Merge branch 'fix-BPF-offload-related-bugs'
[linux-2.6-microblaze.git] / kernel / sched / topology.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Scheduler topology setup/handling methods
4  */
5 #include "sched.h"
6
7 DEFINE_MUTEX(sched_domains_mutex);
8
9 /* Protected by sched_domains_mutex: */
10 static cpumask_var_t sched_domains_tmpmask;
11 static cpumask_var_t sched_domains_tmpmask2;
12
13 #ifdef CONFIG_SCHED_DEBUG
14
15 static int __init sched_debug_setup(char *str)
16 {
17         sched_debug_enabled = true;
18
19         return 0;
20 }
21 early_param("sched_debug", sched_debug_setup);
22
23 static inline bool sched_debug(void)
24 {
25         return sched_debug_enabled;
26 }
27
28 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
29                                   struct cpumask *groupmask)
30 {
31         struct sched_group *group = sd->groups;
32
33         cpumask_clear(groupmask);
34
35         printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
36
37         if (!(sd->flags & SD_LOAD_BALANCE)) {
38                 printk("does not load-balance\n");
39                 if (sd->parent)
40                         printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
41                 return -1;
42         }
43
44         printk(KERN_CONT "span=%*pbl level=%s\n",
45                cpumask_pr_args(sched_domain_span(sd)), sd->name);
46
47         if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
48                 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
49         }
50         if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
51                 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
52         }
53
54         printk(KERN_DEBUG "%*s groups:", level + 1, "");
55         do {
56                 if (!group) {
57                         printk("\n");
58                         printk(KERN_ERR "ERROR: group is NULL\n");
59                         break;
60                 }
61
62                 if (!cpumask_weight(sched_group_span(group))) {
63                         printk(KERN_CONT "\n");
64                         printk(KERN_ERR "ERROR: empty group\n");
65                         break;
66                 }
67
68                 if (!(sd->flags & SD_OVERLAP) &&
69                     cpumask_intersects(groupmask, sched_group_span(group))) {
70                         printk(KERN_CONT "\n");
71                         printk(KERN_ERR "ERROR: repeated CPUs\n");
72                         break;
73                 }
74
75                 cpumask_or(groupmask, groupmask, sched_group_span(group));
76
77                 printk(KERN_CONT " %d:{ span=%*pbl",
78                                 group->sgc->id,
79                                 cpumask_pr_args(sched_group_span(group)));
80
81                 if ((sd->flags & SD_OVERLAP) &&
82                     !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
83                         printk(KERN_CONT " mask=%*pbl",
84                                 cpumask_pr_args(group_balance_mask(group)));
85                 }
86
87                 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
88                         printk(KERN_CONT " cap=%lu", group->sgc->capacity);
89
90                 if (group == sd->groups && sd->child &&
91                     !cpumask_equal(sched_domain_span(sd->child),
92                                    sched_group_span(group))) {
93                         printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
94                 }
95
96                 printk(KERN_CONT " }");
97
98                 group = group->next;
99
100                 if (group != sd->groups)
101                         printk(KERN_CONT ",");
102
103         } while (group != sd->groups);
104         printk(KERN_CONT "\n");
105
106         if (!cpumask_equal(sched_domain_span(sd), groupmask))
107                 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
108
109         if (sd->parent &&
110             !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
111                 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
112         return 0;
113 }
114
115 static void sched_domain_debug(struct sched_domain *sd, int cpu)
116 {
117         int level = 0;
118
119         if (!sched_debug_enabled)
120                 return;
121
122         if (!sd) {
123                 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
124                 return;
125         }
126
127         printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
128
129         for (;;) {
130                 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
131                         break;
132                 level++;
133                 sd = sd->parent;
134                 if (!sd)
135                         break;
136         }
137 }
138 #else /* !CONFIG_SCHED_DEBUG */
139
140 # define sched_debug_enabled 0
141 # define sched_domain_debug(sd, cpu) do { } while (0)
142 static inline bool sched_debug(void)
143 {
144         return false;
145 }
146 #endif /* CONFIG_SCHED_DEBUG */
147
148 static int sd_degenerate(struct sched_domain *sd)
149 {
150         if (cpumask_weight(sched_domain_span(sd)) == 1)
151                 return 1;
152
153         /* Following flags need at least 2 groups */
154         if (sd->flags & (SD_LOAD_BALANCE |
155                          SD_BALANCE_NEWIDLE |
156                          SD_BALANCE_FORK |
157                          SD_BALANCE_EXEC |
158                          SD_SHARE_CPUCAPACITY |
159                          SD_ASYM_CPUCAPACITY |
160                          SD_SHARE_PKG_RESOURCES |
161                          SD_SHARE_POWERDOMAIN)) {
162                 if (sd->groups != sd->groups->next)
163                         return 0;
164         }
165
166         /* Following flags don't use groups */
167         if (sd->flags & (SD_WAKE_AFFINE))
168                 return 0;
169
170         return 1;
171 }
172
173 static int
174 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
175 {
176         unsigned long cflags = sd->flags, pflags = parent->flags;
177
178         if (sd_degenerate(parent))
179                 return 1;
180
181         if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
182                 return 0;
183
184         /* Flags needing groups don't count if only 1 group in parent */
185         if (parent->groups == parent->groups->next) {
186                 pflags &= ~(SD_LOAD_BALANCE |
187                                 SD_BALANCE_NEWIDLE |
188                                 SD_BALANCE_FORK |
189                                 SD_BALANCE_EXEC |
190                                 SD_ASYM_CPUCAPACITY |
191                                 SD_SHARE_CPUCAPACITY |
192                                 SD_SHARE_PKG_RESOURCES |
193                                 SD_PREFER_SIBLING |
194                                 SD_SHARE_POWERDOMAIN);
195                 if (nr_node_ids == 1)
196                         pflags &= ~SD_SERIALIZE;
197         }
198         if (~cflags & pflags)
199                 return 0;
200
201         return 1;
202 }
203
204 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
205 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
206 unsigned int sysctl_sched_energy_aware = 1;
207 DEFINE_MUTEX(sched_energy_mutex);
208 bool sched_energy_update;
209
210 #ifdef CONFIG_PROC_SYSCTL
211 int sched_energy_aware_handler(struct ctl_table *table, int write,
212                          void __user *buffer, size_t *lenp, loff_t *ppos)
213 {
214         int ret, state;
215
216         if (write && !capable(CAP_SYS_ADMIN))
217                 return -EPERM;
218
219         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
220         if (!ret && write) {
221                 state = static_branch_unlikely(&sched_energy_present);
222                 if (state != sysctl_sched_energy_aware) {
223                         mutex_lock(&sched_energy_mutex);
224                         sched_energy_update = 1;
225                         rebuild_sched_domains();
226                         sched_energy_update = 0;
227                         mutex_unlock(&sched_energy_mutex);
228                 }
229         }
230
231         return ret;
232 }
233 #endif
234
235 static void free_pd(struct perf_domain *pd)
236 {
237         struct perf_domain *tmp;
238
239         while (pd) {
240                 tmp = pd->next;
241                 kfree(pd);
242                 pd = tmp;
243         }
244 }
245
246 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
247 {
248         while (pd) {
249                 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
250                         return pd;
251                 pd = pd->next;
252         }
253
254         return NULL;
255 }
256
257 static struct perf_domain *pd_init(int cpu)
258 {
259         struct em_perf_domain *obj = em_cpu_get(cpu);
260         struct perf_domain *pd;
261
262         if (!obj) {
263                 if (sched_debug())
264                         pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
265                 return NULL;
266         }
267
268         pd = kzalloc(sizeof(*pd), GFP_KERNEL);
269         if (!pd)
270                 return NULL;
271         pd->em_pd = obj;
272
273         return pd;
274 }
275
276 static void perf_domain_debug(const struct cpumask *cpu_map,
277                                                 struct perf_domain *pd)
278 {
279         if (!sched_debug() || !pd)
280                 return;
281
282         printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
283
284         while (pd) {
285                 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_cstate=%d }",
286                                 cpumask_first(perf_domain_span(pd)),
287                                 cpumask_pr_args(perf_domain_span(pd)),
288                                 em_pd_nr_cap_states(pd->em_pd));
289                 pd = pd->next;
290         }
291
292         printk(KERN_CONT "\n");
293 }
294
295 static void destroy_perf_domain_rcu(struct rcu_head *rp)
296 {
297         struct perf_domain *pd;
298
299         pd = container_of(rp, struct perf_domain, rcu);
300         free_pd(pd);
301 }
302
303 static void sched_energy_set(bool has_eas)
304 {
305         if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
306                 if (sched_debug())
307                         pr_info("%s: stopping EAS\n", __func__);
308                 static_branch_disable_cpuslocked(&sched_energy_present);
309         } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
310                 if (sched_debug())
311                         pr_info("%s: starting EAS\n", __func__);
312                 static_branch_enable_cpuslocked(&sched_energy_present);
313         }
314 }
315
316 /*
317  * EAS can be used on a root domain if it meets all the following conditions:
318  *    1. an Energy Model (EM) is available;
319  *    2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
320  *    3. the EM complexity is low enough to keep scheduling overheads low;
321  *    4. schedutil is driving the frequency of all CPUs of the rd;
322  *
323  * The complexity of the Energy Model is defined as:
324  *
325  *              C = nr_pd * (nr_cpus + nr_cs)
326  *
327  * with parameters defined as:
328  *  - nr_pd:    the number of performance domains
329  *  - nr_cpus:  the number of CPUs
330  *  - nr_cs:    the sum of the number of capacity states of all performance
331  *              domains (for example, on a system with 2 performance domains,
332  *              with 10 capacity states each, nr_cs = 2 * 10 = 20).
