Merge tag 'for-linus-20181207' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / kernel / sched / sched.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Scheduler internal types and methods:
4  */
5 #include <linux/sched.h>
6
7 #include <linux/sched/autogroup.h>
8 #include <linux/sched/clock.h>
9 #include <linux/sched/coredump.h>
10 #include <linux/sched/cpufreq.h>
11 #include <linux/sched/cputime.h>
12 #include <linux/sched/deadline.h>
13 #include <linux/sched/debug.h>
14 #include <linux/sched/hotplug.h>
15 #include <linux/sched/idle.h>
16 #include <linux/sched/init.h>
17 #include <linux/sched/isolation.h>
18 #include <linux/sched/jobctl.h>
19 #include <linux/sched/loadavg.h>
20 #include <linux/sched/mm.h>
21 #include <linux/sched/nohz.h>
22 #include <linux/sched/numa_balancing.h>
23 #include <linux/sched/prio.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/smt.h>
27 #include <linux/sched/stat.h>
28 #include <linux/sched/sysctl.h>
29 #include <linux/sched/task.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/sched/topology.h>
32 #include <linux/sched/user.h>
33 #include <linux/sched/wake_q.h>
34 #include <linux/sched/xacct.h>
35
36 #include <uapi/linux/sched/types.h>
37
38 #include <linux/binfmts.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/context_tracking.h>
42 #include <linux/cpufreq.h>
43 #include <linux/cpuidle.h>
44 #include <linux/cpuset.h>
45 #include <linux/ctype.h>
46 #include <linux/debugfs.h>
47 #include <linux/delayacct.h>
48 #include <linux/init_task.h>
49 #include <linux/kprobes.h>
50 #include <linux/kthread.h>
51 #include <linux/membarrier.h>
52 #include <linux/migrate.h>
53 #include <linux/mmu_context.h>
54 #include <linux/nmi.h>
55 #include <linux/proc_fs.h>
56 #include <linux/prefetch.h>
57 #include <linux/profile.h>
58 #include <linux/psi.h>
59 #include <linux/rcupdate_wait.h>
60 #include <linux/security.h>
61 #include <linux/stop_machine.h>
62 #include <linux/suspend.h>
63 #include <linux/swait.h>
64 #include <linux/syscalls.h>
65 #include <linux/task_work.h>
66 #include <linux/tsacct_kern.h>
67
68 #include <asm/tlb.h>
69
70 #ifdef CONFIG_PARAVIRT
71 # include <asm/paravirt.h>
72 #endif
73
74 #include "cpupri.h"
75 #include "cpudeadline.h"
76
77 #ifdef CONFIG_SCHED_DEBUG
78 # define SCHED_WARN_ON(x)       WARN_ONCE(x, #x)
79 #else
80 # define SCHED_WARN_ON(x)       ({ (void)(x), 0; })
81 #endif
82
83 struct rq;
84 struct cpuidle_state;
85
86 /* task_struct::on_rq states: */
87 #define TASK_ON_RQ_QUEUED       1
88 #define TASK_ON_RQ_MIGRATING    2
89
90 extern __read_mostly int scheduler_running;
91
92 extern unsigned long calc_load_update;
93 extern atomic_long_t calc_load_tasks;
94
95 extern void calc_global_load_tick(struct rq *this_rq);
96 extern long calc_load_fold_active(struct rq *this_rq, long adjust);
97
98 #ifdef CONFIG_SMP
99 extern void cpu_load_update_active(struct rq *this_rq);
100 #else
101 static inline void cpu_load_update_active(struct rq *this_rq) { }
102 #endif
103
104 /*
105  * Helpers for converting nanosecond timing to jiffy resolution
106  */
107 #define NS_TO_JIFFIES(TIME)     ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
109 /*
110  * Increase resolution of nice-level calculations for 64-bit architectures.
111  * The extra resolution improves shares distribution and load balancing of
112  * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
113  * hierarchies, especially on larger systems. This is not a user-visible change
114  * and does not change the user-interface for setting shares/weights.
115  *
116  * We increase resolution only if we have enough bits to allow this increased
117  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
118  * are pretty high and the returns do not justify the increased costs.
119  *
120  * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
121  * increase coverage and consistency always enable it on 64-bit platforms.
122  */
123 #ifdef CONFIG_64BIT
124 # define NICE_0_LOAD_SHIFT      (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
125 # define scale_load(w)          ((w) << SCHED_FIXEDPOINT_SHIFT)
126 # define scale_load_down(w)     ((w) >> SCHED_FIXEDPOINT_SHIFT)
127 #else
128 # define NICE_0_LOAD_SHIFT      (SCHED_FIXEDPOINT_SHIFT)
129 # define scale_load(w)          (w)
130 # define scale_load_down(w)     (w)
131 #endif
132
133 /*
134  * Task weight (visible to users) and its load (invisible to users) have
135  * independent resolution, but they should be well calibrated. We use
136  * scale_load() and scale_load_down(w) to convert between them. The
137  * following must be true:
138  *
139  *  scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
140  *
141  */
142 #define NICE_0_LOAD             (1L << NICE_0_LOAD_SHIFT)
143
144 /*
145  * Single value that decides SCHED_DEADLINE internal math precision.
146  * 10 -> just above 1us
147  * 9  -> just above 0.5us
148  */
149 #define DL_SCALE                10
150
151 /*
152  * Single value that denotes runtime == period, ie unlimited time.
153  */
154 #define RUNTIME_INF             ((u64)~0ULL)
155
156 static inline int idle_policy(int policy)
157 {
158         return policy == SCHED_IDLE;
159 }
160 static inline int fair_policy(int policy)
161 {
162         return policy == SCHED_NORMAL || policy == SCHED_BATCH;
163 }
164
165 static inline int rt_policy(int policy)
166 {
167         return policy == SCHED_FIFO || policy == SCHED_RR;
168 }
169
170 static inline int dl_policy(int policy)
171 {
172         return policy == SCHED_DEADLINE;
173 }
174 static inline bool valid_policy(int policy)
175 {
176         return idle_policy(policy) || fair_policy(policy) ||
177                 rt_policy(policy) || dl_policy(policy);
178 }
179
180 static inline int task_has_rt_policy(struct task_struct *p)
181 {
182         return rt_policy(p->policy);
183 }
184
185 static inline int task_has_dl_policy(struct task_struct *p)
186 {
187         return dl_policy(p->policy);
188 }
189
190 #define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
191
192 /*
193  * !! For sched_setattr_nocheck() (kernel) only !!
194  *
195  * This is actually gross. :(
196  *
197  * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
198  * tasks, but still be able to sleep. We need this on platforms that cannot
199  * atomically change clock frequency. Remove once fast switching will be
200  * available on such platforms.
201  *
202  * SUGOV stands for SchedUtil GOVernor.
203  */
204 #define SCHED_FLAG_SUGOV        0x10000000
205
206 static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
207 {
208 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
209         return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
210 #else
211         return false;
212 #endif
213 }
214
215 /*
216  * Tells if entity @a should preempt entity @b.
217  */
218 static inline bool
219 dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
220 {
221         return dl_entity_is_special(a) ||
222                dl_time_before(a->deadline, b->deadline);
223 }
224
225 /*
226  * This is the priority-queue data structure of the RT scheduling class:
227  */
228 struct rt_prio_array {
229         DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
230         struct list_head queue[MAX_RT_PRIO];
231 };
232
233 struct rt_bandwidth {
234         /* nests inside the rq lock: */
235         raw_spinlock_t          rt_runtime_lock;
236         ktime_t                 rt_period;
237         u64                     rt_runtime;
238         struct hrtimer          rt_period_timer;
239         unsigned int            rt_period_active;
240 };
241
242 void __dl_clear_params(struct task_struct *p);
243
244 /*
245  * To keep the bandwidth of -deadline tasks and groups under control
246  * we need some place where:
247  *  - store the maximum -deadline bandwidth of the system (the group);
248  *  - cache the fraction of that bandwidth that is currently allocated.
249  *
250  * This is all done in the data structure below. It is similar to the
251  * one used for RT-throttling (rt_bandwidth), with the main difference
252  * that, since here we are only interested in admission control, we
253  * do not decrease any runtime while the group "executes", neither we
254  * need a timer to replenish it.
255  *
256  * With respect to SMP, the bandwidth is given on a per-CPU basis,
257  * meaning that:
258  *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
259  *  - dl_total_bw array contains, in the i-eth element, the currently
260  *    allocated bandwidth on the i-eth CPU.
261  * Moreover, groups consume bandwidth on each CPU, while tasks only
262  * consume bandwidth on the CPU they're running on.
263  * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
264  * that will be shown the next time the proc or cgroup controls will
265  * be red. It on its turn can be changed by writing on its own
266  * control.
