Merge tag 'certs-20220621' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells...
[linux-2.6-microblaze.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13 struct rt_bandwidth def_rt_bandwidth;
14
15 /*
16  * period over which we measure -rt task CPU usage in us.
17  * default: 1s
18  */
19 unsigned int sysctl_sched_rt_period = 1000000;
20
21 /*
22  * part of the period that we allow rt tasks to run in us.
23  * default: 0.95s
24  */
25 int sysctl_sched_rt_runtime = 950000;
26
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30                 size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32                 size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34         {
35                 .procname       = "sched_rt_period_us",
36                 .data           = &sysctl_sched_rt_period,
37                 .maxlen         = sizeof(unsigned int),
38                 .mode           = 0644,
39                 .proc_handler   = sched_rt_handler,
40         },
41         {
42                 .procname       = "sched_rt_runtime_us",
43                 .data           = &sysctl_sched_rt_runtime,
44                 .maxlen         = sizeof(int),
45                 .mode           = 0644,
46                 .proc_handler   = sched_rt_handler,
47         },
48         {
49                 .procname       = "sched_rr_timeslice_ms",
50                 .data           = &sysctl_sched_rr_timeslice,
51                 .maxlen         = sizeof(int),
52                 .mode           = 0644,
53                 .proc_handler   = sched_rr_handler,
54         },
55         {}
56 };
57
58 static int __init sched_rt_sysctl_init(void)
59 {
60         register_sysctl_init("kernel", sched_rt_sysctls);
61         return 0;
62 }
63 late_initcall(sched_rt_sysctl_init);
64 #endif
65
66 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
67 {
68         struct rt_bandwidth *rt_b =
69                 container_of(timer, struct rt_bandwidth, rt_period_timer);
70         int idle = 0;
71         int overrun;
72
73         raw_spin_lock(&rt_b->rt_runtime_lock);
74         for (;;) {
75                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
76                 if (!overrun)
77                         break;
78
79                 raw_spin_unlock(&rt_b->rt_runtime_lock);
80                 idle = do_sched_rt_period_timer(rt_b, overrun);
81                 raw_spin_lock(&rt_b->rt_runtime_lock);
82         }
83         if (idle)
84                 rt_b->rt_period_active = 0;
85         raw_spin_unlock(&rt_b->rt_runtime_lock);
86
87         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
88 }
89
90 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
91 {
92         rt_b->rt_period = ns_to_ktime(period);
93         rt_b->rt_runtime = runtime;
94
95         raw_spin_lock_init(&rt_b->rt_runtime_lock);
96
97         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
98                      HRTIMER_MODE_REL_HARD);
99         rt_b->rt_period_timer.function = sched_rt_period_timer;
100 }
101
102 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
103 {
104         raw_spin_lock(&rt_b->rt_runtime_lock);
105         if (!rt_b->rt_period_active) {
106                 rt_b->rt_period_active = 1;
107                 /*
108                  * SCHED_DEADLINE updates the bandwidth, as a run away
109                  * RT task with a DL task could hog a CPU. But DL does
110                  * not reset the period. If a deadline task was running
111                  * without an RT task running, it can cause RT tasks to
112                  * throttle when they start up. Kick the timer right away
113                  * to update the period.
114                  */
115                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
116                 hrtimer_start_expires(&rt_b->rt_period_timer,
117                                       HRTIMER_MODE_ABS_PINNED_HARD);
118         }
119         raw_spin_unlock(&rt_b->rt_runtime_lock);
120 }
121
122 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
123 {
124         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
125                 return;
126
127         do_start_rt_bandwidth(rt_b);
128 }
129
130 void init_rt_rq(struct rt_rq *rt_rq)
131 {
132         struct rt_prio_array *array;
133         int i;
134
135         array = &rt_rq->active;
136         for (i = 0; i < MAX_RT_PRIO; i++) {
137                 INIT_LIST_HEAD(array->queue + i);
138                 __clear_bit(i, array->bitmap);
139         }
140         /* delimiter for bitsearch: */
141         __set_bit(MAX_RT_PRIO, array->bitmap);
142
143 #if defined CONFIG_SMP
144         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
145         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
146         rt_rq->rt_nr_migratory = 0;
147         rt_rq->overloaded = 0;
148         plist_head_init(&rt_rq->pushable_tasks);
149 #endif /* CONFIG_SMP */
150         /* We start is dequeued state, because no RT tasks are queued */
151         rt_rq->rt_queued = 0;
152
153         rt_rq->rt_time = 0;
154         rt_rq->rt_throttled = 0;
155         rt_rq->rt_runtime = 0;
156         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
157 }
158
159 #ifdef CONFIG_RT_GROUP_SCHED
160 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
161 {
162         hrtimer_cancel(&rt_b->rt_period_timer);
163 }
164
165 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
166
167 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
168 {
169 #ifdef CONFIG_SCHED_DEBUG
170         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
171 #endif
172         return container_of(rt_se, struct task_struct, rt);
173 }
174
175 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
176 {
177         return rt_rq->rq;
178 }
179
180 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
181 {
182         return rt_se->rt_rq;
183 }
184
185 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
186 {
187         struct rt_rq *rt_rq = rt_se->rt_rq;
188
189         return rt_rq->rq;
190 }
191
192 void unregister_rt_sched_group(struct task_group *tg)
193 {
194         if (tg->rt_se)
195                 destroy_rt_bandwidth(&tg->rt_bandwidth);
196
197 }
198
199 void free_rt_sched_group(struct task_group *tg)
200 {
201         int i;
202
203         for_each_possible_cpu(i) {
204                 if (tg->rt_rq)
205                         kfree(tg->rt_rq[i]);
206                 if (tg->rt_se)
207                         kfree(tg->rt_se[i]);
208         }
209
210         kfree(tg->rt_rq);
211         kfree(tg->rt_se);
212 }
213
214 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
215                 struct sched_rt_entity *rt_se, int cpu,
216                 struct sched_rt_entity *parent)
217 {
218         struct rq *rq = cpu_rq(cpu);
219
220         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
221         rt_rq->rt_nr_boosted = 0;
222         rt_rq->rq = rq;
223         rt_rq->tg = tg;
224
225         tg->rt_rq[cpu] = rt_rq;
226         tg->rt_se[cpu] = rt_se;
227
228         if (!rt_se)
229                 return;
230
231         if (!parent)
232                 rt_se->rt_rq = &rq->rt;
233         else
234                 rt_se->rt_rq = parent->my_q;
235
236         rt_se->my_q = rt_rq;
237         rt_se->parent = parent;
238         INIT_LIST_HEAD(&rt_se->run_list);
239 }
240
241 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
242 {
243         struct rt_rq *rt_rq;
244         struct sched_rt_entity *rt_se;
245         int i;
246
247         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
248         if (!tg->rt_rq)
249                 goto err;
250         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
251         if (!tg->rt_se)
252                 goto err;
253
254         init_rt_bandwidth(&tg->rt_bandwidth,
255                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
256
257         for_each_possible_cpu(i) {
258                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
259                                      GFP_KERNEL, cpu_to_node(i));
260                 if (!rt_rq)
261                         goto err;
262
263                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
264                                      GFP_KERNEL, cpu_to_node(i));
265                 if (!rt_se)
266                         goto err_free_rq;
267
268                 init_rt_rq(rt_rq);
269                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
270                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
271         }
272
273         return 1;
274
275 err_free_rq:
276         kfree(rt_rq);
277 err:
278         return 0;
279 }
280
281 #else /* CONFIG_RT_GROUP_SCHED */
282
283 #define rt_entity_is_task(rt_se) (1)
284
285 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
286 {
287         return container_of(rt_se, struct task_struct, rt);
288 }
289
290 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
291 {
292         return container_of(rt_rq, struct rq, rt);
293 }
294
295 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
296 {
297         struct task_struct *p = rt_task_of(rt_se);
298
299         return task_rq(p);
300 }
301
302 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
303 {
304         struct rq *rq = rq_of_rt_se(rt_se);
305
306         return &rq->rt;
307 }
308
309 void unregister_rt_sched_group(struct task_group *tg) { }
310
311 void free_rt_sched_group(struct task_group *tg) { }
312
313 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
314 {
315         return 1;
316 }
317 #endif /* CONFIG_RT_GROUP_SCHED */
318
319 #ifdef CONFIG_SMP
320
321 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
322 {
323         /* Try to pull RT tasks here if we lower this rq's prio */
324         return rq->online && rq->rt.highest_prio.curr > prev->prio;
325 }
326
327 static inline int rt_overloaded(struct rq *rq)
328 {
329         return atomic_read(&rq->rd->rto_count);
330 }
331
332 static inline void rt_set_overload(struct rq *rq)
333 {
334         if (!rq->online)
335                 return;
336
337         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
338         /*
339          * Make sure the mask is visible before we set
340          * the overload count. That is checked to determine
341          * if we should look at the mask. It would be a shame
342          * if we looked at the mask, but the mask was not
343          * updated yet.
344          *
345          * Matched by the barrier in pull_rt_task().
346          */
347         smp_wmb();
348         atomic_inc(&rq->rd->rto_count);
349 }
350
351 static inline void rt_clear_overload(struct rq *rq)
352 {
353         if (!rq->online)
354                 return;
355
356         /* the order here really doesn't matter */
357         atomic_dec(&rq->rd->rto_count);
358         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
359 }
360
361 static void update_rt_migration(struct rt_rq *rt_rq)
362 {
363         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
364                 if (!rt_rq->overloaded) {
365                         rt_set_overload(rq_of_rt_rq(rt_rq));
366                         rt_rq->overloaded = 1;
367                 }
368         } else if (rt_rq->overloaded) {
369                 rt_clear_overload(rq_of_rt_rq(rt_rq));
370                 rt_rq->overloaded = 0;
371         }
372 }
373
374 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
375 {
376         struct task_struct *p;
377
378         if (!rt_entity_is_task(rt_se))
379                 return;
380
381         p = rt_task_of(rt_se);
382         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
383
384         rt_rq->rt_nr_total++;
385         if (p->nr_cpus_allowed > 1)
386                 rt_rq->rt_nr_migratory++;
387
388         update_rt_migration(rt_rq);
389 }
390
391 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
392 {
393         struct task_struct *p;
394
395         if (!rt_entity_is_task(rt_se))
396                 return;
397
398         p = rt_task_of(rt_se);
399         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
400
401         rt_rq->rt_nr_total--;
402         if (p->nr_cpus_allowed > 1)
403                 rt_rq->rt_nr_migratory--;
404
405         update_rt_migration(rt_rq);
406 }
407
408 static inline int has_pushable_tasks(struct rq *rq)
409 {
410         return !plist_head_empty(&rq->rt.pushable_tasks);
411 }
412
413 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
414 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
415
416 static void push_rt_tasks(struct rq *);
417 static void pull_rt_task(struct rq *);
418
419 static inline void rt_queue_push_tasks(struct rq *rq)
420 {
421         if (!has_pushable_tasks(rq))
422                 return;
423
424         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
425 }
426
427 static inline void rt_queue_pull_task(struct rq *rq)
428 {
429         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
430 }
431
432 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
433 {
434         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
435         plist_node_init(&p->pushable_tasks, p->prio);
436         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
437
438         /* Update the highest prio pushable task */
439         if (p->prio < rq->rt.highest_prio.next)
440                 rq->rt.highest_prio.next = p->prio;
441 }
442
443 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
444 {
445         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
446
447         /* Update the new highest prio pushable task */
448         if (has_pushable_tasks(rq)) {
449                 p = plist_first_entry(&rq->rt.pushable_tasks,
450                                       struct task_struct, pushable_tasks);
451                 rq->rt.highest_prio.next = p->prio;
452         } else {
453                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
454         }
455 }
456
457 #else
458
459 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
460 {
461 }
462
463 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
464 {
465 }
466
467 static inline
468 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
469 {
470 }
471
472 static inline
473 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
474 {
475 }
476
477 static inline void rt_queue_push_tasks(struct rq *rq)
478 {
479 }
480 #endif /* CONFIG_SMP */
481
482 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
483 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
484
485 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
486 {
487         return rt_se->on_rq;
488 }
489
490 #ifdef CONFIG_UCLAMP_TASK
491 /*
492  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
493  * settings.
