Merge tag 'for-linus-5.0-rc3-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / sched / topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6
7 DEFINE_MUTEX(sched_domains_mutex);
8
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12
13 #ifdef CONFIG_SCHED_DEBUG
14
15 static int __init sched_debug_setup(char *str)
16 {
17         sched_debug_enabled = true;
18
19         return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22
23 static inline bool sched_debug(void)
24 {
25         return sched_debug_enabled;
26 }
27
28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29                                   struct cpumask *groupmask)
30 {
31         struct sched_group *group = sd->groups;
32
33         cpumask_clear(groupmask);
34
35         printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36
37         if (!(sd->flags & SD_LOAD_BALANCE)) {
38                 printk("does not load-balance\n");
39                 if (sd->parent)
40                         printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41                 return -1;
42         }
43
44         printk(KERN_CONT "span=%*pbl level=%s\n",
45                cpumask_pr_args(sched_domain_span(sd)), sd->name);
46
47         if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48                 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49         }
50         if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51                 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52         }
53
54         printk(KERN_DEBUG "%*s groups:", level + 1, "");
55         do {
56                 if (!group) {
57                         printk("\n");
58                         printk(KERN_ERR "ERROR: group is NULL\n");
59                         break;
60                 }
61
62                 if (!cpumask_weight(sched_group_span(group))) {
63                         printk(KERN_CONT "\n");
64                         printk(KERN_ERR "ERROR: empty group\n");
65                         break;
66                 }
67
68                 if (!(sd->flags & SD_OVERLAP) &&
69                     cpumask_intersects(groupmask, sched_group_span(group))) {
70                         printk(KERN_CONT "\n");
71                         printk(KERN_ERR "ERROR: repeated CPUs\n");
72                         break;
73                 }
74
75                 cpumask_or(groupmask, groupmask, sched_group_span(group));
76
77                 printk(KERN_CONT " %d:{ span=%*pbl",
78                                 group->sgc->id,
79                                 cpumask_pr_args(sched_group_span(group)));
80
81                 if ((sd->flags & SD_OVERLAP) &&
82                     !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83                         printk(KERN_CONT " mask=%*pbl",
84                                 cpumask_pr_args(group_balance_mask(group)));
85                 }
86
87                 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88                         printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89
90                 if (group == sd->groups && sd->child &&
91                     !cpumask_equal(sched_domain_span(sd->child),
92                                    sched_group_span(group))) {
93                         printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94                 }
95
96                 printk(KERN_CONT " }");
97
98                 group = group->next;
99
100                 if (group != sd->groups)
101                         printk(KERN_CONT ",");
102
103         } while (group != sd->groups);
104         printk(KERN_CONT "\n");
105
106         if (!cpumask_equal(sched_domain_span(sd), groupmask))
107                 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108
109         if (sd->parent &&
110             !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
111                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112         return 0;
113 }
114
115 static void sched_domain_debug(struct sched_domain *sd, int cpu)
116 {
117         int level = 0;
118
119         if (!sched_debug_enabled)
120                 return;
121
122         if (!sd) {
123                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124                 return;
125         }
126
127         printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128
129         for (;;) {
130                 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131                         break;
132                 level++;
133                 sd = sd->parent;
134                 if (!sd)
135                         break;
136         }
137 }
138 #else /* !CONFIG_SCHED_DEBUG */
139
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
143 {
144         return false;
145 }
146 #endif /* CONFIG_SCHED_DEBUG */
147
148 static int sd_degenerate(struct sched_domain *sd)
149 {
150         if (cpumask_weight(sched_domain_span(sd)) == 1)
151                 return 1;
152
153         /* Following flags need at least 2 groups */
154         if (sd->flags & (SD_LOAD_BALANCE |
155                          SD_BALANCE_NEWIDLE |
156                          SD_BALANCE_FORK |
157                          SD_BALANCE_EXEC |
158                          SD_SHARE_CPUCAPACITY |
159                          SD_ASYM_CPUCAPACITY |
160                          SD_SHARE_PKG_RESOURCES |
161                          SD_SHARE_POWERDOMAIN)) {
162                 if (sd->groups != sd->groups->next)
163                         return 0;
164         }
165
166         /* Following flags don't use groups */
167         if (sd->flags & (SD_WAKE_AFFINE))
168                 return 0;
169
170         return 1;
171 }
172
173 static int
174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175 {
176         unsigned long cflags = sd->flags, pflags = parent->flags;
177
178         if (sd_degenerate(parent))
179                 return 1;
180
181         if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182                 return 0;
183
184         /* Flags needing groups don't count if only 1 group in parent */
185         if (parent->groups == parent->groups->next) {
186                 pflags &= ~(SD_LOAD_BALANCE |
187                                 SD_BALANCE_NEWIDLE |
188                                 SD_BALANCE_FORK |
189                                 SD_BALANCE_EXEC |
190                                 SD_ASYM_CPUCAPACITY |
191                                 SD_SHARE_CPUCAPACITY |
192                                 SD_SHARE_PKG_RESOURCES |
193                                 SD_PREFER_SIBLING |
194                                 SD_SHARE_POWERDOMAIN);
195                 if (nr_node_ids == 1)
196                         pflags &= ~SD_SERIALIZE;
197         }
198         if (~cflags & pflags)
199                 return 0;
200
201         return 1;
202 }
203
204 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
205 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
206 DEFINE_MUTEX(sched_energy_mutex);
207 bool sched_energy_update;
208
209 static void free_pd(struct perf_domain *pd)
210 {
211         struct perf_domain *tmp;
212
213         while (pd) {
214                 tmp = pd->next;
215                 kfree(pd);
216                 pd = tmp;
217         }
218 }
219
220 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
221 {
222         while (pd) {
223                 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
224                         return pd;
225                 pd = pd->next;
226         }
227
228         return NULL;
229 }
230
231 static struct perf_domain *pd_init(int cpu)
232 {
233         struct em_perf_domain *obj = em_cpu_get(cpu);
234         struct perf_domain *pd;
235
236         if (!obj) {
237                 if (sched_debug())
238                         pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
239                 return NULL;
240         }
241
242         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
243         if (!pd)
244                 return NULL;
245         pd->em_pd = obj;
246
247         return pd;
248 }
249
250 static void perf_domain_debug(const struct cpumask *cpu_map,
251                                                 struct perf_domain *pd)
252 {
253         if (!sched_debug() || !pd)
254                 return;
255
256         printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
257
258         while (pd) {
259                 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
260                                 cpumask_first(perf_domain_span(pd)),
261                                 cpumask_pr_args(perf_domain_span(pd)),
262                                 em_pd_nr_cap_states(pd->em_pd));
263                 pd = pd->next;
264         }
265
266         printk(KERN_CONT "\n");
267 }
268
269 static void destroy_perf_domain_rcu(struct rcu_head *rp)
270 {
271         struct perf_domain *pd;
272
273         pd = container_of(rp, struct perf_domain, rcu);
274         free_pd(pd);
275 }
276
277 static void sched_energy_set(bool has_eas)
278 {
279         if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
280                 if (sched_debug())
281                         pr_info("%s: stopping EAS\n", __func__);
282                 static_branch_disable_cpuslocked(&sched_energy_present);
283         } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
284                 if (sched_debug())
285                         pr_info("%s: starting EAS\n", __func__);
286                 static_branch_enable_cpuslocked(&sched_energy_present);
287         }
288 }
289
290 /*
291  * EAS can be used on a root domain if it meets all the following conditions:
292  *    1. an Energy Model (EM) is available;
293  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
294  *    3. the EM complexity is low enough to keep scheduling overheads low;
295  *    4. schedutil is driving the frequency of all CPUs of the rd;
296  *
297  * The complexity of the Energy Model is defined as:
298  *
299  *              C = nr_pd * (nr_cpus + nr_cs)
300  *
301  * with parameters defined as:
302  *  - nr_pd:    the number of performance domains
303  *  - nr_cpus:  the number of CPUs
304  *  - nr_cs:    the sum of the number of capacity states of all performance
305  *              domains (for example, on a system with 2 performance domains,
306  *              with 10 capacity states each, nr_cs = 2 * 10 = 20).
307  *
308  * It is generally not a good idea to use such a model in the wake-up path on
309  * very complex platforms because of the associated scheduling overheads. The
310  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
311  * with per-CPU DVFS and less than 8 capacity states each, for example.
