Merge tag 'net-5.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[linux-2.6-microblaze.git] / kernel / sched / rt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4  * policies)
5  */
6 #include "sched.h"
7
8 #include "pelt.h"
9
10 int sched_rr_timeslice = RR_TIMESLICE;
11 int sysctl_sched_rr_timeslice = (MSEC_PER_SEC / HZ) * RR_TIMESLICE;
12 /* More than 4 hours if BW_SHIFT equals 20. */
13 static const u64 max_rt_runtime = MAX_BW;
14
15 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
16
17 struct rt_bandwidth def_rt_bandwidth;
18
19 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
20 {
21         struct rt_bandwidth *rt_b =
22                 container_of(timer, struct rt_bandwidth, rt_period_timer);
23         int idle = 0;
24         int overrun;
25
26         raw_spin_lock(&rt_b->rt_runtime_lock);
27         for (;;) {
28                 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
29                 if (!overrun)
30                         break;
31
32                 raw_spin_unlock(&rt_b->rt_runtime_lock);
33                 idle = do_sched_rt_period_timer(rt_b, overrun);
34                 raw_spin_lock(&rt_b->rt_runtime_lock);
35         }
36         if (idle)
37                 rt_b->rt_period_active = 0;
38         raw_spin_unlock(&rt_b->rt_runtime_lock);
39
40         return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
41 }
42
43 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
44 {
45         rt_b->rt_period = ns_to_ktime(period);
46         rt_b->rt_runtime = runtime;
47
48         raw_spin_lock_init(&rt_b->rt_runtime_lock);
49
50         hrtimer_init(&rt_b->rt_period_timer, CLOCK_MONOTONIC,
51                      HRTIMER_MODE_REL_HARD);
52         rt_b->rt_period_timer.function = sched_rt_period_timer;
53 }
54
55 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
56 {
57         if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
58                 return;
59
60         raw_spin_lock(&rt_b->rt_runtime_lock);
61         if (!rt_b->rt_period_active) {
62                 rt_b->rt_period_active = 1;
63                 /*
64                  * SCHED_DEADLINE updates the bandwidth, as a run away
65                  * RT task with a DL task could hog a CPU. But DL does
66                  * not reset the period. If a deadline task was running
67                  * without an RT task running, it can cause RT tasks to
68                  * throttle when they start up. Kick the timer right away
69                  * to update the period.
70                  */
71                 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
72                 hrtimer_start_expires(&rt_b->rt_period_timer,
73                                       HRTIMER_MODE_ABS_PINNED_HARD);
74         }
75         raw_spin_unlock(&rt_b->rt_runtime_lock);
76 }
77
78 void init_rt_rq(struct rt_rq *rt_rq)
79 {
80         struct rt_prio_array *array;
81         int i;
82
83         array = &rt_rq->active;
84         for (i = 0; i < MAX_RT_PRIO; i++) {
85                 INIT_LIST_HEAD(array->queue + i);
86                 __clear_bit(i, array->bitmap);
87         }
88         /* delimiter for bitsearch: */
89         __set_bit(MAX_RT_PRIO, array->bitmap);
90
91 #if defined CONFIG_SMP
92         rt_rq->highest_prio.curr = MAX_RT_PRIO;
93         rt_rq->highest_prio.next = MAX_RT_PRIO;
94         rt_rq->rt_nr_migratory = 0;
95         rt_rq->overloaded = 0;
96         plist_head_init(&rt_rq->pushable_tasks);
97 #endif /* CONFIG_SMP */
98         /* We start is dequeued state, because no RT tasks are queued */
99         rt_rq->rt_queued = 0;
100
101         rt_rq->rt_time = 0;
102         rt_rq->rt_throttled = 0;
103         rt_rq->rt_runtime = 0;
104         raw_spin_lock_init(&rt_rq->rt_runtime_lock);
105 }
106
107 #ifdef CONFIG_RT_GROUP_SCHED
108 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
109 {
110         hrtimer_cancel(&rt_b->rt_period_timer);
111 }
112
113 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
114
115 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
116 {
117 #ifdef CONFIG_SCHED_DEBUG
118         WARN_ON_ONCE(!rt_entity_is_task(rt_se));
119 #endif
120         return container_of(rt_se, struct task_struct, rt);
121 }
122
123 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
124 {
125         return rt_rq->rq;
126 }
127
128 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
129 {
130         return rt_se->rt_rq;
131 }
132
133 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
134 {
135         struct rt_rq *rt_rq = rt_se->rt_rq;
136
137         return rt_rq->rq;
138 }
139
140 void free_rt_sched_group(struct task_group *tg)
141 {
142         int i;
143
144         if (tg->rt_se)
145                 destroy_rt_bandwidth(&tg->rt_bandwidth);
146
147         for_each_possible_cpu(i) {
148                 if (tg->rt_rq)
149                         kfree(tg->rt_rq[i]);
150                 if (tg->rt_se)
151                         kfree(tg->rt_se[i]);
152         }
153
154         kfree(tg->rt_rq);
155         kfree(tg->rt_se);
156 }
157
158 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
159                 struct sched_rt_entity *rt_se, int cpu,
160                 struct sched_rt_entity *parent)
161 {
162         struct rq *rq = cpu_rq(cpu);
163
164         rt_rq->highest_prio.curr = MAX_RT_PRIO;
165         rt_rq->rt_nr_boosted = 0;
166         rt_rq->rq = rq;
167         rt_rq->tg = tg;
168
169         tg->rt_rq[cpu] = rt_rq;
170         tg->rt_se[cpu] = rt_se;
171
172         if (!rt_se)
173                 return;
174
175         if (!parent)
176                 rt_se->rt_rq = &rq->rt;
177         else
178                 rt_se->rt_rq = parent->my_q;
179
180         rt_se->my_q = rt_rq;
181         rt_se->parent = parent;
182         INIT_LIST_HEAD(&rt_se->run_list);
183 }
184
185 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