333  *
334  * It is generally not a good idea to use such a model in the wake-up path on
335  * very complex platforms because of the associated scheduling overheads. The
336  * arbitrary constraint below prevents that. It makes EAS usable up to 16 CPUs
337  * with per-CPU DVFS and less than 8 capacity states each, for example.
338  */
339 #define EM_MAX_COMPLEXITY 2048
340
341 extern struct cpufreq_governor schedutil_gov;
342 static bool build_perf_domains(const struct cpumask *cpu_map)
343 {
344         int i, nr_pd = 0, nr_cs = 0, nr_cpus = cpumask_weight(cpu_map);
345         struct perf_domain *pd = NULL, *tmp;
346         int cpu = cpumask_first(cpu_map);
347         struct root_domain *rd = cpu_rq(cpu)->rd;
348         struct cpufreq_policy *policy;
349         struct cpufreq_governor *gov;
350
351         if (!sysctl_sched_energy_aware)
352                 goto free;
353
354         /* EAS is enabled for asymmetric CPU capacity topologies. */
355         if (!per_cpu(sd_asym_cpucapacity, cpu)) {
356                 if (sched_debug()) {
357                         pr_info("rd %*pbl: CPUs do not have asymmetric capacities\n",
358                                         cpumask_pr_args(cpu_map));
359                 }
360                 goto free;
361         }
362
363         for_each_cpu(i, cpu_map) {
364                 /* Skip already covered CPUs. */
365                 if (find_pd(pd, i))
366                         continue;
367
368                 /* Do not attempt EAS if schedutil is not being used. */
369                 policy = cpufreq_cpu_get(i);
370                 if (!policy)
371                         goto free;
372                 gov = policy->governor;
373                 cpufreq_cpu_put(policy);
374                 if (gov != &schedutil_gov) {
375                         if (rd->pd)
376                                 pr_warn("rd %*pbl: Disabling EAS, schedutil is mandatory\n",
377                                                 cpumask_pr_args(cpu_map));
378                         goto free;
379                 }
380
381                 /* Create the new pd and add it to the local list. */
382                 tmp = pd_init(i);
383                 if (!tmp)
384                         goto free;
385                 tmp->next = pd;
386                 pd = tmp;
387
388                 /*
389                  * Count performance domains and capacity states for the
390                  * complexity check.
391                  */
392                 nr_pd++;
393                 nr_cs += em_pd_nr_cap_states(pd->em_pd);
394         }
395
396         /* Bail out if the Energy Model complexity is too high. */
397         if (nr_pd * (nr_cs + nr_cpus) > EM_MAX_COMPLEXITY) {
398                 WARN(1, "rd %*pbl: Failed to start EAS, EM complexity is too high\n",
399                                                 cpumask_pr_args(cpu_map));
400                 goto free;
401         }
402
403         perf_domain_debug(cpu_map, pd);
404
405         /* Attach the new list of performance domains to the root domain. */
406         tmp = rd->pd;
407         rcu_assign_pointer(rd->pd, pd);
408         if (tmp)
409                 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
410
411         return !!pd;
412
413 free:
414         free_pd(pd);
415         tmp = rd->pd;
416         rcu_assign_pointer(rd->pd, NULL);
417         if (tmp)
418                 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
419
420         return false;
421 }
422 #else
423 static void free_pd(struct perf_domain *pd) { }
424 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
425
426 static void free_rootdomain(struct rcu_head *rcu)
427 {
428         struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
429
430         cpupri_cleanup(&rd->cpupri);
431         cpudl_cleanup(&rd->cpudl);
432         free_cpumask_var(rd->dlo_mask);
433         free_cpumask_var(rd->rto_mask);
434         free_cpumask_var(rd->online);
435         free_cpumask_var(rd->span);
436         free_pd(rd->pd);
437         kfree(rd);
438 }
439
440 void rq_attach_root(struct rq *rq, struct root_domain *rd)
441 {
442         struct root_domain *old_rd = NULL;
443         unsigned long flags;
444
445         raw_spin_lock_irqsave(&rq->lock, flags);
446
447         if (rq->rd) {
448                 old_rd = rq->rd;
449
450                 if (cpumask_test_cpu(rq->cpu, old_rd->online))
451                         set_rq_offline(rq);
452
453                 cpumask_clear_cpu(rq->cpu, old_rd->span);
454
455                 /*
456                  * If we dont want to free the old_rd yet then
457                  * set old_rd to NULL to skip the freeing later
458                  * in this function:
459                  */
460                 if (!atomic_dec_and_test(&old_rd->refcount))
461                         old_rd = NULL;
462         }
463
464         atomic_inc(&rd->refcount);
465         rq->rd = rd;
466
467         cpumask_set_cpu(rq->cpu, rd->span);
468         if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
469                 set_rq_online(rq);
470
471         raw_spin_unlock_irqrestore(&rq->lock, flags);
472
473         if (old_rd)
474                 call_rcu(&old_rd->rcu, free_rootdomain);
475 }
476
477 void sched_get_rd(struct root_domain *rd)
478 {
479         atomic_inc(&rd->refcount);
480 }
481
482 void sched_put_rd(struct root_domain *rd)
483 {
484         if (!atomic_dec_and_test(&rd->refcount))
485                 return;
486
487         call_rcu(&rd->rcu, free_rootdomain);
488 }
489
490 static int init_rootdomain(struct root_domain *rd)
491 {
492         if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
493                 goto out;
494         if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
495                 goto free_span;
496         if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
497                 goto free_online;
498         if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
499                 goto free_dlo_mask;
500
501 #ifdef HAVE_RT_PUSH_IPI
502         rd->rto_cpu = -1;
503         raw_spin_lock_init(&rd->rto_lock);
504         init_irq_work(&rd->rto_push_work, rto_push_irq_work_func);
505 #endif
506
507         init_dl_bw(&rd->dl_bw);
508         if (cpudl_init(&rd->cpudl) != 0)
509                 goto free_rto_mask;
510
511         if (cpupri_init(&rd->cpupri) != 0)
512                 goto free_cpudl;
513         return 0;
514
515 free_cpudl:
516         cpudl_cleanup(&rd->cpudl);
517 free_rto_mask:
518         free_cpumask_var(rd->rto_mask);
519 free_dlo_mask:
520         free_cpumask_var(rd->dlo_mask);
521 free_online:
522         free_cpumask_var(rd->online);
523 free_span:
524         free_cpumask_var(rd->span);
525 out:
526         return -ENOMEM;
527 }
528
529 /*
530  * By default the system creates a single root-domain with all CPUs as
531  * members (mimicking the global state we have today).
532  */
533 struct root_domain def_root_domain;
534
535 void init_defrootdomain(void)
536 {
537         init_rootdomain(&def_root_domain);
538
539         atomic_set(&def_root_domain.refcount, 1);
540 }
541
542 static struct root_domain *alloc_rootdomain(void)
543 {
544         struct root_domain *rd;
545
546         rd = kzalloc(sizeof(*rd), GFP_KERNEL);
547         if (!rd)
548                 return NULL;
549
550         if (init_rootdomain(rd) != 0) {
551                 kfree(rd);
552                 return NULL;
553         }
554
555         return rd;
556 }
557
558 static void free_sched_groups(struct sched_group *sg, int free_sgc)
559 {
560         struct sched_group *tmp, *first;
561
562         if (!sg)
563                 return;
564
565         first = sg;
566         do {
567                 tmp = sg->next;
568
569                 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
570                         kfree(sg->sgc);
571
572                 if (atomic_dec_and_test(&sg->ref))
573                         kfree(sg);
574                 sg = tmp;
575         } while (sg != first);
576 }
577
578 static void destroy_sched_domain(struct sched_domain *sd)
579 {
580         /*
581          * A normal sched domain may have multiple group references, an
582          * overlapping domain, having private groups, only one.  Iterate,
583          * dropping group/capacity references, freeing where none remain.
584          */
585         free_sched_groups(sd->groups, 1);
586
587         if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
588                 kfree(sd->shared);
589         kfree(sd);
590 }
591
592 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
593 {
594         struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
595
596         while (sd) {
597                 struct sched_domain *parent = sd->parent;
598                 destroy_sched_domain(sd);
599                 sd = parent;
600         }
601 }
602
603 static void destroy_sched_domains(struct sched_domain *sd)
604 {
605         if (sd)
606                 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
607 }
608
609 /*
610  * Keep a special pointer to the highest sched_domain that has
611  * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
612  * allows us to avoid some pointer chasing select_idle_sibling().