312  */
313 #define EM_MAX_COMPLEXITY 2048
314
315 extern struct cpufreq_governor schedutil_gov;
316 static bool build_perf_domains(const struct cpumask *cpu_map)
317 {
318         int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
319         struct perf_domain *pd = NULL, *tmp;
320         int cpu = cpumask_first(cpu_map);
321         struct root_domain *rd = cpu_rq(cpu)->rd;
322         struct cpufreq_policy *policy;
323         struct cpufreq_governor *gov;
324
325         /* EAS is enabled for asymmetric CPU capacity topologies. */
326         if (!per_cpu(sd_asym_cpucapacity, cpu)) {
327                 if (sched_debug()) {
328                         pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
329                                         cpumask_pr_args(cpu_map));
330                 }
331                 goto free;
332         }
333
334         for_each_cpu(i, cpu_map) {
335                 /* Skip already covered CPUs. */
336                 if (find_pd(pd, i))
337                         continue;
338
339                 /* Do not attempt EAS if schedutil is not being used. */
340                 policy = cpufreq_cpu_get(i);
341                 if (!policy)
342                         goto free;
343                 gov = policy->governor;
344                 cpufreq_cpu_put(policy);
345                 if (gov != &schedutil_gov) {
346                         if (rd->pd)
347                                 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
348                                                 cpumask_pr_args(cpu_map));
349                         goto free;
350                 }
351
352                 /* Create the new pd and add it to the local list. */
353                 tmp = pd_init(i);
354                 if (!tmp)
355                         goto free;
356                 tmp->next = pd;
357                 pd = tmp;
358
359                 /*
360                  * Count performance domains and capacity states for the
361                  * complexity check.
362                  */
363                 nr_pd++;
364                 nr_cs += em_pd_nr_cap_states(pd->em_pd);
365         }
366
367         /* Bail out if the Energy Model complexity is too high. */
368         if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
369                 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
370                                                 cpumask_pr_args(cpu_map));
371                 goto free;
372         }
373
374         perf_domain_debug(cpu_map, pd);
375
376         /* Attach the new list of performance domains to the root domain. */
377         tmp = rd->pd;
378         rcu_assign_pointer(rd->pd, pd);
379         if (tmp)
380                 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
381
382         return !!pd;
383
384 free:
385         free_pd(pd);
386         tmp = rd->pd;
387         rcu_assign_pointer(rd->pd, NULL);
388         if (tmp)
389                 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
390
391         return false;
392 }
393 #else
394 static void free_pd(struct perf_domain *pd) { }
395 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
396
397 static void free_rootdomain(struct rcu_head *rcu)
398 {
399         struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
400
401         cpupri_cleanup(&rd->cpupri);
402         cpudl_cleanup(&rd->cpudl);
403         free_cpumask_var(rd->dlo_mask);
404         free_cpumask_var(rd->rto_mask);
405         free_cpumask_var(rd->online);
406         free_cpumask_var(rd->span);
407         free_pd(rd->pd);
408         kfree(rd);
409 }
410
411 void rq_attach_root(struct rq *rq, struct root_domain *rd)
412 {
413         struct root_domain *old_rd = NULL;
414         unsigned long flags;
415
416         raw_spin_lock_irqsave(&rq->lock, flags);
417
418         if (rq->rd) {
419                 old_rd = rq->rd;
420
421                 if (cpumask_test_cpu(rq->cpu, old_rd->online))
422                         set_rq_offline(rq);
423
424                 cpumask_clear_cpu(rq->cpu, old_rd->span);
425
426                 /*
427                  * If we dont want to free the old_rd yet then
428                  * set old_rd to NULL to skip the freeing later
429                  * in this function:
430                  */
431                 if (!atomic_dec_and_test(&old_rd->refcount))
432                         old_rd = NULL;
433         }
434
435         atomic_inc(&rd->refcount);
436         rq->rd = rd;
437
438         cpumask_set_cpu(rq->cpu, rd->span);
439         if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
440                 set_rq_online(rq);
441
442         raw_spin_unlock_irqrestore(&rq->lock, flags);
443
444         if (old_rd)
445                 call_rcu_sched(&old_rd->rcu, free_rootdomain);
446 }
447
448 void sched_get_rd(struct root_domain *rd)
449 {
450         atomic_inc(&rd->refcount);
451 }
452
453 void sched_put_rd(struct root_domain *rd)
454 {
455         if (!atomic_dec_and_test(&rd->refcount))
456                 return;
457
458         call_rcu_sched(&rd->rcu, free_rootdomain);
459 }
460
461 static int init_rootdomain(struct root_domain *rd)
462 {
463         if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
464                 goto out;
465         if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
466                 goto free_span;
467         if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
468                 goto free_online;
469         if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
470                 goto free_dlo_mask;
471
472 #ifdef HAVE_RT_PUSH_IPI
473         rd->rto_cpu = -1;
474         raw_spin_lock_init(&rd->rto_lock);
475         init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
476 #endif
477
478         init_dl_bw(&rd->dl_bw);
479         if (cpudl_init(&rd->cpudl) != 0)
480                 goto free_rto_mask;
481
482         if (cpupri_init(&rd->cpupri) != 0)
483                 goto free_cpudl;
484         return 0;
485
486 free_cpudl:
487         cpudl_cleanup(&rd->cpudl);
488 free_rto_mask:
489         free_cpumask_var(rd->rto_mask);
490 free_dlo_mask:
491         free_cpumask_var(rd->dlo_mask);
492 free_online:
493         free_cpumask_var(rd->online);
494 free_span:
495         free_cpumask_var(rd->span);
496 out:
497         return -ENOMEM;
498 }
499
500 /*
501  * By default the system creates a single root-domain with all CPUs as
502  * members (mimicking the global state we have today).
503  */
504 struct root_domain def_root_domain;
505
506 void init_defrootdomain(void)
507 {
508         init_rootdomain(&def_root_domain);
509
510         atomic_set(&def_root_domain.refcount, 1);
511 }
512
513 static struct root_domain *alloc_rootdomain(void)
514 {
515         struct root_domain *rd;
516
517         rd = kzalloc(sizeof(*rd), GFP_KERNEL);
518         if (!rd)
519                 return NULL;
520
521         if (init_rootdomain(rd) != 0) {
522                 kfree(rd);
523                 return NULL;
524         }
525
526         return rd;
527 }
528
529 static void free_sched_groups(struct sched_group *sg, int free_sgc)
530 {
531         struct sched_group *tmp, *first;
532
533         if (!sg)
534                 return;
535
536         first = sg;
537         do {
538                 tmp = sg->next;
539
540                 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
541                         kfree(sg->sgc);
542
543                 if (atomic_dec_and_test(&sg->ref))
544                         kfree(sg);
545                 sg = tmp;
546         } while (sg != first);
547 }
548
549 static void destroy_sched_domain(struct sched_domain *sd)
550 {
551         /*
552          * A normal sched domain may have multiple group references, an
553          * overlapping domain, having private groups, only one.  Iterate,
554          * dropping group/capacity references, freeing where none remain.
555          */
556         free_sched_groups(sd->groups, 1);
557
558         if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
559                 kfree(sd->shared);
560         kfree(sd);
561 }
562
563 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
564 {
565         struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
566
567         while (sd) {
568                 struct sched_domain *parent = sd->parent;
569                 destroy_sched_domain(sd);
570                 sd = parent;
571         }
572 }
573
574 static void destroy_sched_domains(struct sched_domain *sd)
575 {
576         if (sd)
577                 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
578 }
579
580 /*
581  * Keep a special pointer to the highest sched_domain that has
582  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
583  * allows us to avoid some pointer chasing select_idle_sibling().
584  *
585  * Also keep a unique ID per domain (we use the first CPU number in
586  * the cpumask of the domain), this allows us to quickly tell if
587  * two CPUs are in the same cache domain, see cpus_share_cache().
588  */
589 DEFINE_PER_CPU(struct sched_domain *, sd_llc);
590 DEFINE_PER_CPU(int, sd_llc_size);
591 DEFINE_PER_CPU(int, sd_llc_id);
592 DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
593 DEFINE_PER_CPU(struct sched_domain *, sd_numa);
594 DEFINE_PER_CPU(struct sched_domain *, sd_asym_packing);
595 DEFINE_PER_CPU(struct sched_domain *, sd_asym_cpucapacity);
596 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
597
598 static void update_top_cache_domain(int cpu)
599 {
600         struct sched_domain_shared *sds = NULL;
601         struct sched_domain *sd;
602         int id = cpu;
603         int size = 1;
604
605         sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
606         if (sd) {
607                 id = cpumask_first(sched_domain_span(sd));
608                 size = cpumask_weight(sched_domain_span(sd));
609                 sds = sd->shared;
610         }
611
612         rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
613         per_cpu(sd_llc_size, cpu) = size;
614         per_cpu(sd_llc_id, cpu) = id;
615         rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
616
617         sd = lowest_flag_domain(cpu, SD_NUMA);
618         rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
619
620         sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
621         rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
622
623         sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
624         rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
625 }
626
627 /*
628  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
629  * hold the hotplug lock.