494  *
495  * This check is only important for heterogeneous systems where uclamp_min value
496  * is higher than the capacity of a @cpu. For non-heterogeneous system this
497  * function will always return true.
498  *
499  * The function will return true if the capacity of the @cpu is >= the
500  * uclamp_min and false otherwise.
501  *
502  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
503  * > uclamp_max.
504  */
505 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
506 {
507         unsigned int min_cap;
508         unsigned int max_cap;
509         unsigned int cpu_cap;
510
511         /* Only heterogeneous systems can benefit from this check */
512         if (!static_branch_unlikely(&sched_asym_cpucapacity))
513                 return true;
514
515         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
516         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
517
518         cpu_cap = capacity_orig_of(cpu);
519
520         return cpu_cap >= min(min_cap, max_cap);
521 }
522 #else
523 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
524 {
525         return true;
526 }
527 #endif
528
529 #ifdef CONFIG_RT_GROUP_SCHED
530
531 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
532 {
533         if (!rt_rq->tg)
534                 return RUNTIME_INF;
535
536         return rt_rq->rt_runtime;
537 }
538
539 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
540 {
541         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
542 }
543
544 typedef struct task_group *rt_rq_iter_t;
545
546 static inline struct task_group *next_task_group(struct task_group *tg)
547 {
548         do {
549                 tg = list_entry_rcu(tg->list.next,
550                         typeof(struct task_group), list);
551         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
552
553         if (&tg->list == &task_groups)
554                 tg = NULL;
555
556         return tg;
557 }
558
559 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
560         for (iter = container_of(&task_groups, typeof(*iter), list);    \
561                 (iter = next_task_group(iter)) &&                       \
562                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
563
564 #define for_each_sched_rt_entity(rt_se) \
565         for (; rt_se; rt_se = rt_se->parent)
566
567 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
568 {
569         return rt_se->my_q;
570 }
571
572 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
573 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
574
575 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
576 {
577         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
578         struct rq *rq = rq_of_rt_rq(rt_rq);
579         struct sched_rt_entity *rt_se;
580
581         int cpu = cpu_of(rq);
582
583         rt_se = rt_rq->tg->rt_se[cpu];
584
585         if (rt_rq->rt_nr_running) {
586                 if (!rt_se)
587                         enqueue_top_rt_rq(rt_rq);
588                 else if (!on_rt_rq(rt_se))
589                         enqueue_rt_entity(rt_se, 0);
590
591                 if (rt_rq->highest_prio.curr < curr->prio)
592                         resched_curr(rq);
593         }
594 }
595
596 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
597 {
598         struct sched_rt_entity *rt_se;
599         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
600
601         rt_se = rt_rq->tg->rt_se[cpu];
602
603         if (!rt_se) {
604                 dequeue_top_rt_rq(rt_rq);
605                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
606                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
607         }
608         else if (on_rt_rq(rt_se))
609                 dequeue_rt_entity(rt_se, 0);
610 }
611
612 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
613 {
614         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
615 }
616
617 static int rt_se_boosted(struct sched_rt_entity *rt_se)
618 {
619         struct rt_rq *rt_rq = group_rt_rq(rt_se);
620         struct task_struct *p;
621
622         if (rt_rq)
623                 return !!rt_rq->rt_nr_boosted;
624
625         p = rt_task_of(rt_se);
626         return p->prio != p->normal_prio;
627 }
628
629 #ifdef CONFIG_SMP
630 static inline const struct cpumask *sched_rt_period_mask(void)
631 {
632         return this_rq()->rd->span;
633 }
634 #else
635 static inline const struct cpumask *sched_rt_period_mask(void)
636 {
637         return cpu_online_mask;
638 }
639 #endif
640
641 static inline
642 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
643 {
644         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
645 }
646
647 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
648 {
649         return &rt_rq->tg->rt_bandwidth;
650 }
651
652 #else /* !CONFIG_RT_GROUP_SCHED */
653
654 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
655 {
656         return rt_rq->rt_runtime;
657 }
658
659 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
660 {
661         return ktime_to_ns(def_rt_bandwidth.rt_period);
662 }
663
664 typedef struct rt_rq *rt_rq_iter_t;
665
666 #define for_each_rt_rq(rt_rq, iter, rq) \
667         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
668
669 #define for_each_sched_rt_entity(rt_se) \
670         for (; rt_se; rt_se = NULL)
671
672 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
673 {
674         return NULL;
675 }
676
677 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
678 {
679         struct rq *rq = rq_of_rt_rq(rt_rq);
680
681         if (!rt_rq->rt_nr_running)
682                 return;
683
684         enqueue_top_rt_rq(rt_rq);
685         resched_curr(rq);
686 }
687
688 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
689 {
690         dequeue_top_rt_rq(rt_rq);
691 }
692
693 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
694 {
695         return rt_rq->rt_throttled;
696 }
697
698 static inline const struct cpumask *sched_rt_period_mask(void)
699 {
700         return cpu_online_mask;
701 }
702
703 static inline
704 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
705 {
706         return &cpu_rq(cpu)->rt;
707 }
708
709 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
710 {
711         return &def_rt_bandwidth;
712 }
713
714 #endif /* CONFIG_RT_GROUP_SCHED */
715
716 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
717 {
718         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
719
720         return (hrtimer_active(&rt_b->rt_period_timer) ||
721                 rt_rq->rt_time < rt_b->rt_runtime);
722 }
723
724 #ifdef CONFIG_SMP
725 /*
726  * We ran out of runtime, see if we can borrow some from our neighbours.
727  */
728 static void do_balance_runtime(struct rt_rq *rt_rq)
729 {
730         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
731         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
732         int i, weight;
733         u64 rt_period;
734
735         weight = cpumask_weight(rd->span);
736
737         raw_spin_lock(&rt_b->rt_runtime_lock);
738         rt_period = ktime_to_ns(rt_b->rt_period);
739         for_each_cpu(i, rd->span) {
740                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
741                 s64 diff;
742
743                 if (iter == rt_rq)
744                         continue;
745
746                 raw_spin_lock(&iter->rt_runtime_lock);
747                 /*
748                  * Either all rqs have inf runtime and there's nothing to steal
749                  * or __disable_runtime() below sets a specific rq to inf to
750                  * indicate its been disabled and disallow stealing.
751                  */
752                 if (iter->rt_runtime == RUNTIME_INF)
753                         goto next;
754
755                 /*
756                  * From runqueues with spare time, take 1/n part of their
757                  * spare time, but no more than our period.
758                  */
759                 diff = iter->rt_runtime - iter->rt_time;
760                 if (diff > 0) {
761                         diff = div_u64((u64)diff, weight);
762                         if (rt_rq->rt_runtime + diff > rt_period)
763                                 diff = rt_period - rt_rq->rt_runtime;
764                         iter->rt_runtime -= diff;
765                         rt_rq->rt_runtime += diff;
766                         if (rt_rq->rt_runtime == rt_period) {
767                                 raw_spin_unlock(&iter->rt_runtime_lock);
768                                 break;
769                         }
770                 }
771 next:
772                 raw_spin_unlock(&iter->rt_runtime_lock);
773         }
774         raw_spin_unlock(&rt_b->rt_runtime_lock);
775 }
776
777 /*
778  * Ensure this RQ takes back all the runtime it lend to its neighbours.
779  */
780 static void __disable_runtime(struct rq *rq)
781 {
782         struct root_domain *rd = rq->rd;
783         rt_rq_iter_t iter;
784         struct rt_rq *rt_rq;
785
786         if (unlikely(!scheduler_running))
787                 return;
788
789         for_each_rt_rq(rt_rq, iter, rq) {
790                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
791                 s64 want;
792                 int i;
793
794                 raw_spin_lock(&rt_b->rt_runtime_lock);
795                 raw_spin_lock(&rt_rq->rt_runtime_lock);
796                 /*
797                  * Either we're all inf and nobody needs to borrow, or we're
798                  * already disabled and thus have nothing to do, or we have
799                  * exactly the right amount of runtime to take out.
800                  */
801                 if (rt_rq->rt_runtime == RUNTIME_INF ||
802                                 rt_rq->rt_runtime == rt_b->rt_runtime)
803                         goto balanced;
804                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805
806                 /*
807                  * Calculate the difference between what we started out with
808                  * and what we current have, that's the amount of runtime
809                  * we lend and now have to reclaim.
810                  */
811                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
812
813                 /*
814                  * Greedy reclaim, take back as much as we can.
815                  */
816                 for_each_cpu(i, rd->span) {
817                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
818                         s64 diff;
819
820                         /*
821                          * Can't reclaim from ourselves or disabled runqueues.
822                          */
823                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
824                                 continue;
825
826                         raw_spin_lock(&iter->rt_runtime_lock);
827                         if (want > 0) {
828                                 diff = min_t(s64, iter->rt_runtime, want);
829                                 iter->rt_runtime -= diff;
830                                 want -= diff;
831                         } else {
832                                 iter->rt_runtime -= want;
833                                 want -= want;
834                         }
835                         raw_spin_unlock(&iter->rt_runtime_lock);
836
837                         if (!want)
838                                 break;
839                 }
840
841                 raw_spin_lock(&rt_rq->rt_runtime_lock);
842                 /*
843                  * We cannot be left wanting - that would mean some runtime
844                  * leaked out of the system.