613  *
614  * Also keep a unique ID per domain (we use the first CPU number in
615  * the cpumask of the domain), this allows us to quickly tell if
616  * two CPUs are in the same cache domain, see cpus_share_cache().
617  */
618 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
619 DEFINE_PER_CPU(int, sd_llc_size);
620 DEFINE_PER_CPU(int, sd_llc_id);
621 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
622 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
623 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
624 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
625 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
626
627 static void update_top_cache_domain(int cpu)
628 {
629         struct sched_domain_shared *sds = NULL;
630         struct sched_domain *sd;
631         int id = cpu;
632         int size = 1;
633
634         sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
635         if (sd) {
636                 id = cpumask_first(sched_domain_span(sd));
637                 size = cpumask_weight(sched_domain_span(sd));
638                 sds = sd->shared;
639         }
640
641         rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
642         per_cpu(sd_llc_size, cpu) = size;
643         per_cpu(sd_llc_id, cpu) = id;
644         rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
645
646         sd = lowest_flag_domain(cpu, SD_NUMA);
647         rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
648
649         sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
650         rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
651
652         sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY);
653         rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
654 }
655
656 /*
657  * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
658  * hold the hotplug lock.
659  */
660 static void
661 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
662 {
663         struct rq *rq = cpu_rq(cpu);
664         struct sched_domain *tmp;
665
666         /* Remove the sched domains which do not contribute to scheduling. */
667         for (tmp = sd; tmp; ) {
668                 struct sched_domain *parent = tmp->parent;
669                 if (!parent)
670                         break;
671
672                 if (sd_parent_degenerate(tmp, parent)) {
673                         tmp->parent = parent->parent;
674                         if (parent->parent)
675                                 parent->parent->child = tmp;
676                         /*
677                          * Transfer SD_PREFER_SIBLING down in case of a
678                          * degenerate parent; the spans match for this
679                          * so the property transfers.
680                          */
681                         if (parent->flags & SD_PREFER_SIBLING)
682                                 tmp->flags |= SD_PREFER_SIBLING;
683                         destroy_sched_domain(parent);
684                 } else
685                         tmp = tmp->parent;
686         }
687
688         if (sd && sd_degenerate(sd)) {
689                 tmp = sd;
690                 sd = sd->parent;
691                 destroy_sched_domain(tmp);
692                 if (sd)
693                         sd->child = NULL;
694         }
695
696         sched_domain_debug(sd, cpu);
697
698         rq_attach_root(rq, rd);
699         tmp = rq->sd;
700         rcu_assign_pointer(rq->sd, sd);
701         dirty_sched_domain_sysctl(cpu);
702         destroy_sched_domains(tmp);
703
704         update_top_cache_domain(cpu);
705 }
706
707 struct s_data {
708         struct sched_domain * __percpu *sd;
709         struct root_domain      *rd;
710 };
711
712 enum s_alloc {
713         sa_rootdomain,
714         sa_sd,
715         sa_sd_storage,
716         sa_none,
717 };
718
719 /*
720  * Return the canonical balance CPU for this group, this is the first CPU
721  * of this group that's also in the balance mask.
722  *
723  * The balance mask are all those CPUs that could actually end up at this
724  * group. See build_balance_mask().
725  *
726  * Also see should_we_balance().
727  */
728 int group_balance_cpu(struct sched_group *sg)
729 {
730         return cpumask_first(group_balance_mask(sg));
731 }
732
733
734 /*
735  * NUMA topology (first read the regular topology blurb below)
736  *
737  * Given a node-distance table, for example:
738  *
739  *   node   0   1   2   3
740  *     0:  10  20  30  20
741  *     1:  20  10  20  30
742  *     2:  30  20  10  20
743  *     3:  20  30  20  10
744  *
745  * which represents a 4 node ring topology like:
746  *
747  *   0 ----- 1
748  *   |       |
749  *   |       |
750  *   |       |
751  *   3 ----- 2
752  *
753  * We want to construct domains and groups to represent this. The way we go
754  * about doing this is to build the domains on 'hops'. For each NUMA level we
755  * construct the mask of all nodes reachable in @level hops.
756  *
757  * For the above NUMA topology that gives 3 levels:
758  *
759  * NUMA-2       0-3             0-3             0-3             0-3
760  *  groups:     {0-1,3},{1-3}   {0-2},{0,2-3}   {1-3},{0-1,3}   {0,2-3},{0-2}
761  *
762  * NUMA-1       0-1,3           0-2             1-3             0,2-3
763  *  groups:     {0},{1},{3}     {0},{1},{2}     {1},{2},{3}     {0},{2},{3}
764  *
765  * NUMA-0       0               1               2               3
766  *
767  *
768  * As can be seen; things don't nicely line up as with the regular topology.
769  * When we iterate a domain in child domain chunks some nodes can be
770  * represented multiple times -- hence the "overlap" naming for this part of
771  * the topology.
772  *
773  * In order to minimize this overlap, we only build enough groups to cover the
774  * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
775  *
776  * Because:
777  *
778  *  - the first group of each domain is its child domain; this
779  *    gets us the first 0-1,3
780  *  - the only uncovered node is 2, who's child domain is 1-3.
781  *
782  * However, because of the overlap, computing a unique CPU for each group is
783  * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
784  * groups include the CPUs of Node-0, while those CPUs would not in fact ever
785  * end up at those groups (they would end up in group: 0-1,3).
786  *
787  * To correct this we have to introduce the group balance mask. This mask
788  * will contain those CPUs in the group that can reach this group given the
789  * (child) domain tree.
790  *
791  * With this we can once again compute balance_cpu and sched_group_capacity
792  * relations.
793  *
794  * XXX include words on how balance_cpu is unique and therefore can be
795  * used for sched_group_capacity links.
796  *
797  *
798  * Another 'interesting' topology is:
799  *
800  *   node   0   1   2   3
801  *     0:  10  20  20  30
802  *     1:  20  10  20  20
803  *     2:  20  20  10  20
804  *     3:  30  20  20  10
805  *
806  * Which looks a little like:
807  *
808  *   0 ----- 1
809  *   |     / |
810  *   |   /   |
811  *   | /     |
812  *   2 ----- 3
813  *
814  * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
815  * are not.
816  *
817  * This leads to a few particularly weird cases where the sched_domain's are
818  * not of the same number for each CPU. Consider:
819  *
820  * NUMA-2       0-3                                             0-3
821  *  groups:     {0-2},{1-3}                                     {1-3},{0-2}
822  *
823  * NUMA-1       0-2             0-3             0-3             1-3
824  *
825  * NUMA-0       0               1               2               3
826  *
827  */
828
829
830 /*
831  * Build the balance mask; it contains only those CPUs that can arrive at this
832  * group and should be considered to continue balancing.
833  *
834  * We do this during the group creation pass, therefore the group information
835  * isn't complete yet, however since each group represents a (child) domain we
836  * can fully construct this using the sched_domain bits (which are already
837  * complete).
838  */
839 static void
840 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
841 {
842         const struct cpumask *sg_span = sched_group_span(sg);
843         struct sd_data *sdd = sd->private;
844         struct sched_domain *sibling;
845         int i;
846
847         cpumask_clear(mask);
848
849         for_each_cpu(i, sg_span) {
850                 sibling = *per_cpu_ptr(sdd->sd, i);
851
852                 /*
853                  * Can happen in the asymmetric case, where these siblings are
854                  * unused. The mask will not be empty because those CPUs that
855                  * do have the top domain _should_ span the domain.
856                  */
857                 if (!sibling->child)
858                         continue;
859
860                 /* If we would not end up here, we can't continue from here */
861                 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
862                         continue;
863
864                 cpumask_set_cpu(i, mask);
865         }
866
867         /* We must not have empty masks here */
868         WARN_ON_ONCE(cpumask_empty(mask));
869 }
870
871 /*
872  * XXX: This creates per-node group entries; since the load-balancer will
873  * immediately access remote memory to construct this group's load-balance
874  * statistics having the groups node local is of dubious benefit.
875  */
876 static struct sched_group *
877 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
878 {
879         struct sched_group *sg;
880         struct cpumask *sg_span;
881
882         sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
883                         GFP_KERNEL, cpu_to_node(cpu));
884
885         if (!sg)
886                 return NULL;
887
888         sg_span = sched_group_span(sg);
889         if (sd->child)
890                 cpumask_copy(sg_span, sched_domain_span(sd->child));
891         else
892                 cpumask_copy(sg_span, sched_domain_span(sd));
893
894         atomic_inc(&sg->ref);
895         return sg;
896 }
897
898 static void init_overlap_sched_group(struct sched_domain *sd,
899                                      struct sched_group *sg)
900 {
901         struct cpumask *mask = sched_domains_tmpmask2;
902         struct sd_data *sdd = sd->private;
903         struct cpumask *sg_span;
904         int cpu;
905
906         build_balance_mask(sd, sg, mask);
907         cpu = cpumask_first_and(sched_group_span(sg), mask);
908
909         sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
910         if (atomic_inc_return(&sg->sgc->ref) == 1)
911                 cpumask_copy(group_balance_mask(sg), mask);
912         else
913                 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
914
915         /*
916          * Initialize sgc->capacity such that even if we mess up the
917          * domains and no possible iteration will get us here, we won't
918          * die on a /0 trap.