186 {
187         struct rt_rq *rt_rq;
188         struct sched_rt_entity *rt_se;
189         int i;
190
191         tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
192         if (!tg->rt_rq)
193                 goto err;
194         tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
195         if (!tg->rt_se)
196                 goto err;
197
198         init_rt_bandwidth(&tg->rt_bandwidth,
199                         ktime_to_ns(def_rt_bandwidth.rt_period), 0);
200
201         for_each_possible_cpu(i) {
202                 rt_rq = kzalloc_node(sizeof(struct rt_rq),
203                                      GFP_KERNEL, cpu_to_node(i));
204                 if (!rt_rq)
205                         goto err;
206
207                 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
208                                      GFP_KERNEL, cpu_to_node(i));
209                 if (!rt_se)
210                         goto err_free_rq;
211
212                 init_rt_rq(rt_rq);
213                 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
214                 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
215         }
216
217         return 1;
218
219 err_free_rq:
220         kfree(rt_rq);
221 err:
222         return 0;
223 }
224
225 #else /* CONFIG_RT_GROUP_SCHED */
226
227 #define rt_entity_is_task(rt_se) (1)
228
229 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
230 {
231         return container_of(rt_se, struct task_struct, rt);
232 }
233
234 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
235 {
236         return container_of(rt_rq, struct rq, rt);
237 }
238
239 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
240 {
241         struct task_struct *p = rt_task_of(rt_se);
242
243         return task_rq(p);
244 }
245
246 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
247 {
248         struct rq *rq = rq_of_rt_se(rt_se);
249
250         return &rq->rt;
251 }
252
253 void free_rt_sched_group(struct task_group *tg) { }
254
255 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
256 {
257         return 1;
258 }
259 #endif /* CONFIG_RT_GROUP_SCHED */
260
261 #ifdef CONFIG_SMP
262
263 static void pull_rt_task(struct rq *this_rq);
264
265 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
266 {
267         /* Try to pull RT tasks here if we lower this rq's prio */
268         return rq->rt.highest_prio.curr > prev->prio;
269 }
270
271 static inline int rt_overloaded(struct rq *rq)
272 {
273         return atomic_read(&rq->rd->rto_count);
274 }
275
276 static inline void rt_set_overload(struct rq *rq)
277 {
278         if (!rq->online)
279                 return;
280
281         cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
282         /*
283          * Make sure the mask is visible before we set
284          * the overload count. That is checked to determine
285          * if we should look at the mask. It would be a shame
286          * if we looked at the mask, but the mask was not
287          * updated yet.
288          *
289          * Matched by the barrier in pull_rt_task().
290          */
291         smp_wmb();
292         atomic_inc(&rq->rd->rto_count);
293 }
294
295 static inline void rt_clear_overload(struct rq *rq)
296 {
297         if (!rq->online)
298                 return;
299
300         /* the order here really doesn't matter */
301         atomic_dec(&rq->rd->rto_count);
302         cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
303 }
304
305 static void update_rt_migration(struct rt_rq *rt_rq)
306 {
307         if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
308                 if (!rt_rq->overloaded) {
309                         rt_set_overload(rq_of_rt_rq(rt_rq));
310                         rt_rq->overloaded = 1;
311                 }
312         } else if (rt_rq->overloaded) {
313                 rt_clear_overload(rq_of_rt_rq(rt_rq));
314                 rt_rq->overloaded = 0;
315         }
316 }
317
318 static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
319 {
320         struct task_struct *p;
321
322         if (!rt_entity_is_task(rt_se))
323                 return;
324
325         p = rt_task_of(rt_se);
326         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
327
328         rt_rq->rt_nr_total++;
329         if (p->nr_cpus_allowed > 1)
330                 rt_rq->rt_nr_migratory++;
331
332         update_rt_migration(rt_rq);
333 }
334
335 static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
336 {
337         struct task_struct *p;
338
339         if (!rt_entity_is_task(rt_se))
340                 return;
341
342         p = rt_task_of(rt_se);
343         rt_rq = &rq_of_rt_rq(rt_rq)->rt;
344
345         rt_rq->rt_nr_total--;
346         if (p->nr_cpus_allowed > 1)
347                 rt_rq->rt_nr_migratory--;
348
349         update_rt_migration(rt_rq);
350 }
351
352 static inline int has_pushable_tasks(struct rq *rq)
353 {
354         return !plist_head_empty(&rq->rt.pushable_tasks);
355 }
356
357 static DEFINE_PER_CPU(struct callback_head, rt_push_head);
358 static DEFINE_PER_CPU(struct callback_head, rt_pull_head);
359
360 static void push_rt_tasks(struct rq *);
361 static void pull_rt_task(struct rq *);
362
363 static inline void rt_queue_push_tasks(struct rq *rq)
364 {
365         if (!has_pushable_tasks(rq))
366                 return;
367
368         queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
369 }
370
371 static inline void rt_queue_pull_task(struct rq *rq)
372 {
373         queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
374 }
375
376 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
377 {
378         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
379         plist_node_init(&p->pushable_tasks, p->prio);
380         plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
381
382         /* Update the highest prio pushable task */
