Merge tag 'arm-dt-6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/soc/soc
[linux-2.6-microblaze.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10
11 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
12
13 struct rt_bandwidth def_rt_bandwidth;
14
15 /*
16  * period over which we measure -rt task CPU usage in us.
17  * default: 1s
18  */
19 unsigned int sysctl_sched_rt_period = 1000000;
20
21 /*
22  * part of the period that we allow rt tasks to run in us.
23  * default: 0.95s
24  */
25 int sysctl_sched_rt_runtime = 950000;
26
27 #ifdef CONFIG_SYSCTL
28 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
29 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
30                 size_t *lenp, loff_t *ppos);
31 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
32                 size_t *lenp, loff_t *ppos);
33 static struct ctl_table sched_rt_sysctls[] = {
34         {
35                 .procname       = "sched_rt_period_us",
36                 .data           = &sysctl_sched_rt_period,
37                 .maxlen         = sizeof(unsigned int),
38                 .mode           = 0644,
39                 .proc_handler   = sched_rt_handler,
40         },
41         {
42                 .procname       = "sched_rt_runtime_us",
43                 .data           = &sysctl_sched_rt_runtime,
44                 .maxlen         = sizeof(int),
45                 .mode           = 0644,
46                 .proc_handler   = sched_rt_handler,
47         },
48         {
49                 .procname       = "sched_rr_timeslice_ms",
50                 .data           = &sysctl_sched_rr_timeslice,
51                 .maxlen         = sizeof(int),
52                 .mode           = 0644,
53                 .proc_handler   = sched_rr_handler,
54         },
55         {}
56 };
57
58 static int __init sched_rt_sysctl_init(void)
59 {
60         register_sysctl_init("kernel", sched_rt_sysctls);
61         return 0;
62 }
63 late_initcall(sched_rt_sysctl_init);
64 #endif
65
66 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
67 {
68         struct rt_bandwidth *rt_b =
69                 container_of(timer, struct rt_bandwidth, rt_period_timer);
70         int idle = 0;
71         int overrun;
72
73         raw_spin_lock(&rt_b->rt_runtime_lock);
74         for (;;) {
75                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
76                 if (!overrun)
77                         break;
78
79                 raw_spin_unlock(&rt_b->rt_runtime_lock);
80                 idle = do_sched_rt_period_timer(rt_b, overrun);
81                 raw_spin_lock(&rt_b->rt_runtime_lock);
82         }
83         if (idle)
84                 rt_b->rt_period_active = 0;
85         raw_spin_unlock(&rt_b->rt_runtime_lock);
86
87         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
88 }
89
90 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
91 {
92         rt_b->rt_period = ns_to_ktime(period);
93         rt_b->rt_runtime = runtime;
94
95         raw_spin_lock_init(&rt_b->rt_runtime_lock);
96
97         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
98                      HRTIMER_MODE_REL_HARD);
99         rt_b->rt_period_timer.function = sched_rt_period_timer;
100 }
101
102 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
103 {
104         raw_spin_lock(&rt_b->rt_runtime_lock);
105         if (!rt_b->rt_period_active) {
106                 rt_b->rt_period_active = 1;
107                 /*
108                  * SCHED_DEADLINE updates the bandwidth, as a run away
109                  * RT task with a DL task could hog a CPU. But DL does
110                  * not reset the period. If a deadline task was running
111                  * without an RT task running, it can cause RT tasks to
112                  * throttle when they start up. Kick the timer right away
113                  * to update the period.
114                  */
115                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
116                 hrtimer_start_expires(&rt_b->rt_period_timer,
117                                       HRTIMER_MODE_ABS_PINNED_HARD);
118         }
119         raw_spin_unlock(&rt_b->rt_runtime_lock);
120 }
121
122 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
123 {
124         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
125                 return;
126
127         do_start_rt_bandwidth(rt_b);
128 }
129
130 void init_rt_rq(struct rt_rq *rt_rq)
131 {
132         struct rt_prio_array *array;
133         int i;
134
135         array = &rt_rq->active;
136         for (i = 0; i < MAX_RT_PRIO; i++) {
137                 INIT_LIST_HEAD(array->queue + i);
138                 __clear_bit(i, array->bitmap);
139         }
140         /* delimiter for bitsearch: */
141         __set_bit(MAX_RT_PRIO, array->bitmap);
142
143 #if defined CONFIG_SMP
144         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
145         rt_rq->highest_prio.next = MAX_RT_PRIO-1;
146         rt_rq->rt_nr_migratory = 0;
147         rt_rq->overloaded = 0;
148         plist_head_init(&rt_rq->pushable_tasks);
149 #endif /* CONFIG_SMP */
150         /* We start is dequeued state, because no RT tasks are queued */
151         rt_rq->rt_queued = 0;
152
153         rt_rq->rt_time = 0;
154         rt_rq->rt_throttled = 0;
155         rt_rq->rt_runtime = 0;
156         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
157 }
158
159 #ifdef CONFIG_RT_GROUP_SCHED
160 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
161 {
162         hrtimer_cancel(&rt_b->rt_period_timer);
163 }
164
165 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
166
167 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
168 {
169 #ifdef CONFIG_SCHED_DEBUG
170         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
171 #endif
172         return container_of(rt_se, struct task_struct, rt);
173 }
174
175 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
176 {
177         return rt_rq->rq;
178 }
179
180 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
181 {
182         return rt_se->rt_rq;
183 }
184
185 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
186 {
187         struct rt_rq *rt_rq = rt_se->rt_rq;
188
189         return rt_rq->rq;
190 }
191
192 void unregister_rt_sched_group(struct task_group *tg)
193 {
194         if (tg->rt_se)
195                 destroy_rt_bandwidth(&tg->rt_bandwidth);
196
197 }
198
199 void free_rt_sched_group(struct task_group *tg)
200 {
201         int i;
202
203         for_each_possible_cpu(i) {
204                 if (tg->rt_rq)
205                         kfree(tg->rt_rq[i]);
206                 if (tg->rt_se)
207                         kfree(tg->rt_se[i]);
208         }
209
210         kfree(tg->rt_rq);
211         kfree(tg->rt_se);
212 }
213
214 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
215                 struct sched_rt_entity *rt_se, int cpu,
216                 struct sched_rt_entity *parent)
217 {
218         struct rq *rq = cpu_rq(cpu);
219
220         rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
221         rt_rq->rt_nr_boosted = 0;
222         rt_rq->rq = rq;
223         rt_rq->tg = tg;
224
225         tg->rt_rq[cpu] = rt_rq;
226         tg->rt_se[cpu] = rt_se;
227
228         if (!rt_se)
229                 return;
230
231         if (!parent)
232                 rt_se->rt_rq = &rq->rt;
233         else
234                 rt_se->rt_rq = parent->my_q;
235
236         rt_se->my_q = rt_rq;
237         rt_se->parent = parent;
238         INIT_LIST_HEAD(&rt_se->run_list);
239 }
240
241 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
242 {
243         struct rt_rq *rt_rq;
244         struct sched_rt_entity *rt_se;
245         int i;
246
247         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
248         if (!tg->rt_rq)
249                 goto err;
250         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
251         if (!tg->rt_se)
252                 goto err;
253
254         init_rt_bandwidth(&tg->rt_bandwidth,
255                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
256
257         for_each_possible_cpu(i) {
258                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
259                                      GFP_KERNEL, cpu_to_node(i));
260                 if (!rt_rq)
261                         goto err;
262
263                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
264                                      GFP_KERNEL, cpu_to_node(i));
265                 if (!rt_se)
266                         goto err_free_rq;
267
268                 init_rt_rq(rt_rq);
269                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
270                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
271         }
272
273         return 1;
274
275 err_free_rq:
276         kfree(rt_rq);
277 err:
278         return 0;
279 }
280
281 #else /* CONFIG_RT_GROUP_SCHED */
282
283 #define rt_entity_is_task(rt_se) (1)
284
285 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
286 {
287         return container_of(rt_se, struct task_struct, rt);
288 }
289
290 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
291 {
292         return container_of(rt_rq, struct rq, rt);
293 }
294
295 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
296 {
297         struct task_struct *p = rt_task_of(rt_se);
298
299         return task_rq(p);
300 }
301
302 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
303 {
304         struct rq *rq = rq_of_rt_se(rt_se);
305
306         return &rq->rt;
307 }
308
309 void unregister_rt_sched_group(struct task_group *tg) { }
310
311 void free_rt_sched_group(struct task_group *tg) { }
312
313 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
314 {
315         return 1;
316 }
317 #endif /* CONFIG_RT_GROUP_SCHED */
318
319 #ifdef CONFIG_SMP
320
321 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
322 {
323         /* Try to pull RT tasks here if we lower this rq's prio */
324         return rq->online && rq->rt.highest_prio.curr > prev->prio;
325 }
326
327 static inline int rt_overloaded(struct rq *rq)
328 {
329         return atomic_read(&rq->rd->rto_count);
330 }
331
332 static inline void rt_set_overload(struct rq *rq)
333 {
334         if (!rq->online)
335                 return;
336
337         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
338         /*
339          * Make sure the mask is visible before we set
340          * the overload count. That is checked to determine
341          * if we should look at the mask. It would be a shame
342          * if we looked at the mask, but the mask was not
343          * updated yet.
344          *
345          * Matched by the barrier in pull_rt_task().