630  */
631 static void
632 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
633 {
634         struct rq *rq = cpu_rq(cpu);
635         struct sched_domain *tmp;
636
637         /* Remove the sched domains which do not contribute to scheduling. */
638         for (tmp = sd; tmp; ) {
639                 struct sched_domain *parent = tmp->parent;
640                 if (!parent)
641                         break;
642
643                 if (sd_parent_degenerate(tmp, parent)) {
644                         tmp->parent = parent->parent;
645                         if (parent->parent)
646                                 parent->parent->child = tmp;
647                         /*
648                          * Transfer SD_PREFER_SIBLING down in case of a
649                          * degenerate parent; the spans match for this
650                          * so the property transfers.
651                          */
652                         if (parent->flags & SD_PREFER_SIBLING)
653                                 tmp->flags |= SD_PREFER_SIBLING;
654                         destroy_sched_domain(parent);
655                 } else
656                         tmp = tmp->parent;
657         }
658
659         if (sd && sd_degenerate(sd)) {
660                 tmp = sd;
661                 sd = sd->parent;
662                 destroy_sched_domain(tmp);
663                 if (sd)
664                         sd->child = NULL;
665         }
666
667         sched_domain_debug(sd, cpu);
668
669         rq_attach_root(rq, rd);
670         tmp = rq->sd;
671         rcu_assign_pointer(rq->sd, sd);
672         dirty_sched_domain_sysctl(cpu);
673         destroy_sched_domains(tmp);
674
675         update_top_cache_domain(cpu);
676 }
677
678 struct s_data {
679         struct sched_domain ** __percpu sd;
680         struct root_domain      *rd;
681 };
682
683 enum s_alloc {
684         sa_rootdomain,
685         sa_sd,
686         sa_sd_storage,
687         sa_none,
688 };
689
690 /*
691  * Return the canonical balance CPU for this group, this is the first CPU
692  * of this group that's also in the balance mask.
693  *
694  * The balance mask are all those CPUs that could actually end up at this
695  * group. See build_balance_mask().
696  *
697  * Also see should_we_balance().
698  */
699 int group_balance_cpu(struct sched_group *sg)
700 {
701         return cpumask_first(group_balance_mask(sg));
702 }
703
704
705 /*
706  * NUMA topology (first read the regular topology blurb below)
707  *
708  * Given a node-distance table, for example:
709  *
710  *   node   0   1   2   3
711  *     0:  10  20  30  20
712  *     1:  20  10  20  30
713  *     2:  30  20  10  20
714  *     3:  20  30  20  10
715  *
716  * which represents a 4 node ring topology like:
717  *
718  *   0 ----- 1
719  *   |       |
720  *   |       |
721  *   |       |
722  *   3 ----- 2
723  *
724  * We want to construct domains and groups to represent this. The way we go
725  * about doing this is to build the domains on 'hops'. For each NUMA level we
726  * construct the mask of all nodes reachable in @level hops.
727  *
728  * For the above NUMA topology that gives 3 levels:
729  *
730  * NUMA-2       0-3             0-3             0-3             0-3
731  *  groups:     {0-1,3},{1-3}   {0-2},{0,2-3}   {1-3},{0-1,3}   {0,2-3},{0-2}
732  *
733  * NUMA-1       0-1,3           0-2             1-3             0,2-3
734  *  groups:     {0},{1},{3}     {0},{1},{2}     {1},{2},{3}     {0},{2},{3}
735  *
736  * NUMA-0       0               1               2               3
737  *
738  *
739  * As can be seen; things don't nicely line up as with the regular topology.
740  * When we iterate a domain in child domain chunks some nodes can be
741  * represented multiple times -- hence the "overlap" naming for this part of
742  * the topology.
743  *
744  * In order to minimize this overlap, we only build enough groups to cover the
745  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
746  *
747  * Because:
748  *
749  *  - the first group of each domain is its child domain; this
750  *    gets us the first 0-1,3
751  *  - the only uncovered node is 2, who's child domain is 1-3.
752  *
753  * However, because of the overlap, computing a unique CPU for each group is
754  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
755  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
756  * end up at those groups (they would end up in group: 0-1,3).
757  *
758  * To correct this we have to introduce the group balance mask. This mask
759  * will contain those CPUs in the group that can reach this group given the
760  * (child) domain tree.
761  *
762  * With this we can once again compute balance_cpu and sched_group_capacity
763  * relations.
764  *
765  * XXX include words on how balance_cpu is unique and therefore can be
766  * used for sched_group_capacity links.
767  *
768  *
769  * Another 'interesting' topology is:
770  *
771  *   node   0   1   2   3
772  *     0:  10  20  20  30
773  *     1:  20  10  20  20
774  *     2:  20  20  10  20
775  *     3:  30  20  20  10
776  *
777  * Which looks a little like:
778  *
779  *   0 ----- 1
780  *   |     / |
781  *   |   /   |
782  *   | /     |
783  *   2 ----- 3
784  *
785  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
786  * are not.
787  *
788  * This leads to a few particularly weird cases where the sched_domain's are
789  * not of the same number for each CPU. Consider:
790  *
791  * NUMA-2       0-3                                             0-3
792  *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
793  *
794  * NUMA-1       0-2             0-3             0-3             1-3
795  *
796  * NUMA-0       0               1               2               3
797  *
798  */
799
800
801 /*
802  * Build the balance mask; it contains only those CPUs that can arrive at this
803  * group and should be considered to continue balancing.
804  *
805  * We do this during the group creation pass, therefore the group information
806  * isn't complete yet, however since each group represents a (child) domain we
807  * can fully construct this using the sched_domain bits (which are already
808  * complete).
809  */
810 static void
811 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
812 {
813         const struct cpumask *sg_span = sched_group_span(sg);
814         struct sd_data *sdd = sd->private;
815         struct sched_domain *sibling;
816         int i;
817
818         cpumask_clear(mask);
819
820         for_each_cpu(i, sg_span) {
821                 sibling = *per_cpu_ptr(sdd->sd, i);
822
823                 /*
824                  * Can happen in the asymmetric case, where these siblings are
825                  * unused. The mask will not be empty because those CPUs that
826                  * do have the top domain _should_ span the domain.
827                  */
828                 if (!sibling->child)
829                         continue;
830
831                 /* If we would not end up here, we can't continue from here */
832                 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
833                         continue;
834
835                 cpumask_set_cpu(i, mask);
836         }
837
838         /* We must not have empty masks here */
839         WARN_ON_ONCE(cpumask_empty(mask));
840 }
841
842 /*
843  * XXX: This creates per-node group entries; since the load-balancer will
844  * immediately access remote memory to construct this group's load-balance
845  * statistics having the groups node local is of dubious benefit.
846  */
847 static struct sched_group *
848 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
849 {
850         struct sched_group *sg;
851         struct cpumask *sg_span;
852
853         sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
854                         GFP_KERNEL, cpu_to_node(cpu));
855
856         if (!sg)
857                 return NULL;
858
859         sg_span = sched_group_span(sg);
860         if (sd->child)
861                 cpumask_copy(sg_span, sched_domain_span(sd->child));
862         else
863                 cpumask_copy(sg_span, sched_domain_span(sd));
864
865         atomic_inc(&sg->ref);
866         return sg;
867 }
868
869 static void init_overlap_sched_group(struct sched_domain *sd,
870                                      struct sched_group *sg)
871 {
872         struct cpumask *mask = sched_domains_tmpmask2;
873         struct sd_data *sdd = sd->private;
874         struct cpumask *sg_span;
875         int cpu;
876
877         build_balance_mask(sd, sg, mask);
878         cpu = cpumask_first_and(sched_group_span(sg), mask);
879
880         sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
881         if (atomic_inc_return(&sg->sgc->ref) == 1)
882                 cpumask_copy(group_balance_mask(sg), mask);
883         else
884                 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
885
886         /*
887          * Initialize sgc->capacity such that even if we mess up the
888          * domains and no possible iteration will get us here, we won't
889          * die on a /0 trap.
