1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic waiting primitives.
5 * (C) 2004 Nadia Yvette Chambers, Oracle
9 void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
11 spin_lock_init(&wq_head->lock);
12 lockdep_set_class_and_name(&wq_head->lock, key, name);
13 INIT_LIST_HEAD(&wq_head->head);
16 EXPORT_SYMBOL(__init_waitqueue_head);
18 void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
22 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
23 spin_lock_irqsave(&wq_head->lock, flags);
24 __add_wait_queue(wq_head, wq_entry);
25 spin_unlock_irqrestore(&wq_head->lock, flags);
27 EXPORT_SYMBOL(add_wait_queue);
29 void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
33 wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
34 spin_lock_irqsave(&wq_head->lock, flags);
35 __add_wait_queue_entry_tail(wq_head, wq_entry);
36 spin_unlock_irqrestore(&wq_head->lock, flags);
38 EXPORT_SYMBOL(add_wait_queue_exclusive);
40 void add_wait_queue_priority(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
44 wq_entry->flags |= WQ_FLAG_EXCLUSIVE | WQ_FLAG_PRIORITY;
45 spin_lock_irqsave(&wq_head->lock, flags);
46 __add_wait_queue(wq_head, wq_entry);
47 spin_unlock_irqrestore(&wq_head->lock, flags);
49 EXPORT_SYMBOL_GPL(add_wait_queue_priority);
51 void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
55 spin_lock_irqsave(&wq_head->lock, flags);
56 __remove_wait_queue(wq_head, wq_entry);
57 spin_unlock_irqrestore(&wq_head->lock, flags);
59 EXPORT_SYMBOL(remove_wait_queue);
62 * Scan threshold to break wait queue walk.
63 * This allows a waker to take a break from holding the
64 * wait queue lock during the wait queue walk.
66 #define WAITQUEUE_WALK_BREAK_CNT 64
69 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
70 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
71 * number) then we wake that number of exclusive tasks, and potentially all
72 * the non-exclusive tasks. Normally, exclusive tasks will be at the end of
73 * the list and any non-exclusive tasks will be woken first. A priority task
74 * may be at the head of the list, and can consume the event without any other
77 * There are circumstances in which we can try to wake a task which has already
78 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
79 * zero in this (rare) case, and we handle it by continuing to scan the queue.
81 static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
82 int nr_exclusive, int wake_flags, void *key,
83 wait_queue_entry_t *bookmark)
85 wait_queue_entry_t *curr, *next;
88 lockdep_assert_held(&wq_head->lock);
90 if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) {
91 curr = list_next_entry(bookmark, entry);
93 list_del(&bookmark->entry);
96 curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
98 if (&curr->entry == &wq_head->head)
101 list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
102 unsigned flags = curr->flags;
105 if (flags & WQ_FLAG_BOOKMARK)
108 ret = curr->func(curr, mode, wake_flags, key);
111 if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
114 if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) &&
115 (&next->entry != &wq_head->head)) {
116 bookmark->flags = WQ_FLAG_BOOKMARK;
117 list_add_tail(&bookmark->entry, &next->entry);
125 static void __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
126 int nr_exclusive, int wake_flags, void *key)
129 wait_queue_entry_t bookmark;
132 bookmark.private = NULL;
133 bookmark.func = NULL;
134 INIT_LIST_HEAD(&bookmark.entry);
137 spin_lock_irqsave(&wq_head->lock, flags);
138 nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive,
139 wake_flags, key, &bookmark);
140 spin_unlock_irqrestore(&wq_head->lock, flags);
141 } while (bookmark.flags & WQ_FLAG_BOOKMARK);
145 * __wake_up - wake up threads blocked on a waitqueue.
146 * @wq_head: the waitqueue
147 * @mode: which threads
148 * @nr_exclusive: how many wake-one or wake-many threads to wake up
149 * @key: is directly passed to the wakeup function
151 * If this function wakes up a task, it executes a full memory barrier before
152 * accessing the task state.