267  */
268 struct dl_bandwidth {
269         raw_spinlock_t          dl_runtime_lock;
270         u64                     dl_runtime;
271         u64                     dl_period;
272 };
273
274 static inline int dl_bandwidth_enabled(void)
275 {
276         return sysctl_sched_rt_runtime >= 0;
277 }
278
279 struct dl_bw {
280         raw_spinlock_t          lock;
281         u64                     bw;
282         u64                     total_bw;
283 };
284
285 static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
286
287 static inline
288 void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
289 {
290         dl_b->total_bw -= tsk_bw;
291         __dl_update(dl_b, (s32)tsk_bw / cpus);
292 }
293
294 static inline
295 void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
296 {
297         dl_b->total_bw += tsk_bw;
298         __dl_update(dl_b, -((s32)tsk_bw / cpus));
299 }
300
301 static inline
302 bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
303 {
304         return dl_b->bw != -1 &&
305                dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
306 }
307
308 extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
309 extern void init_dl_bw(struct dl_bw *dl_b);
310 extern int  sched_dl_global_validate(void);
311 extern void sched_dl_do_global(void);
312 extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
313 extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
314 extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
315 extern bool __checkparam_dl(const struct sched_attr *attr);
316 extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
317 extern int  dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
318 extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
319 extern bool dl_cpu_busy(unsigned int cpu);
320
321 #ifdef CONFIG_CGROUP_SCHED
322
323 #include <linux/cgroup.h>
324 #include <linux/psi.h>
325
326 struct cfs_rq;
327 struct rt_rq;
328
329 extern struct list_head task_groups;
330
331 struct cfs_bandwidth {
332 #ifdef CONFIG_CFS_BANDWIDTH
333         raw_spinlock_t          lock;
334         ktime_t                 period;
335         u64                     quota;
336         u64                     runtime;
337         s64                     hierarchical_quota;
338         u64                     runtime_expires;
339         int                     expires_seq;
340
341         short                   idle;
342         short                   period_active;
343         struct hrtimer          period_timer;
344         struct hrtimer          slack_timer;
345         struct list_head        throttled_cfs_rq;
346
347         /* Statistics: */
348         int                     nr_periods;
349         int                     nr_throttled;
350         u64                     throttled_time;
351
352         bool                    distribute_running;
353 #endif
354 };
355
356 /* Task group related information */
357 struct task_group {
358         struct cgroup_subsys_state css;
359
360 #ifdef CONFIG_FAIR_GROUP_SCHED
361         /* schedulable entities of this group on each CPU */
362         struct sched_entity     **se;
363         /* runqueue "owned" by this group on each CPU */
364         struct cfs_rq           **cfs_rq;
365         unsigned long           shares;
366
367 #ifdef  CONFIG_SMP
368         /*
369          * load_avg can be heavily contended at clock tick time, so put
370          * it in its own cacheline separated from the fields above which
371          * will also be accessed at each tick.
372          */
373         atomic_long_t           load_avg ____cacheline_aligned;
374 #endif
375 #endif
376
377 #ifdef CONFIG_RT_GROUP_SCHED
378         struct sched_rt_entity  **rt_se;
379         struct rt_rq            **rt_rq;
380
381         struct rt_bandwidth     rt_bandwidth;
382 #endif
383
384         struct rcu_head         rcu;
385         struct list_head        list;
386
387         struct task_group       *parent;
388         struct list_head        siblings;
389         struct list_head        children;
390
391 #ifdef CONFIG_SCHED_AUTOGROUP
392         struct autogroup        *autogroup;
393 #endif
394
395         struct cfs_bandwidth    cfs_bandwidth;
396 };
397
398 #ifdef CONFIG_FAIR_GROUP_SCHED
399 #define ROOT_TASK_GROUP_LOAD    NICE_0_LOAD
400
401 /*
402  * A weight of 0 or 1 can cause arithmetics problems.
403  * A weight of a cfs_rq is the sum of weights of which entities
404  * are queued on this cfs_rq, so a weight of a entity should not be
405  * too large, so as the shares value of a task group.
406  * (The default weight is 1024 - so there's no practical
407  *  limitation from this.)
408  */
409 #define MIN_SHARES              (1UL <<  1)
410 #define MAX_SHARES              (1UL << 18)
411 #endif
412
413 typedef int (*tg_visitor)(struct task_group *, void *);
414
415 extern int walk_tg_tree_from(struct task_group *from,
416                              tg_visitor down, tg_visitor up, void *data);
417
418 /*
419  * Iterate the full tree, calling @down when first entering a node and @up when
420  * leaving it for the final time.
421  *
422  * Caller must hold rcu_lock or sufficient equivalent.
423  */
424 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
425 {
426         return walk_tg_tree_from(&root_task_group, down, up, data);
427 }
428
429 extern int tg_nop(struct task_group *tg, void *data);
430
431 extern void free_fair_sched_group(struct task_group *tg);
432 extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
433 extern void online_fair_sched_group(struct task_group *tg);
434 extern void unregister_fair_sched_group(struct task_group *tg);
435 extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
436                         struct sched_entity *se, int cpu,
437                         struct sched_entity *parent);
438 extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
439
440 extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
441 extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
442 extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
443
444 extern void free_rt_sched_group(struct task_group *tg);
445 extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
446 extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
447                 struct sched_rt_entity *rt_se, int cpu,
448                 struct sched_rt_entity *parent);
449 extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
450 extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
451 extern long sched_group_rt_runtime(struct task_group *tg);
452 extern long sched_group_rt_period(struct task_group *tg);
453 extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
454
455 extern struct task_group *sched_create_group(struct task_group *parent);
456 extern void sched_online_group(struct task_group *tg,
457                                struct task_group *parent);
458 extern void sched_destroy_group(struct task_group *tg);
459 extern void sched_offline_group(struct task_group *tg);
460
461 extern void sched_move_task(struct task_struct *tsk);
462
463 #ifdef CONFIG_FAIR_GROUP_SCHED
464 extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
465
466 #ifdef CONFIG_SMP
467 extern void set_task_rq_fair(struct sched_entity *se,
468                              struct cfs_rq *prev, struct cfs_rq *next);
469 #else /* !CONFIG_SMP */
470 static inline void set_task_rq_fair(struct sched_entity *se,
471                              struct cfs_rq *prev, struct cfs_rq *next) { }
472 #endif /* CONFIG_SMP */
473 #endif /* CONFIG_FAIR_GROUP_SCHED */
474
475 #else /* CONFIG_CGROUP_SCHED */
476
477 struct cfs_bandwidth { };
478
479 #endif  /* CONFIG_CGROUP_SCHED */
480
481 /* CFS-related fields in a runqueue */
482 struct cfs_rq {
483         struct load_weight      load;
484         unsigned long           runnable_weight;
485         unsigned int            nr_running;
486         unsigned int            h_nr_running;
487
488         u64                     exec_clock;
489         u64                     min_vruntime;
490 #ifndef CONFIG_64BIT
491         u64                     min_vruntime_copy;
492 #endif
493
494         struct rb_root_cached   tasks_timeline;
495
496         /*
497          * 'curr' points to currently running entity on this cfs_rq.
498          * It is set to NULL otherwise (i.e when none are currently running).
499          */
500         struct sched_entity     *curr;
501         struct sched_entity     *next;
502         struct sched_entity     *last;
503         struct sched_entity     *skip;
504
505 #ifdef  CONFIG_SCHED_DEBUG
506         unsigned int            nr_spread_over;
507 #endif
508
509 #ifdef CONFIG_SMP
510         /*
511          * CFS load tracking
512          */
513         struct sched_avg        avg;
514 #ifndef CONFIG_64BIT
515         u64                     load_last_update_time_copy;
516 #endif
517         struct {
518                 raw_spinlock_t  lock ____cacheline_aligned;
519                 int             nr;
520                 unsigned long   load_avg;
521                 unsigned long   util_avg;
522                 unsigned long   runnable_sum;
523         } removed;
524
525 #ifdef CONFIG_FAIR_GROUP_SCHED
526         unsigned long           tg_load_avg_contrib;
527         long                    propagate;
528         long                    prop_runnable_sum;
529
530         /*
531          *   h_load = weight * f(tg)
532          *
533          * Where f(tg) is the recursive weight fraction assigned to
534          * this group.
535          */
536         unsigned long           h_load;
537         u64                     last_h_load_update;
538         struct sched_entity     *h_load_next;
539 #endif /* CONFIG_FAIR_GROUP_SCHED */
540 #endif /* CONFIG_SMP */
541
542 #ifdef CONFIG_FAIR_GROUP_SCHED
543         struct rq               *rq;    /* CPU runqueue to which this cfs_rq is attached */
544
545         /*
546          * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
547          * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
548          * (like users, containers etc.)
549          *
550          * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
551          * This list is used during load balance.