845                  */
846                 BUG_ON(want);
847 balanced:
848                 /*
849                  * Disable all the borrow logic by pretending we have inf
850                  * runtime - in which case borrowing doesn't make sense.
851                  */
852                 rt_rq->rt_runtime = RUNTIME_INF;
853                 rt_rq->rt_throttled = 0;
854                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
855                 raw_spin_unlock(&rt_b->rt_runtime_lock);
856
857                 /* Make rt_rq available for pick_next_task() */
858                 sched_rt_rq_enqueue(rt_rq);
859         }
860 }
861
862 static void __enable_runtime(struct rq *rq)
863 {
864         rt_rq_iter_t iter;
865         struct rt_rq *rt_rq;
866
867         if (unlikely(!scheduler_running))
868                 return;
869
870         /*
871          * Reset each runqueue's bandwidth settings
872          */
873         for_each_rt_rq(rt_rq, iter, rq) {
874                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
875
876                 raw_spin_lock(&rt_b->rt_runtime_lock);
877                 raw_spin_lock(&rt_rq->rt_runtime_lock);
878                 rt_rq->rt_runtime = rt_b->rt_runtime;
879                 rt_rq->rt_time = 0;
880                 rt_rq->rt_throttled = 0;
881                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
882                 raw_spin_unlock(&rt_b->rt_runtime_lock);
883         }
884 }
885
886 static void balance_runtime(struct rt_rq *rt_rq)
887 {
888         if (!sched_feat(RT_RUNTIME_SHARE))
889                 return;
890
891         if (rt_rq->rt_time > rt_rq->rt_runtime) {
892                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
893                 do_balance_runtime(rt_rq);
894                 raw_spin_lock(&rt_rq->rt_runtime_lock);
895         }
896 }
897 #else /* !CONFIG_SMP */
898 static inline void balance_runtime(struct rt_rq *rt_rq) {}
899 #endif /* CONFIG_SMP */
900
901 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
902 {
903         int i, idle = 1, throttled = 0;
904         const struct cpumask *span;
905
906         span = sched_rt_period_mask();
907 #ifdef CONFIG_RT_GROUP_SCHED
908         /*
909          * FIXME: isolated CPUs should really leave the root task group,
910          * whether they are isolcpus or were isolated via cpusets, lest
911          * the timer run on a CPU which does not service all runqueues,
912          * potentially leaving other CPUs indefinitely throttled.  If
913          * isolation is really required, the user will turn the throttle
914          * off to kill the perturbations it causes anyway.  Meanwhile,
915          * this maintains functionality for boot and/or troubleshooting.
916          */
917         if (rt_b == &root_task_group.rt_bandwidth)
918                 span = cpu_online_mask;
919 #endif
920         for_each_cpu(i, span) {
921                 int enqueue = 0;
922                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
923                 struct rq *rq = rq_of_rt_rq(rt_rq);
924                 struct rq_flags rf;
925                 int skip;
926
927                 /*
928                  * When span == cpu_online_mask, taking each rq->lock
929                  * can be time-consuming. Try to avoid it when possible.
930                  */
931                 raw_spin_lock(&rt_rq->rt_runtime_lock);
932                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
933                         rt_rq->rt_runtime = rt_b->rt_runtime;
934                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
935                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
936                 if (skip)
937                         continue;
938
939                 rq_lock(rq, &rf);
940                 update_rq_clock(rq);
941
942                 if (rt_rq->rt_time) {
943                         u64 runtime;
944
945                         raw_spin_lock(&rt_rq->rt_runtime_lock);
946                         if (rt_rq->rt_throttled)
947                                 balance_runtime(rt_rq);
948                         runtime = rt_rq->rt_runtime;
949                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
950                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
951                                 rt_rq->rt_throttled = 0;
952                                 enqueue = 1;
953
954                                 /*
955                                  * When we're idle and a woken (rt) task is
956                                  * throttled check_preempt_curr() will set
957                                  * skip_update and the time between the wakeup
958                                  * and this unthrottle will get accounted as
959                                  * 'runtime'.
960                                  */
961                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
962                                         rq_clock_cancel_skipupdate(rq);
963                         }
964                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
965                                 idle = 0;
966                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
967                 } else if (rt_rq->rt_nr_running) {
968                         idle = 0;
969                         if (!rt_rq_throttled(rt_rq))
970                                 enqueue = 1;
971                 }
972                 if (rt_rq->rt_throttled)
973                         throttled = 1;
974
975                 if (enqueue)
976                         sched_rt_rq_enqueue(rt_rq);
977                 rq_unlock(rq, &rf);
978         }
979
980         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
981                 return 1;
982
983         return idle;
984 }
985
986 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
987 {
988 #ifdef CONFIG_RT_GROUP_SCHED
989         struct rt_rq *rt_rq = group_rt_rq(rt_se);
990
991         if (rt_rq)
992                 return rt_rq->highest_prio.curr;
993 #endif
994
995         return rt_task_of(rt_se)->prio;
996 }
997
998 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
999 {
1000         u64 runtime = sched_rt_runtime(rt_rq);
1001
1002         if (rt_rq->rt_throttled)
1003                 return rt_rq_throttled(rt_rq);
1004
1005         if (runtime >= sched_rt_period(rt_rq))
1006                 return 0;
1007
1008         balance_runtime(rt_rq);
1009         runtime = sched_rt_runtime(rt_rq);
1010         if (runtime == RUNTIME_INF)
1011                 return 0;
1012
1013         if (rt_rq->rt_time > runtime) {
1014                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1015
1016                 /*
1017                  * Don't actually throttle groups that have no runtime assigned
1018                  * but accrue some time due to boosting.
1019                  */
1020                 if (likely(rt_b->rt_runtime)) {
1021                         rt_rq->rt_throttled = 1;
1022                         printk_deferred_once("sched: RT throttling activated\n");
1023                 } else {
1024                         /*
1025                          * In case we did anyway, make it go away,
1026                          * replenishment is a joke, since it will replenish us
1027                          * with exactly 0 ns.
1028                          */
1029                         rt_rq->rt_time = 0;
1030                 }
1031
1032                 if (rt_rq_throttled(rt_rq)) {
1033                         sched_rt_rq_dequeue(rt_rq);
1034                         return 1;
1035                 }
1036         }
1037
1038         return 0;
1039 }
1040
1041 /*
1042  * Update the current task's runtime statistics. Skip current tasks that
1043  * are not in our scheduling class.
1044  */
1045 static void update_curr_rt(struct rq *rq)
1046 {
1047         struct task_struct *curr = rq->curr;
1048         struct sched_rt_entity *rt_se = &curr->rt;
1049         u64 delta_exec;
1050         u64 now;
1051
1052         if (curr->sched_class != &rt_sched_class)
1053                 return;
1054
1055         now = rq_clock_task(rq);
1056         delta_exec = now - curr->se.exec_start;
1057         if (unlikely((s64)delta_exec <= 0))
1058                 return;
1059
1060         schedstat_set(curr->stats.exec_max,
1061                       max(curr->stats.exec_max, delta_exec));
1062
1063         trace_sched_stat_runtime(curr, delta_exec, 0);
1064
1065         curr->se.sum_exec_runtime += delta_exec;
1066         account_group_exec_runtime(curr, delta_exec);
1067
1068         curr->se.exec_start = now;
1069         cgroup_account_cputime(curr, delta_exec);
1070
1071         if (!rt_bandwidth_enabled())
1072                 return;
1073
1074         for_each_sched_rt_entity(rt_se) {
1075                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1076                 int exceeded;
1077
1078                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1079                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1080                         rt_rq->rt_time += delta_exec;
1081                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1082                         if (exceeded)
1083                                 resched_curr(rq);
1084                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1085                         if (exceeded)
1086                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1087                 }
1088         }
1089 }
1090
1091 static void
1092 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1093 {
1094         struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096         BUG_ON(&rq->rt != rt_rq);
1097
1098         if (!rt_rq->rt_queued)
1099                 return;
1100
1101         BUG_ON(!rq->nr_running);
1102
1103         sub_nr_running(rq, rt_rq->rt_nr_running);
1104         rt_rq->rt_queued = 0;
1105
1106 }
1107
1108 static void
1109 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1110 {
1111         struct rq *rq = rq_of_rt_rq(rt_rq);
1112
1113         BUG_ON(&rq->rt != rt_rq);
1114
1115         if (rt_rq->rt_queued)
1116                 return;
1117
1118         if (rt_rq_throttled(rt_rq))
1119                 return;
1120
1121         if (rt_rq->rt_nr_running) {
1122                 add_nr_running(rq, rt_rq->rt_nr_running);
1123                 rt_rq->rt_queued = 1;
1124         }
1125
1126         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1127         cpufreq_update_util(rq, 0);
1128 }
1129
1130 #if defined CONFIG_SMP
1131
1132 static void
1133 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1134 {
1135         struct rq *rq = rq_of_rt_rq(rt_rq);
1136
1137 #ifdef CONFIG_RT_GROUP_SCHED
1138         /*
1139          * Change rq's cpupri only if rt_rq is the top queue.
1140          */
1141         if (&rq->rt != rt_rq)
1142                 return;
1143 #endif
1144         if (rq->online && prio < prev_prio)
1145                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1146 }
1147
1148 static void
1149 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1150 {
1151         struct rq *rq = rq_of_rt_rq(rt_rq);
1152
1153 #ifdef CONFIG_RT_GROUP_SCHED
1154         /*
1155          * Change rq's cpupri only if rt_rq is the top queue.