383         if (p->prio < rq->rt.highest_prio.next)
384                 rq->rt.highest_prio.next = p->prio;
385 }
386
387 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
388 {
389         plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
390
391         /* Update the new highest prio pushable task */
392         if (has_pushable_tasks(rq)) {
393                 p = plist_first_entry(&rq->rt.pushable_tasks,
394                                       struct task_struct, pushable_tasks);
395                 rq->rt.highest_prio.next = p->prio;
396         } else
397                 rq->rt.highest_prio.next = MAX_RT_PRIO;
398 }
399
400 #else
401
402 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
403 {
404 }
405
406 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
407 {
408 }
409
410 static inline
411 void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
412 {
413 }
414
415 static inline
416 void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
417 {
418 }
419
420 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
421 {
422         return false;
423 }
424
425 static inline void pull_rt_task(struct rq *this_rq)
426 {
427 }
428
429 static inline void rt_queue_push_tasks(struct rq *rq)
430 {
431 }
432 #endif /* CONFIG_SMP */
433
434 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
435 static void dequeue_top_rt_rq(struct rt_rq *rt_rq);
436
437 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
438 {
439         return rt_se->on_rq;
440 }
441
442 #ifdef CONFIG_UCLAMP_TASK
443 /*
444  * Verify the fitness of task @p to run on @cpu taking into account the uclamp
445  * settings.
446  *
447  * This check is only important for heterogeneous systems where uclamp_min value
448  * is higher than the capacity of a @cpu. For non-heterogeneous system this
449  * function will always return true.
450  *
451  * The function will return true if the capacity of the @cpu is >= the
452  * uclamp_min and false otherwise.
453  *
454  * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
455  * > uclamp_max.
456  */
457 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
458 {
459         unsigned int min_cap;
460         unsigned int max_cap;
461         unsigned int cpu_cap;
462
463         /* Only heterogeneous systems can benefit from this check */
464         if (!static_branch_unlikely(&sched_asym_cpucapacity))
465                 return true;
466
467         min_cap = uclamp_eff_value(p, UCLAMP_MIN);
468         max_cap = uclamp_eff_value(p, UCLAMP_MAX);
469
470         cpu_cap = capacity_orig_of(cpu);
471
472         return cpu_cap >= min(min_cap, max_cap);
473 }
474 #else
475 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
476 {
477         return true;
478 }
479 #endif
480
481 #ifdef CONFIG_RT_GROUP_SCHED
482
483 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
484 {
485         if (!rt_rq->tg)
486                 return RUNTIME_INF;
487
488         return rt_rq->rt_runtime;
489 }
490
491 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
492 {
493         return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
494 }
495
496 typedef struct task_group *rt_rq_iter_t;
497
498 static inline struct task_group *next_task_group(struct task_group *tg)
499 {
500         do {
501                 tg = list_entry_rcu(tg->list.next,
502                         typeof(struct task_group), list);
503         } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
504
505         if (&tg->list == &task_groups)
506                 tg = NULL;
507
508         return tg;
509 }
510
511 #define for_each_rt_rq(rt_rq, iter, rq)                                 \
512         for (iter = container_of(&task_groups, typeof(*iter), list);    \
513                 (iter = next_task_group(iter)) &&                       \
514                 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
515
516 #define for_each_sched_rt_entity(rt_se) \
517         for (; rt_se; rt_se = rt_se->parent)
518
519 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
520 {
521         return rt_se->my_q;
522 }
523
524 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
525 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
526
527 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
528 {
529         struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
530         struct rq *rq = rq_of_rt_rq(rt_rq);
531         struct sched_rt_entity *rt_se;
532
533         int cpu = cpu_of(rq);
534
535         rt_se = rt_rq->tg->rt_se[cpu];
536
537         if (rt_rq->rt_nr_running) {
538                 if (!rt_se)
539                         enqueue_top_rt_rq(rt_rq);
540                 else if (!on_rt_rq(rt_se))
541                         enqueue_rt_entity(rt_se, 0);
542
543                 if (rt_rq->highest_prio.curr < curr->prio)
544                         resched_curr(rq);
545         }
546 }
547
548 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
549 {
550         struct sched_rt_entity *rt_se;
551         int cpu = cpu_of(rq_of_rt_rq(rt_rq));
552
553         rt_se = rt_rq->tg->rt_se[cpu];
554
555         if (!rt_se) {
556                 dequeue_top_rt_rq(rt_rq);
557                 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
558                 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
559         }
560         else if (on_rt_rq(rt_se))
561                 dequeue_rt_entity(rt_se, 0);
562 }
563
564 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
565 {
566         return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
567 }
568
569 static int rt_se_boosted(struct sched_rt_entity *rt_se)
570 {
571         struct rt_rq *rt_rq = group_rt_rq(rt_se);
572         struct task_struct *p;
573
574         if (rt_rq)
575                 return !!rt_rq->rt_nr_boosted;
576
577         p = rt_task_of(rt_se);
578         return p->prio != p->normal_prio;
579 }
580
581 #ifdef CONFIG_SMP