552          */
553         int                     on_list;
554         struct list_head        leaf_cfs_rq_list;
555         struct task_group       *tg;    /* group that "owns" this runqueue */
556
557 #ifdef CONFIG_CFS_BANDWIDTH
558         int                     runtime_enabled;
559         int                     expires_seq;
560         u64                     runtime_expires;
561         s64                     runtime_remaining;
562
563         u64                     throttled_clock;
564         u64                     throttled_clock_task;
565         u64                     throttled_clock_task_time;
566         int                     throttled;
567         int                     throttle_count;
568         struct list_head        throttled_list;
569 #endif /* CONFIG_CFS_BANDWIDTH */
570 #endif /* CONFIG_FAIR_GROUP_SCHED */
571 };
572
573 static inline int rt_bandwidth_enabled(void)
574 {
575         return sysctl_sched_rt_runtime >= 0;
576 }
577
578 /* RT IPI pull logic requires IRQ_WORK */
579 #if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
580 # define HAVE_RT_PUSH_IPI
581 #endif
582
583 /* Real-Time classes' related field in a runqueue: */
584 struct rt_rq {
585         struct rt_prio_array    active;
586         unsigned int            rt_nr_running;
587         unsigned int            rr_nr_running;
588 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
589         struct {
590                 int             curr; /* highest queued rt task prio */
591 #ifdef CONFIG_SMP
592                 int             next; /* next highest */
593 #endif
594         } highest_prio;
595 #endif
596 #ifdef CONFIG_SMP
597         unsigned long           rt_nr_migratory;
598         unsigned long           rt_nr_total;
599         int                     overloaded;
600         struct plist_head       pushable_tasks;
601
602 #endif /* CONFIG_SMP */
603         int                     rt_queued;
604
605         int                     rt_throttled;
606         u64                     rt_time;
607         u64                     rt_runtime;
608         /* Nests inside the rq lock: */
609         raw_spinlock_t          rt_runtime_lock;
610
611 #ifdef CONFIG_RT_GROUP_SCHED
612         unsigned long           rt_nr_boosted;
613
614         struct rq               *rq;
615         struct task_group       *tg;
616 #endif
617 };
618
619 static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
620 {
621         return rt_rq->rt_queued && rt_rq->rt_nr_running;
622 }
623
624 /* Deadline class' related fields in a runqueue */
625 struct dl_rq {
626         /* runqueue is an rbtree, ordered by deadline */
627         struct rb_root_cached   root;
628
629         unsigned long           dl_nr_running;
630
631 #ifdef CONFIG_SMP
632         /*
633          * Deadline values of the currently executing and the
634          * earliest ready task on this rq. Caching these facilitates
635          * the decision wether or not a ready but not running task
636          * should migrate somewhere else.
637          */
638         struct {
639                 u64             curr;
640                 u64             next;
641         } earliest_dl;
642
643         unsigned long           dl_nr_migratory;
644         int                     overloaded;
645
646         /*
647          * Tasks on this rq that can be pushed away. They are kept in
648          * an rb-tree, ordered by tasks' deadlines, with caching
649          * of the leftmost (earliest deadline) element.
650          */
651         struct rb_root_cached   pushable_dl_tasks_root;
652 #else
653         struct dl_bw            dl_bw;
654 #endif
655         /*
656          * "Active utilization" for this runqueue: increased when a
657          * task wakes up (becomes TASK_RUNNING) and decreased when a
658          * task blocks
659          */
660         u64                     running_bw;
661
662         /*
663          * Utilization of the tasks "assigned" to this runqueue (including
664          * the tasks that are in runqueue and the tasks that executed on this
665          * CPU and blocked). Increased when a task moves to this runqueue, and
666          * decreased when the task moves away (migrates, changes scheduling
667          * policy, or terminates).
668          * This is needed to compute the "inactive utilization" for the
669          * runqueue (inactive utilization = this_bw - running_bw).
670          */
671         u64                     this_bw;
672         u64                     extra_bw;
673
674         /*
675          * Inverse of the fraction of CPU utilization that can be reclaimed
676          * by the GRUB algorithm.
677          */
678         u64                     bw_ratio;
679 };
680
681 #ifdef CONFIG_FAIR_GROUP_SCHED
682 /* An entity is a task if it doesn't "own" a runqueue */
683 #define entity_is_task(se)      (!se->my_q)
684 #else
685 #define entity_is_task(se)      1
686 #endif
687
688 #ifdef CONFIG_SMP
689 /*
690  * XXX we want to get rid of these helpers and use the full load resolution.
691  */
692 static inline long se_weight(struct sched_entity *se)
693 {
694         return scale_load_down(se->load.weight);
695 }
696
697 static inline long se_runnable(struct sched_entity *se)
698 {
699         return scale_load_down(se->runnable_weight);
700 }
701
702 static inline bool sched_asym_prefer(int a, int b)
703 {
704         return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
705 }
706
707 /*
708  * We add the notion of a root-domain which will be used to define per-domain
709  * variables. Each exclusive cpuset essentially defines an island domain by
710  * fully partitioning the member CPUs from any other cpuset. Whenever a new
711  * exclusive cpuset is created, we also create and attach a new root-domain
712  * object.
713  *
714  */
715 struct root_domain {
716         atomic_t                refcount;
717         atomic_t                rto_count;
718         struct rcu_head         rcu;
719         cpumask_var_t           span;
720         cpumask_var_t           online;
721
722         /*
723          * Indicate pullable load on at least one CPU, e.g:
724          * - More than one runnable task
725          * - Running task is misfit
726          */
727         int                     overload;
728
729         /*
730          * The bit corresponding to a CPU gets set here if such CPU has more
731          * than one runnable -deadline task (as it is below for RT tasks).
732          */
733         cpumask_var_t           dlo_mask;
734         atomic_t                dlo_count;
735         struct dl_bw            dl_bw;
736         struct cpudl            cpudl;
737
738 #ifdef HAVE_RT_PUSH_IPI
739         /*
740          * For IPI pull requests, loop across the rto_mask.
741          */
742         struct irq_work         rto_push_work;
743         raw_spinlock_t          rto_lock;
744         /* These are only updated and read within rto_lock */
745         int                     rto_loop;
746         int                     rto_cpu;
747         /* These atomics are updated outside of a lock */
748         atomic_t                rto_loop_next;
749         atomic_t                rto_loop_start;
750 #endif
751         /*
752          * The "RT overload" flag: it gets set if a CPU has more than
753          * one runnable RT task.
754          */
755         cpumask_var_t           rto_mask;
756         struct cpupri           cpupri;
757
758         unsigned long           max_cpu_capacity;
759 };
760
761 extern struct root_domain def_root_domain;
762 extern struct mutex sched_domains_mutex;
763
764 extern void init_defrootdomain(void);
765 extern int sched_init_domains(const struct cpumask *cpu_map);
766 extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
767 extern void sched_get_rd(struct root_domain *rd);
768 extern void sched_put_rd(struct root_domain *rd);
769
770 #ifdef HAVE_RT_PUSH_IPI
771 extern void rto_push_irq_work_func(struct irq_work *work);
772 #endif
773 #endif /* CONFIG_SMP */
774
775 /*
776  * This is the main, per-CPU runqueue data structure.
777  *
778  * Locking rule: those places that want to lock multiple runqueues
779  * (such as the load balancing or the thread migration code), lock
780  * acquire operations must be ordered by ascending &runqueue.
781  */
782 struct rq {
783         /* runqueue lock: */
784         raw_spinlock_t          lock;
785
786         /*
787          * nr_running and cpu_load should be in the same cacheline because
788          * remote CPUs use both these fields when doing load calculation.