890          */
891         sg_span = sched_group_span(sg);
892         sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
893         sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
894         sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
895 }
896
897 static int
898 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
899 {
900         struct sched_group *first = NULL, *last = NULL, *sg;
901         const struct cpumask *span = sched_domain_span(sd);
902         struct cpumask *covered = sched_domains_tmpmask;
903         struct sd_data *sdd = sd->private;
904         struct sched_domain *sibling;
905         int i;
906
907         cpumask_clear(covered);
908
909         for_each_cpu_wrap(i, span, cpu) {
910                 struct cpumask *sg_span;
911
912                 if (cpumask_test_cpu(i, covered))
913                         continue;
914
915                 sibling = *per_cpu_ptr(sdd->sd, i);
916
917                 /*
918                  * Asymmetric node setups can result in situations where the
919                  * domain tree is of unequal depth, make sure to skip domains
920                  * that already cover the entire range.
921                  *
922                  * In that case build_sched_domains() will have terminated the
923                  * iteration early and our sibling sd spans will be empty.
924                  * Domains should always include the CPU they're built on, so
925                  * check that.
926                  */
927                 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
928                         continue;
929
930                 sg = build_group_from_child_sched_domain(sibling, cpu);
931                 if (!sg)
932                         goto fail;
933
934                 sg_span = sched_group_span(sg);
935                 cpumask_or(covered, covered, sg_span);
936
937                 init_overlap_sched_group(sd, sg);
938
939                 if (!first)
940                         first = sg;
941                 if (last)
942                         last->next = sg;
943                 last = sg;
944                 last->next = first;
945         }
946         sd->groups = first;
947
948         return 0;
949
950 fail:
951         free_sched_groups(first, 0);
952
953         return -ENOMEM;
954 }
955
956
957 /*
958  * Package topology (also see the load-balance blurb in fair.c)
959  *
960  * The scheduler builds a tree structure to represent a number of important
961  * topology features. By default (default_topology[]) these include:
962  *
963  *  - Simultaneous multithreading (SMT)
964  *  - Multi-Core Cache (MC)
965  *  - Package (DIE)
966  *
967  * Where the last one more or less denotes everything up to a NUMA node.
968  *
969  * The tree consists of 3 primary data structures:
970  *
971  *      sched_domain -> sched_group -> sched_group_capacity
972  *          ^ ^             ^ ^
973  *          `-'             `-'
974  *
975  * The sched_domains are per-CPU and have a two way link (parent & child) and
976  * denote the ever growing mask of CPUs belonging to that level of topology.
977  *
978  * Each sched_domain has a circular (double) linked list of sched_group's, each
979  * denoting the domains of the level below (or individual CPUs in case of the
980  * first domain level). The sched_group linked by a sched_domain includes the
981  * CPU of that sched_domain [*].
982  *
983  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
984  *
985  * CPU   0   1   2   3   4   5   6   7
986  *
987  * DIE  [                             ]
988  * MC   [             ] [             ]
989  * SMT  [     ] [     ] [     ] [     ]
990  *
991  *  - or -
992  *
993  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
994  * MC   0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
995  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
996  *
997  * CPU   0   1   2   3   4   5   6   7
998  *
999  * One way to think about it is: sched_domain moves you up and down among these
1000  * topology levels, while sched_group moves you sideways through it, at child
1001  * domain granularity.
1002  *
1003  * sched_group_capacity ensures each unique sched_group has shared storage.
1004  *
1005  * There are two related construction problems, both require a CPU that
1006  * uniquely identify each group (for a given domain):
1007  *
1008  *  - The first is the balance_cpu (see should_we_balance() and the
1009  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1010  *    continue balancing at a higher domain.
1011  *
1012  *  - The second is the sched_group_capacity; we want all identical groups
1013  *    to share a single sched_group_capacity.
1014  *
1015  * Since these topologies are exclusive by construction. That is, its
1016  * impossible for an SMT thread to belong to multiple cores, and cores to
1017  * be part of multiple caches. There is a very clear and unique location
1018  * for each CPU in the hierarchy.
1019  *
1020  * Therefore computing a unique CPU for each group is trivial (the iteration
1021  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1022  * group), we can simply pick the first CPU in each group.
1023  *
1024  *
1025  * [*] in other words, the first group of each domain is its child domain.
1026  */
1027
1028 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1029 {
1030         struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1031         struct sched_domain *child = sd->child;
1032         struct sched_group *sg;
1033
1034         if (child)
1035                 cpu = cpumask_first(sched_domain_span(child));
1036
1037         sg = *per_cpu_ptr(sdd->sg, cpu);
1038         sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1039
1040         /* For claim_allocations: */
1041         atomic_inc(&sg->ref);
1042         atomic_inc(&sg->sgc->ref);
1043
1044         if (child) {
1045                 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1046                 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1047         } else {
1048                 cpumask_set_cpu(cpu, sched_group_span(sg));
1049                 cpumask_set_cpu(cpu, group_balance_mask(sg));
1050         }
1051
1052         sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1053         sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1054         sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1055
1056         return sg;
1057 }
1058
1059 /*
1060  * build_sched_groups will build a circular linked list of the groups
1061  * covered by the given span, and will set each group's ->cpumask correctly,
1062  * and ->cpu_capacity to 0.
1063  *
1064  * Assumes the sched_domain tree is fully constructed
1065  */
1066 static int
1067 build_sched_groups(struct sched_domain *sd, int cpu)
1068 {
1069         struct sched_group *first = NULL, *last = NULL;
1070         struct sd_data *sdd = sd->private;
1071         const struct cpumask *span = sched_domain_span(sd);
1072         struct cpumask *covered;
1073         int i;
1074
1075         lockdep_assert_held(&sched_domains_mutex);
1076         covered = sched_domains_tmpmask;
1077
1078         cpumask_clear(covered);
1079
1080         for_each_cpu_wrap(i, span, cpu) {
1081                 struct sched_group *sg;
1082
1083                 if (cpumask_test_cpu(i, covered))
1084                         continue;
1085
1086                 sg = get_group(i, sdd);
1087
1088                 cpumask_or(covered, covered, sched_group_span(sg));
1089
1090                 if (!first)
1091                         first = sg;
1092                 if (last)
1093                         last->next = sg;
1094                 last = sg;
1095         }
1096         last->next = first;
1097         sd->groups = first;
1098
1099         return 0;
1100 }
1101
1102 /*
1103  * Initialize sched groups cpu_capacity.
1104  *
1105  * cpu_capacity indicates the capacity of sched group, which is used while
1106  * distributing the load between different sched groups in a sched domain.
1107  * Typically cpu_capacity for all the groups in a sched domain will be same
1108  * unless there are asymmetries in the topology. If there are asymmetries,
1109  * group having more cpu_capacity will pickup more load compared to the
1110  * group having less cpu_capacity.
