granularity of underlying alarm base clock
611  */
612 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
613 {
614         if (!alarmtimer_get_rtcdev())
615                 return -EINVAL;
616
617         tp->tv_sec = 0;
618         tp->tv_nsec = hrtimer_resolution;
619         return 0;
620 }
621
622 /**
623  * alarm_clock_get - posix clock_get interface
624  * @which_clock: clockid
625  * @tp: timespec to fill.
626  *
627  * Provides the underlying alarm base time.
628  */
629 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp)
630 {
631         struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
632
633         if (!alarmtimer_get_rtcdev())
634                 return -EINVAL;
635
636         *tp = ktime_to_timespec64(base->gettime());
637         return 0;
638 }
639
640 /**
641  * alarm_timer_create - posix timer_create interface
642  * @new_timer: k_itimer pointer to manage
643  *
644  * Initializes the k_itimer structure.
645  */
646 static int alarm_timer_create(struct k_itimer *new_timer)
647 {
648         enum  alarmtimer_type type;
649
650         if (!alarmtimer_get_rtcdev())
651                 return -ENOTSUPP;
652
653         if (!capable(CAP_WAKE_ALARM))
654                 return -EPERM;
655
656         type = clock2alarm(new_timer->it_clock);
657         alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
658         return 0;
659 }
660
661 /**
662  * alarm_timer_get - posix timer_get interface
663  * @timr: k_itimer pointer
664  * @cur_setting: itimerspec data to fill
665  *
666  * Copies out the current itimerspec data
667  */
668 static void alarm_timer_get(struct k_itimer *timr,
669                             struct itimerspec64 *cur_setting)
670 {
671         ktime_t relative_expiry_time =
672                 alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
673
674         if (ktime_to_ns(relative_expiry_time) > 0) {
675                 cur_setting->it_value = ktime_to_timespec64(relative_expiry_time);
676         } else {
677                 cur_setting->it_value.tv_sec = 0;
678                 cur_setting->it_value.tv_nsec = 0;
679         }
680
681         cur_setting->it_interval = ktime_to_timespec64(timr->it_interval);
682 }
683
684 /**
685  * alarm_timer_del - posix timer_del interface
686  * @timr: k_itimer pointer to be deleted
687  *
688  * Cancels any programmed alarms for the given timer.
689  */
690 static int alarm_timer_del(struct k_itimer *timr)
691 {
692         if (!rtcdev)
693                 return -ENOTSUPP;
694
695         if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
696                 return TIMER_RETRY;
697
698         return 0;
699 }
700
701 /**
702  * alarm_timer_set - posix timer_set interface
703  * @timr: k_itimer pointer to be deleted
704  * @flags: timer flags
705  * @new_setting: itimerspec to be used
706  * @old_setting: itimerspec being replaced
707  *
708  * Sets the timer to new_setting, and starts the timer.
709  */
710 static int alarm_timer_set(struct k_itimer *timr, int flags,
711                            struct itimerspec64 *new_setting,
712                            struct itimerspec64 *old_setting)
713 {
714         ktime_t exp;
715
716         if (!rtcdev)
717                 return -ENOTSUPP;
718
719         if (flags & ~TIMER_ABSTIME)
720                 return -EINVAL;
721
722         if (old_setting)
723                 alarm_timer_get(timr, old_setting);
724
725         /* If the timer was already set, cancel it */
726         if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
727                 return TIMER_RETRY;
728
729         /* start the timer */
730         timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
731
732         /*
733          * Rate limit to the tick as a hot fix to prevent DOS. Will be
734          * mopped up later.
735          */
736         if (timr->it_interval < TICK_NSEC)
737                 timr->it_interval = TICK_NSEC;
738
739         exp = timespec64_to_ktime(new_setting->it_value);
740         /* Convert (if necessary) to absolute time */
741         if (flags != TIMER_ABSTIME) {
742                 ktime_t now;
743
744                 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
745                 exp = ktime_add_safe(now, exp);
746         }
747
748         alarm_start(&timr->it.alarm.alarmtimer, exp);
749         return 0;
750 }
751
752 /**
753  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
754  * @alarm: ptr to alarm that fired
755  *
756  * Wakes up the task that set the alarmtimer
757  */
758 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
759                                                                 ktime_t now)
760 {
761         struct task_struct *task = (struct task_struct *)alarm->data;
762
763         alarm->data = NULL;
764         if (task)
765                 wake_up_process(task);
766         return ALARMTIMER_NORESTART;
767 }
768
769 /**
770  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
771  * @alarm: ptr to alarmtimer
772  * @absexp: absolute expiration time
773  *
774  * Sets the alarm timer and sleeps until it is fired or interrupted.