346          */
347         smp_wmb();
348         atomic_inc(&rq->rd->rto_count);
349 }
350
351 static inline void rt_clear_overload(struct rq *rq)
352 {
353         if (!rq->online)
354                 return;
355
356         /* the order here really doesn't matter */
357         atomic_dec(&rq->rd->rto_count);
358         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
359 }
360
361 static void update_rt_migration(struct rt_rq *rt_rq)
362 {
363         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
364                 if (!rt_rq->overloaded) {
365                         rt_set_overload(rq_of_rt_rq(rt_rq));
366                         rt_rq->overloaded = 1;
367                 }
368         } else if (rt_rq->overloaded) {
369                 rt_clear_overload(rq_of_rt_rq(rt_rq));
370                 rt_rq->overloaded = 0;
371         }
372 }
373
374 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
375 {
376         struct task_struct *p;
377
378         if (!rt_entity_is_task(rt_se))
379                 return;
380
381         p = rt_task_of(rt_se);
382         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
383
384         rt_rq->rt_nr_total++;
385         if (p->nr_cpus_allowed > 1)
386                 rt_rq->rt_nr_migratory++;
387
388         update_rt_migration(rt_rq);
389 }
390
391 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
392 {
393         struct task_struct *p;
394
395         if (!rt_entity_is_task(rt_se))
396                 return;
397
398         p = rt_task_of(rt_se);
399         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
400
401         rt_rq->rt_nr_total--;
402         if (p->nr_cpus_allowed > 1)
403                 rt_rq->rt_nr_migratory--;
404
405         update_rt_migration(rt_rq);
406 }
407
408 static inline int has_pushable_tasks(struct rq *rq)
409 {
410         return !plist_head_empty(&rq->rt.pushable_tasks);
411 }
412
413 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
414 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
415
416 static void push_rt_tasks(struct rq *);
417 static void pull_rt_task(struct rq *);
418
419 static inline void rt_queue_push_tasks(struct rq *rq)
420 {
421         if (!has_pushable_tasks(rq))
422                 return;
423
424         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
425 }
426
427 static inline void rt_queue_pull_task(struct rq *rq)
428 {
429         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
430 }
431
432 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
433 {
434         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
435         plist_node_init(&p->pushable_tasks, p->prio);
436         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
437
438         /* Update the highest prio pushable task */
439         if (p->prio < rq->rt.highest_prio.next)
440                 rq->rt.highest_prio.next = p->prio;
441 }
442
443 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
444 {
445         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
446
447         /* Update the new highest prio pushable task */
448         if (has_pushable_tasks(rq)) {
449                 p = plist_first_entry(&rq->rt.pushable_tasks,
450                                       struct task_struct, pushable_tasks);
451                 rq->rt.highest_prio.next = p->prio;
452         } else {
453                 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
454         }
455 }
456
457 #else
458
459 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
460 {
461 }
462
463 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
464 {
465 }
466
467 static inline
468 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
469 {
470 }
471
472 static inline
473 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
474 {
475 }
476
477 static inline void rt_queue_push_tasks(struct rq *rq)
478 {
479 }
480 #endif /* CONFIG_SMP */
481
482 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
483 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
484
485 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
486 {
487         return rt_se->on_rq;
488 }
489
490 #ifdef CONFIG_UCLAMP_TASK
491 /*
492  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
493  * settings.
494  *
495  * This check is only important for heterogeneous systems where uclamp_min value
496  * is higher than the capacity of a @cpu. For non-heterogeneous system this
497  * function will always return true.
498  *
499  * The function will return true if the capacity of the @cpu is >= the
500  * uclamp_min and false otherwise.
501  *
502  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
503  * > uclamp_max.
504  */
505 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
506 {
507         unsigned int min_cap;
508         unsigned int max_cap;
509         unsigned int cpu_cap;
510
511         /* Only heterogeneous systems can benefit from this check */
512         if (!static_branch_unlikely(&sched_asym_cpucapacity))
513                 return true;
514
515         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
516         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
517
518         cpu_cap = capacity_orig_of(cpu);
519
520         return cpu_cap >= min(min_cap, max_cap);
521 }
522 #else
523 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
524 {
525         return true;
526 }
527 #endif
528
529 #ifdef CONFIG_RT_GROUP_SCHED
530
531 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
532 {
533         if (!rt_rq->tg)
534                 return RUNTIME_INF;
535
536         return rt_rq->rt_runtime;
537 }
538
539 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
540 {
541         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
542 }
543
544 typedef struct task_group *rt_rq_iter_t;
545
546 static inline struct task_group *next_task_group(struct task_group *tg)
547 {
548         do {
549                 tg = list_entry_rcu(tg->list.next,
550                         typeof(struct task_group), list);
551         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
552
553         if (&tg->list == &task_groups)
554                 tg = NULL;
555
556         return tg;
557 }
558
559 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
560         for (iter = container_of(&task_groups, typeof(*iter), list);    \
561                 (iter = next_task_group(iter)) &&                       \
562                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
563
564 #define for_each_sched_rt_entity(rt_se) \
565         for (; rt_se; rt_se = rt_se->parent)
566
567 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
568 {
569         return rt_se->my_q;
570 }
571
572 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
573 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
574
575 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
576 {
577         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
578         struct rq *rq = rq_of_rt_rq(rt_rq);
579         struct sched_rt_entity *rt_se;
580
581         int cpu = cpu_of(rq);
582
583         rt_se = rt_rq->tg->rt_se[cpu];
584
585         if (rt_rq->rt_nr_running) {
586                 if (!rt_se)
587                         enqueue_top_rt_rq(rt_rq);
588                 else if (!on_rt_rq(rt_se))
589                         enqueue_rt_entity(rt_se, 0);
590
591                 if (rt_rq->highest_prio.curr < curr->prio)
592                         resched_curr(rq);
593         }
594 }
595
596 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
597 {
598         struct sched_rt_entity *rt_se;
599         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
600
601         rt_se = rt_rq->tg->rt_se[cpu];
602
603         if (!rt_se) {
604                 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
605                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
606                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
607         }
608         else if (on_rt_rq(rt_se))
609                 dequeue_rt_entity(rt_se, 0);
610 }
611
612 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
613 {
614         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
615 }
616
617 static int rt_se_boosted(struct sched_rt_entity *rt_se)
618 {
619         struct rt_rq *rt_rq = group_rt_rq(rt_se);
620         struct task_struct *p;
621
622         if (rt_rq)
623                 return !!rt_rq->rt_nr_boosted;
624
625         p = rt_task_of(rt_se);
626         return p->prio != p->normal_prio;
627 }
628
629 #ifdef CONFIG_SMP
630 static inline const struct cpumask *sched_rt_period_mask(void)
631 {
632         return this_rq()->rd->span;
633 }
634 #else
635 static inline const struct cpumask *sched_rt_period_mask(void)
636 {
637         return cpu_online_mask;
638 }
639 #endif
640
641 static inline
642 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
643 {
644         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
645 }
646
647 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
648 {
649         return &rt_rq->tg->rt_bandwidth;
650 }
651
652 #else /* !CONFIG_RT_GROUP_SCHED */
653
654 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
655 {
656         return rt_rq->rt_runtime;
657 }
658
659 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
660 {
661         return ktime_to_ns(def_rt_bandwidth.rt_period);
662 }
663
664 typedef struct rt_rq *rt_rq_iter_t;
665
666 #define for_each_rt_rq(rt_rq, iter, rq) \
667         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
668
669 #define for_each_sched_rt_entity(rt_se) \
670         for (; rt_se; rt_se = NULL)
671
672 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
673 {
674         return NULL;
675 }
676
677 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
678 {
679         struct rq *rq = rq_of_rt_rq(rt_rq);
680
681         if (!rt_rq->rt_nr_running)
682                 return;
683
684         enqueue_top_rt_rq(rt_rq);
685         resched_curr(rq);
686 }
687
688 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
689 {
690         dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
691 }
692
693 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
694 {
695         return rt_rq->rt_throttled;
696 }
697
698 static inline const struct cpumask *sched_rt_period_mask(void)
699 {
700         return cpu_online_mask;
701 }
702
703 static inline
704 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
705 {
706         return &cpu_rq(cpu)->rt;
707 }
708
709 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
710 {
711         return &def_rt_bandwidth;
712 }
713
714 #endif /* CONFIG_RT_GROUP_SCHED */
715
716 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
717 {
718         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
719
720         return (hrtimer_active(&rt_b->rt_period_timer) ||
721                 rt_rq->rt_time < rt_b->rt_runtime);
722 }
723
724 #ifdef CONFIG_SMP
725 /*
726  * We ran out of runtime, see if we can borrow some from our neighbours.
727  */
728 static void do_balance_runtime(struct rt_rq *rt_rq)
729 {
730         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
731         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
732         int i, weight;
733         u64 rt_period;
734
735         weight = cpumask_weight(rd->span);
736
737         raw_spin_lock(&rt_b->rt_runtime_lock);
738         rt_period = ktime_to_ns(rt_b->rt_period);
739         for_each_cpu(i, rd->span) {
740                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
741                 s64 diff;
742
743                 if (iter == rt_rq)
744                         continue;
745
746                 raw_spin_lock(&iter->rt_runtime_lock);
747                 /*
748                  * Either all rqs have inf runtime and there's nothing to steal
749                  * or __disable_runtime() below sets a specific rq to inf to
750                  * indicate its been disabled and disallow stealing.
751                  */
752                 if (iter->rt_runtime == RUNTIME_INF)
753                         goto next;
754
755                 /*
756                  * From runqueues with spare time, take 1/n part of their
757                  * spare time, but no more than our period.
758                  */
759                 diff = iter->rt_runtime - iter->rt_time;
760                 if (diff > 0) {
761                         diff = div_u64((u64)diff, weight);
762                         if (rt_rq->rt_runtime + diff > rt_period)
763                                 diff = rt_period - rt_rq->rt_runtime;
764                         iter->rt_runtime -= diff;
765                         rt_rq->rt_runtime += diff;
766                         if (rt_rq->rt_runtime == rt_period) {
767                                 raw_spin_unlock(&iter->rt_runtime_lock);
768                                 break;
769                         }
770                 }
771 next:
772                 raw_spin_unlock(&iter->rt_runtime_lock);
773         }
774         raw_spin_unlock(&rt_b->rt_runtime_lock);
775 }
776
777 /*
778  * Ensure this RQ takes back all the runtime it lend to its neighbours.
779  */
780 static void __disable_runtime(struct rq *rq)
781 {
782         struct root_domain *rd = rq->rd;
783         rt_rq_iter_t iter;
784         struct rt_rq *rt_rq;
785
786         if (unlikely(!scheduler_running))
787                 return;
788
789         for_each_rt_rq(rt_rq, iter, rq) {
790                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
791                 s64 want;
792                 int i;
793
794                 raw_spin_lock(&rt_b->rt_runtime_lock);
795                 raw_spin_lock(&rt_rq->rt_runtime_lock);
796                 /*
797                  * Either we're all inf and nobody needs to borrow, or we're
798                  * already disabled and thus have nothing to do, or we have
799                  * exactly the right amount of runtime to take out.
800                  */
801                 if (rt_rq->rt_runtime == RUNTIME_INF ||
802                                 rt_rq->rt_runtime == rt_b->rt_runtime)
803                         goto balanced;
804                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
805
806                 /*
807                  * Calculate the difference between what we started out with
808                  * and what we current have, that's the amount of runtime
809                  * we lend and now have to reclaim.
810                  */
811                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
812
813                 /*
814                  * Greedy reclaim, take back as much as we can.
815                  */
816                 for_each_cpu(i, rd->span) {
817                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
818                         s64 diff;
819
820                         /*
821                          * Can't reclaim from ourselves or disabled runqueues.
822                          */
823                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
824                                 continue;
825
826                         raw_spin_lock(&iter->rt_runtime_lock);
827                         if (want > 0) {
828                                 diff = min_t(s64, iter->rt_runtime, want);
829                                 iter->rt_runtime -= diff;
830                                 want -= diff;
831                         } else {
832                                 iter->rt_runtime -= want;
833                                 want -= want;
834                         }
835                         raw_spin_unlock(&iter->rt_runtime_lock);
836
837                         if (!want)
838                                 break;
839                 }
840
841                 raw_spin_lock(&rt_rq->rt_runtime_lock);
842                 /*
843                  * We cannot be left wanting - that would mean some runtime
844                  * leaked out of the system.