1111  */
1112 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1113 {
1114         struct sched_group *sg = sd->groups;
1115
1116         WARN_ON(!sg);
1117
1118         do {
1119                 int cpu, max_cpu = -1;
1120
1121                 sg->group_weight = cpumask_weight(sched_group_span(sg));
1122
1123                 if (!(sd->flags & SD_ASYM_PACKING))
1124                         goto next;
1125
1126                 for_each_cpu(cpu, sched_group_span(sg)) {
1127                         if (max_cpu < 0)
1128                                 max_cpu = cpu;
1129                         else if (sched_asym_prefer(cpu, max_cpu))
1130                                 max_cpu = cpu;
1131                 }
1132                 sg->asym_prefer_cpu = max_cpu;
1133
1134 next:
1135                 sg = sg->next;
1136         } while (sg != sd->groups);
1137
1138         if (cpu != group_balance_cpu(sg))
1139                 return;
1140
1141         update_group_capacity(sd, cpu);
1142 }
1143
1144 /*
1145  * Initializers for schedule domains
1146  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1147  */
1148
1149 static int default_relax_domain_level = -1;
1150 int sched_domain_level_max;
1151
1152 static int __init setup_relax_domain_level(char *str)
1153 {
1154         if (kstrtoint(str, 0, &default_relax_domain_level))
1155                 pr_warn("Unable to set relax_domain_level\n");
1156
1157         return 1;
1158 }
1159 __setup("relax_domain_level=", setup_relax_domain_level);
1160
1161 static void set_domain_attribute(struct sched_domain *sd,
1162                                  struct sched_domain_attr *attr)
1163 {
1164         int request;
1165
1166         if (!attr || attr->relax_domain_level < 0) {
1167                 if (default_relax_domain_level < 0)
1168                         return;
1169                 else
1170                         request = default_relax_domain_level;
1171         } else
1172                 request = attr->relax_domain_level;
1173         if (request < sd->level) {
1174                 /* Turn off idle balance on this domain: */
1175                 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1176         } else {
1177                 /* Turn on idle balance on this domain: */
1178                 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1179         }
1180 }
1181
1182 static void __sdt_free(const struct cpumask *cpu_map);
1183 static int __sdt_alloc(const struct cpumask *cpu_map);
1184
1185 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1186                                  const struct cpumask *cpu_map)
1187 {
1188         switch (what) {
1189         case sa_rootdomain:
1190                 if (!atomic_read(&d->rd->refcount))
1191                         free_rootdomain(&d->rd->rcu);
1192                 /* Fall through */
1193         case sa_sd:
1194                 free_percpu(d->sd);
1195                 /* Fall through */
1196         case sa_sd_storage:
1197                 __sdt_free(cpu_map);
1198                 /* Fall through */
1199         case sa_none:
1200                 break;
1201         }
1202 }
1203
1204 static enum s_alloc
1205 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1206 {
1207         memset(d, 0, sizeof(*d));
1208
1209         if (__sdt_alloc(cpu_map))
1210                 return sa_sd_storage;
1211         d->sd = alloc_percpu(struct sched_domain *);
1212         if (!d->sd)
1213                 return sa_sd_storage;
1214         d->rd = alloc_rootdomain();
1215         if (!d->rd)
1216                 return sa_sd;
1217
1218         return sa_rootdomain;
1219 }
1220
1221 /*
1222  * NULL the sd_data elements we've used to build the sched_domain and
1223  * sched_group structure so that the subsequent __free_domain_allocs()
1224  * will not free the data we're using.
1225  */
1226 static void claim_allocations(int cpu, struct sched_domain *sd)
1227 {
1228         struct sd_data *sdd = sd->private;
1229
1230         WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1231         *per_cpu_ptr(sdd->sd, cpu) = NULL;
1232
1233         if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1234                 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1235
1236         if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1237                 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1238
1239         if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1240                 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1241 }
1242
1243 #ifdef CONFIG_NUMA
1244 enum numa_topology_type sched_numa_topology_type;
1245
1246 static int                      sched_domains_numa_levels;
1247 static int                      sched_domains_curr_level;
1248
1249 int                             sched_max_numa_distance;
1250 static int                      *sched_domains_numa_distance;
1251 static struct cpumask           ***sched_domains_numa_masks;
1252 #endif
1253
1254 /*
1255  * SD_flags allowed in topology descriptions.
1256  *
1257  * These flags are purely descriptive of the topology and do not prescribe
1258  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1259  * function:
1260  *
1261  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1262  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1263  *   SD_NUMA                - describes NUMA topologies
1264  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1265  *
1266  * Odd one out, which beside describing the topology has a quirk also
1267  * prescribes the desired behaviour that goes along with it:
1268  *
1269  *   SD_ASYM_PACKING        - describes SMT quirks
1270  */
1271 #define TOPOLOGY_SD_FLAGS               \
1272         (SD_SHARE_CPUCAPACITY   |       \
1273          SD_SHARE_PKG_RESOURCES |       \
1274          SD_NUMA                |       \
1275          SD_ASYM_PACKING        |       \
1276          SD_SHARE_POWERDOMAIN)
1277
1278 static struct sched_domain *
1279 sd_init(struct sched_domain_topology_level *tl,
1280         const struct cpumask *cpu_map,
1281         struct sched_domain *child, int dflags, int cpu)
1282 {
1283         struct sd_data *sdd = &tl->data;
1284         struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1285         int sd_id, sd_weight, sd_flags = 0;
1286
1287 #ifdef CONFIG_NUMA
1288         /*
1289          * Ugly hack to pass state to sd_numa_mask()...
1290          */
1291         sched_domains_curr_level = tl->numa_level;
1292 #endif
1293
1294         sd_weight = cpumask_weight(tl->mask(cpu));
1295
1296         if (tl->sd_flags)
1297                 sd_flags = (*tl->sd_flags)();
1298         if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1299                         "wrong sd_flags in topology description\n"))
1300                 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1301
1302         /* Apply detected topology flags */
1303         sd_flags |= dflags;
1304
1305         *sd = (struct sched_domain){
1306                 .min_interval           = sd_weight,
1307                 .max_interval           = 2*sd_weight,
1308                 .busy_factor            = 32,
1309                 .imbalance_pct          = 125,
1310
1311                 .cache_nice_tries       = 0,
1312                 .busy_idx               = 0,
1313                 .idle_idx               = 0,
1314                 .newidle_idx            = 0,
1315                 .wake_idx               = 0,
1316                 .forkexec_idx           = 0,
1317
1318                 .flags                  = 1*SD_LOAD_BALANCE
1319                                         | 1*SD_BALANCE_NEWIDLE
1320                                         | 1*SD_BALANCE_EXEC
1321                                         | 1*SD_BALANCE_FORK
1322                                         | 0*SD_BALANCE_WAKE
1323                                         | 1*SD_WAKE_AFFINE
1324                                         | 0*SD_SHARE_CPUCAPACITY
1325                                         | 0*SD_SHARE_PKG_RESOURCES
1326                                         | 0*SD_SERIALIZE
1327                                         | 1*SD_PREFER_SIBLING
1328                                         | 0*SD_NUMA
1329                                         | sd_flags
1330                                         ,
1331
1332                 .last_balance           = jiffies,
1333                 .balance_interval       = sd_weight,
1334                 .max_newidle_lb_cost    = 0,
1335                 .next_decay_max_lb_cost = jiffies,
1336                 .child                  = child,
1337 #ifdef CONFIG_SCHED_DEBUG
1338                 .name                   = tl->name,
1339 #endif
1340         };
1341
1342         cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1343         sd_id = cpumask_first(sched_domain_span(sd));
1344
1345         /*
1346          * Convert topological properties into behaviour.
1347          */
1348
1349         if (sd->flags & SD_ASYM_CPUCAPACITY) {
1350                 struct sched_domain *t = sd;
1351
1352                 /*
1353                  * Don't attempt to spread across CPUs of different capacities.
1354                  */
1355                 if (sd->child)
1356                         sd->child->flags &= ~SD_PREFER_SIBLING;
1357
1358                 for_each_lower_domain(t)
1359                         t->flags |= SD_BALANCE_WAKE;
1360         }
1361
1362         if (sd->flags & SD_SHARE_CPUCAPACITY) {
1363                 sd->imbalance_pct = 110;
1364
1365         } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1366                 sd->imbalance_pct = 117;
1367                 sd->cache_nice_tries = 1;
1368                 sd->busy_idx = 2;
1369
1370 #ifdef CONFIG_NUMA
1371         } else if (sd->flags & SD_NUMA) {
1372                 sd->cache_nice_tries = 2;
1373                 sd->busy_idx = 3;
1374                 sd->idle_idx = 2;
1375
1376                 sd->flags &= ~SD_PREFER_SIBLING;
1377                 sd->flags |= SD_SERIALIZE;
1378                 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
1379                         sd->flags &= ~(SD_BALANCE_EXEC |
1380                                        SD_BALANCE_FORK |
1381                                        SD_WAKE_AFFINE);
1382                 }
1383
1384 #endif
1385         } else {
1386                 sd->cache_nice_tries = 1;
1387                 sd->busy_idx = 2;
1388                 sd->idle_idx = 1;
1389         }
1390
1391         /*
1392          * For all levels sharing cache; connect a sched_domain_shared
1393          * instance.
1394          */
1395         if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1396                 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1397                 atomic_inc(&sd->shared->ref);
1398                 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1399         }
1400
1401         sd->private = sdd;
1402
1403         return sd;
1404 }
1405
1406 /*
1407  * Topology list, bottom-up.