789          */
790         unsigned int            nr_running;
791 #ifdef CONFIG_NUMA_BALANCING
792         unsigned int            nr_numa_running;
793         unsigned int            nr_preferred_running;
794         unsigned int            numa_migrate_on;
795 #endif
796         #define CPU_LOAD_IDX_MAX 5
797         unsigned long           cpu_load[CPU_LOAD_IDX_MAX];
798 #ifdef CONFIG_NO_HZ_COMMON
799 #ifdef CONFIG_SMP
800         unsigned long           last_load_update_tick;
801         unsigned long           last_blocked_load_update_tick;
802         unsigned int            has_blocked_load;
803 #endif /* CONFIG_SMP */
804         unsigned int            nohz_tick_stopped;
805         atomic_t nohz_flags;
806 #endif /* CONFIG_NO_HZ_COMMON */
807
808         /* capture load from *all* tasks on this CPU: */
809         struct load_weight      load;
810         unsigned long           nr_load_updates;
811         u64                     nr_switches;
812
813         struct cfs_rq           cfs;
814         struct rt_rq            rt;
815         struct dl_rq            dl;
816
817 #ifdef CONFIG_FAIR_GROUP_SCHED
818         /* list of leaf cfs_rq on this CPU: */
819         struct list_head        leaf_cfs_rq_list;
820         struct list_head        *tmp_alone_branch;
821 #endif /* CONFIG_FAIR_GROUP_SCHED */
822
823         /*
824          * This is part of a global counter where only the total sum
825          * over all CPUs matters. A task can increase this counter on
826          * one CPU and if it got migrated afterwards it may decrease
827          * it on another CPU. Always updated under the runqueue lock:
828          */
829         unsigned long           nr_uninterruptible;
830
831         struct task_struct      *curr;
832         struct task_struct      *idle;
833         struct task_struct      *stop;
834         unsigned long           next_balance;
835         struct mm_struct        *prev_mm;
836
837         unsigned int            clock_update_flags;
838         u64                     clock;
839         u64                     clock_task;
840
841         atomic_t                nr_iowait;
842
843 #ifdef CONFIG_SMP
844         struct root_domain      *rd;
845         struct sched_domain     *sd;
846
847         unsigned long           cpu_capacity;
848         unsigned long           cpu_capacity_orig;
849
850         struct callback_head    *balance_callback;
851
852         unsigned char           idle_balance;
853
854         unsigned long           misfit_task_load;
855
856         /* For active balancing */
857         int                     active_balance;
858         int                     push_cpu;
859         struct cpu_stop_work    active_balance_work;
860
861         /* CPU of this runqueue: */
862         int                     cpu;
863         int                     online;
864
865         struct list_head cfs_tasks;
866
867         struct sched_avg        avg_rt;
868         struct sched_avg        avg_dl;
869 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
870         struct sched_avg        avg_irq;
871 #endif
872         u64                     idle_stamp;
873         u64                     avg_idle;
874
875         /* This is used to determine avg_idle's max value */
876         u64                     max_idle_balance_cost;
877 #endif
878
879 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
880         u64                     prev_irq_time;
881 #endif
882 #ifdef CONFIG_PARAVIRT
883         u64                     prev_steal_time;
884 #endif
885 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
886         u64                     prev_steal_time_rq;
887 #endif
888
889         /* calc_load related fields */
890         unsigned long           calc_load_update;
891         long                    calc_load_active;
892
893 #ifdef CONFIG_SCHED_HRTICK
894 #ifdef CONFIG_SMP
895         int                     hrtick_csd_pending;
896         call_single_data_t      hrtick_csd;
897 #endif
898         struct hrtimer          hrtick_timer;
899 #endif
900
901 #ifdef CONFIG_SCHEDSTATS
902         /* latency stats */
903         struct sched_info       rq_sched_info;
904         unsigned long long      rq_cpu_time;
905         /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
906
907         /* sys_sched_yield() stats */
908         unsigned int            yld_count;
909
910         /* schedule() stats */
911         unsigned int            sched_count;
912         unsigned int            sched_goidle;
913
914         /* try_to_wake_up() stats */
915         unsigned int            ttwu_count;
916         unsigned int            ttwu_local;
917 #endif
918
919 #ifdef CONFIG_SMP
920         struct llist_head       wake_list;
921 #endif
922
923 #ifdef CONFIG_CPU_IDLE
924         /* Must be inspected within a rcu lock section */
925         struct cpuidle_state    *idle_state;
926 #endif
927 };
928
929 static inline int cpu_of(struct rq *rq)
930 {
931 #ifdef CONFIG_SMP
932         return rq->cpu;
933 #else
934         return 0;
935 #endif
936 }
937
938
939 #ifdef CONFIG_SCHED_SMT
940 extern void __update_idle_core(struct rq *rq);
941
942 static inline void update_idle_core(struct rq *rq)
943 {
944         if (static_branch_unlikely(&sched_smt_present))
945                 __update_idle_core(rq);
946 }
947
948 #else
949 static inline void update_idle_core(struct rq *rq) { }
950 #endif
951
952 DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
953
954 #define cpu_rq(cpu)             (&per_cpu(runqueues, (cpu)))
955 #define this_rq()               this_cpu_ptr(&runqueues)
956 #define task_rq(p)              cpu_rq(task_cpu(p))
957 #define cpu_curr(cpu)           (cpu_rq(cpu)->curr)
958 #define raw_rq()                raw_cpu_ptr(&runqueues)
959
960 extern void update_rq_clock(struct rq *rq);
961
962 static inline u64 __rq_clock_broken(struct rq *rq)
963 {
964         return READ_ONCE(rq->clock);
965 }
966
967 /*
968  * rq::clock_update_flags bits
969  *
970  * %RQCF_REQ_SKIP - will request skipping of clock update on the next
971  *  call to __schedule(). This is an optimisation to avoid
972  *  neighbouring rq clock updates.
973  *
974  * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
975  *  in effect and calls to update_rq_clock() are being ignored.
976  *
977  * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
978  *  made to update_rq_clock() since the last time rq::lock was pinned.
979  *
980  * If inside of __schedule(), clock_update_flags will have been
981  * shifted left (a left shift is a cheap operation for the fast path
982  * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
983  *
984  *      if (rq-clock_update_flags >= RQCF_UPDATED)
985  *
986  * to check if %RQCF_UPADTED is set. It'll never be shifted more than
987  * one position though, because the next rq_unpin_lock() will shift it
988  * back.
989  */
990 #define RQCF_REQ_SKIP           0x01
991 #define RQCF_ACT_SKIP           0x02
992 #define RQCF_UPDATED            0x04
993
994 static inline void assert_clock_updated(struct rq *rq)
995 {
996         /*
997          * The only reason for not seeing a clock update since the
998          * last rq_pin_lock() is if we're currently skipping updates.
999          */
1000         SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1001 }
1002
1003 static inline u64 rq_clock(struct rq *rq)
1004 {
1005         lockdep_assert_held(&rq->lock);
1006         assert_clock_updated(rq);
1007
1008         return rq->clock;
1009 }
1010
1011 static inline u64 rq_clock_task(struct rq *rq)
1012 {
1013         lockdep_assert_held(&rq->lock);
1014         assert_clock_updated(rq);
1015
1016         return rq->clock_task;
1017 }
1018
1019 static inline void rq_clock_skip_update(struct rq *rq)
1020 {
1021         lockdep_assert_held(&rq->lock);
1022         rq->clock_update_flags |= RQCF_REQ_SKIP;
1023 }
1024
1025 /*
1026  * See rt task throttling, which is the only time a skip
1027  * request is cancelled.
1028  */
1029 static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1030 {
1031         lockdep_assert_held(&rq->lock);
1032         rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1033 }
1034
1035 struct rq_flags {
1036         unsigned long flags;
1037         struct pin_cookie cookie;
1038 #ifdef CONFIG_SCHED_DEBUG
1039         /*
1040          * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1041          * current pin context is stashed here in case it needs to be
1042          * restored in rq_repin_lock().
1043          */
1044         unsigned int clock_update_flags;
1045 #endif
1046 };
1047
1048 static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1049 {
1050         rf->cookie = lockdep_pin_lock(&rq->lock);
1051
1052 #ifdef CONFIG_SCHED_DEBUG
1053         rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1054         rf->clock_update_flags = 0;
1055 #endif
1056 }
1057
1058 static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1059 {
1060 #ifdef CONFIG_SCHED_DEBUG
1061         if (rq->clock_update_flags > RQCF_ACT_SKIP)
1062                 rf->clock_update_flags = RQCF_UPDATED;
1063 #endif
1064
1065         lockdep_unpin_lock(&rq->lock, rf->cookie);
1066 }
1067
1068 static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1069 {
1070         lockdep_repin_lock(&rq->lock, rf->cookie);
1071
1072 #ifdef CONFIG_SCHED_DEBUG
1073         /*
1074          * Restore the value we stashed in @rf for this pin context.