845                  */
846                 BUG_ON(want);
847 balanced:
848                 /*
849                  * Disable all the borrow logic by pretending we have inf
850                  * runtime - in which case borrowing doesn't make sense.
851                  */
852                 rt_rq->rt_runtime = RUNTIME_INF;
853                 rt_rq->rt_throttled = 0;
854                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
855                 raw_spin_unlock(&rt_b->rt_runtime_lock);
856
857                 /* Make rt_rq available for pick_next_task() */
858                 sched_rt_rq_enqueue(rt_rq);
859         }
860 }
861
862 static void __enable_runtime(struct rq *rq)
863 {
864         rt_rq_iter_t iter;
865         struct rt_rq *rt_rq;
866
867         if (unlikely(!scheduler_running))
868                 return;
869
870         /*
871          * Reset each runqueue's bandwidth settings
872          */
873         for_each_rt_rq(rt_rq, iter, rq) {
874                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
875
876                 raw_spin_lock(&rt_b->rt_runtime_lock);
877                 raw_spin_lock(&rt_rq->rt_runtime_lock);
878                 rt_rq->rt_runtime = rt_b->rt_runtime;
879                 rt_rq->rt_time = 0;
880                 rt_rq->rt_throttled = 0;
881                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
882                 raw_spin_unlock(&rt_b->rt_runtime_lock);
883         }
884 }
885
886 static void balance_runtime(struct rt_rq *rt_rq)
887 {
888         if (!sched_feat(RT_RUNTIME_SHARE))
889                 return;
890
891         if (rt_rq->rt_time > rt_rq->rt_runtime) {
892                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
893                 do_balance_runtime(rt_rq);
894                 raw_spin_lock(&rt_rq->rt_runtime_lock);
895         }
896 }
897 #else /* !CONFIG_SMP */
898 static inline void balance_runtime(struct rt_rq *rt_rq) {}
899 #endif /* CONFIG_SMP */
900
901 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
902 {
903         int i, idle = 1, throttled = 0;
904         const struct cpumask *span;
905
906         span = sched_rt_period_mask();
907 #ifdef CONFIG_RT_GROUP_SCHED
908         /*
909          * FIXME: isolated CPUs should really leave the root task group,
910          * whether they are isolcpus or were isolated via cpusets, lest
911          * the timer run on a CPU which does not service all runqueues,
912          * potentially leaving other CPUs indefinitely throttled.  If
913          * isolation is really required, the user will turn the throttle
914          * off to kill the perturbations it causes anyway.  Meanwhile,
915          * this maintains functionality for boot and/or troubleshooting.
916          */
917         if (rt_b == &root_task_group.rt_bandwidth)
918                 span = cpu_online_mask;
919 #endif
920         for_each_cpu(i, span) {
921                 int enqueue = 0;
922                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
923                 struct rq *rq = rq_of_rt_rq(rt_rq);
924                 struct rq_flags rf;
925                 int skip;
926
927                 /*
928                  * When span == cpu_online_mask, taking each rq->lock
929                  * can be time-consuming. Try to avoid it when possible.
930                  */
931                 raw_spin_lock(&rt_rq->rt_runtime_lock);
932                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
933                         rt_rq->rt_runtime = rt_b->rt_runtime;
934                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
935                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
936                 if (skip)
937                         continue;
938
939                 rq_lock(rq, &rf);
940                 update_rq_clock(rq);
941
942                 if (rt_rq->rt_time) {
943                         u64 runtime;
944
945                         raw_spin_lock(&rt_rq->rt_runtime_lock);
946                         if (rt_rq->rt_throttled)
947                                 balance_runtime(rt_rq);
948                         runtime = rt_rq->rt_runtime;
949                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
950                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
951                                 rt_rq->rt_throttled = 0;
952                                 enqueue = 1;
953
954                                 /*
955                                  * When we're idle and a woken (rt) task is
956                                  * throttled check_preempt_curr() will set
957                                  * skip_update and the time between the wakeup
958                                  * and this unthrottle will get accounted as
959                                  * 'runtime'.
960                                  */
961                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
962                                         rq_clock_cancel_skipupdate(rq);
963                         }
964                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
965                                 idle = 0;
966                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
967                 } else if (rt_rq->rt_nr_running) {
968                         idle = 0;
969                         if (!rt_rq_throttled(rt_rq))
970                                 enqueue = 1;
971                 }
972                 if (rt_rq->rt_throttled)
973                         throttled = 1;
974
975                 if (enqueue)
976                         sched_rt_rq_enqueue(rt_rq);
977                 rq_unlock(rq, &rf);
978         }
979
980         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
981                 return 1;
982
983         return idle;
984 }
985
986 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
987 {
988 #ifdef CONFIG_RT_GROUP_SCHED
989         struct rt_rq *rt_rq = group_rt_rq(rt_se);
990
991         if (rt_rq)
992                 return rt_rq->highest_prio.curr;
993 #endif
994
995         return rt_task_of(rt_se)->prio;
996 }
997
998 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
999 {
1000         u64 runtime = sched_rt_runtime(rt_rq);
1001
1002         if (rt_rq->rt_throttled)
1003                 return rt_rq_throttled(rt_rq);
1004
1005         if (runtime >= sched_rt_period(rt_rq))
1006                 return 0;
1007
1008         balance_runtime(rt_rq);
1009         runtime = sched_rt_runtime(rt_rq);
1010         if (runtime == RUNTIME_INF)
1011                 return 0;
1012
1013         if (rt_rq->rt_time > runtime) {
1014                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
1015
1016                 /*
1017                  * Don't actually throttle groups that have no runtime assigned
1018                  * but accrue some time due to boosting.
1019                  */
1020                 if (likely(rt_b->rt_runtime)) {
1021                         rt_rq->rt_throttled = 1;
1022                         printk_deferred_once("sched: RT throttling activated\n");
1023                 } else {
1024                         /*
1025                          * In case we did anyway, make it go away,
1026                          * replenishment is a joke, since it will replenish us
1027                          * with exactly 0 ns.
1028                          */
1029                         rt_rq->rt_time = 0;
1030                 }
1031
1032                 if (rt_rq_throttled(rt_rq)) {
1033                         sched_rt_rq_dequeue(rt_rq);
1034                         return 1;
1035                 }
1036         }
1037
1038         return 0;
1039 }
1040
1041 /*
1042  * Update the current task's runtime statistics. Skip current tasks that
1043  * are not in our scheduling class.
1044  */
1045 static void update_curr_rt(struct rq *rq)
1046 {
1047         struct task_struct *curr = rq->curr;
1048         struct sched_rt_entity *rt_se = &curr->rt;
1049         u64 delta_exec;
1050         u64 now;
1051
1052         if (curr->sched_class != &rt_sched_class)
1053                 return;
1054
1055         now = rq_clock_task(rq);
1056         delta_exec = now - curr->se.exec_start;
1057         if (unlikely((s64)delta_exec <= 0))
1058                 return;
1059
1060         schedstat_set(curr->stats.exec_max,
1061                       max(curr->stats.exec_max, delta_exec));
1062
1063         trace_sched_stat_runtime(curr, delta_exec, 0);
1064
1065         curr->se.sum_exec_runtime += delta_exec;
1066         account_group_exec_runtime(curr, delta_exec);
1067
1068         curr->se.exec_start = now;
1069         cgroup_account_cputime(curr, delta_exec);
1070
1071         if (!rt_bandwidth_enabled())
1072                 return;
1073
1074         for_each_sched_rt_entity(rt_se) {
1075                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1076                 int exceeded;
1077
1078                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1079                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1080                         rt_rq->rt_time += delta_exec;
1081                         exceeded = sched_rt_runtime_exceeded(rt_rq);
1082                         if (exceeded)
1083                                 resched_curr(rq);
1084                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1085                         if (exceeded)
1086                                 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1087                 }
1088         }
1089 }
1090
1091 static void
1092 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1093 {
1094         struct rq *rq = rq_of_rt_rq(rt_rq);
1095
1096         BUG_ON(&rq->rt != rt_rq);
1097
1098         if (!rt_rq->rt_queued)
1099                 return;
1100
1101         BUG_ON(!rq->nr_running);
1102
1103         sub_nr_running(rq, count);
1104         rt_rq->rt_queued = 0;
1105
1106 }
1107
1108 static void
1109 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1110 {
1111         struct rq *rq = rq_of_rt_rq(rt_rq);
1112
1113         BUG_ON(&rq->rt != rt_rq);
1114
1115         if (rt_rq->rt_queued)
1116                 return;
1117
1118         if (rt_rq_throttled(rt_rq))
1119                 return;
1120
1121         if (rt_rq->rt_nr_running) {
1122                 add_nr_running(rq, rt_rq->rt_nr_running);
1123                 rt_rq->rt_queued = 1;
1124         }
1125
1126         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1127         cpufreq_update_util(rq, 0);
1128 }
1129
1130 #if defined CONFIG_SMP
1131
1132 static void
1133 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1134 {
1135         struct rq *rq = rq_of_rt_rq(rt_rq);
1136
1137 #ifdef CONFIG_RT_GROUP_SCHED
1138         /*
1139          * Change rq's cpupri only if rt_rq is the top queue.
1140          */
1141         if (&rq->rt != rt_rq)
1142                 return;
1143 #endif
1144         if (rq->online && prio < prev_prio)
1145                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1146 }
1147
1148 static void
1149 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1150 {
1151         struct rq *rq = rq_of_rt_rq(rt_rq);
1152
1153 #ifdef CONFIG_RT_GROUP_SCHED
1154         /*
1155          * Change rq's cpupri only if rt_rq is the top queue.