582 static inline const struct cpumask *sched_rt_period_mask(void)
583 {
584         return this_rq()->rd->span;
585 }
586 #else
587 static inline const struct cpumask *sched_rt_period_mask(void)
588 {
589         return cpu_online_mask;
590 }
591 #endif
592
593 static inline
594 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
595 {
596         return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
597 }
598
599 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
600 {
601         return &rt_rq->tg->rt_bandwidth;
602 }
603
604 #else /* !CONFIG_RT_GROUP_SCHED */
605
606 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
607 {
608         return rt_rq->rt_runtime;
609 }
610
611 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
612 {
613         return ktime_to_ns(def_rt_bandwidth.rt_period);
614 }
615
616 typedef struct rt_rq *rt_rq_iter_t;
617
618 #define for_each_rt_rq(rt_rq, iter, rq) \
619         for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
620
621 #define for_each_sched_rt_entity(rt_se) \
622         for (; rt_se; rt_se = NULL)
623
624 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
625 {
626         return NULL;
627 }
628
629 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
630 {
631         struct rq *rq = rq_of_rt_rq(rt_rq);
632
633         if (!rt_rq->rt_nr_running)
634                 return;
635
636         enqueue_top_rt_rq(rt_rq);
637         resched_curr(rq);
638 }
639
640 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
641 {
642         dequeue_top_rt_rq(rt_rq);
643 }
644
645 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
646 {
647         return rt_rq->rt_throttled;
648 }
649
650 static inline const struct cpumask *sched_rt_period_mask(void)
651 {
652         return cpu_online_mask;
653 }
654
655 static inline
656 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
657 {
658         return &cpu_rq(cpu)->rt;
659 }
660
661 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
662 {
663         return &def_rt_bandwidth;
664 }
665
666 #endif /* CONFIG_RT_GROUP_SCHED */
667
668 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
669 {
670         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
671
672         return (hrtimer_active(&rt_b->rt_period_timer) ||
673                 rt_rq->rt_time < rt_b->rt_runtime);
674 }
675
676 #ifdef CONFIG_SMP
677 /*
678  * We ran out of runtime, see if we can borrow some from our neighbours.
679  */
680 static void do_balance_runtime(struct rt_rq *rt_rq)
681 {
682         struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
683         struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
684         int i, weight;
685         u64 rt_period;
686
687         weight = cpumask_weight(rd->span);
688
689         raw_spin_lock(&rt_b->rt_runtime_lock);
690         rt_period = ktime_to_ns(rt_b->rt_period);
691         for_each_cpu(i, rd->span) {
692                 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
693                 s64 diff;
694
695                 if (iter == rt_rq)
696                         continue;
697
698                 raw_spin_lock(&iter->rt_runtime_lock);
699                 /*
700                  * Either all rqs have inf runtime and there's nothing to steal
701                  * or __disable_runtime() below sets a specific rq to inf to
702                  * indicate its been disabled and disalow stealing.
703                  */
704                 if (iter->rt_runtime == RUNTIME_INF)
705                         goto next;
706
707                 /*
708                  * From runqueues with spare time, take 1/n part of their
709                  * spare time, but no more than our period.
710                  */
711                 diff = iter->rt_runtime - iter->rt_time;
712                 if (diff > 0) {
713                         diff = div_u64((u64)diff, weight);
714                         if (rt_rq->rt_runtime + diff > rt_period)
715                                 diff = rt_period - rt_rq->rt_runtime;
716                         iter->rt_runtime -= diff;
717                         rt_rq->rt_runtime += diff;
718                         if (rt_rq->rt_runtime == rt_period) {
719                                 raw_spin_unlock(&iter->rt_runtime_lock);
720                                 break;
721                         }
722                 }
723 next:
724                 raw_spin_unlock(&iter->rt_runtime_lock);
725         }
726         raw_spin_unlock(&rt_b->rt_runtime_lock);
727 }
728
729 /*
730  * Ensure this RQ takes back all the runtime it lend to its neighbours.
731  */
732 static void __disable_runtime(struct rq *rq)
733 {
734         struct root_domain *rd = rq->rd;
735         rt_rq_iter_t iter;
736         struct rt_rq *rt_rq;
737
738         if (unlikely(!scheduler_running))
739                 return;
740
741         for_each_rt_rq(rt_rq, iter, rq) {
742                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
743                 s64 want;
744                 int i;
745
746                 raw_spin_lock(&rt_b->rt_runtime_lock);
747                 raw_spin_lock(&rt_rq->rt_runtime_lock);
748                 /*
749                  * Either we're all inf and nobody needs to borrow, or we're
750                  * already disabled and thus have nothing to do, or we have
751                  * exactly the right amount of runtime to take out.
752                  */
753                 if (rt_rq->rt_runtime == RUNTIME_INF ||
754                                 rt_rq->rt_runtime == rt_b->rt_runtime)
755                         goto balanced;
756                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
757
758                 /*
759                  * Calculate the difference between what we started out with
760                  * and what we current have, that's the amount of runtime
761                  * we lend and now have to reclaim.