1075          */
1076         rq->clock_update_flags |= rf->clock_update_flags;
1077 #endif
1078 }
1079
1080 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1081         __acquires(rq->lock);
1082
1083 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1084         __acquires(p->pi_lock)
1085         __acquires(rq->lock);
1086
1087 static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1088         __releases(rq->lock)
1089 {
1090         rq_unpin_lock(rq, rf);
1091         raw_spin_unlock(&rq->lock);
1092 }
1093
1094 static inline void
1095 task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1096         __releases(rq->lock)
1097         __releases(p->pi_lock)
1098 {
1099         rq_unpin_lock(rq, rf);
1100         raw_spin_unlock(&rq->lock);
1101         raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1102 }
1103
1104 static inline void
1105 rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1106         __acquires(rq->lock)
1107 {
1108         raw_spin_lock_irqsave(&rq->lock, rf->flags);
1109         rq_pin_lock(rq, rf);
1110 }
1111
1112 static inline void
1113 rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1114         __acquires(rq->lock)
1115 {
1116         raw_spin_lock_irq(&rq->lock);
1117         rq_pin_lock(rq, rf);
1118 }
1119
1120 static inline void
1121 rq_lock(struct rq *rq, struct rq_flags *rf)
1122         __acquires(rq->lock)
1123 {
1124         raw_spin_lock(&rq->lock);
1125         rq_pin_lock(rq, rf);
1126 }
1127
1128 static inline void
1129 rq_relock(struct rq *rq, struct rq_flags *rf)
1130         __acquires(rq->lock)
1131 {
1132         raw_spin_lock(&rq->lock);
1133         rq_repin_lock(rq, rf);
1134 }
1135
1136 static inline void
1137 rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1138         __releases(rq->lock)
1139 {
1140         rq_unpin_lock(rq, rf);
1141         raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1142 }
1143
1144 static inline void
1145 rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1146         __releases(rq->lock)
1147 {
1148         rq_unpin_lock(rq, rf);
1149         raw_spin_unlock_irq(&rq->lock);
1150 }
1151
1152 static inline void
1153 rq_unlock(struct rq *rq, struct rq_flags *rf)
1154         __releases(rq->lock)
1155 {
1156         rq_unpin_lock(rq, rf);
1157         raw_spin_unlock(&rq->lock);
1158 }
1159
1160 static inline struct rq *
1161 this_rq_lock_irq(struct rq_flags *rf)
1162         __acquires(rq->lock)
1163 {
1164         struct rq *rq;
1165
1166         local_irq_disable();
1167         rq = this_rq();
1168         rq_lock(rq, rf);
1169         return rq;
1170 }
1171
1172 #ifdef CONFIG_NUMA
1173 enum numa_topology_type {
1174         NUMA_DIRECT,
1175         NUMA_GLUELESS_MESH,
1176         NUMA_BACKPLANE,
1177 };
1178 extern enum numa_topology_type sched_numa_topology_type;
1179 extern int sched_max_numa_distance;
1180 extern bool find_numa_distance(int distance);
1181 #endif
1182
1183 #ifdef CONFIG_NUMA
1184 extern void sched_init_numa(void);
1185 extern void sched_domains_numa_masks_set(unsigned int cpu);
1186 extern void sched_domains_numa_masks_clear(unsigned int cpu);
1187 #else
1188 static inline void sched_init_numa(void) { }
1189 static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1190 static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1191 #endif
1192
1193 #ifdef CONFIG_NUMA_BALANCING
1194 /* The regions in numa_faults array from task_struct */
1195 enum numa_faults_stats {
1196         NUMA_MEM = 0,
1197         NUMA_CPU,
1198         NUMA_MEMBUF,
1199         NUMA_CPUBUF
1200 };
1201 extern void sched_setnuma(struct task_struct *p, int node);
1202 extern int migrate_task_to(struct task_struct *p, int cpu);
1203 extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1204                         int cpu, int scpu);
1205 extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1206 #else
1207 static inline void
1208 init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1209 {
1210 }
1211 #endif /* CONFIG_NUMA_BALANCING */
1212
1213 #ifdef CONFIG_SMP
1214
1215 static inline void
1216 queue_balance_callback(struct rq *rq,
1217                        struct callback_head *head,
1218                        void (*func)(struct rq *rq))
1219 {
1220         lockdep_assert_held(&rq->lock);
1221
1222         if (unlikely(head->next))
1223                 return;
1224
1225         head->func = (void (*)(struct callback_head *))func;
1226         head->next = rq->balance_callback;
1227         rq->balance_callback = head;
1228 }
1229
1230 extern void sched_ttwu_pending(void);
1231
1232 #define rcu_dereference_check_sched_domain(p) \
1233         rcu_dereference_check((p), \
1234                               lockdep_is_held(&sched_domains_mutex))
1235
1236 /*
1237  * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1238  * See detach_destroy_domains: synchronize_sched for details.
1239  *
1240  * The domain tree of any CPU may only be accessed from within
1241  * preempt-disabled sections.
1242  */
1243 #define for_each_domain(cpu, __sd) \
1244         for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1245                         __sd; __sd = __sd->parent)
1246
1247 #define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1248
1249 /**
1250  * highest_flag_domain - Return highest sched_domain containing flag.
1251  * @cpu:        The CPU whose highest level of sched domain is to
1252  *              be returned.
1253  * @flag:       The flag to check for the highest sched_domain
1254  *              for the given CPU.
1255  *
1256  * Returns the highest sched_domain of a CPU which contains the given flag.
1257  */
1258 static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1259 {
1260         struct sched_domain *sd, *hsd = NULL;
1261
1262         for_each_domain(cpu, sd) {
1263                 if (!(sd->flags & flag))
1264                         break;
1265                 hsd = sd;
1266         }
1267
1268         return hsd;
1269 }
1270
1271 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1272 {
1273         struct sched_domain *sd;
1274
1275         for_each_domain(cpu, sd) {
1276                 if (sd->flags & flag)
1277                         break;
1278         }
1279
1280         return sd;
1281 }
1282
1283 DECLARE_PER_CPU(struct sched_domain *, sd_llc);
1284 DECLARE_PER_CPU(int, sd_llc_size);
1285 DECLARE_PER_CPU(int, sd_llc_id);
1286 DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
1287 DECLARE_PER_CPU(struct sched_domain *, sd_numa);
1288 DECLARE_PER_CPU(struct sched_domain *, sd_asym);
1289 extern struct static_key_false sched_asym_cpucapacity;
1290
1291 struct sched_group_capacity {
1292         atomic_t                ref;
1293         /*
1294          * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1295          * for a single CPU.
1296          */
1297         unsigned long           capacity;
1298         unsigned long           min_capacity;           /* Min per-CPU capacity in group */
1299         unsigned long           max_capacity;           /* Max per-CPU capacity in group */
1300         unsigned long           next_update;
1301         int                     imbalance;              /* XXX unrelated to capacity but shared group state */
1302
1303 #ifdef CONFIG_SCHED_DEBUG
1304         int                     id;
1305 #endif
1306
1307         unsigned long           cpumask[0];             /* Balance mask */
1308 };
1309
1310 struct sched_group {
1311         struct sched_group      *next;                  /* Must be a circular list */
1312         atomic_t                ref;
1313
1314         unsigned int            group_weight;
1315         struct sched_group_capacity *sgc;
1316         int                     asym_prefer_cpu;        /* CPU of highest priority in group */
1317
1318         /*
1319          * The CPUs this group covers.
1320          *
1321          * NOTE: this field is variable length. (Allocated dynamically
1322          * by attaching extra space to the end of the structure,
1323          * depending on how many CPUs the kernel has booted up with)
1324          */
1325         unsigned long           cpumask[0];
1326 };
1327
1328 static inline struct cpumask *sched_group_span(struct sched_group *sg)
1329 {
1330         return to_cpumask(sg->cpumask);
1331 }
1332
1333 /*
1334  * See build_balance_mask().
1335  */
1336 static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1337 {
1338         return to_cpumask(sg->sgc->cpumask);
1339 }
1340
1341 /**
1342  * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1343  * @group: The group whose first CPU is to be returned.
1344  */
1345 static inline unsigned int group_first_cpu(struct sched_group *group)
1346 {
1347         return cpumask_first(sched_group_span(group));
1348 }
1349
1350 extern int group_balance_cpu(struct sched_group *sg);
1351
1352 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1353 void register_sched_domain_sysctl(void);
1354 void dirty_sched_domain_sysctl(int cpu);
1355 void unregister_sched_domain_sysctl(void);
1356 #else
1357 static inline void register_sched_domain_sysctl(void)
1358 {
1359 }
1360 static inline void dirty_sched_domain_sysctl(int cpu)
1361 {
1362 }
1363 static inline void unregister_sched_domain_sysctl(void)
1364 {
1365 }
1366 #endif
1367
1368 #else
1369
1370 static inline void sched_ttwu_pending(void) { }
1371
1372 #endif /* CONFIG_SMP */
1373
1374 #include "stats.h"
1375 #include "autogroup.h"
1376
1377 #ifdef CONFIG_CGROUP_SCHED
1378
1379 /*
1380  * Return the group to which this tasks belongs.
1381  *
1382  * We cannot use task_css() and friends because the cgroup subsystem
1383  * changes that value before the cgroup_subsys::attach() method is called,
1384  * therefore we cannot pin it and might observe the wrong value.
1385  *
1386  * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1387  * core changes this before calling sched_move_task().
1388  *
1389  * Instead we use a 'copy' which is updated from sched_move_task() while
1390  * holding both task_struct::pi_lock and rq::lock.