1156          */
1157         if (&rq->rt != rt_rq)
1158                 return;
1159 #endif
1160         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1161                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1162 }
1163
1164 #else /* CONFIG_SMP */
1165
1166 static inline
1167 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1168 static inline
1169 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1170
1171 #endif /* CONFIG_SMP */
1172
1173 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1174 static void
1175 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1176 {
1177         int prev_prio = rt_rq->highest_prio.curr;
1178
1179         if (prio < prev_prio)
1180                 rt_rq->highest_prio.curr = prio;
1181
1182         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1183 }
1184
1185 static void
1186 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1187 {
1188         int prev_prio = rt_rq->highest_prio.curr;
1189
1190         if (rt_rq->rt_nr_running) {
1191
1192                 WARN_ON(prio < prev_prio);
1193
1194                 /*
1195                  * This may have been our highest task, and therefore
1196                  * we may have some recomputation to do
1197                  */
1198                 if (prio == prev_prio) {
1199                         struct rt_prio_array *array = &rt_rq->active;
1200
1201                         rt_rq->highest_prio.curr =
1202                                 sched_find_first_bit(array->bitmap);
1203                 }
1204
1205         } else {
1206                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1207         }
1208
1209         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1210 }
1211
1212 #else
1213
1214 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1215 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1216
1217 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1218
1219 #ifdef CONFIG_RT_GROUP_SCHED
1220
1221 static void
1222 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223 {
1224         if (rt_se_boosted(rt_se))
1225                 rt_rq->rt_nr_boosted++;
1226
1227         if (rt_rq->tg)
1228                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1229 }
1230
1231 static void
1232 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1233 {
1234         if (rt_se_boosted(rt_se))
1235                 rt_rq->rt_nr_boosted--;
1236
1237         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1238 }
1239
1240 #else /* CONFIG_RT_GROUP_SCHED */
1241
1242 static void
1243 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1244 {
1245         start_rt_bandwidth(&def_rt_bandwidth);
1246 }
1247
1248 static inline
1249 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1250
1251 #endif /* CONFIG_RT_GROUP_SCHED */
1252
1253 static inline
1254 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1255 {
1256         struct rt_rq *group_rq = group_rt_rq(rt_se);
1257
1258         if (group_rq)
1259                 return group_rq->rt_nr_running;
1260         else
1261                 return 1;
1262 }
1263
1264 static inline
1265 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1266 {
1267         struct rt_rq *group_rq = group_rt_rq(rt_se);
1268         struct task_struct *tsk;
1269
1270         if (group_rq)
1271                 return group_rq->rr_nr_running;
1272
1273         tsk = rt_task_of(rt_se);
1274
1275         return (tsk->policy == SCHED_RR) ? 1 : 0;
1276 }
1277
1278 static inline
1279 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1280 {
1281         int prio = rt_se_prio(rt_se);
1282
1283         WARN_ON(!rt_prio(prio));
1284         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1285         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1286
1287         inc_rt_prio(rt_rq, prio);
1288         inc_rt_migration(rt_se, rt_rq);
1289         inc_rt_group(rt_se, rt_rq);
1290 }
1291
1292 static inline
1293 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1294 {
1295         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1296         WARN_ON(!rt_rq->rt_nr_running);
1297         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1298         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1299
1300         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1301         dec_rt_migration(rt_se, rt_rq);
1302         dec_rt_group(rt_se, rt_rq);
1303 }
1304
1305 /*
1306  * Change rt_se->run_list location unless SAVE && !MOVE
1307  *
1308  * assumes ENQUEUE/DEQUEUE flags match
1309  */
1310 static inline bool move_entity(unsigned int flags)
1311 {
1312         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1313                 return false;
1314
1315         return true;
1316 }
1317
1318 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1319 {
1320         list_del_init(&rt_se->run_list);
1321
1322         if (list_empty(array->queue + rt_se_prio(rt_se)))
1323                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1324
1325         rt_se->on_list = 0;
1326 }
1327
1328 static inline struct sched_statistics *
1329 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1330 {
1331 #ifdef CONFIG_RT_GROUP_SCHED
1332         /* schedstats is not supported for rt group. */
1333         if (!rt_entity_is_task(rt_se))
1334                 return NULL;
1335 #endif
1336
1337         return &rt_task_of(rt_se)->stats;
1338 }
1339
1340 static inline void
1341 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1342 {
1343         struct sched_statistics *stats;
1344         struct task_struct *p = NULL;
1345
1346         if (!schedstat_enabled())
1347                 return;
1348
1349         if (rt_entity_is_task(rt_se))
1350                 p = rt_task_of(rt_se);
1351
1352         stats = __schedstats_from_rt_se(rt_se);
1353         if (!stats)
1354                 return;
1355
1356         __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1357 }
1358
1359 static inline void
1360 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1361 {
1362         struct sched_statistics *stats;
1363         struct task_struct *p = NULL;
1364
1365         if (!schedstat_enabled())
1366                 return;
1367
1368         if (rt_entity_is_task(rt_se))
1369                 p = rt_task_of(rt_se);
1370
1371         stats = __schedstats_from_rt_se(rt_se);
1372         if (!stats)
1373                 return;
1374
1375         __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1376 }
1377
1378 static inline void
1379 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1380                         int flags)
1381 {
1382         if (!schedstat_enabled())
1383                 return;
1384
1385         if (flags & ENQUEUE_WAKEUP)
1386                 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1387 }
1388
1389 static inline void
1390 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1391 {
1392         struct sched_statistics *stats;
1393         struct task_struct *p = NULL;
1394
1395         if (!schedstat_enabled())
1396                 return;
1397
1398         if (rt_entity_is_task(rt_se))
1399                 p = rt_task_of(rt_se);
1400
1401         stats = __schedstats_from_rt_se(rt_se);
1402         if (!stats)
1403                 return;
1404
1405         __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1406 }
1407
1408 static inline void
1409 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1410                         int flags)
1411 {
1412         struct task_struct *p = NULL;
1413
1414         if (!schedstat_enabled())
1415                 return;
1416
1417         if (rt_entity_is_task(rt_se))
1418                 p = rt_task_of(rt_se);
1419
1420         if ((flags & DEQUEUE_SLEEP) && p) {
1421                 unsigned int state;
1422
1423                 state = READ_ONCE(p->__state);
1424                 if (state & TASK_INTERRUPTIBLE)
1425                         __schedstat_set(p->stats.sleep_start,
1426                                         rq_clock(rq_of_rt_rq(rt_rq)));
1427
1428                 if (state & TASK_UNINTERRUPTIBLE)
1429                         __schedstat_set(p->stats.block_start,
1430                                         rq_clock(rq_of_rt_rq(rt_rq)));
1431         }
1432 }
1433
1434 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1435 {
1436         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1437         struct rt_prio_array *array = &rt_rq->active;
1438         struct rt_rq *group_rq = group_rt_rq(rt_se);
1439         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1440
1441         /*
1442          * Don't enqueue the group if its throttled, or when empty.
1443          * The latter is a consequence of the former when a child group
1444          * get throttled and the current group doesn't have any other
1445          * active members.
1446          */
1447         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1448                 if (rt_se->on_list)
1449                         __delist_rt_entity(rt_se, array);
1450                 return;
1451         }
1452
1453         if (move_entity(flags)) {
1454                 WARN_ON_ONCE(rt_se->on_list);
1455                 if (flags & ENQUEUE_HEAD)
1456                         list_add(&rt_se->run_list, queue);
1457                 else
1458                         list_add_tail(&rt_se->run_list, queue);
1459
1460                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1461                 rt_se->on_list = 1;
1462         }
1463         rt_se->on_rq = 1;
1464
1465         inc_rt_tasks(rt_se, rt_rq);
1466 }
1467
1468 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1469 {
1470         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1471         struct rt_prio_array *array = &rt_rq->active;
1472
1473         if (move_entity(flags)) {
1474                 WARN_ON_ONCE(!rt_se->on_list);
1475                 __delist_rt_entity(rt_se, array);
1476         }
1477         rt_se->on_rq = 0;
1478
1479         dec_rt_tasks(rt_se, rt_rq);
1480 }
1481
1482 /*
1483  * Because the prio of an upper entry depends on the lower
1484  * entries, we must remove entries top - down.
1485  */
1486 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1487 {
1488         struct sched_rt_entity *back = NULL;
1489
1490         for_each_sched_rt_entity(rt_se) {
1491                 rt_se->back = back;
1492                 back = rt_se;
1493         }
1494
1495         dequeue_top_rt_rq(rt_rq_of_se(back));
1496
1497         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1498                 if (on_rt_rq(rt_se))
1499                         __dequeue_rt_entity(rt_se, flags);
1500         }
1501 }
1502
1503 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1504 {
1505         struct rq *rq = rq_of_rt_se(rt_se);
1506
1507         update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1508
1509         dequeue_rt_stack(rt_se, flags);
1510         for_each_sched_rt_entity(rt_se)
1511                 __enqueue_rt_entity(rt_se, flags);
1512         enqueue_top_rt_rq(&rq->rt);
1513 }
1514
1515 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1516 {
1517         struct rq *rq = rq_of_rt_se(rt_se);
1518
1519         update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1520
1521         dequeue_rt_stack(rt_se, flags);
1522
1523         for_each_sched_rt_entity(rt_se) {
1524                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1525
1526                 if (rt_rq && rt_rq->rt_nr_running)
1527                         __enqueue_rt_entity(rt_se, flags);
1528         }
1529         enqueue_top_rt_rq(&rq->rt);
1530 }
1531
1532 /*
1533  * Adding/removing a task to/from a priority array:
1534  */
1535 static void
1536 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1537 {
1538         struct sched_rt_entity *rt_se = &p->rt;
1539
1540         if (flags & ENQUEUE_WAKEUP)
1541                 rt_se->timeout = 0;
1542
1543         check_schedstat_required();
1544         update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1545
1546         enqueue_rt_entity(rt_se, flags);
1547
1548         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1549                 enqueue_pushable_task(rq, p);
1550 }
1551
1552 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1553 {
1554         struct sched_rt_entity *rt_se = &p->rt;
1555
1556         update_curr_rt(rq);
1557         dequeue_rt_entity(rt_se, flags);
1558
1559         dequeue_pushable_task(rq, p);
1560 }
1561
1562 /*
1563  * Put task to the head or the end of the run list without the overhead of
1564  * dequeue followed by enqueue.
1565  */
1566 static void
1567 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1568 {
1569         if (on_rt_rq(rt_se)) {
1570                 struct rt_prio_array *array = &rt_rq->active;
1571                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1572
1573                 if (head)
1574                         list_move(&rt_se->run_list, queue);
1575                 else
1576                         list_move_tail(&rt_se->run_list, queue);
1577         }
1578 }
1579
1580 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1581 {
1582         struct sched_rt_entity *rt_se = &p->rt;
1583         struct rt_rq *rt_rq;
1584
1585         for_each_sched_rt_entity(rt_se) {
1586                 rt_rq = rt_rq_of_se(rt_se);
1587                 requeue_rt_entity(rt_rq, rt_se, head);
1588         }
1589 }
1590
1591 static void yield_task_rt(struct rq *rq)
1592 {
1593         requeue_task_rt(rq, rq->curr, 0);
1594 }
1595
1596 #ifdef CONFIG_SMP
1597 static int find_lowest_rq(struct task_struct *task);
1598
1599 static int
1600 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1601 {
1602         struct task_struct *curr;
1603         struct rq *rq;
1604         bool test;
1605
1606         /* For anything but wake ups, just return the task_cpu */
1607         if (!(flags & (WF_TTWU | WF_FORK)))
1608                 goto out;
1609
1610         rq = cpu_rq(cpu);
1611
1612         rcu_read_lock();
1613         curr = READ_ONCE(rq->curr); /* unlocked access */
1614
1615         /*
1616          * If the current task on @p's runqueue is an RT task, then
1617          * try to see if we can wake this RT task up on another
1618          * runqueue. Otherwise simply start this RT task
1619          * on its current runqueue.