762                  */
763                 want = rt_b->rt_runtime - rt_rq->rt_runtime;
764
765                 /*
766                  * Greedy reclaim, take back as much as we can.
767                  */
768                 for_each_cpu(i, rd->span) {
769                         struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
770                         s64 diff;
771
772                         /*
773                          * Can't reclaim from ourselves or disabled runqueues.
774                          */
775                         if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
776                                 continue;
777
778                         raw_spin_lock(&iter->rt_runtime_lock);
779                         if (want > 0) {
780                                 diff = min_t(s64, iter->rt_runtime, want);
781                                 iter->rt_runtime -= diff;
782                                 want -= diff;
783                         } else {
784                                 iter->rt_runtime -= want;
785                                 want -= want;
786                         }
787                         raw_spin_unlock(&iter->rt_runtime_lock);
788
789                         if (!want)
790                                 break;
791                 }
792
793                 raw_spin_lock(&rt_rq->rt_runtime_lock);
794                 /*
795                  * We cannot be left wanting - that would mean some runtime
796                  * leaked out of the system.
797                  */
798                 BUG_ON(want);
799 balanced:
800                 /*
801                  * Disable all the borrow logic by pretending we have inf
802                  * runtime - in which case borrowing doesn't make sense.
803                  */
804                 rt_rq->rt_runtime = RUNTIME_INF;
805                 rt_rq->rt_throttled = 0;
806                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
807                 raw_spin_unlock(&rt_b->rt_runtime_lock);
808
809                 /* Make rt_rq available for pick_next_task() */
810                 sched_rt_rq_enqueue(rt_rq);
811         }
812 }
813
814 static void __enable_runtime(struct rq *rq)
815 {
816         rt_rq_iter_t iter;
817         struct rt_rq *rt_rq;
818
819         if (unlikely(!scheduler_running))
820                 return;
821
822         /*
823          * Reset each runqueue's bandwidth settings
824          */
825         for_each_rt_rq(rt_rq, iter, rq) {
826                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
827
828                 raw_spin_lock(&rt_b->rt_runtime_lock);
829                 raw_spin_lock(&rt_rq->rt_runtime_lock);
830                 rt_rq->rt_runtime = rt_b->rt_runtime;
831                 rt_rq->rt_time = 0;
832                 rt_rq->rt_throttled = 0;
833                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
834                 raw_spin_unlock(&rt_b->rt_runtime_lock);
835         }
836 }
837
838 static void balance_runtime(struct rt_rq *rt_rq)
839 {
840         if (!sched_feat(RT_RUNTIME_SHARE))
841                 return;
842
843         if (rt_rq->rt_time > rt_rq->rt_runtime) {
844                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
845                 do_balance_runtime(rt_rq);
846                 raw_spin_lock(&rt_rq->rt_runtime_lock);
847         }
848 }
849 #else /* !CONFIG_SMP */
850 static inline void balance_runtime(struct rt_rq *rt_rq) {}
851 #endif /* CONFIG_SMP */
852
853 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
854 {
855         int i, idle = 1, throttled = 0;
856         const struct cpumask *span;
857
858         span = sched_rt_period_mask();
859 #ifdef CONFIG_RT_GROUP_SCHED
860         /*
861          * FIXME: isolated CPUs should really leave the root task group,
862          * whether they are isolcpus or were isolated via cpusets, lest
863          * the timer run on a CPU which does not service all runqueues,
864          * potentially leaving other CPUs indefinitely throttled.  If
865          * isolation is really required, the user will turn the throttle
866          * off to kill the perturbations it causes anyway.  Meanwhile,
867          * this maintains functionality for boot and/or troubleshooting.
868          */
869         if (rt_b == &root_task_group.rt_bandwidth)
870                 span = cpu_online_mask;
871 #endif
872         for_each_cpu(i, span) {
873                 int enqueue = 0;
874                 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
875                 struct rq *rq = rq_of_rt_rq(rt_rq);
876                 int skip;
877
878                 /*
879                  * When span == cpu_online_mask, taking each rq->lock
880                  * can be time-consuming. Try to avoid it when possible.
881                  */
882                 raw_spin_lock(&rt_rq->rt_runtime_lock);
883                 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
884                         rt_rq->rt_runtime = rt_b->rt_runtime;
885                 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
886                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
887                 if (skip)
888                         continue;
889
890                 raw_spin_lock(&rq->lock);
891                 update_rq_clock(rq);
892
893                 if (rt_rq->rt_time) {
894                         u64 runtime;
895
896                         raw_spin_lock(&rt_rq->rt_runtime_lock);
897                         if (rt_rq->rt_throttled)
898                                 balance_runtime(rt_rq);
899                         runtime = rt_rq->rt_runtime;
900                         rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
901                         if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
902                                 rt_rq->rt_throttled = 0;
903                                 enqueue = 1;
904
905                                 /*
906                                  * When we're idle and a woken (rt) task is
907                                  * throttled check_preempt_curr() will set
908                                  * skip_update and the time between the wakeup
909                                  * and this unthrottle will get accounted as
910                                  * 'runtime'.