919          */
920         sg_span = sched_group_span(sg);
921         sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
922         sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
923         sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
924 }
925
926 static int
927 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
928 {
929         struct sched_group *first = NULL, *last = NULL, *sg;
930         const struct cpumask *span = sched_domain_span(sd);
931         struct cpumask *covered = sched_domains_tmpmask;
932         struct sd_data *sdd = sd->private;
933         struct sched_domain *sibling;
934         int i;
935
936         cpumask_clear(covered);
937
938         for_each_cpu_wrap(i, span, cpu) {
939                 struct cpumask *sg_span;
940
941                 if (cpumask_test_cpu(i, covered))
942                         continue;
943
944                 sibling = *per_cpu_ptr(sdd->sd, i);
945
946                 /*
947                  * Asymmetric node setups can result in situations where the
948                  * domain tree is of unequal depth, make sure to skip domains
949                  * that already cover the entire range.
950                  *
951                  * In that case build_sched_domains() will have terminated the
952                  * iteration early and our sibling sd spans will be empty.
953                  * Domains should always include the CPU they're built on, so
954                  * check that.
955                  */
956                 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
957                         continue;
958
959                 sg = build_group_from_child_sched_domain(sibling, cpu);
960                 if (!sg)
961                         goto fail;
962
963                 sg_span = sched_group_span(sg);
964                 cpumask_or(covered, covered, sg_span);
965
966                 init_overlap_sched_group(sd, sg);
967
968                 if (!first)
969                         first = sg;
970                 if (last)
971                         last->next = sg;
972                 last = sg;
973                 last->next = first;
974         }
975         sd->groups = first;
976
977         return 0;
978
979 fail:
980         free_sched_groups(first, 0);
981
982         return -ENOMEM;
983 }
984
985
986 /*
987  * Package topology (also see the load-balance blurb in fair.c)
988  *
989  * The scheduler builds a tree structure to represent a number of important
990  * topology features. By default (default_topology[]) these include:
991  *
992  *  - Simultaneous multithreading (SMT)
993  *  - Multi-Core Cache (MC)
994  *  - Package (DIE)
995  *
996  * Where the last one more or less denotes everything up to a NUMA node.
997  *
998  * The tree consists of 3 primary data structures:
999  *
1000  *      sched_domain -> sched_group -> sched_group_capacity
1001  *          ^ ^             ^ ^
1002  *          `-'             `-'
1003  *
1004  * The sched_domains are per-CPU and have a two way link (parent & child) and
1005  * denote the ever growing mask of CPUs belonging to that level of topology.
1006  *
1007  * Each sched_domain has a circular (double) linked list of sched_group's, each
1008  * denoting the domains of the level below (or individual CPUs in case of the
1009  * first domain level). The sched_group linked by a sched_domain includes the
1010  * CPU of that sched_domain [*].
1011  *
1012  * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1013  *
1014  * CPU   0   1   2   3   4   5   6   7
1015  *
1016  * DIE  [                             ]
1017  * MC   [             ] [             ]
1018  * SMT  [     ] [     ] [     ] [     ]
1019  *
1020  *  - or -
1021  *
1022  * DIE  0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1023  * MC   0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1024  * SMT  0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1025  *
1026  * CPU   0   1   2   3   4   5   6   7
1027  *
1028  * One way to think about it is: sched_domain moves you up and down among these
1029  * topology levels, while sched_group moves you sideways through it, at child
1030  * domain granularity.
1031  *
1032  * sched_group_capacity ensures each unique sched_group has shared storage.
1033  *
1034  * There are two related construction problems, both require a CPU that
1035  * uniquely identify each group (for a given domain):
1036  *
1037  *  - The first is the balance_cpu (see should_we_balance() and the
1038  *    load-balance blub in fair.c); for each group we only want 1 CPU to
1039  *    continue balancing at a higher domain.
1040  *
1041  *  - The second is the sched_group_capacity; we want all identical groups
1042  *    to share a single sched_group_capacity.
1043  *
1044  * Since these topologies are exclusive by construction. That is, its
1045  * impossible for an SMT thread to belong to multiple cores, and cores to
1046  * be part of multiple caches. There is a very clear and unique location
1047  * for each CPU in the hierarchy.
1048  *
1049  * Therefore computing a unique CPU for each group is trivial (the iteration
1050  * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1051  * group), we can simply pick the first CPU in each group.
1052  *
1053  *
1054  * [*] in other words, the first group of each domain is its child domain.
1055  */
1056
1057 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1058 {
1059         struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1060         struct sched_domain *child = sd->child;
1061         struct sched_group *sg;
1062         bool already_visited;
1063
1064         if (child)
1065                 cpu = cpumask_first(sched_domain_span(child));
1066
1067         sg = *per_cpu_ptr(sdd->sg, cpu);
1068         sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1069
1070         /* Increase refcounts for claim_allocations: */
1071         already_visited = atomic_inc_return(&sg->ref) > 1;
1072         /* sgc visits should follow a similar trend as sg */
1073         WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1074
1075         /* If we have already visited that group, it's already initialized. */
1076         if (already_visited)
1077                 return sg;
1078
1079         if (child) {
1080                 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1081                 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1082         } else {
1083                 cpumask_set_cpu(cpu, sched_group_span(sg));
1084                 cpumask_set_cpu(cpu, group_balance_mask(sg));
1085         }
1086
1087         sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1088         sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1089         sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1090
1091         return sg;
1092 }
1093
1094 /*
1095  * build_sched_groups will build a circular linked list of the groups
1096  * covered by the given span, will set each group's ->cpumask correctly,
1097  * and will initialize their ->sgc.
1098  *
1099  * Assumes the sched_domain tree is fully constructed
1100  */
1101 static int
1102 build_sched_groups(struct sched_domain *sd, int cpu)
1103 {
1104         struct sched_group *first = NULL, *last = NULL;
1105         struct sd_data *sdd = sd->private;
1106         const struct cpumask *span = sched_domain_span(sd);
1107         struct cpumask *covered;
1108         int i;
1109
1110         lockdep_assert_held(&sched_domains_mutex);
1111         covered = sched_domains_tmpmask;
1112
1113         cpumask_clear(covered);
1114
1115         for_each_cpu_wrap(i, span, cpu) {
1116                 struct sched_group *sg;
1117
1118                 if (cpumask_test_cpu(i, covered))
1119                         continue;
1120
1121                 sg = get_group(i, sdd);
1122
1123                 cpumask_or(covered, covered, sched_group_span(sg));
1124
1125                 if (!first)
1126                         first = sg;
1127                 if (last)
1128                         last->next = sg;
1129                 last = sg;
1130         }
1131         last->next = first;
1132         sd->groups = first;
1133
1134         return 0;
1135 }
1136
1137 /*
1138  * Initialize sched groups cpu_capacity.
1139  *
1140  * cpu_capacity indicates the capacity of sched group, which is used while
1141  * distributing the load between different sched groups in a sched domain.
1142  * Typically cpu_capacity for all the groups in a sched domain will be same
1143  * unless there are asymmetries in the topology. If there are asymmetries,
1144  * group having more cpu_capacity will pickup more load compared to the
1145  * group having less cpu_capacity.
1146  */
1147 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1148 {
1149         struct sched_group *sg = sd->groups;
1150
1151         WARN_ON(!sg);
1152
1153         do {
1154                 int cpu, max_cpu = -1;
1155
1156                 sg->group_weight = cpumask_weight(sched_group_span(sg));
1157
1158                 if (!(sd->flags & SD_ASYM_PACKING))
1159                         goto next;
1160
1161                 for_each_cpu(cpu, sched_group_span(sg)) {
1162                         if (max_cpu < 0)
1163                                 max_cpu = cpu;
1164                         else if (sched_asym_prefer(cpu, max_cpu))
1165                                 max_cpu = cpu;
1166                 }
1167                 sg->asym_prefer_cpu = max_cpu;
1168
1169 next:
1170                 sg = sg->next;
1171         } while (sg != sd->groups);
1172
1173         if (cpu != group_balance_cpu(sg))
1174                 return;
1175
1176         update_group_capacity(sd, cpu);
1177 }
1178
1179 /*
1180  * Initializers for schedule domains
1181  * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1182  */
1183
1184 static int default_relax_domain_level = -1;
1185 int sched_domain_level_max;
1186
1187 static int __init setup_relax_domain_level(char *str)
1188 {
1189         if (kstrtoint(str, 0, &default_relax_domain_level))
1190                 pr_warn("Unable to set relax_domain_level\n");
1191
1192         return 1;
1193 }
1194 __setup("relax_domain_level=", setup_relax_domain_level);
1195
1196 static void set_domain_attribute(struct sched_domain *sd,
1197                                  struct sched_domain_attr *attr)
1198 {
1199         int request;
1200
1201         if (!attr || attr->relax_domain_level < 0) {
1202                 if (default_relax_domain_level < 0)
1203                         return;
1204                 else
1205                         request = default_relax_domain_level;
1206         } else
1207                 request = attr->relax_domain_level;
1208         if (request < sd->level) {
1209                 /* Turn off idle balance on this domain: */
1210                 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1211         } else {
1212                 /* Turn on idle balance on this domain: */
1213                 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1214         }
1215 }
1216
1217 static void __sdt_free(const struct cpumask *cpu_map);
1218 static int __sdt_alloc(const struct cpumask *cpu_map);
1219
1220 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1221                                  const struct cpumask *cpu_map)
1222 {
1223         switch (what) {
1224         case sa_rootdomain:
1225                 if (!atomic_read(&d->rd->refcount))
1226                         free_rootdomain(&d->rd->rcu);
1227                 /* Fall through */
1228         case sa_sd:
1229                 free_percpu(d->sd);
1230                 /* Fall through */
1231         case sa_sd_storage:
1232                 __sdt_free(cpu_map);
1233                 /* Fall through */
1234         case sa_none:
1235                 break;
1236         }
1237 }
1238
1239 static enum s_alloc
1240 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1241 {
1242         memset(d, 0, sizeof(*d));
1243
1244         if (__sdt_alloc(cpu_map))
1245                 return sa_sd_storage;
1246         d->sd = alloc_percpu(struct sched_domain *);
1247         if (!d->sd)
1248                 return sa_sd_storage;
1249         d->rd = alloc_rootdomain();
1250         if (!d->rd)
1251                 return sa_sd;
1252
1253         return sa_rootdomain;
1254 }
1255
1256 /*
1257  * NULL the sd_data elements we've used to build the sched_domain and
1258  * sched_group structure so that the subsequent __free_domain_allocs()
1259  * will not free the data we're using.