1156          */
1157         if (&rq->rt != rt_rq)
1158                 return;
1159 #endif
1160         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1161                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1162 }
1163
1164 #else /* CONFIG_SMP */
1165
1166 static inline
1167 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1168 static inline
1169 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1170
1171 #endif /* CONFIG_SMP */
1172
1173 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1174 static void
1175 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1176 {
1177         int prev_prio = rt_rq->highest_prio.curr;
1178
1179         if (prio < prev_prio)
1180                 rt_rq->highest_prio.curr = prio;
1181
1182         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1183 }
1184
1185 static void
1186 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1187 {
1188         int prev_prio = rt_rq->highest_prio.curr;
1189
1190         if (rt_rq->rt_nr_running) {
1191
1192                 WARN_ON(prio < prev_prio);
1193
1194                 /*
1195                  * This may have been our highest task, and therefore
1196                  * we may have some recomputation to do
1197                  */
1198                 if (prio == prev_prio) {
1199                         struct rt_prio_array *array = &rt_rq->active;
1200
1201                         rt_rq->highest_prio.curr =
1202                                 sched_find_first_bit(array->bitmap);
1203                 }
1204
1205         } else {
1206                 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1207         }
1208
1209         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1210 }
1211
1212 #else
1213
1214 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1215 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1216
1217 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1218
1219 #ifdef CONFIG_RT_GROUP_SCHED
1220
1221 static void
1222 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1223 {
1224         if (rt_se_boosted(rt_se))
1225                 rt_rq->rt_nr_boosted++;
1226
1227         if (rt_rq->tg)
1228                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1229 }
1230
1231 static void
1232 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1233 {
1234         if (rt_se_boosted(rt_se))
1235                 rt_rq->rt_nr_boosted--;
1236
1237         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1238 }
1239
1240 #else /* CONFIG_RT_GROUP_SCHED */
1241
1242 static void
1243 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1244 {
1245         start_rt_bandwidth(&def_rt_bandwidth);
1246 }
1247
1248 static inline
1249 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1250
1251 #endif /* CONFIG_RT_GROUP_SCHED */
1252
1253 static inline
1254 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1255 {
1256         struct rt_rq *group_rq = group_rt_rq(rt_se);
1257
1258         if (group_rq)
1259                 return group_rq->rt_nr_running;
1260         else
1261                 return 1;
1262 }
1263
1264 static inline
1265 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1266 {
1267         struct rt_rq *group_rq = group_rt_rq(rt_se);
1268         struct task_struct *tsk;
1269
1270         if (group_rq)
1271                 return group_rq->rr_nr_running;
1272
1273         tsk = rt_task_of(rt_se);
1274
1275         return (tsk->policy == SCHED_RR) ? 1 : 0;
1276 }
1277
1278 static inline
1279 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1280 {
1281         int prio = rt_se_prio(rt_se);
1282
1283         WARN_ON(!rt_prio(prio));
1284         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1285         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1286
1287         inc_rt_prio(rt_rq, prio);
1288         inc_rt_migration(rt_se, rt_rq);
1289         inc_rt_group(rt_se, rt_rq);
1290 }
1291
1292 static inline
1293 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1294 {
1295         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1296         WARN_ON(!rt_rq->rt_nr_running);
1297         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1298         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1299
1300         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1301         dec_rt_migration(rt_se, rt_rq);
1302         dec_rt_group(rt_se, rt_rq);
1303 }
1304
1305 /*
1306  * Change rt_se->run_list location unless SAVE && !MOVE
1307  *
1308  * assumes ENQUEUE/DEQUEUE flags match
1309  */
1310 static inline bool move_entity(unsigned int flags)
1311 {
1312         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1313                 return false;
1314
1315         return true;
1316 }
1317
1318 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1319 {
1320         list_del_init(&rt_se->run_list);
1321
1322         if (list_empty(array->queue + rt_se_prio(rt_se)))
1323                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1324
1325         rt_se->on_list = 0;
1326 }
1327
1328 static inline struct sched_statistics *
1329 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1330 {
1331 #ifdef CONFIG_RT_GROUP_SCHED
1332         /* schedstats is not supported for rt group. */
1333         if (!rt_entity_is_task(rt_se))
1334                 return NULL;
1335 #endif
1336
1337         return &rt_task_of(rt_se)->stats;
1338 }
1339
1340 static inline void
1341 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1342 {
1343         struct sched_statistics *stats;
1344         struct task_struct *p = NULL;
1345
1346         if (!schedstat_enabled())
1347                 return;
1348
1349         if (rt_entity_is_task(rt_se))
1350                 p = rt_task_of(rt_se);
1351
1352         stats = __schedstats_from_rt_se(rt_se);
1353         if (!stats)
1354                 return;
1355
1356         __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1357 }
1358
1359 static inline void
1360 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1361 {
1362         struct sched_statistics *stats;
1363         struct task_struct *p = NULL;
1364
1365         if (!schedstat_enabled())
1366                 return;
1367
1368         if (rt_entity_is_task(rt_se))
1369                 p = rt_task_of(rt_se);
1370
1371         stats = __schedstats_from_rt_se(rt_se);
1372         if (!stats)
1373                 return;
1374
1375         __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1376 }
1377
1378 static inline void
1379 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1380                         int flags)
1381 {
1382         if (!schedstat_enabled())
1383                 return;
1384
1385         if (flags & ENQUEUE_WAKEUP)
1386                 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1387 }
1388
1389 static inline void
1390 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1391 {
1392         struct sched_statistics *stats;
1393         struct task_struct *p = NULL;
1394
1395         if (!schedstat_enabled())
1396                 return;
1397
1398         if (rt_entity_is_task(rt_se))
1399                 p = rt_task_of(rt_se);
1400
1401         stats = __schedstats_from_rt_se(rt_se);
1402         if (!stats)
1403                 return;
1404
1405         __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1406 }
1407
1408 static inline void
1409 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1410                         int flags)
1411 {
1412         struct task_struct *p = NULL;
1413
1414         if (!schedstat_enabled())
1415                 return;
1416
1417         if (rt_entity_is_task(rt_se))
1418                 p = rt_task_of(rt_se);
1419
1420         if ((flags & DEQUEUE_SLEEP) && p) {
1421                 unsigned int state;
1422
1423                 state = READ_ONCE(p->__state);
1424                 if (state & TASK_INTERRUPTIBLE)
1425                         __schedstat_set(p->stats.sleep_start,
1426                                         rq_clock(rq_of_rt_rq(rt_rq)));
1427
1428                 if (state & TASK_UNINTERRUPTIBLE)
1429                         __schedstat_set(p->stats.block_start,
1430                                         rq_clock(rq_of_rt_rq(rt_rq)));
1431         }
1432 }
1433
1434 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1435 {
1436         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1437         struct rt_prio_array *array = &rt_rq->active;
1438         struct rt_rq *group_rq = group_rt_rq(rt_se);
1439         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1440
1441         /*
1442          * Don't enqueue the group if its throttled, or when empty.
1443          * The latter is a consequence of the former when a child group
1444          * get throttled and the current group doesn't have any other
1445          * active members.
1446          */
1447         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1448                 if (rt_se->on_list)
1449                         __delist_rt_entity(rt_se, array);
1450                 return;
1451         }
1452
1453         if (move_entity(flags)) {
1454                 WARN_ON_ONCE(rt_se->on_list);
1455                 if (flags & ENQUEUE_HEAD)
1456                         list_add(&rt_se->run_list, queue);
1457                 else
1458                         list_add_tail(&rt_se->run_list, queue);
1459
1460                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1461                 rt_se->on_list = 1;
1462         }
1463         rt_se->on_rq = 1;
1464
1465         inc_rt_tasks(rt_se, rt_rq);
1466 }
1467
1468 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1469 {
1470         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1471         struct rt_prio_array *array = &rt_rq->active;
1472
1473         if (move_entity(flags)) {
1474                 WARN_ON_ONCE(!rt_se->on_list);
1475                 __delist_rt_entity(rt_se, array);
1476         }
1477         rt_se->on_rq = 0;
1478
1479         dec_rt_tasks(rt_se, rt_rq);
1480 }
1481
1482 /*
1483  * Because the prio of an upper entry depends on the lower
1484  * entries, we must remove entries top - down.
1485  */
1486 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1487 {
1488         struct sched_rt_entity *back = NULL;
1489         unsigned int rt_nr_running;
1490
1491         for_each_sched_rt_entity(rt_se) {
1492                 rt_se->back = back;
1493                 back = rt_se;
1494         }
1495
1496         rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1497
1498         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1499                 if (on_rt_rq(rt_se))
1500                         __dequeue_rt_entity(rt_se, flags);
1501         }
1502
1503         dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1504 }
1505
1506 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1507 {
1508         struct rq *rq = rq_of_rt_se(rt_se);
1509
1510         update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1511
1512         dequeue_rt_stack(rt_se, flags);
1513         for_each_sched_rt_entity(rt_se)
1514                 __enqueue_rt_entity(rt_se, flags);
1515         enqueue_top_rt_rq(&rq->rt);
1516 }
1517
1518 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1519 {
1520         struct rq *rq = rq_of_rt_se(rt_se);
1521
1522         update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1523
1524         dequeue_rt_stack(rt_se, flags);
1525
1526         for_each_sched_rt_entity(rt_se) {
1527                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1528
1529                 if (rt_rq && rt_rq->rt_nr_running)
1530                         __enqueue_rt_entity(rt_se, flags);
1531         }
1532         enqueue_top_rt_rq(&rq->rt);
1533 }
1534
1535 /*
1536  * Adding/removing a task to/from a priority array:
1537  */
1538 static void
1539 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1540 {
1541         struct sched_rt_entity *rt_se = &p->rt;
1542
1543         if (flags & ENQUEUE_WAKEUP)
1544                 rt_se->timeout = 0;
1545
1546         check_schedstat_required();
1547         update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1548
1549         enqueue_rt_entity(rt_se, flags);
1550
1551         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1552                 enqueue_pushable_task(rq, p);
1553 }
1554
1555 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1556 {
1557         struct sched_rt_entity *rt_se = &p->rt;
1558
1559         update_curr_rt(rq);
1560         dequeue_rt_entity(rt_se, flags);
1561
1562         dequeue_pushable_task(rq, p);
1563 }
1564
1565 /*
1566  * Put task to the head or the end of the run list without the overhead of
1567  * dequeue followed by enqueue.
1568  */
1569 static void
1570 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1571 {
1572         if (on_rt_rq(rt_se)) {
1573                 struct rt_prio_array *array = &rt_rq->active;
1574                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1575
1576                 if (head)
1577                         list_move(&rt_se->run_list, queue);
1578                 else
1579                         list_move_tail(&rt_se->run_list, queue);
1580         }
1581 }
1582
1583 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1584 {
1585         struct sched_rt_entity *rt_se = &p->rt;
1586         struct rt_rq *rt_rq;
1587
1588         for_each_sched_rt_entity(rt_se) {
1589                 rt_rq = rt_rq_of_se(rt_se);
1590                 requeue_rt_entity(rt_rq, rt_se, head);
1591         }
1592 }
1593
1594 static void yield_task_rt(struct rq *rq)
1595 {
1596         requeue_task_rt(rq, rq->curr, 0);
1597 }
1598
1599 #ifdef CONFIG_SMP
1600 static int find_lowest_rq(struct task_struct *task);
1601
1602 static int
1603 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1604 {
1605         struct task_struct *curr;
1606         struct rq *rq;
1607         bool test;
1608
1609         /* For anything but wake ups, just return the task_cpu */
1610         if (!(flags & (WF_TTWU | WF_FORK)))
1611                 goto out;
1612
1613         rq = cpu_rq(cpu);
1614
1615         rcu_read_lock();
1616         curr = READ_ONCE(rq->curr); /* unlocked access */
1617
1618         /*
1619          * If the current task on @p's runqueue is an RT task, then
1620          * try to see if we can wake this RT task up on another
1621          * runqueue. Otherwise simply start this RT task
1622          * on its current runqueue.