1620          *
1621          * We want to avoid overloading runqueues. If the woken
1622          * task is a higher priority, then it will stay on this CPU
1623          * and the lower prio task should be moved to another CPU.
1624          * Even though this will probably make the lower prio task
1625          * lose its cache, we do not want to bounce a higher task
1626          * around just because it gave up its CPU, perhaps for a
1627          * lock?
1628          *
1629          * For equal prio tasks, we just let the scheduler sort it out.
1630          *
1631          * Otherwise, just let it ride on the affined RQ and the
1632          * post-schedule router will push the preempted task away
1633          *
1634          * This test is optimistic, if we get it wrong the load-balancer
1635          * will have to sort it out.
1636          *
1637          * We take into account the capacity of the CPU to ensure it fits the
1638          * requirement of the task - which is only important on heterogeneous
1639          * systems like big.LITTLE.
1640          */
1641         test = curr &&
1642                unlikely(rt_task(curr)) &&
1643                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1644
1645         if (test || !rt_task_fits_capacity(p, cpu)) {
1646                 int target = find_lowest_rq(p);
1647
1648                 /*
1649                  * Bail out if we were forcing a migration to find a better
1650                  * fitting CPU but our search failed.
1651                  */
1652                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1653                         goto out_unlock;
1654
1655                 /*
1656                  * Don't bother moving it if the destination CPU is
1657                  * not running a lower priority task.
1658                  */
1659                 if (target != -1 &&
1660                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1661                         cpu = target;
1662         }
1663
1664 out_unlock:
1665         rcu_read_unlock();
1666
1667 out:
1668         return cpu;
1669 }
1670
1671 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1672 {
1673         /*
1674          * Current can't be migrated, useless to reschedule,
1675          * let's hope p can move out.
1676          */
1677         if (rq->curr->nr_cpus_allowed == 1 ||
1678             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1679                 return;
1680
1681         /*
1682          * p is migratable, so let's not schedule it and
1683          * see if it is pushed or pulled somewhere else.
1684          */
1685         if (p->nr_cpus_allowed != 1 &&
1686             cpupri_find(&rq->rd->cpupri, p, NULL))
1687                 return;
1688
1689         /*
1690          * There appear to be other CPUs that can accept
1691          * the current task but none can run 'p', so lets reschedule
1692          * to try and push the current task away:
1693          */
1694         requeue_task_rt(rq, p, 1);
1695         resched_curr(rq);
1696 }
1697
1698 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1699 {
1700         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1701                 /*
1702                  * This is OK, because current is on_cpu, which avoids it being
1703                  * picked for load-balance and preemption/IRQs are still
1704                  * disabled avoiding further scheduler activity on it and we've
1705                  * not yet started the picking loop.
1706                  */
1707                 rq_unpin_lock(rq, rf);
1708                 pull_rt_task(rq);
1709                 rq_repin_lock(rq, rf);
1710         }
1711
1712         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1713 }
1714 #endif /* CONFIG_SMP */
1715
1716 /*
1717  * Preempt the current task with a newly woken task if needed:
1718  */
1719 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1720 {
1721         if (p->prio < rq->curr->prio) {
1722                 resched_curr(rq);
1723                 return;
1724         }
1725
1726 #ifdef CONFIG_SMP
1727         /*
1728          * If:
1729          *
1730          * - the newly woken task is of equal priority to the current task
1731          * - the newly woken task is non-migratable while current is migratable
1732          * - current will be preempted on the next reschedule
1733          *
1734          * we should check to see if current can readily move to a different
1735          * cpu.  If so, we will reschedule to allow the push logic to try
1736          * to move current somewhere else, making room for our non-migratable
1737          * task.
1738          */
1739         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1740                 check_preempt_equal_prio(rq, p);
1741 #endif
1742 }
1743
1744 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1745 {
1746         struct sched_rt_entity *rt_se = &p->rt;
1747         struct rt_rq *rt_rq = &rq->rt;
1748
1749         p->se.exec_start = rq_clock_task(rq);
1750         if (on_rt_rq(&p->rt))
1751                 update_stats_wait_end_rt(rt_rq, rt_se);
1752
1753         /* The running task is never eligible for pushing */
1754         dequeue_pushable_task(rq, p);
1755
1756         if (!first)
1757                 return;
1758
1759         /*
1760          * If prev task was rt, put_prev_task() has already updated the
1761          * utilization. We only care of the case where we start to schedule a
1762          * rt task
1763          */
1764         if (rq->curr->sched_class != &rt_sched_class)
1765                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1766
1767         rt_queue_push_tasks(rq);
1768 }
1769
1770 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1771 {
1772         struct rt_prio_array *array = &rt_rq->active;
1773         struct sched_rt_entity *next = NULL;
1774         struct list_head *queue;
1775         int idx;
1776
1777         idx = sched_find_first_bit(array->bitmap);
1778         BUG_ON(idx >= MAX_RT_PRIO);
1779
1780         queue = array->queue + idx;
1781         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1782
1783         return next;
1784 }
1785
1786 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1787 {
1788         struct sched_rt_entity *rt_se;
1789         struct rt_rq *rt_rq  = &rq->rt;
1790
1791         do {
1792                 rt_se = pick_next_rt_entity(rt_rq);
1793                 BUG_ON(!rt_se);
1794                 rt_rq = group_rt_rq(rt_se);
1795         } while (rt_rq);
1796
1797         return rt_task_of(rt_se);
1798 }
1799
1800 static struct task_struct *pick_task_rt(struct rq *rq)
1801 {
1802         struct task_struct *p;
1803
1804         if (!sched_rt_runnable(rq))
1805                 return NULL;
1806
1807         p = _pick_next_task_rt(rq);
1808
1809         return p;
1810 }
1811
1812 static struct task_struct *pick_next_task_rt(struct rq *rq)
1813 {
1814         struct task_struct *p = pick_task_rt(rq);
1815
1816         if (p)
1817                 set_next_task_rt(rq, p, true);
1818
1819         return p;
1820 }
1821
1822 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1823 {
1824         struct sched_rt_entity *rt_se = &p->rt;
1825         struct rt_rq *rt_rq = &rq->rt;
1826
1827         if (on_rt_rq(&p->rt))
1828                 update_stats_wait_start_rt(rt_rq, rt_se);
1829
1830         update_curr_rt(rq);
1831
1832         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1833
1834         /*
1835          * The previous task needs to be made eligible for pushing
1836          * if it is still active
1837          */
1838         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1839                 enqueue_pushable_task(rq, p);
1840 }
1841
1842 #ifdef CONFIG_SMP
1843
1844 /* Only try algorithms three times */
1845 #define RT_MAX_TRIES 3
1846
1847 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1848 {
1849         if (!task_running(rq, p) &&
1850             cpumask_test_cpu(cpu, &p->cpus_mask))
1851                 return 1;
1852
1853         return 0;
1854 }
1855
1856 /*
1857  * Return the highest pushable rq's task, which is suitable to be executed
1858  * on the CPU, NULL otherwise
1859  */
1860 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1861 {
1862         struct plist_head *head = &rq->rt.pushable_tasks;
1863         struct task_struct *p;
1864
1865         if (!has_pushable_tasks(rq))
1866                 return NULL;
1867
1868         plist_for_each_entry(p, head, pushable_tasks) {
1869                 if (pick_rt_task(rq, p, cpu))
1870                         return p;
1871         }
1872
1873         return NULL;
1874 }
1875
1876 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1877
1878 static int find_lowest_rq(struct task_struct *task)
1879 {
1880         struct sched_domain *sd;
1881         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1882         int this_cpu = smp_processor_id();
1883         int cpu      = task_cpu(task);
1884         int ret;
1885
1886         /* Make sure the mask is initialized first */
1887         if (unlikely(!lowest_mask))
1888                 return -1;
1889
1890         if (task->nr_cpus_allowed == 1)
1891                 return -1; /* No other targets possible */
1892
1893         /*
1894          * If we're on asym system ensure we consider the different capacities
1895          * of the CPUs when searching for the lowest_mask.
1896          */
1897         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1898
1899                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1900                                           task, lowest_mask,
1901                                           rt_task_fits_capacity);
1902         } else {
1903
1904                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1905                                   task, lowest_mask);
1906         }
1907
1908         if (!ret)
1909                 return -1; /* No targets found */
1910
1911         /*
1912          * At this point we have built a mask of CPUs representing the
1913          * lowest priority tasks in the system.  Now we want to elect
1914          * the best one based on our affinity and topology.
1915          *
1916          * We prioritize the last CPU that the task executed on since
1917          * it is most likely cache-hot in that location.
1918          */
1919         if (cpumask_test_cpu(cpu, lowest_mask))
1920                 return cpu;
1921
1922         /*
1923          * Otherwise, we consult the sched_domains span maps to figure
1924          * out which CPU is logically closest to our hot cache data.
1925          */
1926         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1927                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1928
1929         rcu_read_lock();
1930         for_each_domain(cpu, sd) {
1931                 if (sd->flags & SD_WAKE_AFFINE) {
1932                         int best_cpu;
1933
1934                         /*
1935                          * "this_cpu" is cheaper to preempt than a
1936                          * remote processor.
1937                          */
1938                         if (this_cpu != -1 &&
1939                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1940                                 rcu_read_unlock();
1941                                 return this_cpu;
1942                         }
1943
1944                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1945                                                               sched_domain_span(sd));
1946                         if (best_cpu < nr_cpu_ids) {
1947                                 rcu_read_unlock();
1948                                 return best_cpu;
1949                         }
1950                 }
1951         }
1952         rcu_read_unlock();
1953
1954         /*
1955          * And finally, if there were no matches within the domains
1956          * just give the caller *something* to work with from the compatible
1957          * locations.
1958          */
1959         if (this_cpu != -1)
1960                 return this_cpu;
1961
1962         cpu = cpumask_any_distribute(lowest_mask);
1963         if (cpu < nr_cpu_ids)
1964                 return cpu;
1965
1966         return -1;
1967 }
1968
1969 /* Will lock the rq it finds */
1970 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1971 {
1972         struct rq *lowest_rq = NULL;
1973         int tries;
1974         int cpu;
1975
1976         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1977                 cpu = find_lowest_rq(task);
1978
1979                 if ((cpu == -1) || (cpu == rq->cpu))
1980                         break;
1981
1982                 lowest_rq = cpu_rq(cpu);
1983
1984                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1985                         /*
1986                          * Target rq has tasks of equal or higher priority,
1987                          * retrying does not release any lock and is unlikely
1988                          * to yield a different result.
1989                          */
1990                         lowest_rq = NULL;
1991                         break;
1992                 }
1993
1994                 /* if the prio of this runqueue changed, try again */
1995                 if (double_lock_balance(rq, lowest_rq)) {
1996                         /*
1997                          * We had to unlock the run queue. In
1998                          * the mean time, task could have
1999                          * migrated already or had its affinity changed.