1391  */
1392 static inline struct task_group *task_group(struct task_struct *p)
1393 {
1394         return p->sched_task_group;
1395 }
1396
1397 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1398 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1399 {
1400 #if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1401         struct task_group *tg = task_group(p);
1402 #endif
1403
1404 #ifdef CONFIG_FAIR_GROUP_SCHED
1405         set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1406         p->se.cfs_rq = tg->cfs_rq[cpu];
1407         p->se.parent = tg->se[cpu];
1408 #endif
1409
1410 #ifdef CONFIG_RT_GROUP_SCHED
1411         p->rt.rt_rq  = tg->rt_rq[cpu];
1412         p->rt.parent = tg->rt_se[cpu];
1413 #endif
1414 }
1415
1416 #else /* CONFIG_CGROUP_SCHED */
1417
1418 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1419 static inline struct task_group *task_group(struct task_struct *p)
1420 {
1421         return NULL;
1422 }
1423
1424 #endif /* CONFIG_CGROUP_SCHED */
1425
1426 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1427 {
1428         set_task_rq(p, cpu);
1429 #ifdef CONFIG_SMP
1430         /*
1431          * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1432          * successfuly executed on another CPU. We must ensure that updates of
1433          * per-task data have been completed by this moment.
1434          */
1435         smp_wmb();
1436 #ifdef CONFIG_THREAD_INFO_IN_TASK
1437         p->cpu = cpu;
1438 #else
1439         task_thread_info(p)->cpu = cpu;
1440 #endif
1441         p->wake_cpu = cpu;
1442 #endif
1443 }
1444
1445 /*
1446  * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1447  */
1448 #ifdef CONFIG_SCHED_DEBUG
1449 # include <linux/static_key.h>
1450 # define const_debug __read_mostly
1451 #else
1452 # define const_debug const
1453 #endif
1454
1455 #define SCHED_FEAT(name, enabled)       \
1456         __SCHED_FEAT_##name ,
1457
1458 enum {
1459 #include "features.h"
1460         __SCHED_FEAT_NR,
1461 };
1462
1463 #undef SCHED_FEAT
1464
1465 #if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
1466
1467 /*
1468  * To support run-time toggling of sched features, all the translation units
1469  * (but core.c) reference the sysctl_sched_features defined in core.c.
1470  */
1471 extern const_debug unsigned int sysctl_sched_features;
1472
1473 #define SCHED_FEAT(name, enabled)                                       \
1474 static __always_inline bool static_branch_##name(struct static_key *key) \
1475 {                                                                       \
1476         return static_key_##enabled(key);                               \
1477 }
1478
1479 #include "features.h"
1480 #undef SCHED_FEAT
1481
1482 extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1483 #define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1484
1485 #else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
1486
1487 /*
1488  * Each translation unit has its own copy of sysctl_sched_features to allow
1489  * constants propagation at compile time and compiler optimization based on
1490  * features default.
1491  */
1492 #define SCHED_FEAT(name, enabled)       \
1493         (1UL << __SCHED_FEAT_##name) * enabled |
1494 static const_debug __maybe_unused unsigned int sysctl_sched_features =
1495 #include "features.h"
1496         0;
1497 #undef SCHED_FEAT
1498
1499 #define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1500
1501 #endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
1502
1503 extern struct static_key_false sched_numa_balancing;
1504 extern struct static_key_false sched_schedstats;
1505
1506 static inline u64 global_rt_period(void)
1507 {
1508         return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1509 }
1510
1511 static inline u64 global_rt_runtime(void)
1512 {
1513         if (sysctl_sched_rt_runtime < 0)
1514                 return RUNTIME_INF;
1515
1516         return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1517 }
1518
1519 static inline int task_current(struct rq *rq, struct task_struct *p)
1520 {
1521         return rq->curr == p;
1522 }
1523
1524 static inline int task_running(struct rq *rq, struct task_struct *p)
1525 {
1526 #ifdef CONFIG_SMP
1527         return p->on_cpu;
1528 #else
1529         return task_current(rq, p);
1530 #endif
1531 }
1532
1533 static inline int task_on_rq_queued(struct task_struct *p)
1534 {
1535         return p->on_rq == TASK_ON_RQ_QUEUED;
1536 }
1537
1538 static inline int task_on_rq_migrating(struct task_struct *p)
1539 {
1540         return p->on_rq == TASK_ON_RQ_MIGRATING;
1541 }
1542
1543 /*
1544  * wake flags
1545  */
1546 #define WF_SYNC                 0x01            /* Waker goes to sleep after wakeup */
1547 #define WF_FORK                 0x02            /* Child wakeup after fork */
1548 #define WF_MIGRATED             0x4             /* Internal use, task got migrated */
1549
1550 /*
1551  * To aid in avoiding the subversion of "niceness" due to uneven distribution
1552  * of tasks with abnormal "nice" values across CPUs the contribution that
1553  * each task makes to its run queue's load is weighted according to its
1554  * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1555  * scaled version of the new time slice allocation that they receive on time
1556  * slice expiry etc.
1557  */
1558
1559 #define WEIGHT_IDLEPRIO         3
1560 #define WMULT_IDLEPRIO          1431655765
1561
1562 extern const int                sched_prio_to_weight[40];
1563 extern const u32                sched_prio_to_wmult[40];
1564
1565 /*
1566  * {de,en}queue flags:
1567  *
1568  * DEQUEUE_SLEEP  - task is no longer runnable
1569  * ENQUEUE_WAKEUP - task just became runnable
1570  *
1571  * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1572  *                are in a known state which allows modification. Such pairs
1573  *                should preserve as much state as possible.
1574  *
1575  * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1576  *        in the runqueue.
1577  *
1578  * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1579  * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1580  * ENQUEUE_MIGRATED  - the task was migrated during wakeup
1581  *
1582  */
1583
1584 #define DEQUEUE_SLEEP           0x01
1585 #define DEQUEUE_SAVE            0x02 /* Matches ENQUEUE_RESTORE */
1586 #define DEQUEUE_MOVE            0x04 /* Matches ENQUEUE_MOVE */
1587 #define DEQUEUE_NOCLOCK         0x08 /* Matches ENQUEUE_NOCLOCK */
1588
1589 #define ENQUEUE_WAKEUP          0x01
1590 #define ENQUEUE_RESTORE         0x02
1591 #define ENQUEUE_MOVE            0x04
1592 #define ENQUEUE_NOCLOCK         0x08
1593
1594 #define ENQUEUE_HEAD            0x10
1595 #define ENQUEUE_REPLENISH       0x20
1596 #ifdef CONFIG_SMP
1597 #define ENQUEUE_MIGRATED        0x40
1598 #else
1599 #define ENQUEUE_MIGRATED        0x00
1600 #endif
1601
1602 #define RETRY_TASK              ((void *)-1UL)
1603
1604 struct sched_class {
1605         const struct sched_class *next;
1606
1607         void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1608         void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1609         void (*yield_task)   (struct rq *rq);
1610         bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
1611
1612         void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
1613
1614         /*
1615          * It is the responsibility of the pick_next_task() method that will
1616          * return the next task to call put_prev_task() on the @prev task or
1617          * something equivalent.
1618          *
1619          * May return RETRY_TASK when it finds a higher prio class has runnable
1620          * tasks.
1621          */
1622         struct task_struct * (*pick_next_task)(struct rq *rq,
1623                                                struct task_struct *prev,
1624                                                struct rq_flags *rf);
1625         void (*put_prev_task)(struct rq *rq, struct task_struct *p);
1626
1627 #ifdef CONFIG_SMP
1628         int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1629         void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
1630
1631         void (*task_woken)(struct rq *this_rq, struct task_struct *task);
1632
1633         void (*set_cpus_allowed)(struct task_struct *p,
1634                                  const struct cpumask *newmask);
1635
1636         void (*rq_online)(struct rq *rq);
1637         void (*rq_offline)(struct rq *rq);
1638 #endif
1639
1640         void (*set_curr_task)(struct rq *rq);
1641         void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1642         void (*task_fork)(struct task_struct *p);
1643         void (*task_dead)(struct task_struct *p);
1644
1645         /*
1646          * The switched_from() call is allowed to drop rq->lock, therefore we
1647          * cannot assume the switched_from/switched_to pair is serliazed by
1648          * rq->lock. They are however serialized by p->pi_lock.