1623          *
1624          * We want to avoid overloading runqueues. If the woken
1625          * task is a higher priority, then it will stay on this CPU
1626          * and the lower prio task should be moved to another CPU.
1627          * Even though this will probably make the lower prio task
1628          * lose its cache, we do not want to bounce a higher task
1629          * around just because it gave up its CPU, perhaps for a
1630          * lock?
1631          *
1632          * For equal prio tasks, we just let the scheduler sort it out.
1633          *
1634          * Otherwise, just let it ride on the affined RQ and the
1635          * post-schedule router will push the preempted task away
1636          *
1637          * This test is optimistic, if we get it wrong the load-balancer
1638          * will have to sort it out.
1639          *
1640          * We take into account the capacity of the CPU to ensure it fits the
1641          * requirement of the task - which is only important on heterogeneous
1642          * systems like big.LITTLE.
1643          */
1644         test = curr &&
1645                unlikely(rt_task(curr)) &&
1646                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1647
1648         if (test || !rt_task_fits_capacity(p, cpu)) {
1649                 int target = find_lowest_rq(p);
1650
1651                 /*
1652                  * Bail out if we were forcing a migration to find a better
1653                  * fitting CPU but our search failed.
1654                  */
1655                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1656                         goto out_unlock;
1657
1658                 /*
1659                  * Don't bother moving it if the destination CPU is
1660                  * not running a lower priority task.
1661                  */
1662                 if (target != -1 &&
1663                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1664                         cpu = target;
1665         }
1666
1667 out_unlock:
1668         rcu_read_unlock();
1669
1670 out:
1671         return cpu;
1672 }
1673
1674 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1675 {
1676         /*
1677          * Current can't be migrated, useless to reschedule,
1678          * let's hope p can move out.
1679          */
1680         if (rq->curr->nr_cpus_allowed == 1 ||
1681             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1682                 return;
1683
1684         /*
1685          * p is migratable, so let's not schedule it and
1686          * see if it is pushed or pulled somewhere else.
1687          */
1688         if (p->nr_cpus_allowed != 1 &&
1689             cpupri_find(&rq->rd->cpupri, p, NULL))
1690                 return;
1691
1692         /*
1693          * There appear to be other CPUs that can accept
1694          * the current task but none can run 'p', so lets reschedule
1695          * to try and push the current task away:
1696          */
1697         requeue_task_rt(rq, p, 1);
1698         resched_curr(rq);
1699 }
1700
1701 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1702 {
1703         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1704                 /*
1705                  * This is OK, because current is on_cpu, which avoids it being
1706                  * picked for load-balance and preemption/IRQs are still
1707                  * disabled avoiding further scheduler activity on it and we've
1708                  * not yet started the picking loop.
1709                  */
1710                 rq_unpin_lock(rq, rf);
1711                 pull_rt_task(rq);
1712                 rq_repin_lock(rq, rf);
1713         }
1714
1715         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1716 }
1717 #endif /* CONFIG_SMP */
1718
1719 /*
1720  * Preempt the current task with a newly woken task if needed:
1721  */
1722 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1723 {
1724         if (p->prio < rq->curr->prio) {
1725                 resched_curr(rq);
1726                 return;
1727         }
1728
1729 #ifdef CONFIG_SMP
1730         /*
1731          * If:
1732          *
1733          * - the newly woken task is of equal priority to the current task
1734          * - the newly woken task is non-migratable while current is migratable
1735          * - current will be preempted on the next reschedule
1736          *
1737          * we should check to see if current can readily move to a different
1738          * cpu.  If so, we will reschedule to allow the push logic to try
1739          * to move current somewhere else, making room for our non-migratable
1740          * task.
1741          */
1742         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1743                 check_preempt_equal_prio(rq, p);
1744 #endif
1745 }
1746
1747 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1748 {
1749         struct sched_rt_entity *rt_se = &p->rt;
1750         struct rt_rq *rt_rq = &rq->rt;
1751
1752         p->se.exec_start = rq_clock_task(rq);
1753         if (on_rt_rq(&p->rt))
1754                 update_stats_wait_end_rt(rt_rq, rt_se);
1755
1756         /* The running task is never eligible for pushing */
1757         dequeue_pushable_task(rq, p);
1758
1759         if (!first)
1760                 return;
1761
1762         /*
1763          * If prev task was rt, put_prev_task() has already updated the
1764          * utilization. We only care of the case where we start to schedule a
1765          * rt task
1766          */
1767         if (rq->curr->sched_class != &rt_sched_class)
1768                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1769
1770         rt_queue_push_tasks(rq);
1771 }
1772
1773 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1774 {
1775         struct rt_prio_array *array = &rt_rq->active;
1776         struct sched_rt_entity *next = NULL;
1777         struct list_head *queue;
1778         int idx;
1779
1780         idx = sched_find_first_bit(array->bitmap);
1781         BUG_ON(idx >= MAX_RT_PRIO);
1782
1783         queue = array->queue + idx;
1784         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1785
1786         return next;
1787 }
1788
1789 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1790 {
1791         struct sched_rt_entity *rt_se;
1792         struct rt_rq *rt_rq  = &rq->rt;
1793
1794         do {
1795                 rt_se = pick_next_rt_entity(rt_rq);
1796                 BUG_ON(!rt_se);
1797                 rt_rq = group_rt_rq(rt_se);
1798         } while (rt_rq);
1799
1800         return rt_task_of(rt_se);
1801 }
1802
1803 static struct task_struct *pick_task_rt(struct rq *rq)
1804 {
1805         struct task_struct *p;
1806
1807         if (!sched_rt_runnable(rq))
1808                 return NULL;
1809
1810         p = _pick_next_task_rt(rq);
1811
1812         return p;
1813 }
1814
1815 static struct task_struct *pick_next_task_rt(struct rq *rq)
1816 {
1817         struct task_struct *p = pick_task_rt(rq);
1818
1819         if (p)
1820                 set_next_task_rt(rq, p, true);
1821
1822         return p;
1823 }
1824
1825 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1826 {
1827         struct sched_rt_entity *rt_se = &p->rt;
1828         struct rt_rq *rt_rq = &rq->rt;
1829
1830         if (on_rt_rq(&p->rt))
1831                 update_stats_wait_start_rt(rt_rq, rt_se);
1832
1833         update_curr_rt(rq);
1834
1835         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1836
1837         /*
1838          * The previous task needs to be made eligible for pushing
1839          * if it is still active
1840          */
1841         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1842                 enqueue_pushable_task(rq, p);
1843 }
1844
1845 #ifdef CONFIG_SMP
1846
1847 /* Only try algorithms three times */
1848 #define RT_MAX_TRIES 3
1849
1850 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1851 {
1852         if (!task_running(rq, p) &&
1853             cpumask_test_cpu(cpu, &p->cpus_mask))
1854                 return 1;
1855
1856         return 0;
1857 }
1858
1859 /*
1860  * Return the highest pushable rq's task, which is suitable to be executed
1861  * on the CPU, NULL otherwise
1862  */
1863 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1864 {
1865         struct plist_head *head = &rq->rt.pushable_tasks;
1866         struct task_struct *p;
1867
1868         if (!has_pushable_tasks(rq))
1869                 return NULL;
1870
1871         plist_for_each_entry(p, head, pushable_tasks) {
1872                 if (pick_rt_task(rq, p, cpu))
1873                         return p;
1874         }
1875
1876         return NULL;
1877 }
1878
1879 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1880
1881 static int find_lowest_rq(struct task_struct *task)
1882 {
1883         struct sched_domain *sd;
1884         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1885         int this_cpu = smp_processor_id();
1886         int cpu      = task_cpu(task);
1887         int ret;
1888
1889         /* Make sure the mask is initialized first */
1890         if (unlikely(!lowest_mask))
1891                 return -1;
1892
1893         if (task->nr_cpus_allowed == 1)
1894                 return -1; /* No other targets possible */
1895
1896         /*
1897          * If we're on asym system ensure we consider the different capacities
1898          * of the CPUs when searching for the lowest_mask.
1899          */
1900         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1901
1902                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1903                                           task, lowest_mask,
1904                                           rt_task_fits_capacity);
1905         } else {
1906
1907                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1908                                   task, lowest_mask);
1909         }
1910
1911         if (!ret)
1912                 return -1; /* No targets found */
1913
1914         /*
1915          * At this point we have built a mask of CPUs representing the
1916          * lowest priority tasks in the system.  Now we want to elect
1917          * the best one based on our affinity and topology.
1918          *
1919          * We prioritize the last CPU that the task executed on since
1920          * it is most likely cache-hot in that location.
1921          */
1922         if (cpumask_test_cpu(cpu, lowest_mask))
1923                 return cpu;
1924
1925         /*
1926          * Otherwise, we consult the sched_domains span maps to figure
1927          * out which CPU is logically closest to our hot cache data.
1928          */
1929         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1930                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1931
1932         rcu_read_lock();
1933         for_each_domain(cpu, sd) {
1934                 if (sd->flags & SD_WAKE_AFFINE) {
1935                         int best_cpu;
1936
1937                         /*
1938                          * "this_cpu" is cheaper to preempt than a
1939                          * remote processor.
1940                          */
1941                         if (this_cpu != -1 &&
1942                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1943                                 rcu_read_unlock();
1944                                 return this_cpu;
1945                         }
1946
1947                         best_cpu = cpumask_any_and_distribute(lowest_mask,
1948                                                               sched_domain_span(sd));
1949                         if (best_cpu < nr_cpu_ids) {
1950                                 rcu_read_unlock();
1951                                 return best_cpu;
1952                         }
1953                 }
1954         }
1955         rcu_read_unlock();
1956
1957         /*
1958          * And finally, if there were no matches within the domains
1959          * just give the caller *something* to work with from the compatible
1960          * locations.
1961          */
1962         if (this_cpu != -1)
1963                 return this_cpu;
1964
1965         cpu = cpumask_any_distribute(lowest_mask);
1966         if (cpu < nr_cpu_ids)
1967                 return cpu;
1968
1969         return -1;
1970 }
1971
1972 /* Will lock the rq it finds */
1973 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1974 {
1975         struct rq *lowest_rq = NULL;
1976         int tries;
1977         int cpu;
1978
1979         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1980                 cpu = find_lowest_rq(task);
1981
1982                 if ((cpu == -1) || (cpu == rq->cpu))
1983                         break;
1984
1985                 lowest_rq = cpu_rq(cpu);
1986
1987                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1988                         /*
1989                          * Target rq has tasks of equal or higher priority,
1990                          * retrying does not release any lock and is unlikely
1991                          * to yield a different result.
1992                          */
1993                         lowest_rq = NULL;
1994                         break;
1995                 }
1996
1997                 /* if the prio of this runqueue changed, try again */
1998                 if (double_lock_balance(rq, lowest_rq)) {
1999                         /*
2000                          * We had to unlock the run queue. In
2001                          * the mean time, task could have
2002                          * migrated already or had its affinity changed.