1408  */
1409 static struct sched_domain_topology_level default_topology[] = {
1410 #ifdef CONFIG_SCHED_SMT
1411         { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1412 #endif
1413 #ifdef CONFIG_SCHED_MC
1414         { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1415 #endif
1416         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1417         { NULL, },
1418 };
1419
1420 static struct sched_domain_topology_level *sched_domain_topology =
1421         default_topology;
1422
1423 #define for_each_sd_topology(tl)                        \
1424         for (tl = sched_domain_topology; tl->mask; tl++)
1425
1426 void set_sched_topology(struct sched_domain_topology_level *tl)
1427 {
1428         if (WARN_ON_ONCE(sched_smp_initialized))
1429                 return;
1430
1431         sched_domain_topology = tl;
1432 }
1433
1434 #ifdef CONFIG_NUMA
1435
1436 static const struct cpumask *sd_numa_mask(int cpu)
1437 {
1438         return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1439 }
1440
1441 static void sched_numa_warn(const char *str)
1442 {
1443         static int done = false;
1444         int i,j;
1445
1446         if (done)
1447                 return;
1448
1449         done = true;
1450
1451         printk(KERN_WARNING "ERROR: %s\n\n", str);
1452
1453         for (i = 0; i < nr_node_ids; i++) {
1454                 printk(KERN_WARNING "  ");
1455                 for (j = 0; j < nr_node_ids; j++)
1456                         printk(KERN_CONT "%02d ", node_distance(i,j));
1457                 printk(KERN_CONT "\n");
1458         }
1459         printk(KERN_WARNING "\n");
1460 }
1461
1462 bool find_numa_distance(int distance)
1463 {
1464         int i;
1465
1466         if (distance == node_distance(0, 0))
1467                 return true;
1468
1469         for (i = 0; i < sched_domains_numa_levels; i++) {
1470                 if (sched_domains_numa_distance[i] == distance)
1471                         return true;
1472         }
1473
1474         return false;
1475 }
1476
1477 /*
1478  * A system can have three types of NUMA topology:
1479  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1480  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1481  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1482  *
1483  * The difference between a glueless mesh topology and a backplane
1484  * topology lies in whether communication between not directly
1485  * connected nodes goes through intermediary nodes (where programs
1486  * could run), or through backplane controllers. This affects
1487  * placement of programs.
1488  *
1489  * The type of topology can be discerned with the following tests:
1490  * - If the maximum distance between any nodes is 1 hop, the system
1491  *   is directly connected.
1492  * - If for two nodes A and B, located N > 1 hops away from each other,
1493  *   there is an intermediary node C, which is < N hops away from both
1494  *   nodes A and B, the system is a glueless mesh.
1495  */
1496 static void init_numa_topology_type(void)
1497 {
1498         int a, b, c, n;
1499
1500         n = sched_max_numa_distance;
1501
1502         if (sched_domains_numa_levels <= 2) {
1503                 sched_numa_topology_type = NUMA_DIRECT;
1504                 return;
1505         }
1506
1507         for_each_online_node(a) {
1508                 for_each_online_node(b) {
1509                         /* Find two nodes furthest removed from each other. */
1510                         if (node_distance(a, b) < n)
1511                                 continue;
1512
1513                         /* Is there an intermediary node between a and b? */
1514                         for_each_online_node(c) {
1515                                 if (node_distance(a, c) < n &&
1516                                     node_distance(b, c) < n) {
1517                                         sched_numa_topology_type =
1518                                                         NUMA_GLUELESS_MESH;
1519                                         return;
1520                                 }
1521                         }
1522
1523                         sched_numa_topology_type = NUMA_BACKPLANE;
1524                         return;
1525                 }
1526         }
1527 }
1528
1529 void sched_init_numa(void)
1530 {
1531         int next_distance, curr_distance = node_distance(0, 0);
1532         struct sched_domain_topology_level *tl;
1533         int level = 0;
1534         int i, j, k;
1535
1536         sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1537         if (!sched_domains_numa_distance)
1538                 return;
1539
1540         /* Includes NUMA identity node at level 0. */
1541         sched_domains_numa_distance[level++] = curr_distance;
1542         sched_domains_numa_levels = level;
1543
1544         /*
1545          * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1546          * unique distances in the node_distance() table.
1547          *
1548          * Assumes node_distance(0,j) includes all distances in
1549          * node_distance(i,j) in order to avoid cubic time.
1550          */
1551         next_distance = curr_distance;
1552         for (i = 0; i < nr_node_ids; i++) {
1553                 for (j = 0; j < nr_node_ids; j++) {
1554                         for (k = 0; k < nr_node_ids; k++) {
1555                                 int distance = node_distance(i, k);
1556
1557                                 if (distance > curr_distance &&
1558                                     (distance < next_distance ||
1559                                      next_distance == curr_distance))
1560                                         next_distance = distance;
1561
1562                                 /*
1563                                  * While not a strong assumption it would be nice to know
1564                                  * about cases where if node A is connected to B, B is not
1565                                  * equally connected to A.
1566                                  */
1567                                 if (sched_debug() && node_distance(k, i) != distance)
1568                                         sched_numa_warn("Node-distance not symmetric");
1569
1570                                 if (sched_debug() && i && !find_numa_distance(distance))
1571                                         sched_numa_warn("Node-0 not representative");
1572                         }
1573                         if (next_distance != curr_distance) {
1574                                 sched_domains_numa_distance[level++] = next_distance;
1575                                 sched_domains_numa_levels = level;
1576                                 curr_distance = next_distance;
1577                         } else break;
1578                 }
1579
1580                 /*
1581                  * In case of sched_debug() we verify the above assumption.
1582                  */
1583                 if (!sched_debug())
1584                         break;
1585         }
1586
1587         /*
1588          * 'level' contains the number of unique distances
1589          *
1590          * The sched_domains_numa_distance[] array includes the actual distance
1591          * numbers.
1592          */
1593
1594         /*
1595          * Here, we should temporarily reset sched_domains_numa_levels to 0.
1596          * If it fails to allocate memory for array sched_domains_numa_masks[][],
1597          * the array will contain less then 'level' members. This could be
1598          * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1599          * in other functions.
1600          *
1601          * We reset it to 'level' at the end of this function.
1602          */
1603         sched_domains_numa_levels = 0;
1604
1605         sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1606         if (!sched_domains_numa_masks)
1607                 return;
1608
1609         /*
1610          * Now for each level, construct a mask per node which contains all
1611          * CPUs of nodes that are that many hops away from us.
1612          */
1613         for (i = 0; i < level; i++) {
1614                 sched_domains_numa_masks[i] =
1615                         kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1616                 if (!sched_domains_numa_masks[i])
1617                         return;
1618
1619                 for (j = 0; j < nr_node_ids; j++) {
1620                         struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1621                         if (!mask)
1622                                 return;
1623
1624                         sched_domains_numa_masks[i][j] = mask;
1625
1626                         for_each_node(k) {
1627                                 if (node_distance(j, k) > sched_domains_numa_distance[i])
1628                                         continue;
1629
1630                                 cpumask_or(mask, mask, cpumask_of_node(k));
1631                         }
1632                 }
1633         }
1634
1635         /* Compute default topology size */
1636         for (i = 0; sched_domain_topology[i].mask; i++);
1637
1638         tl = kzalloc((i + level + 1) *
1639                         sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1640         if (!tl)
1641                 return;
1642
1643         /*
1644          * Copy the default topology bits..
1645          */
1646         for (i = 0; sched_domain_topology[i].mask; i++)
1647                 tl[i] = sched_domain_topology[i];
1648
1649         /*
1650          * Add the NUMA identity distance, aka single NODE.
1651          */
1652         tl[i++] = (struct sched_domain_topology_level){
1653                 .mask = sd_numa_mask,
1654                 .numa_level = 0,
1655                 SD_INIT_NAME(NODE)
1656         };
1657
1658         /*
1659          * .. and append 'j' levels of NUMA goodness.