775  */
776 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
777 {
778         alarm->data = (void *)current;
779         do {
780                 set_current_state(TASK_INTERRUPTIBLE);
781                 alarm_start(alarm, absexp);
782                 if (likely(alarm->data))
783                         schedule();
784
785                 alarm_cancel(alarm);
786         } while (alarm->data && !signal_pending(current));
787
788         __set_current_state(TASK_RUNNING);
789
790         return (alarm->data == NULL);
791 }
792
793
794 /**
795  * update_rmtp - Update remaining timespec value
796  * @exp: expiration time
797  * @type: timer type
798  * @rmtp: user pointer to remaining timepsec value
799  *
800  * Helper function that fills in rmtp value with time between
801  * now and the exp value
802  */
803 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
804                         struct timespec __user *rmtp)
805 {
806         struct timespec rmt;
807         ktime_t rem;
808
809         rem = ktime_sub(exp, alarm_bases[type].gettime());
810
811         if (rem <= 0)
812                 return 0;
813         rmt = ktime_to_timespec(rem);
814
815         if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
816                 return -EFAULT;
817
818         return 1;
819
820 }
821
822 /**
823  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
824  * @restart: ptr to restart block
825  *
826  * Handles restarted clock_nanosleep calls
827  */
828 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
829 {
830         enum  alarmtimer_type type = restart->nanosleep.clockid;
831         ktime_t exp;
832         struct timespec __user  *rmtp;
833         struct alarm alarm;
834         int ret = 0;
835
836         exp = restart->nanosleep.expires;
837         alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
838
839         if (alarmtimer_do_nsleep(&alarm, exp))
840                 goto out;
841
842         if (freezing(current))
843                 alarmtimer_freezerset(exp, type);
844
845         rmtp = restart->nanosleep.rmtp;
846         if (rmtp) {
847                 ret = update_rmtp(exp, type, rmtp);
848                 if (ret <= 0)
849                         goto out;
850         }
851
852
853         /* The other values in restart are already filled in */
854         ret = -ERESTART_RESTARTBLOCK;
855 out:
856         return ret;
857 }
858
859 /**
860  * alarm_timer_nsleep - alarmtimer nanosleep
861  * @which_clock: clockid
862  * @flags: determins abstime or relative
863  * @tsreq: requested sleep time (abs or rel)
864  * @rmtp: remaining sleep time saved
865  *
866  * Handles clock_nanosleep calls against _ALARM clockids
867  */
868 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
869                               struct timespec64 *tsreq,
870                               struct timespec __user *rmtp)
871 {
872         enum  alarmtimer_type type = clock2alarm(which_clock);
873         struct restart_block *restart;
874         struct alarm alarm;
875         ktime_t exp;
876         int ret = 0;
877
878         if (!alarmtimer_get_rtcdev())
879                 return -ENOTSUPP;
880
881         if (flags & ~TIMER_ABSTIME)
882                 return -EINVAL;
883
884         if (!capable(CAP_WAKE_ALARM))
885                 return -EPERM;
886
887         alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
888
889         exp = timespec64_to_ktime(*tsreq);
890         /* Convert (if necessary) to absolute time */
891         if (flags != TIMER_ABSTIME) {
892                 ktime_t now = alarm_bases[type].gettime();
893                 exp = ktime_add(now, exp);
894         }
895
896         if (alarmtimer_do_nsleep(&alarm, exp))
897                 goto out;
898
899         if (freezing(current))
900                 alarmtimer_freezerset(exp, type);
901
902         /* abs timers don't set remaining time or restart */
903         if (flags == TIMER_ABSTIME) {
904                 ret = -ERESTARTNOHAND;
905                 goto out;
906         }
907
908         if (rmtp) {
909                 ret = update_rmtp(exp, type, rmtp);
910                 if (ret <= 0)
911                         goto out;
912         }
913
914         restart = &current->restart_block;
915         restart->fn = alarm_timer_nsleep_restart;
916         restart->nanosleep.clockid = type;
917         restart->nanosleep.expires = exp;
918         restart->nanosleep.rmtp = rmtp;
919         ret = -ERESTART_RESTARTBLOCK;
920
921 out:
922         return ret;
923 }
924
925 const struct k_clock alarm_clock = {
926         .clock_getres           = alarm_clock_getres,
927         .clock_get              = alarm_clock_get,
928         .timer_create           = alarm_timer_create,
929         .timer_set              = alarm_timer_set,
930         .timer_del              = alarm_timer_del,
931         .timer_get              = alarm_timer_get,
932         .timer_arm              = alarm_timer_arm,
933         .timer_rearm            = alarm_timer_rearm,
934         .timer_forward          = alarm_timer_forward,
935         .timer_remaining        = alarm_timer_remaining,
936         .timer_try_to_cancel    = alarm_timer_try_to_cancel,
937         .nsleep                 = alarm_timer_nsleep,
938 };
939 #endif /* CONFIG_POSIX_TIMERS */
940
941
942 /* Suspend hook structures */
943 static const struct dev_pm_ops alarmtimer_pm_ops = {
944         .suspend = alarmtimer_suspend,
945         .resume = alarmtimer_resume,
946 };
947
948 static struct platform_driver alarmtimer_driver = {
949         .driver = {
950                 .name = "alarmtimer",
951                 .pm = &alarmtimer_pm_ops,
952         }
953 };
954
955 /**
956  * alarmtimer_init - Initialize alarm timer code
957  *
958  * This function initializes the alarm bases and registers
959  * the posix clock ids.
960  */
961 static int __init alarmtimer_init(void)
962 {
963         struct platform_device *pdev;
964         int error = 0;
965         int i;
966
967         alarmtimer_rtc_timer_init();
968
969         /* Initialize alarm bases */
970         alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
971         alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
972         alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
973         alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
974         for (i = 0; i < ALARM_NUMTYPE; i++) {
975                 timerqueue_init_head(&alarm_bases[i].timerqueue);
976                 spin_lock_init(&alarm_bases[i].lock);
977         }
978
979         error = alarmtimer_rtc_interface_setup();
980         if (error)
981                 return error;
982
983         error = platform_driver_register(&alarmtimer_driver);
984         if (error)
985                 goto out_if;
986
987         pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
988         if (IS_ERR(pdev)) {
989                 error = PTR_ERR(pdev);
990                 goto out_drv;
991         }
992         ws = wakeup_source_register("alarmtimer");
993         return 0;
994
995 out_drv:
996         platform_driver_unregister(&alarmtimer_driver);
997 out_if:
998         alarmtimer_rtc_interface_remove();
999         return error;
1000 }
1001 device_initcall(alarmtimer_init);