911                                  */
912                                 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
913                                         rq_clock_cancel_skipupdate(rq);
914                         }
915                         if (rt_rq->rt_time || rt_rq->rt_nr_running)
916                                 idle = 0;
917                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
918                 } else if (rt_rq->rt_nr_running) {
919                         idle = 0;
920                         if (!rt_rq_throttled(rt_rq))
921                                 enqueue = 1;
922                 }
923                 if (rt_rq->rt_throttled)
924                         throttled = 1;
925
926                 if (enqueue)
927                         sched_rt_rq_enqueue(rt_rq);
928                 raw_spin_unlock(&rq->lock);
929         }
930
931         if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
932                 return 1;
933
934         return idle;
935 }
936
937 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
938 {
939 #ifdef CONFIG_RT_GROUP_SCHED
940         struct rt_rq *rt_rq = group_rt_rq(rt_se);
941
942         if (rt_rq)
943                 return rt_rq->highest_prio.curr;
944 #endif
945
946         return rt_task_of(rt_se)->prio;
947 }
948
949 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
950 {
951         u64 runtime = sched_rt_runtime(rt_rq);
952
953         if (rt_rq->rt_throttled)
954                 return rt_rq_throttled(rt_rq);
955
956         if (runtime >= sched_rt_period(rt_rq))
957                 return 0;
958
959         balance_runtime(rt_rq);
960         runtime = sched_rt_runtime(rt_rq);
961         if (runtime == RUNTIME_INF)
962                 return 0;
963
964         if (rt_rq->rt_time > runtime) {
965                 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
966
967                 /*
968                  * Don't actually throttle groups that have no runtime assigned
969                  * but accrue some time due to boosting.
970                  */
971                 if (likely(rt_b->rt_runtime)) {
972                         rt_rq->rt_throttled = 1;
973                         printk_deferred_once("sched: RT throttling activated\n");
974                 } else {
975                         /*
976                          * In case we did anyway, make it go away,
977                          * replenishment is a joke, since it will replenish us
978                          * with exactly 0 ns.
979                          */
980                         rt_rq->rt_time = 0;
981                 }
982
983                 if (rt_rq_throttled(rt_rq)) {
984                         sched_rt_rq_dequeue(rt_rq);
985                         return 1;
986                 }
987         }
988
989         return 0;
990 }
991
992 /*
993  * Update the current task's runtime statistics. Skip current tasks that
994  * are not in our scheduling class.
995  */
996 static void update_curr_rt(struct rq *rq)
997 {
998         struct task_struct *curr = rq->curr;
999         struct sched_rt_entity *rt_se = &curr->rt;
1000         u64 delta_exec;
1001         u64 now;
1002
1003         if (curr->sched_class != &rt_sched_class)
1004                 return;
1005
1006         now = rq_clock_task(rq);
1007         delta_exec = now - curr->se.exec_start;
1008         if (unlikely((s64)delta_exec <= 0))
1009                 return;
1010
1011         schedstat_set(curr->se.statistics.exec_max,
1012                       max(curr->se.statistics.exec_max, delta_exec));
1013
1014         curr->se.sum_exec_runtime += delta_exec;
1015         account_group_exec_runtime(curr, delta_exec);
1016
1017         curr->se.exec_start = now;
1018         cgroup_account_cputime(curr, delta_exec);
1019
1020         if (!rt_bandwidth_enabled())
1021                 return;
1022
1023         for_each_sched_rt_entity(rt_se) {
1024                 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1025
1026                 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1027                         raw_spin_lock(&rt_rq->rt_runtime_lock);
1028                         rt_rq->rt_time += delta_exec;
1029                         if (sched_rt_runtime_exceeded(rt_rq))
1030                                 resched_curr(rq);
1031                         raw_spin_unlock(&rt_rq->rt_runtime_lock);
1032                 }
1033         }
1034 }
1035
1036 static void
1037 dequeue_top_rt_rq(struct rt_rq *rt_rq)
1038 {
1039         struct rq *rq = rq_of_rt_rq(rt_rq);
1040
1041         BUG_ON(&rq->rt != rt_rq);
1042
1043         if (!rt_rq->rt_queued)
1044                 return;
1045
1046         BUG_ON(!rq->nr_running);
1047
1048         sub_nr_running(rq, rt_rq->rt_nr_running);
1049         rt_rq->rt_queued = 0;
1050
1051 }
1052
1053 static void
1054 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1055 {
1056         struct rq *rq = rq_of_rt_rq(rt_rq);
1057
1058         BUG_ON(&rq->rt != rt_rq);
1059
1060         if (rt_rq->rt_queued)
1061                 return;
1062
1063         if (rt_rq_throttled(rt_rq))
1064                 return;
1065
1066         if (rt_rq->rt_nr_running) {
1067                 add_nr_running(rq, rt_rq->rt_nr_running);
1068                 rt_rq->rt_queued = 1;
1069         }
1070
1071         /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1072         cpufreq_update_util(rq, 0);
1073 }
1074
1075 #if defined CONFIG_SMP
1076
1077 static void
1078 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1079 {
1080         struct rq *rq = rq_of_rt_rq(rt_rq);
1081
1082 #ifdef CONFIG_RT_GROUP_SCHED
1083         /*
1084          * Change rq's cpupri only if rt_rq is the top queue.