1660          */
1661         for (j = 1; j < level; i++, j++) {
1662                 tl[i] = (struct sched_domain_topology_level){
1663                         .mask = sd_numa_mask,
1664                         .sd_flags = cpu_numa_flags,
1665                         .flags = SDTL_OVERLAP,
1666                         .numa_level = j,
1667                         SD_INIT_NAME(NUMA)
1668                 };
1669         }
1670
1671         sched_domain_topology = tl;
1672
1673         sched_domains_numa_levels = level;
1674         sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1675
1676         init_numa_topology_type();
1677 }
1678
1679 void sched_domains_numa_masks_set(unsigned int cpu)
1680 {
1681         int node = cpu_to_node(cpu);
1682         int i, j;
1683
1684         for (i = 0; i < sched_domains_numa_levels; i++) {
1685                 for (j = 0; j < nr_node_ids; j++) {
1686                         if (node_distance(j, node) <= sched_domains_numa_distance[i])
1687                                 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1688                 }
1689         }
1690 }
1691
1692 void sched_domains_numa_masks_clear(unsigned int cpu)
1693 {
1694         int i, j;
1695
1696         for (i = 0; i < sched_domains_numa_levels; i++) {
1697                 for (j = 0; j < nr_node_ids; j++)
1698                         cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1699         }
1700 }
1701
1702 #endif /* CONFIG_NUMA */
1703
1704 static int __sdt_alloc(const struct cpumask *cpu_map)
1705 {
1706         struct sched_domain_topology_level *tl;
1707         int j;
1708
1709         for_each_sd_topology(tl) {
1710                 struct sd_data *sdd = &tl->data;
1711
1712                 sdd->sd = alloc_percpu(struct sched_domain *);
1713                 if (!sdd->sd)
1714                         return -ENOMEM;
1715
1716                 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1717                 if (!sdd->sds)
1718                         return -ENOMEM;
1719
1720                 sdd->sg = alloc_percpu(struct sched_group *);
1721                 if (!sdd->sg)
1722                         return -ENOMEM;
1723
1724                 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1725                 if (!sdd->sgc)
1726                         return -ENOMEM;
1727
1728                 for_each_cpu(j, cpu_map) {
1729                         struct sched_domain *sd;
1730                         struct sched_domain_shared *sds;
1731                         struct sched_group *sg;
1732                         struct sched_group_capacity *sgc;
1733
1734                         sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1735                                         GFP_KERNEL, cpu_to_node(j));
1736                         if (!sd)
1737                                 return -ENOMEM;
1738
1739                         *per_cpu_ptr(sdd->sd, j) = sd;
1740
1741                         sds = kzalloc_node(sizeof(struct sched_domain_shared),
1742                                         GFP_KERNEL, cpu_to_node(j));
1743                         if (!sds)
1744                                 return -ENOMEM;
1745
1746                         *per_cpu_ptr(sdd->sds, j) = sds;
1747
1748                         sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1749                                         GFP_KERNEL, cpu_to_node(j));
1750                         if (!sg)
1751                                 return -ENOMEM;
1752
1753                         sg->next = sg;
1754
1755                         *per_cpu_ptr(sdd->sg, j) = sg;
1756
1757                         sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1758                                         GFP_KERNEL, cpu_to_node(j));
1759                         if (!sgc)
1760                                 return -ENOMEM;
1761
1762 #ifdef CONFIG_SCHED_DEBUG
1763                         sgc->id = j;
1764 #endif
1765
1766                         *per_cpu_ptr(sdd->sgc, j) = sgc;
1767                 }
1768         }
1769
1770         return 0;
1771 }
1772
1773 static void __sdt_free(const struct cpumask *cpu_map)
1774 {
1775         struct sched_domain_topology_level *tl;
1776         int j;
1777
1778         for_each_sd_topology(tl) {
1779                 struct sd_data *sdd = &tl->data;
1780
1781                 for_each_cpu(j, cpu_map) {
1782                         struct sched_domain *sd;
1783
1784                         if (sdd->sd) {
1785                                 sd = *per_cpu_ptr(sdd->sd, j);
1786                                 if (sd && (sd->flags & SD_OVERLAP))
1787                                         free_sched_groups(sd->groups, 0);
1788                                 kfree(*per_cpu_ptr(sdd->sd, j));
1789                         }
1790
1791                         if (sdd->sds)
1792                                 kfree(*per_cpu_ptr(sdd->sds, j));
1793                         if (sdd->sg)
1794                                 kfree(*per_cpu_ptr(sdd->sg, j));
1795                         if (sdd->sgc)
1796                                 kfree(*per_cpu_ptr(sdd->sgc, j));
1797                 }
1798                 free_percpu(sdd->sd);
1799                 sdd->sd = NULL;
1800                 free_percpu(sdd->sds);
1801                 sdd->sds = NULL;
1802                 free_percpu(sdd->sg);
1803                 sdd->sg = NULL;
1804                 free_percpu(sdd->sgc);
1805                 sdd->sgc = NULL;
1806         }
1807 }
1808
1809 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1810                 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1811                 struct sched_domain *child, int dflags, int cpu)
1812 {
1813         struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1814
1815         if (child) {
1816                 sd->level = child->level + 1;
1817                 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1818                 child->parent = sd;
1819
1820                 if (!cpumask_subset(sched_domain_span(child),
1821                                     sched_domain_span(sd))) {
1822                         pr_err("BUG: arch topology borken\n");
1823 #ifdef CONFIG_SCHED_DEBUG
1824                         pr_err("     the %s domain not a subset of the %s domain\n",
1825                                         child->name, sd->name);
1826 #endif
1827                         /* Fixup, ensure @sd has at least @child CPUs. */
1828                         cpumask_or(sched_domain_span(sd),
1829                                    sched_domain_span(sd),
1830                                    sched_domain_span(child));
1831                 }
1832
1833         }
1834         set_domain_attribute(sd, attr);
1835
1836         return sd;
1837 }
1838
1839 /*
1840  * Find the sched_domain_topology_level where all CPU capacities are visible
1841  * for all CPUs.
1842  */
1843 static struct sched_domain_topology_level
1844 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1845 {
1846         int i, j, asym_level = 0;
1847         bool asym = false;
1848         struct sched_domain_topology_level *tl, *asym_tl = NULL;
1849         unsigned long cap;
1850
1851         /* Is there any asymmetry? */
1852         cap = arch_scale_cpu_capacity(NULL, cpumask_first(cpu_map));
1853
1854         for_each_cpu(i, cpu_map) {
1855                 if (arch_scale_cpu_capacity(NULL, i) != cap) {
1856                         asym = true;
1857                         break;
1858                 }
1859         }
1860
1861         if (!asym)
1862                 return NULL;
1863
1864         /*
1865          * Examine topology from all CPU's point of views to detect the lowest
1866          * sched_domain_topology_level where a highest capacity CPU is visible
1867          * to everyone.
1868          */
1869         for_each_cpu(i, cpu_map) {
1870                 unsigned long max_capacity = arch_scale_cpu_capacity(NULL, i);
1871                 int tl_id = 0;
1872
1873                 for_each_sd_topology(tl) {
1874                         if (tl_id < asym_level)
1875                                 goto next_level;
1876
1877                         for_each_cpu_and(j, tl->mask(i), cpu_map) {
1878                                 unsigned long capacity;
1879
1880                                 capacity = arch_scale_cpu_capacity(NULL, j);
1881
1882                                 if (capacity <= max_capacity)
1883                                         continue;
1884
1885                                 max_capacity = capacity;
1886                                 asym_level = tl_id;
1887                                 asym_tl = tl;
1888                         }
1889 next_level:
1890                         tl_id++;
1891                 }
1892         }
1893
1894         return asym_tl;
1895 }
1896
1897
1898 /*
1899  * Build sched domains for a given set of CPUs and attach the sched domains
1900  * to the individual CPUs
1901  */
1902 static int
1903 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1904 {
1905         enum s_alloc alloc_state;
1906         struct sched_domain *sd;
1907         struct s_data d;
1908         struct rq *rq = NULL;
1909         int i, ret = -ENOMEM;
1910         struct sched_domain_topology_level *tl_asym;
1911         bool has_asym = false;
1912
1913         alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1914         if (alloc_state != sa_rootdomain)
1915                 goto error;
1916
1917         tl_asym = asym_cpu_capacity_level(cpu_map);
1918
1919         /* Set up domains for CPUs specified by the cpu_map: */
1920         for_each_cpu(i, cpu_map) {
1921                 struct sched_domain_topology_level *tl;
1922
1923                 sd = NULL;
1924                 for_each_sd_topology(tl) {
1925                         int dflags = 0;
1926
1927                         if (tl == tl_asym) {
1928                                 dflags |= SD_ASYM_CPUCAPACITY;
1929                                 has_asym = true;
1930                         }
1931
1932                         sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
1933
1934                         if (tl == sched_domain_topology)
1935                                 *per_cpu_ptr(d.sd, i) = sd;
1936                         if (tl->flags & SDTL_OVERLAP)
1937                                 sd->flags |= SD_OVERLAP;
1938                         if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1939                                 break;
1940                 }
1941         }
1942
1943         /* Build the groups for the domains */
1944         for_each_cpu(i, cpu_map) {
1945                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1946                         sd->span_weight = cpumask_weight(sched_domain_span(sd));
1947                         if (sd->flags & SD_OVERLAP) {
1948                                 if (build_overlap_sched_groups(sd, i))
1949                                         goto error;
1950                         } else {
1951                                 if (build_sched_groups(sd, i))
1952                                         goto error;
1953                         }
1954                 }
1955         }
1956
1957         /* Calculate CPU capacity for physical packages and nodes */
1958         for (i = nr_cpumask_bits-1; i >= 0; i--) {
1959                 if (!cpumask_test_cpu(i, cpu_map))
1960                         continue;
1961
1962                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1963                         claim_allocations(i, sd);
1964                         init_sched_groups_capacity(i, sd);
1965                 }
1966         }
1967
1968         /* Attach the domains */
1969         rcu_read_lock();
1970         for_each_cpu(i, cpu_map) {
1971                 rq = cpu_rq(i);
1972                 sd = *per_cpu_ptr(d.sd, i);
1973
1974                 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
1975                 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
1976                         WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
1977
1978                 cpu_attach_domain(sd, d.rd, i);
1979         }
1980         rcu_read_unlock();
1981
1982         if (has_asym)
1983                 static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
1984
1985         if (rq && sched_debug_enabled) {
1986                 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
1987                         cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
1988         }
1989
1990         ret = 0;
1991 error:
1992         __free_domain_allocs(&d, alloc_state, cpu_map);
1993
1994         return ret;
1995 }
1996
1997 /* Current sched domains: */
1998 static cpumask_var_t                    *doms_cur;
1999
2000 /* Number of sched domains in 'doms_cur': */
2001 static int                              ndoms_cur;
2002
2003 /* Attribues of custom domains in 'doms_cur' */
2004 static struct sched_domain_attr         *dattr_cur;
2005
2006 /*
2007  * Special case: If a kmalloc() of a doms_cur partition (array of
2008  * cpumask) fails, then fallback to a single sched domain,
2009  * as determined by the single cpumask fallback_doms.