1260  */
1261 static void claim_allocations(int cpu, struct sched_domain *sd)
1262 {
1263         struct sd_data *sdd = sd->private;
1264
1265         WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1266         *per_cpu_ptr(sdd->sd, cpu) = NULL;
1267
1268         if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1269                 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1270
1271         if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1272                 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1273
1274         if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1275                 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1276 }
1277
1278 #ifdef CONFIG_NUMA
1279 enum numa_topology_type sched_numa_topology_type;
1280
1281 static int                      sched_domains_numa_levels;
1282 static int                      sched_domains_curr_level;
1283
1284 int                             sched_max_numa_distance;
1285 static int                      *sched_domains_numa_distance;
1286 static struct cpumask           ***sched_domains_numa_masks;
1287 int __read_mostly               node_reclaim_distance = RECLAIM_DISTANCE;
1288 #endif
1289
1290 /*
1291  * SD_flags allowed in topology descriptions.
1292  *
1293  * These flags are purely descriptive of the topology and do not prescribe
1294  * behaviour. Behaviour is artificial and mapped in the below sd_init()
1295  * function:
1296  *
1297  *   SD_SHARE_CPUCAPACITY   - describes SMT topologies
1298  *   SD_SHARE_PKG_RESOURCES - describes shared caches
1299  *   SD_NUMA                - describes NUMA topologies
1300  *   SD_SHARE_POWERDOMAIN   - describes shared power domain
1301  *
1302  * Odd one out, which beside describing the topology has a quirk also
1303  * prescribes the desired behaviour that goes along with it:
1304  *
1305  *   SD_ASYM_PACKING        - describes SMT quirks
1306  */
1307 #define TOPOLOGY_SD_FLAGS               \
1308         (SD_SHARE_CPUCAPACITY   |       \
1309          SD_SHARE_PKG_RESOURCES |       \
1310          SD_NUMA                |       \
1311          SD_ASYM_PACKING        |       \
1312          SD_SHARE_POWERDOMAIN)
1313
1314 static struct sched_domain *
1315 sd_init(struct sched_domain_topology_level *tl,
1316         const struct cpumask *cpu_map,
1317         struct sched_domain *child, int dflags, int cpu)
1318 {
1319         struct sd_data *sdd = &tl->data;
1320         struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1321         int sd_id, sd_weight, sd_flags = 0;
1322
1323 #ifdef CONFIG_NUMA
1324         /*
1325          * Ugly hack to pass state to sd_numa_mask()...
1326          */
1327         sched_domains_curr_level = tl->numa_level;
1328 #endif
1329
1330         sd_weight = cpumask_weight(tl->mask(cpu));
1331
1332         if (tl->sd_flags)
1333                 sd_flags = (*tl->sd_flags)();
1334         if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1335                         "wrong sd_flags in topology description\n"))
1336                 sd_flags &= ~TOPOLOGY_SD_FLAGS;
1337
1338         /* Apply detected topology flags */
1339         sd_flags |= dflags;
1340
1341         *sd = (struct sched_domain){
1342                 .min_interval           = sd_weight,
1343                 .max_interval           = 2*sd_weight,
1344                 .busy_factor            = 32,
1345                 .imbalance_pct          = 125,
1346
1347                 .cache_nice_tries       = 0,
1348
1349                 .flags                  = 1*SD_LOAD_BALANCE
1350                                         | 1*SD_BALANCE_NEWIDLE
1351                                         | 1*SD_BALANCE_EXEC
1352                                         | 1*SD_BALANCE_FORK
1353                                         | 0*SD_BALANCE_WAKE
1354                                         | 1*SD_WAKE_AFFINE
1355                                         | 0*SD_SHARE_CPUCAPACITY
1356                                         | 0*SD_SHARE_PKG_RESOURCES
1357                                         | 0*SD_SERIALIZE
1358                                         | 1*SD_PREFER_SIBLING
1359                                         | 0*SD_NUMA
1360                                         | sd_flags
1361                                         ,
1362
1363                 .last_balance           = jiffies,
1364                 .balance_interval       = sd_weight,
1365                 .max_newidle_lb_cost    = 0,
1366                 .next_decay_max_lb_cost = jiffies,
1367                 .child                  = child,
1368 #ifdef CONFIG_SCHED_DEBUG
1369                 .name                   = tl->name,
1370 #endif
1371         };
1372
1373         cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
1374         sd_id = cpumask_first(sched_domain_span(sd));
1375
1376         /*
1377          * Convert topological properties into behaviour.
1378          */
1379
1380         if (sd->flags & SD_ASYM_CPUCAPACITY) {
1381                 struct sched_domain *t = sd;
1382
1383                 /*
1384                  * Don't attempt to spread across CPUs of different capacities.
1385                  */
1386                 if (sd->child)
1387                         sd->child->flags &= ~SD_PREFER_SIBLING;
1388
1389                 for_each_lower_domain(t)
1390                         t->flags |= SD_BALANCE_WAKE;
1391         }
1392
1393         if (sd->flags & SD_SHARE_CPUCAPACITY) {
1394                 sd->imbalance_pct = 110;
1395
1396         } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1397                 sd->imbalance_pct = 117;
1398                 sd->cache_nice_tries = 1;
1399
1400 #ifdef CONFIG_NUMA
1401         } else if (sd->flags & SD_NUMA) {
1402                 sd->cache_nice_tries = 2;
1403
1404                 sd->flags &= ~SD_PREFER_SIBLING;
1405                 sd->flags |= SD_SERIALIZE;
1406                 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1407                         sd->flags &= ~(SD_BALANCE_EXEC |
1408                                        SD_BALANCE_FORK |
1409                                        SD_WAKE_AFFINE);
1410                 }
1411
1412 #endif
1413         } else {
1414                 sd->cache_nice_tries = 1;
1415         }
1416
1417         /*
1418          * For all levels sharing cache; connect a sched_domain_shared
1419          * instance.
1420          */
1421         if (sd->flags & SD_SHARE_PKG_RESOURCES) {
1422                 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1423                 atomic_inc(&sd->shared->ref);
1424                 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1425         }
1426
1427         sd->private = sdd;
1428
1429         return sd;
1430 }
1431
1432 /*
1433  * Topology list, bottom-up.
1434  */
1435 static struct sched_domain_topology_level default_topology[] = {
1436 #ifdef CONFIG_SCHED_SMT
1437         { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1438 #endif
1439 #ifdef CONFIG_SCHED_MC
1440         { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1441 #endif
1442         { cpu_cpu_mask, SD_INIT_NAME(DIE) },
1443         { NULL, },
1444 };
1445
1446 static struct sched_domain_topology_level *sched_domain_topology =
1447         default_topology;
1448
1449 #define for_each_sd_topology(tl)                        \
1450         for (tl = sched_domain_topology; tl->mask; tl++)
1451
1452 void set_sched_topology(struct sched_domain_topology_level *tl)
1453 {
1454         if (WARN_ON_ONCE(sched_smp_initialized))
1455                 return;
1456
1457         sched_domain_topology = tl;
1458 }
1459
1460 #ifdef CONFIG_NUMA
1461
1462 static const struct cpumask *sd_numa_mask(int cpu)
1463 {
1464         return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1465 }
1466
1467 static void sched_numa_warn(const char *str)
1468 {
1469         static int done = false;
1470         int i,j;
1471
1472         if (done)
1473                 return;
1474
1475         done = true;
1476
1477         printk(KERN_WARNING "ERROR: %s\n\n", str);
1478
1479         for (i = 0; i < nr_node_ids; i++) {
1480                 printk(KERN_WARNING "  ");
1481                 for (j = 0; j < nr_node_ids; j++)
1482                         printk(KERN_CONT "%02d ", node_distance(i,j));
1483                 printk(KERN_CONT "\n");
1484         }
1485         printk(KERN_WARNING "\n");
1486 }
1487
1488 bool find_numa_distance(int distance)
1489 {
1490         int i;
1491
1492         if (distance == node_distance(0, 0))
1493                 return true;
1494
1495         for (i = 0; i < sched_domains_numa_levels; i++) {
1496                 if (sched_domains_numa_distance[i] == distance)
1497                         return true;
1498         }
1499
1500         return false;
1501 }
1502
1503 /*
1504  * A system can have three types of NUMA topology:
1505  * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1506  * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1507  * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1508  *
1509  * The difference between a glueless mesh topology and a backplane
1510  * topology lies in whether communication between not directly
1511  * connected nodes goes through intermediary nodes (where programs
1512  * could run), or through backplane controllers. This affects
1513  * placement of programs.