1085          */
1086         if (&rq->rt != rt_rq)
1087                 return;
1088 #endif
1089         if (rq->online && prio < prev_prio)
1090                 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1091 }
1092
1093 static void
1094 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1095 {
1096         struct rq *rq = rq_of_rt_rq(rt_rq);
1097
1098 #ifdef CONFIG_RT_GROUP_SCHED
1099         /*
1100          * Change rq's cpupri only if rt_rq is the top queue.
1101          */
1102         if (&rq->rt != rt_rq)
1103                 return;
1104 #endif
1105         if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1106                 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1107 }
1108
1109 #else /* CONFIG_SMP */
1110
1111 static inline
1112 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1113 static inline
1114 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1115
1116 #endif /* CONFIG_SMP */
1117
1118 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1119 static void
1120 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1121 {
1122         int prev_prio = rt_rq->highest_prio.curr;
1123
1124         if (prio < prev_prio)
1125                 rt_rq->highest_prio.curr = prio;
1126
1127         inc_rt_prio_smp(rt_rq, prio, prev_prio);
1128 }
1129
1130 static void
1131 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1132 {
1133         int prev_prio = rt_rq->highest_prio.curr;
1134
1135         if (rt_rq->rt_nr_running) {
1136
1137                 WARN_ON(prio < prev_prio);
1138
1139                 /*
1140                  * This may have been our highest task, and therefore
1141                  * we may have some recomputation to do
1142                  */
1143                 if (prio == prev_prio) {
1144                         struct rt_prio_array *array = &rt_rq->active;
1145
1146                         rt_rq->highest_prio.curr =
1147                                 sched_find_first_bit(array->bitmap);
1148                 }
1149
1150         } else
1151                 rt_rq->highest_prio.curr = MAX_RT_PRIO;
1152
1153         dec_rt_prio_smp(rt_rq, prio, prev_prio);
1154 }
1155
1156 #else
1157
1158 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
1159 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1160
1161 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1162
1163 #ifdef CONFIG_RT_GROUP_SCHED
1164
1165 static void
1166 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1167 {
1168         if (rt_se_boosted(rt_se))
1169                 rt_rq->rt_nr_boosted++;
1170
1171         if (rt_rq->tg)
1172                 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1173 }
1174
1175 static void
1176 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1177 {
1178         if (rt_se_boosted(rt_se))
1179                 rt_rq->rt_nr_boosted--;
1180
1181         WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1182 }
1183
1184 #else /* CONFIG_RT_GROUP_SCHED */
1185
1186 static void
1187 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1188 {
1189         start_rt_bandwidth(&def_rt_bandwidth);
1190 }
1191
1192 static inline
1193 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1194
1195 #endif /* CONFIG_RT_GROUP_SCHED */
1196
1197 static inline
1198 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1199 {
1200         struct rt_rq *group_rq = group_rt_rq(rt_se);
1201
1202         if (group_rq)
1203                 return group_rq->rt_nr_running;
1204         else
1205                 return 1;
1206 }
1207
1208 static inline
1209 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1210 {
1211         struct rt_rq *group_rq = group_rt_rq(rt_se);
1212         struct task_struct *tsk;
1213
1214         if (group_rq)
1215                 return group_rq->rr_nr_running;
1216
1217         tsk = rt_task_of(rt_se);
1218
1219         return (tsk->policy == SCHED_RR) ? 1 : 0;
1220 }
1221
1222 static inline
1223 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1224 {
1225         int prio = rt_se_prio(rt_se);
1226
1227         WARN_ON(!rt_prio(prio));
1228         rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1229         rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1230
1231         inc_rt_prio(rt_rq, prio);
1232         inc_rt_migration(rt_se, rt_rq);
1233         inc_rt_group(rt_se, rt_rq);
1234 }
1235
1236 static inline
1237 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1238 {
1239         WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1240         WARN_ON(!rt_rq->rt_nr_running);
1241         rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1242         rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1243
1244         dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1245         dec_rt_migration(rt_se, rt_rq);
1246         dec_rt_group(rt_se, rt_rq);
1247 }
1248
1249 /*
1250  * Change rt_se->run_list location unless SAVE && !MOVE
1251  *
1252  * assumes ENQUEUE/DEQUEUE flags match
1253  */
1254 static inline bool move_entity(unsigned int flags)
1255 {
1256         if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1257                 return false;
1258
1259         return true;
1260 }
1261
1262 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1263 {
1264         list_del_init(&rt_se->run_list);
1265
1266         if (list_empty(array->queue + rt_se_prio(rt_se)))
1267                 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1268
1269         rt_se->on_list = 0;
1270 }
1271
1272 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1273 {
1274         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1275         struct rt_prio_array *array = &rt_rq->active;
1276         struct rt_rq *group_rq = group_rt_rq(rt_se);
1277         struct list_head *queue = array->queue + rt_se_prio(rt_se);
1278
1279         /*
1280          * Don't enqueue the group if its throttled, or when empty.
1281          * The latter is a consequence of the former when a child group
1282          * get throttled and the current group doesn't have any other
1283          * active members.