2010  */
2011 static cpumask_var_t                    fallback_doms;
2012
2013 /*
2014  * arch_update_cpu_topology lets virtualized architectures update the
2015  * CPU core maps. It is supposed to return 1 if the topology changed
2016  * or 0 if it stayed the same.
2017  */
2018 int __weak arch_update_cpu_topology(void)
2019 {
2020         return 0;
2021 }
2022
2023 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2024 {
2025         int i;
2026         cpumask_var_t *doms;
2027
2028         doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2029         if (!doms)
2030                 return NULL;
2031         for (i = 0; i < ndoms; i++) {
2032                 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2033                         free_sched_domains(doms, i);
2034                         return NULL;
2035                 }
2036         }
2037         return doms;
2038 }
2039
2040 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2041 {
2042         unsigned int i;
2043         for (i = 0; i < ndoms; i++)
2044                 free_cpumask_var(doms[i]);
2045         kfree(doms);
2046 }
2047
2048 /*
2049  * Set up scheduler domains and groups. Callers must hold the hotplug lock.
2050  * For now this just excludes isolated CPUs, but could be used to
2051  * exclude other special cases in the future.
2052  */
2053 int sched_init_domains(const struct cpumask *cpu_map)
2054 {
2055         int err;
2056
2057         zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2058         zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2059         zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2060
2061         arch_update_cpu_topology();
2062         ndoms_cur = 1;
2063         doms_cur = alloc_sched_domains(ndoms_cur);
2064         if (!doms_cur)
2065                 doms_cur = &fallback_doms;
2066         cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2067         err = build_sched_domains(doms_cur[0], NULL);
2068         register_sched_domain_sysctl();
2069
2070         return err;
2071 }
2072
2073 /*
2074  * Detach sched domains from a group of CPUs specified in cpu_map
2075  * These CPUs will now be attached to the NULL domain
2076  */
2077 static void detach_destroy_domains(const struct cpumask *cpu_map)
2078 {
2079         int i;
2080
2081         rcu_read_lock();
2082         for_each_cpu(i, cpu_map)
2083                 cpu_attach_domain(NULL, &def_root_domain, i);
2084         rcu_read_unlock();
2085 }
2086
2087 /* handle null as "default" */
2088 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2089                         struct sched_domain_attr *new, int idx_new)
2090 {
2091         struct sched_domain_attr tmp;
2092
2093         /* Fast path: */
2094         if (!new && !cur)
2095                 return 1;
2096
2097         tmp = SD_ATTR_INIT;
2098
2099         return !memcmp(cur ? (cur + idx_cur) : &tmp,
2100                         new ? (new + idx_new) : &tmp,
2101                         sizeof(struct sched_domain_attr));
2102 }
2103
2104 /*
2105  * Partition sched domains as specified by the 'ndoms_new'
2106  * cpumasks in the array doms_new[] of cpumasks. This compares
2107  * doms_new[] to the current sched domain partitioning, doms_cur[].
2108  * It destroys each deleted domain and builds each new domain.
2109  *
2110  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2111  * The masks don't intersect (don't overlap.) We should setup one
2112  * sched domain for each mask. CPUs not in any of the cpumasks will
2113  * not be load balanced. If the same cpumask appears both in the
2114  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2115  * it as it is.
2116  *
2117  * The passed in 'doms_new' should be allocated using
2118  * alloc_sched_domains.  This routine takes ownership of it and will
2119  * free_sched_domains it when done with it. If the caller failed the
2120  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2121  * and partition_sched_domains() will fallback to the single partition
2122  * 'fallback_doms', it also forces the domains to be rebuilt.
2123  *
2124  * If doms_new == NULL it will be replaced with cpu_online_mask.
2125  * ndoms_new == 0 is a special case for destroying existing domains,
2126  * and it will not create the default domain.
2127  *
2128  * Call with hotplug lock held
2129  */
2130 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2131                              struct sched_domain_attr *dattr_new)
2132 {
2133         bool __maybe_unused has_eas = false;
2134         int i, j, n;
2135         int new_topology;
2136
2137         mutex_lock(&sched_domains_mutex);
2138
2139         /* Always unregister in case we don't destroy any domains: */
2140         unregister_sched_domain_sysctl();
2141
2142         /* Let the architecture update CPU core mappings: */
2143         new_topology = arch_update_cpu_topology();
2144
2145         if (!doms_new) {
2146                 WARN_ON_ONCE(dattr_new);
2147                 n = 0;
2148                 doms_new = alloc_sched_domains(1);
2149                 if (doms_new) {
2150                         n = 1;
2151                         cpumask_and(doms_new[0], cpu_active_mask,
2152                                     housekeeping_cpumask(HK_FLAG_DOMAIN));
2153                 }
2154         } else {
2155                 n = ndoms_new;
2156         }
2157
2158         /* Destroy deleted domains: */
2159         for (i = 0; i < ndoms_cur; i++) {
2160                 for (j = 0; j < n && !new_topology; j++) {
2161                         if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2162                             dattrs_equal(dattr_cur, i, dattr_new, j))
2163                                 goto match1;
2164                 }
2165                 /* No match - a current sched domain not in new doms_new[] */
2166                 detach_destroy_domains(doms_cur[i]);
2167 match1:
2168                 ;
2169         }
2170
2171         n = ndoms_cur;
2172         if (!doms_new) {
2173                 n = 0;
2174                 doms_new = &fallback_doms;
2175                 cpumask_and(doms_new[0], cpu_active_mask,
2176                             housekeeping_cpumask(HK_FLAG_DOMAIN));
2177         }
2178
2179         /* Build new domains: */
2180         for (i = 0; i < ndoms_new; i++) {
2181                 for (j = 0; j < n && !new_topology; j++) {
2182                         if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2183                             dattrs_equal(dattr_new, i, dattr_cur, j))
2184                                 goto match2;
2185                 }
2186                 /* No match - add a new doms_new */
2187                 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2188 match2:
2189                 ;
2190         }
2191
2192 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2193         /* Build perf. domains: */
2194         for (i = 0; i < ndoms_new; i++) {
2195                 for (j = 0; j < n && !sched_energy_update; j++) {
2196                         if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2197                             cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2198                                 has_eas = true;
2199                                 goto match3;
2200                         }
2201                 }
2202                 /* No match - add perf. domains for a new rd */
2203                 has_eas |= build_perf_domains(doms_new[i]);
2204 match3:
2205                 ;
2206         }
2207         sched_energy_set(has_eas);
2208 #endif
2209
2210         /* Remember the new sched domains: */
2211         if (doms_cur != &fallback_doms)
2212                 free_sched_domains(doms_cur, ndoms_cur);
2213
2214         kfree(dattr_cur);
2215         doms_cur = doms_new;
2216         dattr_cur = dattr_new;
2217         ndoms_cur = ndoms_new;
2218
2219         register_sched_domain_sysctl();
2220
2221         mutex_unlock(&sched_domains_mutex);
2222 }