1649          */
1650         void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1651         void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
1652         void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1653                               int oldprio);
1654
1655         unsigned int (*get_rr_interval)(struct rq *rq,
1656                                         struct task_struct *task);
1657
1658         void (*update_curr)(struct rq *rq);
1659
1660 #define TASK_SET_GROUP          0
1661 #define TASK_MOVE_GROUP         1
1662
1663 #ifdef CONFIG_FAIR_GROUP_SCHED
1664         void (*task_change_group)(struct task_struct *p, int type);
1665 #endif
1666 };
1667
1668 static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1669 {
1670         prev->sched_class->put_prev_task(rq, prev);
1671 }
1672
1673 static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1674 {
1675         curr->sched_class->set_curr_task(rq);
1676 }
1677
1678 #ifdef CONFIG_SMP
1679 #define sched_class_highest (&stop_sched_class)
1680 #else
1681 #define sched_class_highest (&dl_sched_class)
1682 #endif
1683 #define for_each_class(class) \
1684    for (class = sched_class_highest; class; class = class->next)
1685
1686 extern const struct sched_class stop_sched_class;
1687 extern const struct sched_class dl_sched_class;
1688 extern const struct sched_class rt_sched_class;
1689 extern const struct sched_class fair_sched_class;
1690 extern const struct sched_class idle_sched_class;
1691
1692
1693 #ifdef CONFIG_SMP
1694
1695 extern void update_group_capacity(struct sched_domain *sd, int cpu);
1696
1697 extern void trigger_load_balance(struct rq *rq);
1698
1699 extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1700
1701 #endif
1702
1703 #ifdef CONFIG_CPU_IDLE
1704 static inline void idle_set_state(struct rq *rq,
1705                                   struct cpuidle_state *idle_state)
1706 {
1707         rq->idle_state = idle_state;
1708 }
1709
1710 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1711 {
1712         SCHED_WARN_ON(!rcu_read_lock_held());
1713
1714         return rq->idle_state;
1715 }
1716 #else
1717 static inline void idle_set_state(struct rq *rq,
1718                                   struct cpuidle_state *idle_state)
1719 {
1720 }
1721
1722 static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1723 {
1724         return NULL;
1725 }
1726 #endif
1727
1728 extern void schedule_idle(void);
1729
1730 extern void sysrq_sched_debug_show(void);
1731 extern void sched_init_granularity(void);
1732 extern void update_max_interval(void);
1733
1734 extern void init_sched_dl_class(void);
1735 extern void init_sched_rt_class(void);
1736 extern void init_sched_fair_class(void);
1737
1738 extern void reweight_task(struct task_struct *p, int prio);
1739
1740 extern void resched_curr(struct rq *rq);
1741 extern void resched_cpu(int cpu);
1742
1743 extern struct rt_bandwidth def_rt_bandwidth;
1744 extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1745
1746 extern struct dl_bandwidth def_dl_bandwidth;
1747 extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1748 extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1749 extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
1750 extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
1751
1752 #define BW_SHIFT                20
1753 #define BW_UNIT                 (1 << BW_SHIFT)
1754 #define RATIO_SHIFT             8
1755 unsigned long to_ratio(u64 period, u64 runtime);
1756
1757 extern void init_entity_runnable_average(struct sched_entity *se);
1758 extern void post_init_entity_util_avg(struct sched_entity *se);
1759
1760 #ifdef CONFIG_NO_HZ_FULL
1761 extern bool sched_can_stop_tick(struct rq *rq);
1762 extern int __init sched_tick_offload_init(void);
1763
1764 /*
1765  * Tick may be needed by tasks in the runqueue depending on their policy and
1766  * requirements. If tick is needed, lets send the target an IPI to kick it out of
1767  * nohz mode if necessary.
1768  */
1769 static inline void sched_update_tick_dependency(struct rq *rq)
1770 {
1771         int cpu;
1772
1773         if (!tick_nohz_full_enabled())
1774                 return;
1775
1776         cpu = cpu_of(rq);
1777
1778         if (!tick_nohz_full_cpu(cpu))
1779                 return;
1780
1781         if (sched_can_stop_tick(rq))
1782                 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1783         else
1784                 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1785 }
1786 #else
1787 static inline int sched_tick_offload_init(void) { return 0; }
1788 static inline void sched_update_tick_dependency(struct rq *rq) { }
1789 #endif
1790
1791 static inline void add_nr_running(struct rq *rq, unsigned count)
1792 {
1793         unsigned prev_nr = rq->nr_running;
1794
1795         rq->nr_running = prev_nr + count;
1796
1797         if (prev_nr < 2 && rq->nr_running >= 2) {
1798 #ifdef CONFIG_SMP
1799                 if (!READ_ONCE(rq->rd->overload))
1800                         WRITE_ONCE(rq->rd->overload, 1);
1801 #endif
1802         }
1803
1804         sched_update_tick_dependency(rq);
1805 }
1806
1807 static inline void sub_nr_running(struct rq *rq, unsigned count)
1808 {
1809         rq->nr_running -= count;
1810         /* Check if we still need preemption */
1811         sched_update_tick_dependency(rq);
1812 }
1813
1814 extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1815 extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1816
1817 extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1818
1819 extern const_debug unsigned int sysctl_sched_nr_migrate;
1820 extern const_debug unsigned int sysctl_sched_migration_cost;
1821
1822 #ifdef CONFIG_SCHED_HRTICK
1823
1824 /*
1825  * Use hrtick when:
1826  *  - enabled by features
1827  *  - hrtimer is actually high res
1828  */
1829 static inline int hrtick_enabled(struct rq *rq)
1830 {
1831         if (!sched_feat(HRTICK))
1832                 return 0;
1833         if (!cpu_active(cpu_of(rq)))
1834                 return 0;
1835         return hrtimer_is_hres_active(&rq->hrtick_timer);
1836 }
1837
1838 void hrtick_start(struct rq *rq, u64 delay);
1839
1840 #else
1841
1842 static inline int hrtick_enabled(struct rq *rq)
1843 {
1844         return 0;
1845 }
1846
1847 #endif /* CONFIG_SCHED_HRTICK */
1848
1849 #ifndef arch_scale_freq_capacity
1850 static __always_inline
1851 unsigned long arch_scale_freq_capacity(int cpu)
1852 {
1853         return SCHED_CAPACITY_SCALE;
1854 }
1855 #endif
1856
1857 #ifdef CONFIG_SMP
1858 #ifndef arch_scale_cpu_capacity
1859 static __always_inline
1860 unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1861 {
1862         if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1863                 return sd->smt_gain / sd->span_weight;
1864
1865         return SCHED_CAPACITY_SCALE;
1866 }
1867 #endif
1868 #else
1869 #ifndef arch_scale_cpu_capacity
1870 static __always_inline
1871 unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1872 {
1873         return SCHED_CAPACITY_SCALE;
1874 }
1875 #endif
1876 #endif
1877
1878 #ifdef CONFIG_SMP
1879 #ifdef CONFIG_PREEMPT
1880
1881 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1882
1883 /*
1884  * fair double_lock_balance: Safely acquires both rq->locks in a fair
1885  * way at the expense of forcing extra atomic operations in all
1886  * invocations.  This assures that the double_lock is acquired using the
1887  * same underlying policy as the spinlock_t on this architecture, which
1888  * reduces latency compared to the unfair variant below.  However, it
1889  * also adds more overhead and therefore may reduce throughput.
1890  */
1891 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1892         __releases(this_rq->lock)
1893         __acquires(busiest->lock)
1894         __acquires(this_rq->lock)
1895 {
1896         raw_spin_unlock(&this_rq->lock);
1897         double_rq_lock(this_rq, busiest);
1898
1899         return 1;
1900 }
1901
1902 #else
1903 /*
1904  * Unfair double_lock_balance: Optimizes throughput at the expense of
1905  * latency by eliminating extra atomic operations when the locks are
1906  * already in proper order on entry.  This favors lower CPU-ids and will
1907  * grant the double lock to lower CPUs over higher ids under contention,
1908  * regardless of entry order into the function.
1909  */
1910 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1911         __releases(this_rq->lock)
1912         __acquires(busiest->lock)
1913         __acquires(this_rq->lock)
1914 {
1915         int ret = 0;
1916
1917         if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1918                 if (busiest < this_rq) {
1919                         raw_spin_unlock(&this_rq->lock);
1920                         raw_spin_lock(&busiest->lock);
1921                         raw_spin_lock_nested(&this_rq->lock,
1922                                               SINGLE_DEPTH_NESTING);
1923                         ret = 1;
1924                 } else
1925                         raw_spin_lock_nested(&busiest->lock,
1926                                               SINGLE_DEPTH_NESTING);
1927         }
1928         return ret;
1929 }
1930
1931 #endif /* CONFIG_PREEMPT */
1932
1933 /*
1934  * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1935  */
1936 static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1937 {
1938         if (unlikely(!irqs_disabled())) {
1939                 /* printk() doesn't work well under rq->lock */
1940                 raw_spin_unlock(&this_rq->lock);
1941                 BUG_ON(1);
1942         }
1943
1944         return _double_lock_balance(this_rq, busiest);
1945 }
1946
1947 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1948         __releases(busiest->lock)
1949 {
1950         raw_spin_unlock(&busiest->lock);
1951         lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1952 }
1953
1954 static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1955 {
1956         if (l1 > l2)
1957                 swap(l1, l2);
1958
1959         spin_lock(l1);
1960         spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1961 }
1962
1963 static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1964 {
1965         if (l1 > l2)
1966                 swap(l1, l2);
1967
1968         spin_lock_irq(l1);
1969         spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1970 }
1971
1972 static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1973 {
1974         if (l1 > l2)
1975                 swap(l1, l2);
1976
1977         raw_spin_lock(l1);
1978         raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1979 }
1980
1981 /*
1982  * double_rq_lock - safely lock two runqueues
1983  *
1984  * Note this does not disable interrupts like task_rq_lock,
1985  * you need to do so manually before calling.