2003                          * Also make sure that it wasn't scheduled on its rq.
2004                          */
2005                         if (unlikely(task_rq(task) != rq ||
2006                                      !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
2007                                      task_running(rq, task) ||
2008                                      !rt_task(task) ||
2009                                      !task_on_rq_queued(task))) {
2010
2011                                 double_unlock_balance(rq, lowest_rq);
2012                                 lowest_rq = NULL;
2013                                 break;
2014                         }
2015                 }
2016
2017                 /* If this rq is still suitable use it. */
2018                 if (lowest_rq->rt.highest_prio.curr > task->prio)
2019                         break;
2020
2021                 /* try again */
2022                 double_unlock_balance(rq, lowest_rq);
2023                 lowest_rq = NULL;
2024         }
2025
2026         return lowest_rq;
2027 }
2028
2029 static struct task_struct *pick_next_pushable_task(struct rq *rq)
2030 {
2031         struct task_struct *p;
2032
2033         if (!has_pushable_tasks(rq))
2034                 return NULL;
2035
2036         p = plist_first_entry(&rq->rt.pushable_tasks,
2037                               struct task_struct, pushable_tasks);
2038
2039         BUG_ON(rq->cpu != task_cpu(p));
2040         BUG_ON(task_current(rq, p));
2041         BUG_ON(p->nr_cpus_allowed <= 1);
2042
2043         BUG_ON(!task_on_rq_queued(p));
2044         BUG_ON(!rt_task(p));
2045
2046         return p;
2047 }
2048
2049 /*
2050  * If the current CPU has more than one RT task, see if the non
2051  * running task can migrate over to a CPU that is running a task
2052  * of lesser priority.
2053  */
2054 static int push_rt_task(struct rq *rq, bool pull)
2055 {
2056         struct task_struct *next_task;
2057         struct rq *lowest_rq;
2058         int ret = 0;
2059
2060         if (!rq->rt.overloaded)
2061                 return 0;
2062
2063         next_task = pick_next_pushable_task(rq);
2064         if (!next_task)
2065                 return 0;
2066
2067 retry:
2068         /*
2069          * It's possible that the next_task slipped in of
2070          * higher priority than current. If that's the case
2071          * just reschedule current.
2072          */
2073         if (unlikely(next_task->prio < rq->curr->prio)) {
2074                 resched_curr(rq);
2075                 return 0;
2076         }
2077
2078         if (is_migration_disabled(next_task)) {
2079                 struct task_struct *push_task = NULL;
2080                 int cpu;
2081
2082                 if (!pull || rq->push_busy)
2083                         return 0;
2084
2085                 /*
2086                  * Invoking find_lowest_rq() on anything but an RT task doesn't
2087                  * make sense. Per the above priority check, curr has to
2088                  * be of higher priority than next_task, so no need to
2089                  * reschedule when bailing out.
2090                  *
2091                  * Note that the stoppers are masqueraded as SCHED_FIFO
2092                  * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2093                  */
2094                 if (rq->curr->sched_class != &rt_sched_class)
2095                         return 0;
2096
2097                 cpu = find_lowest_rq(rq->curr);
2098                 if (cpu == -1 || cpu == rq->cpu)
2099                         return 0;
2100
2101                 /*
2102                  * Given we found a CPU with lower priority than @next_task,
2103                  * therefore it should be running. However we cannot migrate it
2104                  * to this other CPU, instead attempt to push the current
2105                  * running task on this CPU away.
2106                  */
2107                 push_task = get_push_task(rq);
2108                 if (push_task) {
2109                         raw_spin_rq_unlock(rq);
2110                         stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2111                                             push_task, &rq->push_work);
2112                         raw_spin_rq_lock(rq);
2113                 }
2114
2115                 return 0;
2116         }
2117
2118         if (WARN_ON(next_task == rq->curr))
2119                 return 0;
2120
2121         /* We might release rq lock */
2122         get_task_struct(next_task);
2123
2124         /* find_lock_lowest_rq locks the rq if found */
2125         lowest_rq = find_lock_lowest_rq(next_task, rq);
2126         if (!lowest_rq) {
2127                 struct task_struct *task;
2128                 /*
2129                  * find_lock_lowest_rq releases rq->lock
2130                  * so it is possible that next_task has migrated.
2131                  *
2132                  * We need to make sure that the task is still on the same
2133                  * run-queue and is also still the next task eligible for
2134                  * pushing.
2135                  */
2136                 task = pick_next_pushable_task(rq);
2137                 if (task == next_task) {
2138                         /*
2139                          * The task hasn't migrated, and is still the next
2140                          * eligible task, but we failed to find a run-queue
2141                          * to push it to.  Do not retry in this case, since
2142                          * other CPUs will pull from us when ready.
2143                          */
2144                         goto out;
2145                 }
2146
2147                 if (!task)
2148                         /* No more tasks, just exit */
2149                         goto out;
2150
2151                 /*
2152                  * Something has shifted, try again.
2153                  */
2154                 put_task_struct(next_task);
2155                 next_task = task;
2156                 goto retry;
2157         }
2158
2159         deactivate_task(rq, next_task, 0);
2160         set_task_cpu(next_task, lowest_rq->cpu);
2161         activate_task(lowest_rq, next_task, 0);
2162         resched_curr(lowest_rq);
2163         ret = 1;
2164
2165         double_unlock_balance(rq, lowest_rq);
2166 out:
2167         put_task_struct(next_task);
2168
2169         return ret;
2170 }
2171
2172 static void push_rt_tasks(struct rq *rq)
2173 {
2174         /* push_rt_task will return true if it moved an RT */
2175         while (push_rt_task(rq, false))
2176                 ;
2177 }
2178
2179 #ifdef HAVE_RT_PUSH_IPI
2180
2181 /*
2182  * When a high priority task schedules out from a CPU and a lower priority
2183  * task is scheduled in, a check is made to see if there's any RT tasks
2184  * on other CPUs that are waiting to run because a higher priority RT task
2185  * is currently running on its CPU. In this case, the CPU with multiple RT
2186  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2187  * up that may be able to run one of its non-running queued RT tasks.
2188  *
2189  * All CPUs with overloaded RT tasks need to be notified as there is currently
2190  * no way to know which of these CPUs have the highest priority task waiting
2191  * to run. Instead of trying to take a spinlock on each of these CPUs,
2192  * which has shown to cause large latency when done on machines with many
2193  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2194  * RT tasks waiting to run.
2195  *
2196  * Just sending an IPI to each of the CPUs is also an issue, as on large
2197  * count CPU machines, this can cause an IPI storm on a CPU, especially
2198  * if its the only CPU with multiple RT tasks queued, and a large number
2199  * of CPUs scheduling a lower priority task at the same time.
2200  *
2201  * Each root domain has its own irq work function that can iterate over
2202  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2203  * task must be checked if there's one or many CPUs that are lowering
2204  * their priority, there's a single irq work iterator that will try to
2205  * push off RT tasks that are waiting to run.
2206  *
2207  * When a CPU schedules a lower priority task, it will kick off the
2208  * irq work iterator that will jump to each CPU with overloaded RT tasks.
2209  * As it only takes the first CPU that schedules a lower priority task
2210  * to start the process, the rto_start variable is incremented and if
2211  * the atomic result is one, then that CPU will try to take the rto_lock.
2212  * This prevents high contention on the lock as the process handles all
2213  * CPUs scheduling lower priority tasks.
2214  *
2215  * All CPUs that are scheduling a lower priority task will increment the
2216  * rt_loop_next variable. This will make sure that the irq work iterator
2217  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2218  * priority task, even if the iterator is in the middle of a scan. Incrementing
2219  * the rt_loop_next will cause the iterator to perform another scan.
2220  *
2221  */
2222 static int rto_next_cpu(struct root_domain *rd)
2223 {
2224         int next;
2225         int cpu;
2226
2227         /*
2228          * When starting the IPI RT pushing, the rto_cpu is set to -1,
2229          * rt_next_cpu() will simply return the first CPU found in
2230          * the rto_mask.
2231          *
2232          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2233          * will return the next CPU found in the rto_mask.
2234          *
2235          * If there are no more CPUs left in the rto_mask, then a check is made
2236          * against rto_loop and rto_loop_next. rto_loop is only updated with
2237          * the rto_lock held, but any CPU may increment the rto_loop_next
2238          * without any locking.
2239          */
2240         for (;;) {
2241
2242                 /* When rto_cpu is -1 this acts like cpumask_first() */
2243                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2244
2245                 rd->rto_cpu = cpu;
2246
2247                 if (cpu < nr_cpu_ids)
2248                         return cpu;
2249
2250                 rd->rto_cpu = -1;
2251
2252                 /*
2253                  * ACQUIRE ensures we see the @rto_mask changes
2254                  * made prior to the @next value observed.
2255                  *
2256                  * Matches WMB in rt_set_overload().
2257                  */
2258                 next = atomic_read_acquire(&rd->rto_loop_next);
2259
2260                 if (rd->rto_loop == next)
2261                         break;
2262
2263                 rd->rto_loop = next;
2264         }
2265
2266         return -1;
2267 }
2268
2269 static inline bool rto_start_trylock(atomic_t *v)
2270 {
2271         return !atomic_cmpxchg_acquire(v, 0, 1);
2272 }
2273
2274 static inline void rto_start_unlock(atomic_t *v)
2275 {
2276         atomic_set_release(v, 0);
2277 }
2278
2279 static void tell_cpu_to_push(struct rq *rq)
2280 {
2281         int cpu = -1;
2282
2283         /* Keep the loop going if the IPI is currently active */
2284         atomic_inc(&rq->rd->rto_loop_next);
2285
2286         /* Only one CPU can initiate a loop at a time */
2287         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2288                 return;
2289
2290         raw_spin_lock(&rq->rd->rto_lock);
2291
2292         /*
2293          * The rto_cpu is updated under the lock, if it has a valid CPU
2294          * then the IPI is still running and will continue due to the
2295          * update to loop_next, and nothing needs to be done here.
2296          * Otherwise it is finishing up and an ipi needs to be sent.
2297          */
2298         if (rq->rd->rto_cpu < 0)
2299                 cpu = rto_next_cpu(rq->rd);
2300
2301         raw_spin_unlock(&rq->rd->rto_lock);
2302
2303         rto_start_unlock(&rq->rd->rto_loop_start);
2304
2305         if (cpu >= 0) {
2306                 /* Make sure the rd does not get freed while pushing */
2307                 sched_get_rd(rq->rd);
2308                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2309         }
2310 }
2311
2312 /* Called from hardirq context */
2313 void rto_push_irq_work_func(struct irq_work *work)
2314 {
2315         struct root_domain *rd =
2316                 container_of(work, struct root_domain, rto_push_work);
2317         struct rq *rq;
2318         int cpu;
2319
2320         rq = this_rq();
2321
2322         /*
2323          * We do not need to grab the lock to check for has_pushable_tasks.