1514  *
1515  * The type of topology can be discerned with the following tests:
1516  * - If the maximum distance between any nodes is 1 hop, the system
1517  *   is directly connected.
1518  * - If for two nodes A and B, located N > 1 hops away from each other,
1519  *   there is an intermediary node C, which is < N hops away from both
1520  *   nodes A and B, the system is a glueless mesh.
1521  */
1522 static void init_numa_topology_type(void)
1523 {
1524         int a, b, c, n;
1525
1526         n = sched_max_numa_distance;
1527
1528         if (sched_domains_numa_levels <= 2) {
1529                 sched_numa_topology_type = NUMA_DIRECT;
1530                 return;
1531         }
1532
1533         for_each_online_node(a) {
1534                 for_each_online_node(b) {
1535                         /* Find two nodes furthest removed from each other. */
1536                         if (node_distance(a, b) < n)
1537                                 continue;
1538
1539                         /* Is there an intermediary node between a and b? */
1540                         for_each_online_node(c) {
1541                                 if (node_distance(a, c) < n &&
1542                                     node_distance(b, c) < n) {
1543                                         sched_numa_topology_type =
1544                                                         NUMA_GLUELESS_MESH;
1545                                         return;
1546                                 }
1547                         }
1548
1549                         sched_numa_topology_type = NUMA_BACKPLANE;
1550                         return;
1551                 }
1552         }
1553 }
1554
1555 void sched_init_numa(void)
1556 {
1557         int next_distance, curr_distance = node_distance(0, 0);
1558         struct sched_domain_topology_level *tl;
1559         int level = 0;
1560         int i, j, k;
1561
1562         sched_domains_numa_distance = kzalloc(sizeof(int) * (nr_node_ids + 1), GFP_KERNEL);
1563         if (!sched_domains_numa_distance)
1564                 return;
1565
1566         /* Includes NUMA identity node at level 0. */
1567         sched_domains_numa_distance[level++] = curr_distance;
1568         sched_domains_numa_levels = level;
1569
1570         /*
1571          * O(nr_nodes^2) deduplicating selection sort -- in order to find the
1572          * unique distances in the node_distance() table.
1573          *
1574          * Assumes node_distance(0,j) includes all distances in
1575          * node_distance(i,j) in order to avoid cubic time.
1576          */
1577         next_distance = curr_distance;
1578         for (i = 0; i < nr_node_ids; i++) {
1579                 for (j = 0; j < nr_node_ids; j++) {
1580                         for (k = 0; k < nr_node_ids; k++) {
1581                                 int distance = node_distance(i, k);
1582
1583                                 if (distance > curr_distance &&
1584                                     (distance < next_distance ||
1585                                      next_distance == curr_distance))
1586                                         next_distance = distance;
1587
1588                                 /*
1589                                  * While not a strong assumption it would be nice to know
1590                                  * about cases where if node A is connected to B, B is not
1591                                  * equally connected to A.
1592                                  */
1593                                 if (sched_debug() && node_distance(k, i) != distance)
1594                                         sched_numa_warn("Node-distance not symmetric");
1595
1596                                 if (sched_debug() && i && !find_numa_distance(distance))
1597                                         sched_numa_warn("Node-0 not representative");
1598                         }
1599                         if (next_distance != curr_distance) {
1600                                 sched_domains_numa_distance[level++] = next_distance;
1601                                 sched_domains_numa_levels = level;
1602                                 curr_distance = next_distance;
1603                         } else break;
1604                 }
1605
1606                 /*
1607                  * In case of sched_debug() we verify the above assumption.
1608                  */
1609                 if (!sched_debug())
1610                         break;
1611         }
1612
1613         /*
1614          * 'level' contains the number of unique distances
1615          *
1616          * The sched_domains_numa_distance[] array includes the actual distance
1617          * numbers.
1618          */
1619
1620         /*
1621          * Here, we should temporarily reset sched_domains_numa_levels to 0.
1622          * If it fails to allocate memory for array sched_domains_numa_masks[][],
1623          * the array will contain less then 'level' members. This could be
1624          * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1625          * in other functions.
1626          *
1627          * We reset it to 'level' at the end of this function.
1628          */
1629         sched_domains_numa_levels = 0;
1630
1631         sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
1632         if (!sched_domains_numa_masks)
1633                 return;
1634
1635         /*
1636          * Now for each level, construct a mask per node which contains all
1637          * CPUs of nodes that are that many hops away from us.
1638          */
1639         for (i = 0; i < level; i++) {
1640                 sched_domains_numa_masks[i] =
1641                         kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1642                 if (!sched_domains_numa_masks[i])
1643                         return;
1644
1645                 for (j = 0; j < nr_node_ids; j++) {
1646                         struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1647                         if (!mask)
1648                                 return;
1649
1650                         sched_domains_numa_masks[i][j] = mask;
1651
1652                         for_each_node(k) {
1653                                 if (node_distance(j, k) > sched_domains_numa_distance[i])
1654                                         continue;
1655
1656                                 cpumask_or(mask, mask, cpumask_of_node(k));
1657                         }
1658                 }
1659         }
1660
1661         /* Compute default topology size */
1662         for (i = 0; sched_domain_topology[i].mask; i++);
1663
1664         tl = kzalloc((i + level + 1) *
1665                         sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1666         if (!tl)
1667                 return;
1668
1669         /*
1670          * Copy the default topology bits..
1671          */
1672         for (i = 0; sched_domain_topology[i].mask; i++)
1673                 tl[i] = sched_domain_topology[i];
1674
1675         /*
1676          * Add the NUMA identity distance, aka single NODE.
1677          */
1678         tl[i++] = (struct sched_domain_topology_level){
1679                 .mask = sd_numa_mask,
1680                 .numa_level = 0,
1681                 SD_INIT_NAME(NODE)
1682         };
1683
1684         /*
1685          * .. and append 'j' levels of NUMA goodness.
1686          */
1687         for (j = 1; j < level; i++, j++) {
1688                 tl[i] = (struct sched_domain_topology_level){
1689                         .mask = sd_numa_mask,
1690                         .sd_flags = cpu_numa_flags,
1691                         .flags = SDTL_OVERLAP,
1692                         .numa_level = j,
1693                         SD_INIT_NAME(NUMA)
1694                 };
1695         }
1696
1697         sched_domain_topology = tl;
1698
1699         sched_domains_numa_levels = level;
1700         sched_max_numa_distance = sched_domains_numa_distance[level - 1];
1701
1702         init_numa_topology_type();
1703 }
1704
1705 void sched_domains_numa_masks_set(unsigned int cpu)
1706 {
1707         int node = cpu_to_node(cpu);
1708         int i, j;
1709
1710         for (i = 0; i < sched_domains_numa_levels; i++) {
1711                 for (j = 0; j < nr_node_ids; j++) {
1712                         if (node_distance(j, node) <= sched_domains_numa_distance[i])
1713                                 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
1714                 }
1715         }
1716 }
1717
1718 void sched_domains_numa_masks_clear(unsigned int cpu)
1719 {
1720         int i, j;
1721
1722         for (i = 0; i < sched_domains_numa_levels; i++) {
1723                 for (j = 0; j < nr_node_ids; j++)
1724                         cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
1725         }
1726 }
1727
1728 /*
1729  * sched_numa_find_closest() - given the NUMA topology, find the cpu
1730  *                             closest to @cpu from @cpumask.
1731  * cpumask: cpumask to find a cpu from
1732  * cpu: cpu to be close to
1733  *
1734  * returns: cpu, or nr_cpu_ids when nothing found.