1986  */
1987 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1988         __acquires(rq1->lock)
1989         __acquires(rq2->lock)
1990 {
1991         BUG_ON(!irqs_disabled());
1992         if (rq1 == rq2) {
1993                 raw_spin_lock(&rq1->lock);
1994                 __acquire(rq2->lock);   /* Fake it out ;) */
1995         } else {
1996                 if (rq1 < rq2) {
1997                         raw_spin_lock(&rq1->lock);
1998                         raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1999                 } else {
2000                         raw_spin_lock(&rq2->lock);
2001                         raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2002                 }
2003         }
2004 }
2005
2006 /*
2007  * double_rq_unlock - safely unlock two runqueues
2008  *
2009  * Note this does not restore interrupts like task_rq_unlock,
2010  * you need to do so manually after calling.
2011  */
2012 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2013         __releases(rq1->lock)
2014         __releases(rq2->lock)
2015 {
2016         raw_spin_unlock(&rq1->lock);
2017         if (rq1 != rq2)
2018                 raw_spin_unlock(&rq2->lock);
2019         else
2020                 __release(rq2->lock);
2021 }
2022
2023 extern void set_rq_online (struct rq *rq);
2024 extern void set_rq_offline(struct rq *rq);
2025 extern bool sched_smp_initialized;
2026
2027 #else /* CONFIG_SMP */
2028
2029 /*
2030  * double_rq_lock - safely lock two runqueues
2031  *
2032  * Note this does not disable interrupts like task_rq_lock,
2033  * you need to do so manually before calling.
2034  */
2035 static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2036         __acquires(rq1->lock)
2037         __acquires(rq2->lock)
2038 {
2039         BUG_ON(!irqs_disabled());
2040         BUG_ON(rq1 != rq2);
2041         raw_spin_lock(&rq1->lock);
2042         __acquire(rq2->lock);   /* Fake it out ;) */
2043 }
2044
2045 /*
2046  * double_rq_unlock - safely unlock two runqueues
2047  *
2048  * Note this does not restore interrupts like task_rq_unlock,
2049  * you need to do so manually after calling.
2050  */
2051 static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2052         __releases(rq1->lock)
2053         __releases(rq2->lock)
2054 {
2055         BUG_ON(rq1 != rq2);
2056         raw_spin_unlock(&rq1->lock);
2057         __release(rq2->lock);
2058 }
2059
2060 #endif
2061
2062 extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2063 extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2064
2065 #ifdef  CONFIG_SCHED_DEBUG
2066 extern bool sched_debug_enabled;
2067
2068 extern void print_cfs_stats(struct seq_file *m, int cpu);
2069 extern void print_rt_stats(struct seq_file *m, int cpu);
2070 extern void print_dl_stats(struct seq_file *m, int cpu);
2071 extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2072 extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2073 extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2074 #ifdef CONFIG_NUMA_BALANCING
2075 extern void
2076 show_numa_stats(struct task_struct *p, struct seq_file *m);
2077 extern void
2078 print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2079         unsigned long tpf, unsigned long gsf, unsigned long gpf);
2080 #endif /* CONFIG_NUMA_BALANCING */
2081 #endif /* CONFIG_SCHED_DEBUG */
2082
2083 extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2084 extern void init_rt_rq(struct rt_rq *rt_rq);
2085 extern void init_dl_rq(struct dl_rq *dl_rq);
2086
2087 extern void cfs_bandwidth_usage_inc(void);
2088 extern void cfs_bandwidth_usage_dec(void);
2089
2090 #ifdef CONFIG_NO_HZ_COMMON
2091 #define NOHZ_BALANCE_KICK_BIT   0
2092 #define NOHZ_STATS_KICK_BIT     1
2093
2094 #define NOHZ_BALANCE_KICK       BIT(NOHZ_BALANCE_KICK_BIT)
2095 #define NOHZ_STATS_KICK         BIT(NOHZ_STATS_KICK_BIT)
2096
2097 #define NOHZ_KICK_MASK  (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
2098
2099 #define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
2100
2101 extern void nohz_balance_exit_idle(struct rq *rq);
2102 #else
2103 static inline void nohz_balance_exit_idle(struct rq *rq) { }
2104 #endif
2105
2106
2107 #ifdef CONFIG_SMP
2108 static inline
2109 void __dl_update(struct dl_bw *dl_b, s64 bw)
2110 {
2111         struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2112         int i;
2113
2114         RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2115                          "sched RCU must be held");
2116         for_each_cpu_and(i, rd->span, cpu_active_mask) {
2117                 struct rq *rq = cpu_rq(i);
2118
2119                 rq->dl.extra_bw += bw;
2120         }
2121 }
2122 #else
2123 static inline
2124 void __dl_update(struct dl_bw *dl_b, s64 bw)
2125 {
2126         struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2127
2128         dl->extra_bw += bw;
2129 }
2130 #endif
2131
2132
2133 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2134 struct irqtime {
2135         u64                     total;
2136         u64                     tick_delta;
2137         u64                     irq_start_time;
2138         struct u64_stats_sync   sync;
2139 };
2140
2141 DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
2142
2143 /*
2144  * Returns the irqtime minus the softirq time computed by ksoftirqd.
2145  * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2146  * and never move forward.
2147  */
2148 static inline u64 irq_time_read(int cpu)
2149 {
2150         struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2151         unsigned int seq;
2152         u64 total;
2153
2154         do {
2155                 seq = __u64_stats_fetch_begin(&irqtime->sync);
2156                 total = irqtime->total;
2157         } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2158
2159         return total;
2160 }
2161 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2162
2163 #ifdef CONFIG_CPU_FREQ
2164 DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2165
2166 /**
2167  * cpufreq_update_util - Take a note about CPU utilization changes.
2168  * @rq: Runqueue to carry out the update for.
2169  * @flags: Update reason flags.
2170  *
2171  * This function is called by the scheduler on the CPU whose utilization is
2172  * being updated.
2173  *
2174  * It can only be called from RCU-sched read-side critical sections.
2175  *
2176  * The way cpufreq is currently arranged requires it to evaluate the CPU
2177  * performance state (frequency/voltage) on a regular basis to prevent it from
2178  * being stuck in a completely inadequate performance level for too long.
2179  * That is not guaranteed to happen if the updates are only triggered from CFS
2180  * and DL, though, because they may not be coming in if only RT tasks are
2181  * active all the time (or there are RT tasks only).
2182  *
2183  * As a workaround for that issue, this function is called periodically by the
2184  * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2185  * but that really is a band-aid.  Going forward it should be replaced with
2186  * solutions targeted more specifically at RT tasks.
2187  */
2188 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2189 {
2190         struct update_util_data *data;
2191
2192         data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2193                                                   cpu_of(rq)));
2194         if (data)
2195                 data->func(data, rq_clock(rq), flags);
2196 }
2197 #else
2198 static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2199 #endif /* CONFIG_CPU_FREQ */
2200
2201 #ifdef arch_scale_freq_capacity
2202 # ifndef arch_scale_freq_invariant
2203 #  define arch_scale_freq_invariant()   true
2204 # endif
2205 #else
2206 # define arch_scale_freq_invariant()    false
2207 #endif
2208
2209 #ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
2210 static inline unsigned long cpu_bw_dl(struct rq *rq)
2211 {
2212         return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2213 }
2214
2215 static inline unsigned long cpu_util_dl(struct rq *rq)
2216 {
2217         return READ_ONCE(rq->avg_dl.util_avg);
2218 }
2219
2220 static inline unsigned long cpu_util_cfs(struct rq *rq)
2221 {
2222         unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2223
2224         if (sched_feat(UTIL_EST)) {
2225                 util = max_t(unsigned long, util,
2226                              READ_ONCE(rq->cfs.avg.util_est.enqueued));
2227         }
2228
2229         return util;
2230 }
2231
2232 static inline unsigned long cpu_util_rt(struct rq *rq)
2233 {
2234         return READ_ONCE(rq->avg_rt.util_avg);
2235 }
2236 #endif
2237
2238 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
2239 static inline unsigned long cpu_util_irq(struct rq *rq)
2240 {
2241         return rq->avg_irq.util_avg;
2242 }
2243
2244 static inline
2245 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2246 {
2247         util *= (max - irq);
2248         util /= max;
2249
2250         return util;
2251
2252 }
2253 #else
2254 static inline unsigned long cpu_util_irq(struct rq *rq)
2255 {
2256         return 0;
2257 }
2258
2259 static inline
2260 unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2261 {
2262         return util;
2263 }
2264 #endif