154 void __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
155 int nr_exclusive, void *key)
157 __wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
159 EXPORT_SYMBOL(__wake_up);
162 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
164 void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
166 __wake_up_common(wq_head, mode, nr, 0, NULL, NULL);
168 EXPORT_SYMBOL_GPL(__wake_up_locked);
170 void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
172 __wake_up_common(wq_head, mode, 1, 0, key, NULL);
174 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
176 void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head,
177 unsigned int mode, void *key, wait_queue_entry_t *bookmark)
179 __wake_up_common(wq_head, mode, 1, 0, key, bookmark);
181 EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark);
184 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
185 * @wq_head: the waitqueue
186 * @mode: which threads
187 * @key: opaque value to be passed to wakeup targets
189 * The sync wakeup differs that the waker knows that it will schedule
190 * away soon, so while the target thread will be woken up, it will not
191 * be migrated to another CPU - ie. the two threads are 'synchronized'
192 * with each other. This can prevent needless bouncing between CPUs.
194 * On UP it can prevent extra preemption.
196 * If this function wakes up a task, it executes a full memory barrier before
197 * accessing the task state.
199 void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
202 if (unlikely(!wq_head))
205 __wake_up_common_lock(wq_head, mode, 1, WF_SYNC, key);
207 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
210 * __wake_up_locked_sync_key - wake up a thread blocked on a locked waitqueue.
211 * @wq_head: the waitqueue
212 * @mode: which threads
213 * @key: opaque value to be passed to wakeup targets
215 * The sync wakeup differs in that the waker knows that it will schedule
216 * away soon, so while the target thread will be woken up, it will not
217 * be migrated to another CPU - ie. the two threads are 'synchronized'
218 * with each other. This can prevent needless bouncing between CPUs.
220 * On UP it can prevent extra preemption.
222 * If this function wakes up a task, it executes a full memory barrier before
223 * accessing the task state.
225 void __wake_up_locked_sync_key(struct wait_queue_head *wq_head,
226 unsigned int mode, void *key)
228 __wake_up_common(wq_head, mode, 1, WF_SYNC, key, NULL);
230 EXPORT_SYMBOL_GPL(__wake_up_locked_sync_key);
233 * __wake_up_sync - see __wake_up_sync_key()
235 void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode)
237 __wake_up_sync_key(wq_head, mode, NULL);
239 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
242 * Note: we use "set_current_state()" _after_ the wait-queue add,
243 * because we need a memory barrier there on SMP, so that any
244 * wake-function that tests for the wait-queue being active
245 * will be guaranteed to see waitqueue addition _or_ subsequent
246 * tests in this thread will see the wakeup having taken place.
248 * The spin_unlock() itself is semi-permeable and only protects
249 * one way (it only protects stuff inside the critical region and
250 * stops them from bleeding out - it would still allow subsequent
251 * loads to move into the critical region).
254 prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
258 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
259 spin_lock_irqsave(&wq_head->lock, flags);
260 if (list_empty(&wq_entry->entry))
261 __add_wait_queue(wq_head, wq_entry);
262 set_current_state(state);
263 spin_unlock_irqrestore(&wq_head->lock, flags);
265 EXPORT_SYMBOL(prepare_to_wait);
268 prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
272 wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
273 spin_lock_irqsave(&wq_head->lock, flags);
274 if (list_empty(&wq_entry->entry))
275 __add_wait_queue_entry_tail(wq_head, wq_entry);
276 set_current_state(state);
277 spin_unlock_irqrestore(&wq_head->lock, flags);
279 EXPORT_SYMBOL(prepare_to_wait_exclusive);
281 void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
283 wq_entry->flags = flags;
284 wq_entry->private = current;
285 wq_entry->func = autoremove_wake_function;
286 INIT_LIST_HEAD(&wq_entry->entry);
288 EXPORT_SYMBOL(init_wait_entry);
290 long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
295 spin_lock_irqsave(&wq_head->lock, flags);
296 if (signal_pending_state(state, current)) {
298 * Exclusive waiter must not fail if it was selected by wakeup,
299 * it should "consume" the condition we were waiting for.
301 * The caller will recheck the condition and return success if
302 * we were already woken up, we can not miss the event because
303 * wakeup locks/unlocks the same wq_head->lock.