2000                          * Also make sure that it wasn't scheduled on its rq.
2001                          */
2002                         if (unlikely(task_rq(task) != rq ||
2003                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2004                                      task_running(rq, task) ||
2005                                      !rt_task(task) ||
2006                                      !task_on_rq_queued(task))) {
2007
2008                                 double_unlock_balance(rq, lowest_rq);
2009                                 lowest_rq = NULL;
2010                                 break;
2011                         }
2012                 }
2013
2014                 /* If this rq is still suitable use it. */
2015                 if (lowest_rq->rt.highest_prio.curr > task->prio)
2016                         break;
2017
2018                 /* try again */
2019                 double_unlock_balance(rq, lowest_rq);
2020                 lowest_rq = NULL;
2021         }
2022
2023         return lowest_rq;
2024 }
2025
2026 static struct task_struct *pick_next_pushable_task(struct rq *rq)
2027 {
2028         struct task_struct *p;
2029
2030         if (!has_pushable_tasks(rq))
2031                 return NULL;
2032
2033         p = plist_first_entry(&rq->rt.pushable_tasks,
2034                               struct task_struct, pushable_tasks);
2035
2036         BUG_ON(rq->cpu != task_cpu(p));
2037         BUG_ON(task_current(rq, p));
2038         BUG_ON(p->nr_cpus_allowed <= 1);
2039
2040         BUG_ON(!task_on_rq_queued(p));
2041         BUG_ON(!rt_task(p));
2042
2043         return p;
2044 }
2045
2046 /*
2047  * If the current CPU has more than one RT task, see if the non
2048  * running task can migrate over to a CPU that is running a task
2049  * of lesser priority.
2050  */
2051 static int push_rt_task(struct rq *rq, bool pull)
2052 {
2053         struct task_struct *next_task;
2054         struct rq *lowest_rq;
2055         int ret = 0;
2056
2057         if (!rq->rt.overloaded)
2058                 return 0;
2059
2060         next_task = pick_next_pushable_task(rq);
2061         if (!next_task)
2062                 return 0;
2063
2064 retry:
2065         /*
2066          * It's possible that the next_task slipped in of
2067          * higher priority than current. If that's the case
2068          * just reschedule current.
2069          */
2070         if (unlikely(next_task->prio < rq->curr->prio)) {
2071                 resched_curr(rq);
2072                 return 0;
2073         }
2074
2075         if (is_migration_disabled(next_task)) {
2076                 struct task_struct *push_task = NULL;
2077                 int cpu;
2078
2079                 if (!pull || rq->push_busy)
2080                         return 0;
2081
2082                 /*
2083                  * Invoking find_lowest_rq() on anything but an RT task doesn't
2084                  * make sense. Per the above priority check, curr has to
2085                  * be of higher priority than next_task, so no need to
2086                  * reschedule when bailing out.
2087                  *
2088                  * Note that the stoppers are masqueraded as SCHED_FIFO
2089                  * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2090                  */
2091                 if (rq->curr->sched_class != &rt_sched_class)
2092                         return 0;
2093
2094                 cpu = find_lowest_rq(rq->curr);
2095                 if (cpu == -1 || cpu == rq->cpu)
2096                         return 0;
2097
2098                 /*
2099                  * Given we found a CPU with lower priority than @next_task,
2100                  * therefore it should be running. However we cannot migrate it
2101                  * to this other CPU, instead attempt to push the current
2102                  * running task on this CPU away.
2103                  */
2104                 push_task = get_push_task(rq);
2105                 if (push_task) {
2106                         raw_spin_rq_unlock(rq);
2107                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2108                                             push_task, &rq->push_work);
2109                         raw_spin_rq_lock(rq);
2110                 }
2111
2112                 return 0;
2113         }
2114
2115         if (WARN_ON(next_task == rq->curr))
2116                 return 0;
2117
2118         /* We might release rq lock */
2119         get_task_struct(next_task);
2120
2121         /* find_lock_lowest_rq locks the rq if found */
2122         lowest_rq = find_lock_lowest_rq(next_task, rq);
2123         if (!lowest_rq) {
2124                 struct task_struct *task;
2125                 /*
2126                  * find_lock_lowest_rq releases rq->lock
2127                  * so it is possible that next_task has migrated.
2128                  *
2129                  * We need to make sure that the task is still on the same
2130                  * run-queue and is also still the next task eligible for
2131                  * pushing.
2132                  */
2133                 task = pick_next_pushable_task(rq);
2134                 if (task == next_task) {
2135                         /*
2136                          * The task hasn't migrated, and is still the next
2137                          * eligible task, but we failed to find a run-queue
2138                          * to push it to.  Do not retry in this case, since
2139                          * other CPUs will pull from us when ready.
2140                          */
2141                         goto out;
2142                 }
2143
2144                 if (!task)
2145                         /* No more tasks, just exit */
2146                         goto out;
2147
2148                 /*
2149                  * Something has shifted, try again.
2150                  */
2151                 put_task_struct(next_task);
2152                 next_task = task;
2153                 goto retry;
2154         }
2155
2156         deactivate_task(rq, next_task, 0);
2157         set_task_cpu(next_task, lowest_rq->cpu);
2158         activate_task(lowest_rq, next_task, 0);
2159         resched_curr(lowest_rq);
2160         ret = 1;
2161
2162         double_unlock_balance(rq, lowest_rq);
2163 out:
2164         put_task_struct(next_task);
2165
2166         return ret;
2167 }
2168
2169 static void push_rt_tasks(struct rq *rq)
2170 {
2171         /* push_rt_task will return true if it moved an RT */
2172         while (push_rt_task(rq, false))
2173                 ;
2174 }
2175
2176 #ifdef HAVE_RT_PUSH_IPI
2177
2178 /*
2179  * When a high priority task schedules out from a CPU and a lower priority
2180  * task is scheduled in, a check is made to see if there's any RT tasks
2181  * on other CPUs that are waiting to run because a higher priority RT task
2182  * is currently running on its CPU. In this case, the CPU with multiple RT
2183  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2184  * up that may be able to run one of its non-running queued RT tasks.
2185  *
2186  * All CPUs with overloaded RT tasks need to be notified as there is currently
2187  * no way to know which of these CPUs have the highest priority task waiting
2188  * to run. Instead of trying to take a spinlock on each of these CPUs,
2189  * which has shown to cause large latency when done on machines with many
2190  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2191  * RT tasks waiting to run.
2192  *
2193  * Just sending an IPI to each of the CPUs is also an issue, as on large
2194  * count CPU machines, this can cause an IPI storm on a CPU, especially
2195  * if its the only CPU with multiple RT tasks queued, and a large number
2196  * of CPUs scheduling a lower priority task at the same time.
2197  *
2198  * Each root domain has its own irq work function that can iterate over
2199  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2200  * task must be checked if there's one or many CPUs that are lowering
2201  * their priority, there's a single irq work iterator that will try to
2202  * push off RT tasks that are waiting to run.
2203  *
2204  * When a CPU schedules a lower priority task, it will kick off the
2205  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2206  * As it only takes the first CPU that schedules a lower priority task
2207  * to start the process, the rto_start variable is incremented and if
2208  * the atomic result is one, then that CPU will try to take the rto_lock.
2209  * This prevents high contention on the lock as the process handles all
2210  * CPUs scheduling lower priority tasks.
2211  *
2212  * All CPUs that are scheduling a lower priority task will increment the
2213  * rt_loop_next variable. This will make sure that the irq work iterator
2214  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2215  * priority task, even if the iterator is in the middle of a scan. Incrementing
2216  * the rt_loop_next will cause the iterator to perform another scan.
2217  *
2218  */
2219 static int rto_next_cpu(struct root_domain *rd)
2220 {
2221         int next;
2222         int cpu;
2223
2224         /*
2225          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2226          * rt_next_cpu() will simply return the first CPU found in
2227          * the rto_mask.
2228          *
2229          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2230          * will return the next CPU found in the rto_mask.
2231          *
2232          * If there are no more CPUs left in the rto_mask, then a check is made
2233          * against rto_loop and rto_loop_next. rto_loop is only updated with
2234          * the rto_lock held, but any CPU may increment the rto_loop_next
2235          * without any locking.
2236          */
2237         for (;;) {
2238
2239                 /* When rto_cpu is -1 this acts like cpumask_first() */
2240                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2241
2242                 rd->rto_cpu = cpu;
2243
2244                 if (cpu < nr_cpu_ids)
2245                         return cpu;
2246
2247                 rd->rto_cpu = -1;
2248
2249                 /*
2250                  * ACQUIRE ensures we see the @rto_mask changes
2251                  * made prior to the @next value observed.
2252                  *
2253                  * Matches WMB in rt_set_overload().
2254                  */
2255                 next = atomic_read_acquire(&rd->rto_loop_next);
2256
2257                 if (rd->rto_loop == next)
2258                         break;
2259
2260                 rd->rto_loop = next;
2261         }
2262
2263         return -1;
2264 }
2265
2266 static inline bool rto_start_trylock(atomic_t *v)
2267 {
2268         return !atomic_cmpxchg_acquire(v, 0, 1);
2269 }
2270
2271 static inline void rto_start_unlock(atomic_t *v)
2272 {
2273         atomic_set_release(v, 0);
2274 }
2275
2276 static void tell_cpu_to_push(struct rq *rq)
2277 {
2278         int cpu = -1;
2279
2280         /* Keep the loop going if the IPI is currently active */
2281         atomic_inc(&rq->rd->rto_loop_next);
2282
2283         /* Only one CPU can initiate a loop at a time */
2284         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2285                 return;
2286
2287         raw_spin_lock(&rq->rd->rto_lock);
2288
2289         /*
2290          * The rto_cpu is updated under the lock, if it has a valid CPU
2291          * then the IPI is still running and will continue due to the
2292          * update to loop_next, and nothing needs to be done here.
2293          * Otherwise it is finishing up and an ipi needs to be sent.
2294          */
2295         if (rq->rd->rto_cpu < 0)
2296                 cpu = rto_next_cpu(rq->rd);
2297
2298         raw_spin_unlock(&rq->rd->rto_lock);
2299
2300         rto_start_unlock(&rq->rd->rto_loop_start);
2301
2302         if (cpu >= 0) {
2303                 /* Make sure the rd does not get freed while pushing */
2304                 sched_get_rd(rq->rd);
2305                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2306         }
2307 }
2308
2309 /* Called from hardirq context */
2310 void rto_push_irq_work_func(struct irq_work *work)
2311 {
2312         struct root_domain *rd =
2313                 container_of(work, struct root_domain, rto_push_work);
2314         struct rq *rq;
2315         int cpu;
2316
2317         rq = this_rq();
2318
2319         /*
2320          * We do not need to grab the lock to check for has_pushable_tasks.