1735  */
1736 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1737 {
1738         int i, j = cpu_to_node(cpu);
1739
1740         for (i = 0; i < sched_domains_numa_levels; i++) {
1741                 cpu = cpumask_any_and(cpus, sched_domains_numa_masks[i][j]);
1742                 if (cpu < nr_cpu_ids)
1743                         return cpu;
1744         }
1745         return nr_cpu_ids;
1746 }
1747
1748 #endif /* CONFIG_NUMA */
1749
1750 static int __sdt_alloc(const struct cpumask *cpu_map)
1751 {
1752         struct sched_domain_topology_level *tl;
1753         int j;
1754
1755         for_each_sd_topology(tl) {
1756                 struct sd_data *sdd = &tl->data;
1757
1758                 sdd->sd = alloc_percpu(struct sched_domain *);
1759                 if (!sdd->sd)
1760                         return -ENOMEM;
1761
1762                 sdd->sds = alloc_percpu(struct sched_domain_shared *);
1763                 if (!sdd->sds)
1764                         return -ENOMEM;
1765
1766                 sdd->sg = alloc_percpu(struct sched_group *);
1767                 if (!sdd->sg)
1768                         return -ENOMEM;
1769
1770                 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
1771                 if (!sdd->sgc)
1772                         return -ENOMEM;
1773
1774                 for_each_cpu(j, cpu_map) {
1775                         struct sched_domain *sd;
1776                         struct sched_domain_shared *sds;
1777                         struct sched_group *sg;
1778                         struct sched_group_capacity *sgc;
1779
1780                         sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
1781                                         GFP_KERNEL, cpu_to_node(j));
1782                         if (!sd)
1783                                 return -ENOMEM;
1784
1785                         *per_cpu_ptr(sdd->sd, j) = sd;
1786
1787                         sds = kzalloc_node(sizeof(struct sched_domain_shared),
1788                                         GFP_KERNEL, cpu_to_node(j));
1789                         if (!sds)
1790                                 return -ENOMEM;
1791
1792                         *per_cpu_ptr(sdd->sds, j) = sds;
1793
1794                         sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
1795                                         GFP_KERNEL, cpu_to_node(j));
1796                         if (!sg)
1797                                 return -ENOMEM;
1798
1799                         sg->next = sg;
1800
1801                         *per_cpu_ptr(sdd->sg, j) = sg;
1802
1803                         sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
1804                                         GFP_KERNEL, cpu_to_node(j));
1805                         if (!sgc)
1806                                 return -ENOMEM;
1807
1808 #ifdef CONFIG_SCHED_DEBUG
1809                         sgc->id = j;
1810 #endif
1811
1812                         *per_cpu_ptr(sdd->sgc, j) = sgc;
1813                 }
1814         }
1815
1816         return 0;
1817 }
1818
1819 static void __sdt_free(const struct cpumask *cpu_map)
1820 {
1821         struct sched_domain_topology_level *tl;
1822         int j;
1823
1824         for_each_sd_topology(tl) {
1825                 struct sd_data *sdd = &tl->data;
1826
1827                 for_each_cpu(j, cpu_map) {
1828                         struct sched_domain *sd;
1829
1830                         if (sdd->sd) {
1831                                 sd = *per_cpu_ptr(sdd->sd, j);
1832                                 if (sd && (sd->flags & SD_OVERLAP))
1833                                         free_sched_groups(sd->groups, 0);
1834                                 kfree(*per_cpu_ptr(sdd->sd, j));
1835                         }
1836
1837                         if (sdd->sds)
1838                                 kfree(*per_cpu_ptr(sdd->sds, j));
1839                         if (sdd->sg)
1840                                 kfree(*per_cpu_ptr(sdd->sg, j));
1841                         if (sdd->sgc)
1842                                 kfree(*per_cpu_ptr(sdd->sgc, j));
1843                 }
1844                 free_percpu(sdd->sd);
1845                 sdd->sd = NULL;
1846                 free_percpu(sdd->sds);
1847                 sdd->sds = NULL;
1848                 free_percpu(sdd->sg);
1849                 sdd->sg = NULL;
1850                 free_percpu(sdd->sgc);
1851                 sdd->sgc = NULL;
1852         }
1853 }
1854
1855 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
1856                 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
1857                 struct sched_domain *child, int dflags, int cpu)
1858 {
1859         struct sched_domain *sd = sd_init(tl, cpu_map, child, dflags, cpu);
1860
1861         if (child) {
1862                 sd->level = child->level + 1;
1863                 sched_domain_level_max = max(sched_domain_level_max, sd->level);
1864                 child->parent = sd;
1865
1866                 if (!cpumask_subset(sched_domain_span(child),
1867                                     sched_domain_span(sd))) {
1868                         pr_err("BUG: arch topology borken\n");
1869 #ifdef CONFIG_SCHED_DEBUG
1870                         pr_err("     the %s domain not a subset of the %s domain\n",
1871                                         child->name, sd->name);
1872 #endif
1873                         /* Fixup, ensure @sd has at least @child CPUs. */
1874                         cpumask_or(sched_domain_span(sd),
1875                                    sched_domain_span(sd),
1876                                    sched_domain_span(child));
1877                 }
1878
1879         }
1880         set_domain_attribute(sd, attr);
1881
1882         return sd;
1883 }
1884
1885 /*
1886  * Find the sched_domain_topology_level where all CPU capacities are visible
1887  * for all CPUs.
1888  */
1889 static struct sched_domain_topology_level
1890 *asym_cpu_capacity_level(const struct cpumask *cpu_map)
1891 {
1892         int i, j, asym_level = 0;
1893         bool asym = false;
1894         struct sched_domain_topology_level *tl, *asym_tl = NULL;
1895         unsigned long cap;
1896
1897         /* Is there any asymmetry? */
1898         cap = arch_scale_cpu_capacity(cpumask_first(cpu_map));
1899
1900         for_each_cpu(i, cpu_map) {
1901                 if (arch_scale_cpu_capacity(i) != cap) {
1902                         asym = true;
1903                         break;
1904                 }
1905         }
1906
1907         if (!asym)
1908                 return NULL;
1909
1910         /*
1911          * Examine topology from all CPU's point of views to detect the lowest
1912          * sched_domain_topology_level where a highest capacity CPU is visible
1913          * to everyone.
1914          */
1915         for_each_cpu(i, cpu_map) {
1916                 unsigned long max_capacity = arch_scale_cpu_capacity(i);
1917                 int tl_id = 0;
1918
1919                 for_each_sd_topology(tl) {
1920                         if (tl_id < asym_level)
1921                                 goto next_level;
1922
1923                         for_each_cpu_and(j, tl->mask(i), cpu_map) {
1924                                 unsigned long capacity;
1925
1926                                 capacity = arch_scale_cpu_capacity(j);
1927
1928                                 if (capacity <= max_capacity)
1929                                         continue;
1930
1931                                 max_capacity = capacity;
1932                                 asym_level = tl_id;
1933                                 asym_tl = tl;
1934                         }
1935 next_level:
1936                         tl_id++;
1937                 }
1938         }
1939
1940         return asym_tl;
1941 }
1942
1943
1944 /*
1945  * Build sched domains for a given set of CPUs and attach the sched domains
1946  * to the individual CPUs
1947  */
1948 static int
1949 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
1950 {
1951         enum s_alloc alloc_state;
1952         struct sched_domain *sd;
1953         struct s_data d;
1954         struct rq *rq = NULL;
1955         int i, ret = -ENOMEM;
1956         struct sched_domain_topology_level *tl_asym;
1957         bool has_asym = false;
1958
1959         alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
1960         if (alloc_state != sa_rootdomain)
1961                 goto error;
1962
1963         tl_asym = asym_cpu_capacity_level(cpu_map);
1964
1965         /* Set up domains for CPUs specified by the cpu_map: */
1966         for_each_cpu(i, cpu_map) {
1967                 struct sched_domain_topology_level *tl;
1968
1969                 sd = NULL;
1970                 for_each_sd_topology(tl) {
1971                         int dflags = 0;
1972
1973                         if (tl == tl_asym) {
1974                                 dflags |= SD_ASYM_CPUCAPACITY;
1975                                 has_asym = true;
1976                         }
1977
1978                         sd = build_sched_domain(tl, cpu_map, attr, sd, dflags, i);
1979
1980                         if (tl == sched_domain_topology)
1981                                 *per_cpu_ptr(d.sd, i) = sd;
1982                         if (tl->flags & SDTL_OVERLAP)
1983                                 sd->flags |= SD_OVERLAP;
1984                         if (cpumask_equal(cpu_map, sched_domain_span(sd)))
1985                                 break;
1986                 }
1987         }
1988
1989         /* Build the groups for the domains */
1990         for_each_cpu(i, cpu_map) {
1991                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
1992                         sd->span_weight = cpumask_weight(sched_domain_span(sd));
1993                         if (sd->flags & SD_OVERLAP) {
1994                                 if (build_overlap_sched_groups(sd, i))
1995                                         goto error;
1996                         } else {
1997                                 if (build_sched_groups(sd, i))
1998                                         goto error;
1999                         }
2000                 }
2001         }
2002
2003         /* Calculate CPU capacity for physical packages and nodes */
2004         for (i = nr_cpumask_bits-1; i >= 0; i--) {
2005                 if (!cpumask_test_cpu(i, cpu_map))
2006                         continue;
2007
2008                 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2009                         claim_allocations(i, sd);
2010                         init_sched_groups_capacity(i, sd);
2011                 }
2012         }
2013
2014         /* Attach the domains */
2015         rcu_read_lock();
2016         for_each_cpu(i, cpu_map) {
2017                 rq = cpu_rq(i);
2018                 sd = *per_cpu_ptr(d.sd, i);
2019
2020                 /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */
2021                 if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity))
2022                         WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig);
2023
2024                 cpu_attach_domain(sd, d.rd, i);
2025         }
2026         rcu_read_unlock();
2027
2028         if (has_asym)
2029                 static_branch_enable_cpuslocked(&sched_asym_cpucapacity);
2030
2031         if (rq && sched_debug_enabled) {
2032                 pr_info("root domain span: %*pbl (max cpu_capacity = %lu)\n",
2033                         cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity);
2034         }
2035
2036         ret = 0;
2037 error:
2038         __free_domain_allocs(&d, alloc_state, cpu_map);
2039
2040         return ret;
2041 }
2042
2043 /* Current sched domains: */
2044 static cpumask_var_t                    *doms_cur;
2045
2046 /* Number of sched domains in 'doms_cur': */
2047 static int                              ndoms_cur;
2048
2049 /* Attribues of custom domains in 'doms_cur' */
2050 static struct sched_domain_attr         *dattr_cur;
2051
2052 /*
2053  * Special case: If a kmalloc() of a doms_cur partition (array of
2054  * cpumask) fails, then fallback to a single sched domain,
2055  * as determined by the single cpumask fallback_doms.