305 * But we need to ensure that set-condition + wakeup after that
306 * can't see us, it should wake up another exclusive waiter if
309 list_del_init(&wq_entry->entry);
312 if (list_empty(&wq_entry->entry)) {
313 if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
314 __add_wait_queue_entry_tail(wq_head, wq_entry);
316 __add_wait_queue(wq_head, wq_entry);
318 set_current_state(state);
320 spin_unlock_irqrestore(&wq_head->lock, flags);
324 EXPORT_SYMBOL(prepare_to_wait_event);
327 * Note! These two wait functions are entered with the
328 * wait-queue lock held (and interrupts off in the _irq
329 * case), so there is no race with testing the wakeup
330 * condition in the caller before they add the wait
331 * entry to the wake queue.
333 int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
335 if (likely(list_empty(&wait->entry)))
336 __add_wait_queue_entry_tail(wq, wait);
338 set_current_state(TASK_INTERRUPTIBLE);
339 if (signal_pending(current))
342 spin_unlock(&wq->lock);
344 spin_lock(&wq->lock);
348 EXPORT_SYMBOL(do_wait_intr);
350 int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
352 if (likely(list_empty(&wait->entry)))
353 __add_wait_queue_entry_tail(wq, wait);
355 set_current_state(TASK_INTERRUPTIBLE);
356 if (signal_pending(current))
359 spin_unlock_irq(&wq->lock);
361 spin_lock_irq(&wq->lock);
365 EXPORT_SYMBOL(do_wait_intr_irq);
368 * finish_wait - clean up after waiting in a queue
369 * @wq_head: waitqueue waited on
370 * @wq_entry: wait descriptor
372 * Sets current thread back to running state and removes
373 * the wait descriptor from the given waitqueue if still
376 void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
380 __set_current_state(TASK_RUNNING);
382 * We can check for list emptiness outside the lock
384 * - we use the "careful" check that verifies both
385 * the next and prev pointers, so that there cannot
386 * be any half-pending updates in progress on other
387 * CPU's that we haven't seen yet (and that might
388 * still change the stack area.
390 * - all other users take the lock (ie we can only
391 * have _one_ other CPU that looks at or modifies
394 if (!list_empty_careful(&wq_entry->entry)) {
395 spin_lock_irqsave(&wq_head->lock, flags);
396 list_del_init(&wq_entry->entry);
397 spin_unlock_irqrestore(&wq_head->lock, flags);
400 EXPORT_SYMBOL(finish_wait);
402 int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
404 int ret = default_wake_function(wq_entry, mode, sync, key);
407 list_del_init_careful(&wq_entry->entry);
411 EXPORT_SYMBOL(autoremove_wake_function);
413 static inline bool is_kthread_should_stop(void)
415 return (current->flags & PF_KTHREAD) && kthread_should_stop();
419 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
421 * add_wait_queue(&wq_head, &wait);
426 * // in wait_woken() // in woken_wake_function()
428 * p->state = mode; wq_entry->flags |= WQ_FLAG_WOKEN;
429 * smp_mb(); // A try_to_wake_up():
430 * if (!(wq_entry->flags & WQ_FLAG_WOKEN)) <full barrier>
431 * schedule() if (p->state & mode)
432 * p->state = TASK_RUNNING; p->state = TASK_RUNNING;
433 * wq_entry->flags &= ~WQ_FLAG_WOKEN; ~~~~~~~~~~~~~~~~~~
434 * smp_mb(); // B condition = true;
436 * remove_wait_queue(&wq_head, &wait); wq_entry->flags |= WQ_FLAG_WOKEN;
438 long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
441 * The below executes an smp_mb(), which matches with the full barrier
442 * executed by the try_to_wake_up() in woken_wake_function() such that
443 * either we see the store to wq_entry->flags in woken_wake_function()
444 * or woken_wake_function() sees our store to current->state.
446 set_current_state(mode); /* A */
447 if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
448 timeout = schedule_timeout(timeout);
449 __set_current_state(TASK_RUNNING);
452 * The below executes an smp_mb(), which matches with the smp_mb() (C)
453 * in woken_wake_function() such that either we see the wait condition
454 * being true or the store to wq_entry->flags in woken_wake_function()
455 * follows ours in the coherence order.
457 smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
461 EXPORT_SYMBOL(wait_woken);
463 int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
465 /* Pairs with the smp_store_mb() in wait_woken(). */
467 wq_entry->flags |= WQ_FLAG_WOKEN;
469 return default_wake_function(wq_entry, mode, sync, key);
471 EXPORT_SYMBOL(woken_wake_function);