2321          * When it gets updated, a check is made if a push is possible.
2322          */
2323         if (has_pushable_tasks(rq)) {
2324                 raw_spin_rq_lock(rq);
2325                 while (push_rt_task(rq, true))
2326                         ;
2327                 raw_spin_rq_unlock(rq);
2328         }
2329
2330         raw_spin_lock(&rd->rto_lock);
2331
2332         /* Pass the IPI to the next rt overloaded queue */
2333         cpu = rto_next_cpu(rd);
2334
2335         raw_spin_unlock(&rd->rto_lock);
2336
2337         if (cpu < 0) {
2338                 sched_put_rd(rd);
2339                 return;
2340         }
2341
2342         /* Try the next RT overloaded CPU */
2343         irq_work_queue_on(&rd->rto_push_work, cpu);
2344 }
2345 #endif /* HAVE_RT_PUSH_IPI */
2346
2347 static void pull_rt_task(struct rq *this_rq)
2348 {
2349         int this_cpu = this_rq->cpu, cpu;
2350         bool resched = false;
2351         struct task_struct *p, *push_task;
2352         struct rq *src_rq;
2353         int rt_overload_count = rt_overloaded(this_rq);
2354
2355         if (likely(!rt_overload_count))
2356                 return;
2357
2358         /*
2359          * Match the barrier from rt_set_overloaded; this guarantees that if we
2360          * see overloaded we must also see the rto_mask bit.
2361          */
2362         smp_rmb();
2363
2364         /* If we are the only overloaded CPU do nothing */
2365         if (rt_overload_count == 1 &&
2366             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2367                 return;
2368
2369 #ifdef HAVE_RT_PUSH_IPI
2370         if (sched_feat(RT_PUSH_IPI)) {
2371                 tell_cpu_to_push(this_rq);
2372                 return;
2373         }
2374 #endif
2375
2376         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2377                 if (this_cpu == cpu)
2378                         continue;
2379
2380                 src_rq = cpu_rq(cpu);
2381
2382                 /*
2383                  * Don't bother taking the src_rq->lock if the next highest
2384                  * task is known to be lower-priority than our current task.
2385                  * This may look racy, but if this value is about to go
2386                  * logically higher, the src_rq will push this task away.
2387                  * And if its going logically lower, we do not care
2388                  */
2389                 if (src_rq->rt.highest_prio.next >=
2390                     this_rq->rt.highest_prio.curr)
2391                         continue;
2392
2393                 /*
2394                  * We can potentially drop this_rq's lock in
2395                  * double_lock_balance, and another CPU could
2396                  * alter this_rq
2397                  */
2398                 push_task = NULL;
2399                 double_lock_balance(this_rq, src_rq);
2400
2401                 /*
2402                  * We can pull only a task, which is pushable
2403                  * on its rq, and no others.
2404                  */
2405                 p = pick_highest_pushable_task(src_rq, this_cpu);
2406
2407                 /*
2408                  * Do we have an RT task that preempts
2409                  * the to-be-scheduled task?
2410                  */
2411                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2412                         WARN_ON(p == src_rq->curr);
2413                         WARN_ON(!task_on_rq_queued(p));
2414
2415                         /*
2416                          * There's a chance that p is higher in priority
2417                          * than what's currently running on its CPU.
2418                          * This is just that p is waking up and hasn't
2419                          * had a chance to schedule. We only pull
2420                          * p if it is lower in priority than the
2421                          * current task on the run queue
2422                          */
2423                         if (p->prio < src_rq->curr->prio)
2424                                 goto skip;
2425
2426                         if (is_migration_disabled(p)) {
2427                                 push_task = get_push_task(src_rq);
2428                         } else {
2429                                 deactivate_task(src_rq, p, 0);
2430                                 set_task_cpu(p, this_cpu);
2431                                 activate_task(this_rq, p, 0);
2432                                 resched = true;
2433                         }
2434                         /*
2435                          * We continue with the search, just in
2436                          * case there's an even higher prio task
2437                          * in another runqueue. (low likelihood
2438                          * but possible)
2439                          */
2440                 }
2441 skip:
2442                 double_unlock_balance(this_rq, src_rq);
2443
2444                 if (push_task) {
2445                         raw_spin_rq_unlock(this_rq);
2446                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2447                                             push_task, &src_rq->push_work);
2448                         raw_spin_rq_lock(this_rq);
2449                 }
2450         }
2451
2452         if (resched)
2453                 resched_curr(this_rq);
2454 }
2455
2456 /*
2457  * If we are not running and we are not going to reschedule soon, we should
2458  * try to push tasks away now
2459  */
2460 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2461 {
2462         bool need_to_push = !task_running(rq, p) &&
2463                             !test_tsk_need_resched(rq->curr) &&
2464                             p->nr_cpus_allowed > 1 &&
2465                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2466                             (rq->curr->nr_cpus_allowed < 2 ||
2467                              rq->curr->prio <= p->prio);
2468
2469         if (need_to_push)
2470                 push_rt_tasks(rq);
2471 }
2472
2473 /* Assumes rq->lock is held */
2474 static void rq_online_rt(struct rq *rq)
2475 {
2476         if (rq->rt.overloaded)
2477                 rt_set_overload(rq);
2478
2479         __enable_runtime(rq);
2480
2481         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2482 }
2483
2484 /* Assumes rq->lock is held */
2485 static void rq_offline_rt(struct rq *rq)
2486 {
2487         if (rq->rt.overloaded)
2488                 rt_clear_overload(rq);
2489
2490         __disable_runtime(rq);
2491
2492         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2493 }
2494
2495 /*
2496  * When switch from the rt queue, we bring ourselves to a position
2497  * that we might want to pull RT tasks from other runqueues.
2498  */
2499 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2500 {
2501         /*
2502          * If there are other RT tasks then we will reschedule
2503          * and the scheduling of the other RT tasks will handle
2504          * the balancing. But if we are the last RT task
2505          * we may need to handle the pulling of RT tasks
2506          * now.
2507          */
2508         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2509                 return;
2510
2511         rt_queue_pull_task(rq);
2512 }
2513
2514 void __init init_sched_rt_class(void)
2515 {
2516         unsigned int i;
2517
2518         for_each_possible_cpu(i) {
2519                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2520                                         GFP_KERNEL, cpu_to_node(i));
2521         }
2522 }
2523 #endif /* CONFIG_SMP */
2524
2525 /*
2526  * When switching a task to RT, we may overload the runqueue
2527  * with RT tasks. In this case we try to push them off to
2528  * other runqueues.
2529  */
2530 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2531 {
2532         /*
2533          * If we are running, update the avg_rt tracking, as the running time
2534          * will now on be accounted into the latter.
2535          */
2536         if (task_current(rq, p)) {
2537                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2538                 return;
2539         }
2540
2541         /*
2542          * If we are not running we may need to preempt the current
2543          * running task. If that current running task is also an RT task
2544          * then see if we can move to another run queue.
2545          */
2546         if (task_on_rq_queued(p)) {
2547 #ifdef CONFIG_SMP
2548                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2549                         rt_queue_push_tasks(rq);
2550 #endif /* CONFIG_SMP */
2551                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2552                         resched_curr(rq);
2553         }
2554 }
2555
2556 /*
2557  * Priority of the task has changed. This may cause
2558  * us to initiate a push or pull.
2559  */
2560 static void
2561 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2562 {
2563         if (!task_on_rq_queued(p))
2564                 return;
2565
2566         if (task_current(rq, p)) {
2567 #ifdef CONFIG_SMP
2568                 /*
2569                  * If our priority decreases while running, we
2570                  * may need to pull tasks to this runqueue.
2571                  */
2572                 if (oldprio < p->prio)
2573                         rt_queue_pull_task(rq);
2574
2575                 /*
2576                  * If there's a higher priority task waiting to run
2577                  * then reschedule.
2578                  */
2579                 if (p->prio > rq->rt.highest_prio.curr)
2580                         resched_curr(rq);
2581 #else
2582                 /* For UP simply resched on drop of prio */
2583                 if (oldprio < p->prio)
2584                         resched_curr(rq);
2585 #endif /* CONFIG_SMP */
2586         } else {
2587                 /*
2588                  * This task is not running, but if it is
2589                  * greater than the current running task
2590                  * then reschedule.
2591                  */
2592                 if (p->prio < rq->curr->prio)
2593                         resched_curr(rq);
2594         }
2595 }
2596
2597 #ifdef CONFIG_POSIX_TIMERS
2598 static void watchdog(struct rq *rq, struct task_struct *p)
2599 {
2600         unsigned long soft, hard;
2601
2602         /* max may change after cur was read, this will be fixed next tick */
2603         soft = task_rlimit(p, RLIMIT_RTTIME);
2604         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2605
2606         if (soft != RLIM_INFINITY) {
2607                 unsigned long next;
2608
2609                 if (p->rt.watchdog_stamp != jiffies) {
2610                         p->rt.timeout++;
2611                         p->rt.watchdog_stamp = jiffies;
2612                 }
2613
2614                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2615                 if (p->rt.timeout > next) {
2616                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2617                                                     p->se.sum_exec_runtime);
2618                 }
2619         }
2620 }
2621 #else
2622 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2623 #endif
2624
2625 /*
2626  * scheduler tick hitting a task of our scheduling class.
2627  *
2628  * NOTE: This function can be called remotely by the tick offload that
2629  * goes along full dynticks. Therefore no local assumption can be made
2630  * and everything must be accessed through the @rq and @curr passed in
2631  * parameters.
2632  */
2633 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2634 {
2635         struct sched_rt_entity *rt_se = &p->rt;
2636
2637         update_curr_rt(rq);
2638         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2639
2640         watchdog(rq, p);
2641
2642         /*
2643          * RR tasks need a special form of timeslice management.
2644          * FIFO tasks have no timeslices.