2324          * When it gets updated, a check is made if a push is possible.
2325          */
2326         if (has_pushable_tasks(rq)) {
2327                 raw_spin_rq_lock(rq);
2328                 while (push_rt_task(rq, true))
2329                         ;
2330                 raw_spin_rq_unlock(rq);
2331         }
2332
2333         raw_spin_lock(&rd->rto_lock);
2334
2335         /* Pass the IPI to the next rt overloaded queue */
2336         cpu = rto_next_cpu(rd);
2337
2338         raw_spin_unlock(&rd->rto_lock);
2339
2340         if (cpu < 0) {
2341                 sched_put_rd(rd);
2342                 return;
2343         }
2344
2345         /* Try the next RT overloaded CPU */
2346         irq_work_queue_on(&rd->rto_push_work, cpu);
2347 }
2348 #endif /* HAVE_RT_PUSH_IPI */
2349
2350 static void pull_rt_task(struct rq *this_rq)
2351 {
2352         int this_cpu = this_rq->cpu, cpu;
2353         bool resched = false;
2354         struct task_struct *p, *push_task;
2355         struct rq *src_rq;
2356         int rt_overload_count = rt_overloaded(this_rq);
2357
2358         if (likely(!rt_overload_count))
2359                 return;
2360
2361         /*
2362          * Match the barrier from rt_set_overloaded; this guarantees that if we
2363          * see overloaded we must also see the rto_mask bit.
2364          */
2365         smp_rmb();
2366
2367         /* If we are the only overloaded CPU do nothing */
2368         if (rt_overload_count == 1 &&
2369             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2370                 return;
2371
2372 #ifdef HAVE_RT_PUSH_IPI
2373         if (sched_feat(RT_PUSH_IPI)) {
2374                 tell_cpu_to_push(this_rq);
2375                 return;
2376         }
2377 #endif
2378
2379         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2380                 if (this_cpu == cpu)
2381                         continue;
2382
2383                 src_rq = cpu_rq(cpu);
2384
2385                 /*
2386                  * Don't bother taking the src_rq->lock if the next highest
2387                  * task is known to be lower-priority than our current task.
2388                  * This may look racy, but if this value is about to go
2389                  * logically higher, the src_rq will push this task away.
2390                  * And if its going logically lower, we do not care
2391                  */
2392                 if (src_rq->rt.highest_prio.next >=
2393                     this_rq->rt.highest_prio.curr)
2394                         continue;
2395
2396                 /*
2397                  * We can potentially drop this_rq's lock in
2398                  * double_lock_balance, and another CPU could
2399                  * alter this_rq
2400                  */
2401                 push_task = NULL;
2402                 double_lock_balance(this_rq, src_rq);
2403
2404                 /*
2405                  * We can pull only a task, which is pushable
2406                  * on its rq, and no others.
2407                  */
2408                 p = pick_highest_pushable_task(src_rq, this_cpu);
2409
2410                 /*
2411                  * Do we have an RT task that preempts
2412                  * the to-be-scheduled task?
2413                  */
2414                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2415                         WARN_ON(p == src_rq->curr);
2416                         WARN_ON(!task_on_rq_queued(p));
2417
2418                         /*
2419                          * There's a chance that p is higher in priority
2420                          * than what's currently running on its CPU.
2421                          * This is just that p is waking up and hasn't
2422                          * had a chance to schedule. We only pull
2423                          * p if it is lower in priority than the
2424                          * current task on the run queue
2425                          */
2426                         if (p->prio < src_rq->curr->prio)
2427                                 goto skip;
2428
2429                         if (is_migration_disabled(p)) {
2430                                 push_task = get_push_task(src_rq);
2431                         } else {
2432                                 deactivate_task(src_rq, p, 0);
2433                                 set_task_cpu(p, this_cpu);
2434                                 activate_task(this_rq, p, 0);
2435                                 resched = true;
2436                         }
2437                         /*
2438                          * We continue with the search, just in
2439                          * case there's an even higher prio task
2440                          * in another runqueue. (low likelihood
2441                          * but possible)
2442                          */
2443                 }
2444 skip:
2445                 double_unlock_balance(this_rq, src_rq);
2446
2447                 if (push_task) {
2448                         raw_spin_rq_unlock(this_rq);
2449                         stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2450                                             push_task, &src_rq->push_work);
2451                         raw_spin_rq_lock(this_rq);
2452                 }
2453         }
2454
2455         if (resched)
2456                 resched_curr(this_rq);
2457 }
2458
2459 /*
2460  * If we are not running and we are not going to reschedule soon, we should
2461  * try to push tasks away now
2462  */
2463 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2464 {
2465         bool need_to_push = !task_running(rq, p) &&
2466                             !test_tsk_need_resched(rq->curr) &&
2467                             p->nr_cpus_allowed > 1 &&
2468                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2469                             (rq->curr->nr_cpus_allowed < 2 ||
2470                              rq->curr->prio <= p->prio);
2471
2472         if (need_to_push)
2473                 push_rt_tasks(rq);
2474 }
2475
2476 /* Assumes rq->lock is held */
2477 static void rq_online_rt(struct rq *rq)
2478 {
2479         if (rq->rt.overloaded)
2480                 rt_set_overload(rq);
2481
2482         __enable_runtime(rq);
2483
2484         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2485 }
2486
2487 /* Assumes rq->lock is held */
2488 static void rq_offline_rt(struct rq *rq)
2489 {
2490         if (rq->rt.overloaded)
2491                 rt_clear_overload(rq);
2492
2493         __disable_runtime(rq);
2494
2495         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2496 }
2497
2498 /*
2499  * When switch from the rt queue, we bring ourselves to a position
2500  * that we might want to pull RT tasks from other runqueues.
2501  */
2502 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2503 {
2504         /*
2505          * If there are other RT tasks then we will reschedule
2506          * and the scheduling of the other RT tasks will handle
2507          * the balancing. But if we are the last RT task
2508          * we may need to handle the pulling of RT tasks
2509          * now.
2510          */
2511         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2512                 return;
2513
2514         rt_queue_pull_task(rq);
2515 }
2516
2517 void __init init_sched_rt_class(void)
2518 {
2519         unsigned int i;
2520
2521         for_each_possible_cpu(i) {
2522                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2523                                         GFP_KERNEL, cpu_to_node(i));
2524         }
2525 }
2526 #endif /* CONFIG_SMP */
2527
2528 /*
2529  * When switching a task to RT, we may overload the runqueue
2530  * with RT tasks. In this case we try to push them off to
2531  * other runqueues.
2532  */
2533 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2534 {
2535         /*
2536          * If we are running, update the avg_rt tracking, as the running time
2537          * will now on be accounted into the latter.
2538          */
2539         if (task_current(rq, p)) {
2540                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2541                 return;
2542         }
2543
2544         /*
2545          * If we are not running we may need to preempt the current
2546          * running task. If that current running task is also an RT task
2547          * then see if we can move to another run queue.
2548          */
2549         if (task_on_rq_queued(p)) {
2550 #ifdef CONFIG_SMP
2551                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2552                         rt_queue_push_tasks(rq);
2553 #endif /* CONFIG_SMP */
2554                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2555                         resched_curr(rq);
2556         }
2557 }
2558
2559 /*
2560  * Priority of the task has changed. This may cause
2561  * us to initiate a push or pull.
2562  */
2563 static void
2564 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2565 {
2566         if (!task_on_rq_queued(p))
2567                 return;
2568
2569         if (task_current(rq, p)) {
2570 #ifdef CONFIG_SMP
2571                 /*
2572                  * If our priority decreases while running, we
2573                  * may need to pull tasks to this runqueue.
2574                  */
2575                 if (oldprio < p->prio)
2576                         rt_queue_pull_task(rq);
2577
2578                 /*
2579                  * If there's a higher priority task waiting to run
2580                  * then reschedule.
2581                  */
2582                 if (p->prio > rq->rt.highest_prio.curr)
2583                         resched_curr(rq);
2584 #else
2585                 /* For UP simply resched on drop of prio */
2586                 if (oldprio < p->prio)
2587                         resched_curr(rq);
2588 #endif /* CONFIG_SMP */
2589         } else {
2590                 /*
2591                  * This task is not running, but if it is
2592                  * greater than the current running task
2593                  * then reschedule.
2594                  */
2595                 if (p->prio < rq->curr->prio)
2596                         resched_curr(rq);
2597         }
2598 }
2599
2600 #ifdef CONFIG_POSIX_TIMERS
2601 static void watchdog(struct rq *rq, struct task_struct *p)
2602 {
2603         unsigned long soft, hard;
2604
2605         /* max may change after cur was read, this will be fixed next tick */
2606         soft = task_rlimit(p, RLIMIT_RTTIME);
2607         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2608
2609         if (soft != RLIM_INFINITY) {
2610                 unsigned long next;
2611
2612                 if (p->rt.watchdog_stamp != jiffies) {
2613                         p->rt.timeout++;
2614                         p->rt.watchdog_stamp = jiffies;
2615                 }
2616
2617                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2618                 if (p->rt.timeout > next) {
2619                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2620                                                     p->se.sum_exec_runtime);
2621                 }
2622         }
2623 }
2624 #else
2625 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2626 #endif
2627
2628 /*
2629  * scheduler tick hitting a task of our scheduling class.
2630  *
2631  * NOTE: This function can be called remotely by the tick offload that
2632  * goes along full dynticks. Therefore no local assumption can be made
2633  * and everything must be accessed through the @rq and @curr passed in
2634  * parameters.
2635  */
2636 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2637 {
2638         struct sched_rt_entity *rt_se = &p->rt;
2639
2640         update_curr_rt(rq);
2641         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2642
2643         watchdog(rq, p);
2644
2645         /*
2646          * RR tasks need a special form of timeslice management.
2647          * FIFO tasks have no timeslices.