2056  */
2057 static cpumask_var_t                    fallback_doms;
2058
2059 /*
2060  * arch_update_cpu_topology lets virtualized architectures update the
2061  * CPU core maps. It is supposed to return 1 if the topology changed
2062  * or 0 if it stayed the same.
2063  */
2064 int __weak arch_update_cpu_topology(void)
2065 {
2066         return 0;
2067 }
2068
2069 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2070 {
2071         int i;
2072         cpumask_var_t *doms;
2073
2074         doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2075         if (!doms)
2076                 return NULL;
2077         for (i = 0; i < ndoms; i++) {
2078                 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2079                         free_sched_domains(doms, i);
2080                         return NULL;
2081                 }
2082         }
2083         return doms;
2084 }
2085
2086 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2087 {
2088         unsigned int i;
2089         for (i = 0; i < ndoms; i++)
2090                 free_cpumask_var(doms[i]);
2091         kfree(doms);
2092 }
2093
2094 /*
2095  * Set up scheduler domains and groups.  For now this just excludes isolated
2096  * CPUs, but could be used to exclude other special cases in the future.
2097  */
2098 int sched_init_domains(const struct cpumask *cpu_map)
2099 {
2100         int err;
2101
2102         zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2103         zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2104         zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2105
2106         arch_update_cpu_topology();
2107         ndoms_cur = 1;
2108         doms_cur = alloc_sched_domains(ndoms_cur);
2109         if (!doms_cur)
2110                 doms_cur = &fallback_doms;
2111         cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_FLAG_DOMAIN));
2112         err = build_sched_domains(doms_cur[0], NULL);
2113         register_sched_domain_sysctl();
2114
2115         return err;
2116 }
2117
2118 /*
2119  * Detach sched domains from a group of CPUs specified in cpu_map
2120  * These CPUs will now be attached to the NULL domain
2121  */
2122 static void detach_destroy_domains(const struct cpumask *cpu_map)
2123 {
2124         int i;
2125
2126         rcu_read_lock();
2127         for_each_cpu(i, cpu_map)
2128                 cpu_attach_domain(NULL, &def_root_domain, i);
2129         rcu_read_unlock();
2130 }
2131
2132 /* handle null as "default" */
2133 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2134                         struct sched_domain_attr *new, int idx_new)
2135 {
2136         struct sched_domain_attr tmp;
2137
2138         /* Fast path: */
2139         if (!new && !cur)
2140                 return 1;
2141
2142         tmp = SD_ATTR_INIT;
2143
2144         return !memcmp(cur ? (cur + idx_cur) : &tmp,
2145                         new ? (new + idx_new) : &tmp,
2146                         sizeof(struct sched_domain_attr));
2147 }
2148
2149 /*
2150  * Partition sched domains as specified by the 'ndoms_new'
2151  * cpumasks in the array doms_new[] of cpumasks. This compares
2152  * doms_new[] to the current sched domain partitioning, doms_cur[].
2153  * It destroys each deleted domain and builds each new domain.
2154  *
2155  * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2156  * The masks don't intersect (don't overlap.) We should setup one
2157  * sched domain for each mask. CPUs not in any of the cpumasks will
2158  * not be load balanced. If the same cpumask appears both in the
2159  * current 'doms_cur' domains and in the new 'doms_new', we can leave
2160  * it as it is.
2161  *
2162  * The passed in 'doms_new' should be allocated using
2163  * alloc_sched_domains.  This routine takes ownership of it and will
2164  * free_sched_domains it when done with it. If the caller failed the
2165  * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2166  * and partition_sched_domains() will fallback to the single partition
2167  * 'fallback_doms', it also forces the domains to be rebuilt.
2168  *
2169  * If doms_new == NULL it will be replaced with cpu_online_mask.
2170  * ndoms_new == 0 is a special case for destroying existing domains,
2171  * and it will not create the default domain.
2172  *
2173  * Call with hotplug lock and sched_domains_mutex held
2174  */
2175 void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2176                                     struct sched_domain_attr *dattr_new)
2177 {
2178         bool __maybe_unused has_eas = false;
2179         int i, j, n;
2180         int new_topology;
2181
2182         lockdep_assert_held(&sched_domains_mutex);
2183
2184         /* Always unregister in case we don't destroy any domains: */
2185         unregister_sched_domain_sysctl();
2186
2187         /* Let the architecture update CPU core mappings: */
2188         new_topology = arch_update_cpu_topology();
2189
2190         if (!doms_new) {
2191                 WARN_ON_ONCE(dattr_new);
2192                 n = 0;
2193                 doms_new = alloc_sched_domains(1);
2194                 if (doms_new) {
2195                         n = 1;
2196                         cpumask_and(doms_new[0], cpu_active_mask,
2197                                     housekeeping_cpumask(HK_FLAG_DOMAIN));
2198                 }
2199         } else {
2200                 n = ndoms_new;
2201         }
2202
2203         /* Destroy deleted domains: */
2204         for (i = 0; i < ndoms_cur; i++) {
2205                 for (j = 0; j < n && !new_topology; j++) {
2206                         if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2207                             dattrs_equal(dattr_cur, i, dattr_new, j)) {
2208                                 struct root_domain *rd;
2209
2210                                 /*
2211                                  * This domain won't be destroyed and as such
2212                                  * its dl_bw->total_bw needs to be cleared.  It
2213                                  * will be recomputed in function
2214                                  * update_tasks_root_domain().
2215                                  */
2216                                 rd = cpu_rq(cpumask_any(doms_cur[i]))->rd;
2217                                 dl_clear_root_domain(rd);
2218                                 goto match1;
2219                         }
2220                 }
2221                 /* No match - a current sched domain not in new doms_new[] */
2222                 detach_destroy_domains(doms_cur[i]);
2223 match1:
2224                 ;
2225         }
2226
2227         n = ndoms_cur;
2228         if (!doms_new) {
2229                 n = 0;
2230                 doms_new = &fallback_doms;
2231                 cpumask_and(doms_new[0], cpu_active_mask,
2232                             housekeeping_cpumask(HK_FLAG_DOMAIN));
2233         }
2234
2235         /* Build new domains: */
2236         for (i = 0; i < ndoms_new; i++) {
2237                 for (j = 0; j < n && !new_topology; j++) {
2238                         if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2239                             dattrs_equal(dattr_new, i, dattr_cur, j))
2240                                 goto match2;
2241                 }
2242                 /* No match - add a new doms_new */
2243                 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2244 match2:
2245                 ;
2246         }
2247
2248 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2249         /* Build perf. domains: */
2250         for (i = 0; i < ndoms_new; i++) {
2251                 for (j = 0; j < n && !sched_energy_update; j++) {
2252                         if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2253                             cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2254                                 has_eas = true;
2255                                 goto match3;
2256                         }
2257                 }
2258                 /* No match - add perf. domains for a new rd */
2259                 has_eas |= build_perf_domains(doms_new[i]);
2260 match3:
2261                 ;
2262         }
2263         sched_energy_set(has_eas);
2264 #endif
2265
2266         /* Remember the new sched domains: */
2267         if (doms_cur != &fallback_doms)
2268                 free_sched_domains(doms_cur, ndoms_cur);
2269
2270         kfree(dattr_cur);
2271         doms_cur = doms_new;
2272         dattr_cur = dattr_new;
2273         ndoms_cur = ndoms_new;
2274
2275         register_sched_domain_sysctl();
2276 }
2277
2278 /*
2279  * Call with hotplug lock held
2280  */
2281 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2282                              struct sched_domain_attr *dattr_new)
2283 {
2284         mutex_lock(&sched_domains_mutex);
2285         partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2286         mutex_unlock(&sched_domains_mutex);
2287 }