2645          */
2646         if (p->policy != SCHED_RR)
2647                 return;
2648
2649         if (--p->rt.time_slice)
2650                 return;
2651
2652         p->rt.time_slice = sched_rr_timeslice;
2653
2654         /*
2655          * Requeue to the end of queue if we (and all of our ancestors) are not
2656          * the only element on the queue
2657          */
2658         for_each_sched_rt_entity(rt_se) {
2659                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2660                         requeue_task_rt(rq, p, 0);
2661                         resched_curr(rq);
2662                         return;
2663                 }
2664         }
2665 }
2666
2667 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2668 {
2669         /*
2670          * Time slice is 0 for SCHED_FIFO tasks
2671          */
2672         if (task->policy == SCHED_RR)
2673                 return sched_rr_timeslice;
2674         else
2675                 return 0;
2676 }
2677
2678 DEFINE_SCHED_CLASS(rt) = {
2679
2680         .enqueue_task           = enqueue_task_rt,
2681         .dequeue_task           = dequeue_task_rt,
2682         .yield_task             = yield_task_rt,
2683
2684         .check_preempt_curr     = check_preempt_curr_rt,
2685
2686         .pick_next_task         = pick_next_task_rt,
2687         .put_prev_task          = put_prev_task_rt,
2688         .set_next_task          = set_next_task_rt,
2689
2690 #ifdef CONFIG_SMP
2691         .balance                = balance_rt,
2692         .pick_task              = pick_task_rt,
2693         .select_task_rq         = select_task_rq_rt,
2694         .set_cpus_allowed       = set_cpus_allowed_common,
2695         .rq_online              = rq_online_rt,
2696         .rq_offline             = rq_offline_rt,
2697         .task_woken             = task_woken_rt,
2698         .switched_from          = switched_from_rt,
2699         .find_lock_rq           = find_lock_lowest_rq,
2700 #endif
2701
2702         .task_tick              = task_tick_rt,
2703
2704         .get_rr_interval        = get_rr_interval_rt,
2705
2706         .prio_changed           = prio_changed_rt,
2707         .switched_to            = switched_to_rt,
2708
2709         .update_curr            = update_curr_rt,
2710
2711 #ifdef CONFIG_UCLAMP_TASK
2712         .uclamp_enabled         = 1,
2713 #endif
2714 };
2715
2716 #ifdef CONFIG_RT_GROUP_SCHED
2717 /*
2718  * Ensure that the real time constraints are schedulable.
2719  */
2720 static DEFINE_MUTEX(rt_constraints_mutex);
2721
2722 static inline int tg_has_rt_tasks(struct task_group *tg)
2723 {
2724         struct task_struct *task;
2725         struct css_task_iter it;
2726         int ret = 0;
2727
2728         /*
2729          * Autogroups do not have RT tasks; see autogroup_create().
2730          */
2731         if (task_group_is_autogroup(tg))
2732                 return 0;
2733
2734         css_task_iter_start(&tg->css, 0, &it);
2735         while (!ret && (task = css_task_iter_next(&it)))
2736                 ret |= rt_task(task);
2737         css_task_iter_end(&it);
2738
2739         return ret;
2740 }
2741
2742 struct rt_schedulable_data {
2743         struct task_group *tg;
2744         u64 rt_period;
2745         u64 rt_runtime;
2746 };
2747
2748 static int tg_rt_schedulable(struct task_group *tg, void *data)
2749 {
2750         struct rt_schedulable_data *d = data;
2751         struct task_group *child;
2752         unsigned long total, sum = 0;
2753         u64 period, runtime;
2754
2755         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2756         runtime = tg->rt_bandwidth.rt_runtime;
2757
2758         if (tg == d->tg) {
2759                 period = d->rt_period;
2760                 runtime = d->rt_runtime;
2761         }
2762
2763         /*
2764          * Cannot have more runtime than the period.
2765          */
2766         if (runtime > period && runtime != RUNTIME_INF)
2767                 return -EINVAL;
2768
2769         /*
2770          * Ensure we don't starve existing RT tasks if runtime turns zero.
2771          */
2772         if (rt_bandwidth_enabled() && !runtime &&
2773             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2774                 return -EBUSY;
2775
2776         total = to_ratio(period, runtime);
2777
2778         /*
2779          * Nobody can have more than the global setting allows.
2780          */
2781         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2782                 return -EINVAL;
2783
2784         /*
2785          * The sum of our children's runtime should not exceed our own.
2786          */
2787         list_for_each_entry_rcu(child, &tg->children, siblings) {
2788                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2789                 runtime = child->rt_bandwidth.rt_runtime;
2790
2791                 if (child == d->tg) {
2792                         period = d->rt_period;
2793                         runtime = d->rt_runtime;
2794                 }
2795
2796                 sum += to_ratio(period, runtime);
2797         }
2798
2799         if (sum > total)
2800                 return -EINVAL;
2801
2802         return 0;
2803 }
2804
2805 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2806 {
2807         int ret;
2808
2809         struct rt_schedulable_data data = {
2810                 .tg = tg,
2811                 .rt_period = period,
2812                 .rt_runtime = runtime,
2813         };
2814
2815         rcu_read_lock();
2816         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2817         rcu_read_unlock();
2818
2819         return ret;
2820 }
2821
2822 static int tg_set_rt_bandwidth(struct task_group *tg,
2823                 u64 rt_period, u64 rt_runtime)
2824 {
2825         int i, err = 0;
2826
2827         /*
2828          * Disallowing the root group RT runtime is BAD, it would disallow the
2829          * kernel creating (and or operating) RT threads.
2830          */
2831         if (tg == &root_task_group && rt_runtime == 0)
2832                 return -EINVAL;
2833
2834         /* No period doesn't make any sense. */
2835         if (rt_period == 0)
2836                 return -EINVAL;
2837
2838         /*
2839          * Bound quota to defend quota against overflow during bandwidth shift.
2840          */
2841         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2842                 return -EINVAL;
2843
2844         mutex_lock(&rt_constraints_mutex);
2845         err = __rt_schedulable(tg, rt_period, rt_runtime);
2846         if (err)
2847                 goto unlock;
2848
2849         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2850         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2851         tg->rt_bandwidth.rt_runtime = rt_runtime;
2852
2853         for_each_possible_cpu(i) {
2854                 struct rt_rq *rt_rq = tg->rt_rq[i];
2855
2856                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2857                 rt_rq->rt_runtime = rt_runtime;
2858                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2859         }
2860         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2861 unlock:
2862         mutex_unlock(&rt_constraints_mutex);
2863
2864         return err;
2865 }
2866
2867 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2868 {
2869         u64 rt_runtime, rt_period;
2870
2871         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2872         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2873         if (rt_runtime_us < 0)
2874                 rt_runtime = RUNTIME_INF;
2875         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2876                 return -EINVAL;
2877
2878         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2879 }
2880
2881 long sched_group_rt_runtime(struct task_group *tg)
2882 {
2883         u64 rt_runtime_us;
2884
2885         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2886                 return -1;
2887
2888         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2889         do_div(rt_runtime_us, NSEC_PER_USEC);
2890         return rt_runtime_us;
2891 }
2892
2893 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2894 {
2895         u64 rt_runtime, rt_period;
2896
2897         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2898                 return -EINVAL;
2899
2900         rt_period = rt_period_us * NSEC_PER_USEC;
2901         rt_runtime = tg->rt_bandwidth.rt_runtime;
2902
2903         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2904 }
2905
2906 long sched_group_rt_period(struct task_group *tg)
2907 {
2908         u64 rt_period_us;
2909
2910         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2911         do_div(rt_period_us, NSEC_PER_USEC);
2912         return rt_period_us;
2913 }
2914
2915 #ifdef CONFIG_SYSCTL
2916 static int sched_rt_global_constraints(void)
2917 {
2918         int ret = 0;
2919
2920         mutex_lock(&rt_constraints_mutex);
2921         ret = __rt_schedulable(NULL, 0, 0);
2922         mutex_unlock(&rt_constraints_mutex);
2923
2924         return ret;
2925 }
2926 #endif /* CONFIG_SYSCTL */
2927
2928 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2929 {
2930         /* Don't accept realtime tasks when there is no way for them to run */
2931         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2932                 return 0;
2933
2934         return 1;
2935 }
2936
2937 #else /* !CONFIG_RT_GROUP_SCHED */
2938
2939 #ifdef CONFIG_SYSCTL
2940 static int sched_rt_global_constraints(void)
2941 {
2942         unsigned long flags;
2943         int i;
2944
2945         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2946         for_each_possible_cpu(i) {
2947                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2948
2949                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2950                 rt_rq->rt_runtime = global_rt_runtime();
2951                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2952         }
2953         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2954
2955         return 0;
2956 }
2957 #endif /* CONFIG_SYSCTL */
2958 #endif /* CONFIG_RT_GROUP_SCHED */
2959
2960 #ifdef CONFIG_SYSCTL
2961 static int sched_rt_global_validate(void)
2962 {
2963         if (sysctl_sched_rt_period <= 0)
2964                 return -EINVAL;
2965
2966         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2967                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2968                  ((u64)sysctl_sched_rt_runtime *
2969                         NSEC_PER_USEC > max_rt_runtime)))
2970                 return -EINVAL;
2971
2972         return 0;
2973 }
2974
2975 static void sched_rt_do_global(void)
2976 {
2977         unsigned long flags;
2978
2979         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2980         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2981         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2982         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2983 }
2984
2985 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2986                 size_t *lenp, loff_t *ppos)
2987 {
2988         int old_period, old_runtime;
2989         static DEFINE_MUTEX(mutex);
2990         int ret;
2991
2992         mutex_lock(&mutex);
2993         old_period = sysctl_sched_rt_period;
2994         old_runtime = sysctl_sched_rt_runtime;
2995
2996         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2997
2998         if (!ret && write) {
2999                 ret = sched_rt_global_validate();
3000                 if (ret)
3001                         goto undo;
3002
3003                 ret = sched_dl_global_validate();
3004                 if (ret)
3005                         goto undo;
3006
3007                 ret = sched_rt_global_constraints();
3008                 if (ret)
3009                         goto undo;
3010
3011                 sched_rt_do_global();
3012                 sched_dl_do_global();
3013         }
3014         if (0) {
3015 undo:
3016                 sysctl_sched_rt_period = old_period;
3017                 sysctl_sched_rt_runtime = old_runtime;
3018         }
3019         mutex_unlock(&mutex);
3020
3021         return ret;
3022 }
3023
3024 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3025                 size_t *lenp, loff_t *ppos)
3026 {
3027         int ret;
3028         static DEFINE_MUTEX(mutex);
3029
3030         mutex_lock(&mutex);
3031         ret = proc_dointvec(table, write, buffer, lenp, ppos);
3032         /*
3033          * Make sure that internally we keep jiffies.
3034          * Also, writing zero resets the timeslice to default:
3035          */
3036         if (!ret && write) {
3037                 sched_rr_timeslice =
3038                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3039                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
3040         }
3041         mutex_unlock(&mutex);
3042
3043         return ret;
3044 }
3045 #endif /* CONFIG_SYSCTL */
3046
3047 #ifdef CONFIG_SCHED_DEBUG
3048 void print_rt_stats(struct seq_file *m, int cpu)
3049 {
3050         rt_rq_iter_t iter;
3051         struct rt_rq *rt_rq;
3052
3053         rcu_read_lock();
3054         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3055                 print_rt_rq(m, cpu, rt_rq);
3056         rcu_read_unlock();
3057 }
3058 #endif /* CONFIG_SCHED_DEBUG */