2648          */
2649         if (p->policy != SCHED_RR)
2650                 return;
2651
2652         if (--p->rt.time_slice)
2653                 return;
2654
2655         p->rt.time_slice = sched_rr_timeslice;
2656
2657         /*
2658          * Requeue to the end of queue if we (and all of our ancestors) are not
2659          * the only element on the queue
2660          */
2661         for_each_sched_rt_entity(rt_se) {
2662                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2663                         requeue_task_rt(rq, p, 0);
2664                         resched_curr(rq);
2665                         return;
2666                 }
2667         }
2668 }
2669
2670 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2671 {
2672         /*
2673          * Time slice is 0 for SCHED_FIFO tasks
2674          */
2675         if (task->policy == SCHED_RR)
2676                 return sched_rr_timeslice;
2677         else
2678                 return 0;
2679 }
2680
2681 DEFINE_SCHED_CLASS(rt) = {
2682
2683         .enqueue_task           = enqueue_task_rt,
2684         .dequeue_task           = dequeue_task_rt,
2685         .yield_task             = yield_task_rt,
2686
2687         .check_preempt_curr     = check_preempt_curr_rt,
2688
2689         .pick_next_task         = pick_next_task_rt,
2690         .put_prev_task          = put_prev_task_rt,
2691         .set_next_task          = set_next_task_rt,
2692
2693 #ifdef CONFIG_SMP
2694         .balance                = balance_rt,
2695         .pick_task              = pick_task_rt,
2696         .select_task_rq         = select_task_rq_rt,
2697         .set_cpus_allowed       = set_cpus_allowed_common,
2698         .rq_online              = rq_online_rt,
2699         .rq_offline             = rq_offline_rt,
2700         .task_woken             = task_woken_rt,
2701         .switched_from          = switched_from_rt,
2702         .find_lock_rq           = find_lock_lowest_rq,
2703 #endif
2704
2705         .task_tick              = task_tick_rt,
2706
2707         .get_rr_interval        = get_rr_interval_rt,
2708
2709         .prio_changed           = prio_changed_rt,
2710         .switched_to            = switched_to_rt,
2711
2712         .update_curr            = update_curr_rt,
2713
2714 #ifdef CONFIG_UCLAMP_TASK
2715         .uclamp_enabled         = 1,
2716 #endif
2717 };
2718
2719 #ifdef CONFIG_RT_GROUP_SCHED
2720 /*
2721  * Ensure that the real time constraints are schedulable.
2722  */
2723 static DEFINE_MUTEX(rt_constraints_mutex);
2724
2725 static inline int tg_has_rt_tasks(struct task_group *tg)
2726 {
2727         struct task_struct *task;
2728         struct css_task_iter it;
2729         int ret = 0;
2730
2731         /*
2732          * Autogroups do not have RT tasks; see autogroup_create().
2733          */
2734         if (task_group_is_autogroup(tg))
2735                 return 0;
2736
2737         css_task_iter_start(&tg->css, 0, &it);
2738         while (!ret && (task = css_task_iter_next(&it)))
2739                 ret |= rt_task(task);
2740         css_task_iter_end(&it);
2741
2742         return ret;
2743 }
2744
2745 struct rt_schedulable_data {
2746         struct task_group *tg;
2747         u64 rt_period;
2748         u64 rt_runtime;
2749 };
2750
2751 static int tg_rt_schedulable(struct task_group *tg, void *data)
2752 {
2753         struct rt_schedulable_data *d = data;
2754         struct task_group *child;
2755         unsigned long total, sum = 0;
2756         u64 period, runtime;
2757
2758         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2759         runtime = tg->rt_bandwidth.rt_runtime;
2760
2761         if (tg == d->tg) {
2762                 period = d->rt_period;
2763                 runtime = d->rt_runtime;
2764         }
2765
2766         /*
2767          * Cannot have more runtime than the period.
2768          */
2769         if (runtime > period && runtime != RUNTIME_INF)
2770                 return -EINVAL;
2771
2772         /*
2773          * Ensure we don't starve existing RT tasks if runtime turns zero.
2774          */
2775         if (rt_bandwidth_enabled() && !runtime &&
2776             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2777                 return -EBUSY;
2778
2779         total = to_ratio(period, runtime);
2780
2781         /*
2782          * Nobody can have more than the global setting allows.
2783          */
2784         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2785                 return -EINVAL;
2786
2787         /*
2788          * The sum of our children's runtime should not exceed our own.
2789          */
2790         list_for_each_entry_rcu(child, &tg->children, siblings) {
2791                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2792                 runtime = child->rt_bandwidth.rt_runtime;
2793
2794                 if (child == d->tg) {
2795                         period = d->rt_period;
2796                         runtime = d->rt_runtime;
2797                 }
2798
2799                 sum += to_ratio(period, runtime);
2800         }
2801
2802         if (sum > total)
2803                 return -EINVAL;
2804
2805         return 0;
2806 }
2807
2808 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2809 {
2810         int ret;
2811
2812         struct rt_schedulable_data data = {
2813                 .tg = tg,
2814                 .rt_period = period,
2815                 .rt_runtime = runtime,
2816         };
2817
2818         rcu_read_lock();
2819         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2820         rcu_read_unlock();
2821
2822         return ret;
2823 }
2824
2825 static int tg_set_rt_bandwidth(struct task_group *tg,
2826                 u64 rt_period, u64 rt_runtime)
2827 {
2828         int i, err = 0;
2829
2830         /*
2831          * Disallowing the root group RT runtime is BAD, it would disallow the
2832          * kernel creating (and or operating) RT threads.
2833          */
2834         if (tg == &root_task_group && rt_runtime == 0)
2835                 return -EINVAL;
2836
2837         /* No period doesn't make any sense. */
2838         if (rt_period == 0)
2839                 return -EINVAL;
2840
2841         /*
2842          * Bound quota to defend quota against overflow during bandwidth shift.
2843          */
2844         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2845                 return -EINVAL;
2846
2847         mutex_lock(&rt_constraints_mutex);
2848         err = __rt_schedulable(tg, rt_period, rt_runtime);
2849         if (err)
2850                 goto unlock;
2851
2852         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2853         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2854         tg->rt_bandwidth.rt_runtime = rt_runtime;
2855
2856         for_each_possible_cpu(i) {
2857                 struct rt_rq *rt_rq = tg->rt_rq[i];
2858
2859                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2860                 rt_rq->rt_runtime = rt_runtime;
2861                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2862         }
2863         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2864 unlock:
2865         mutex_unlock(&rt_constraints_mutex);
2866
2867         return err;
2868 }
2869
2870 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2871 {
2872         u64 rt_runtime, rt_period;
2873
2874         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2875         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2876         if (rt_runtime_us < 0)
2877                 rt_runtime = RUNTIME_INF;
2878         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2879                 return -EINVAL;
2880
2881         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2882 }
2883
2884 long sched_group_rt_runtime(struct task_group *tg)
2885 {
2886         u64 rt_runtime_us;
2887
2888         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2889                 return -1;
2890
2891         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2892         do_div(rt_runtime_us, NSEC_PER_USEC);
2893         return rt_runtime_us;
2894 }
2895
2896 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2897 {
2898         u64 rt_runtime, rt_period;
2899
2900         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2901                 return -EINVAL;
2902
2903         rt_period = rt_period_us * NSEC_PER_USEC;
2904         rt_runtime = tg->rt_bandwidth.rt_runtime;
2905
2906         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2907 }
2908
2909 long sched_group_rt_period(struct task_group *tg)
2910 {
2911         u64 rt_period_us;
2912
2913         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2914         do_div(rt_period_us, NSEC_PER_USEC);
2915         return rt_period_us;
2916 }
2917
2918 #ifdef CONFIG_SYSCTL
2919 static int sched_rt_global_constraints(void)
2920 {
2921         int ret = 0;
2922
2923         mutex_lock(&rt_constraints_mutex);
2924         ret = __rt_schedulable(NULL, 0, 0);
2925         mutex_unlock(&rt_constraints_mutex);
2926
2927         return ret;
2928 }
2929 #endif /* CONFIG_SYSCTL */
2930
2931 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2932 {
2933         /* Don't accept realtime tasks when there is no way for them to run */
2934         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2935                 return 0;
2936
2937         return 1;
2938 }
2939
2940 #else /* !CONFIG_RT_GROUP_SCHED */
2941
2942 #ifdef CONFIG_SYSCTL
2943 static int sched_rt_global_constraints(void)
2944 {
2945         unsigned long flags;
2946         int i;
2947
2948         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2949         for_each_possible_cpu(i) {
2950                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2951
2952                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2953                 rt_rq->rt_runtime = global_rt_runtime();
2954                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2955         }
2956         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2957
2958         return 0;
2959 }
2960 #endif /* CONFIG_SYSCTL */
2961 #endif /* CONFIG_RT_GROUP_SCHED */
2962
2963 #ifdef CONFIG_SYSCTL
2964 static int sched_rt_global_validate(void)
2965 {
2966         if (sysctl_sched_rt_period <= 0)
2967                 return -EINVAL;
2968
2969         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2970                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2971                  ((u64)sysctl_sched_rt_runtime *
2972                         NSEC_PER_USEC > max_rt_runtime)))
2973                 return -EINVAL;
2974
2975         return 0;
2976 }
2977
2978 static void sched_rt_do_global(void)
2979 {
2980         unsigned long flags;
2981
2982         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2983         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2984         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2985         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2986 }
2987
2988 static int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2989                 size_t *lenp, loff_t *ppos)
2990 {
2991         int old_period, old_runtime;
2992         static DEFINE_MUTEX(mutex);
2993         int ret;
2994
2995         mutex_lock(&mutex);
2996         old_period = sysctl_sched_rt_period;
2997         old_runtime = sysctl_sched_rt_runtime;
2998
2999         ret = proc_dointvec(table, write, buffer, lenp, ppos);
3000
3001         if (!ret && write) {
3002                 ret = sched_rt_global_validate();
3003                 if (ret)
3004                         goto undo;
3005
3006                 ret = sched_dl_global_validate();
3007                 if (ret)
3008                         goto undo;
3009
3010                 ret = sched_rt_global_constraints();
3011                 if (ret)
3012                         goto undo;
3013
3014                 sched_rt_do_global();
3015                 sched_dl_do_global();
3016         }
3017         if (0) {
3018 undo:
3019                 sysctl_sched_rt_period = old_period;
3020                 sysctl_sched_rt_runtime = old_runtime;
3021         }
3022         mutex_unlock(&mutex);
3023
3024         return ret;
3025 }
3026
3027 static int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
3028                 size_t *lenp, loff_t *ppos)
3029 {
3030         int ret;
3031         static DEFINE_MUTEX(mutex);
3032
3033         mutex_lock(&mutex);
3034         ret = proc_dointvec(table, write, buffer, lenp, ppos);
3035         /*
3036          * Make sure that internally we keep jiffies.
3037          * Also, writing zero resets the timeslice to default:
3038          */
3039         if (!ret && write) {
3040                 sched_rr_timeslice =
3041                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
3042                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
3043         }
3044         mutex_unlock(&mutex);
3045
3046         return ret;
3047 }
3048 #endif /* CONFIG_SYSCTL */
3049
3050 #ifdef CONFIG_SCHED_DEBUG
3051 void print_rt_stats(struct seq_file *m, int cpu)
3052 {
3053         rt_rq_iter_t iter;
3054         struct rt_rq *rt_rq;
3055
3056         rcu_read_lock();
3057         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
3058                 print_rt_rq(m, cpu, rt_rq);
3059         rcu_read_unlock();
3060 }
3061 #endif /* CONFIG_SCHED_DEBUG */