1284          */
1285         if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1286                 if (rt_se->on_list)
1287                         __delist_rt_entity(rt_se, array);
1288                 return;
1289         }
1290
1291         if (move_entity(flags)) {
1292                 WARN_ON_ONCE(rt_se->on_list);
1293                 if (flags & ENQUEUE_HEAD)
1294                         list_add(&rt_se->run_list, queue);
1295                 else
1296                         list_add_tail(&rt_se->run_list, queue);
1297
1298                 __set_bit(rt_se_prio(rt_se), array->bitmap);
1299                 rt_se->on_list = 1;
1300         }
1301         rt_se->on_rq = 1;
1302
1303         inc_rt_tasks(rt_se, rt_rq);
1304 }
1305
1306 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1307 {
1308         struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1309         struct rt_prio_array *array = &rt_rq->active;
1310
1311         if (move_entity(flags)) {
1312                 WARN_ON_ONCE(!rt_se->on_list);
1313                 __delist_rt_entity(rt_se, array);
1314         }
1315         rt_se->on_rq = 0;
1316
1317         dec_rt_tasks(rt_se, rt_rq);
1318 }
1319
1320 /*
1321  * Because the prio of an upper entry depends on the lower
1322  * entries, we must remove entries top - down.
1323  */
1324 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1325 {
1326         struct sched_rt_entity *back = NULL;
1327
1328         for_each_sched_rt_entity(rt_se) {
1329                 rt_se->back = back;
1330                 back = rt_se;
1331         }
1332
1333         dequeue_top_rt_rq(rt_rq_of_se(back));
1334
1335         for (rt_se = back; rt_se; rt_se = rt_se->back) {
1336                 if (on_rt_rq(rt_se))
1337                         __dequeue_rt_entity(rt_se, flags);
1338         }
1339 }
1340
1341 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1342 {
1343         struct rq *rq = rq_of_rt_se(rt_se);
1344
1345         dequeue_rt_stack(rt_se, flags);
1346         for_each_sched_rt_entity(rt_se)
1347                 __enqueue_rt_entity(rt_se, flags);
1348         enqueue_top_rt_rq(&rq->rt);
1349 }
1350
1351 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1352 {
1353         struct rq *rq = rq_of_rt_se(rt_se);
1354
1355         dequeue_rt_stack(rt_se, flags);
1356
1357         for_each_sched_rt_entity(rt_se) {
1358                 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1359
1360                 if (rt_rq && rt_rq->rt_nr_running)
1361                         __enqueue_rt_entity(rt_se, flags);
1362         }
1363         enqueue_top_rt_rq(&rq->rt);
1364 }
1365
1366 /*
1367  * Adding/removing a task to/from a priority array:
1368  */
1369 static void
1370 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1371 {
1372         struct sched_rt_entity *rt_se = &p->rt;
1373
1374         if (flags & ENQUEUE_WAKEUP)
1375                 rt_se->timeout = 0;
1376
1377         enqueue_rt_entity(rt_se, flags);
1378
1379         if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1380                 enqueue_pushable_task(rq, p);
1381 }
1382
1383 static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1384 {
1385         struct sched_rt_entity *rt_se = &p->rt;
1386
1387         update_curr_rt(rq);
1388         dequeue_rt_entity(rt_se, flags);
1389
1390         dequeue_pushable_task(rq, p);
1391 }
1392
1393 /*
1394  * Put task to the head or the end of the run list without the overhead of
1395  * dequeue followed by enqueue.
1396  */
1397 static void
1398 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1399 {
1400         if (on_rt_rq(rt_se)) {
1401                 struct rt_prio_array *array = &rt_rq->active;
1402                 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1403
1404                 if (head)
1405                         list_move(&rt_se->run_list, queue);
1406                 else
1407                         list_move_tail(&rt_se->run_list, queue);
1408         }
1409 }
1410
1411 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1412 {
1413         struct sched_rt_entity *rt_se = &p->rt;
1414         struct rt_rq *rt_rq;
1415
1416         for_each_sched_rt_entity(rt_se) {
1417                 rt_rq = rt_rq_of_se(rt_se);
1418                 requeue_rt_entity(rt_rq, rt_se, head);
1419         }
1420 }
1421
1422 static void yield_task_rt(struct rq *rq)
1423 {
1424         requeue_task_rt(rq, rq->curr, 0);
1425 }
1426
1427 #ifdef CONFIG_SMP
1428 static int find_lowest_rq(struct task_struct *task);
1429
1430 static int
1431 select_task_rq_rt(struct task_struct *p, int cpu, int sd_flag, int flags)
1432 {
1433         struct task_struct *curr;
1434         struct rq *rq;
1435         bool test;
1436
1437         /* For anything but wake ups, just return the task_cpu */
1438         if (sd_flag != SD_BALANCE_WAKE && sd_flag != SD_BALANCE_FORK)
1439                 goto out;
1440
1441         rq = cpu_rq(cpu);
1442
1443         rcu_read_lock();
1444         curr = READ_ONCE(rq->curr); /* unlocked access */
1445
1446         /*
1447          * If the current task on @p's runqueue is an RT task, then
1448          * try to see if we can wake this RT task up on another
1449          * runqueue. Otherwise simply start this RT task
1450          * on its current runqueue.
1451          *
1452          * We want to avoid overloading runqueues. If the woken
1453          * task is a higher priority, then it will stay on this CPU
1454          * and the lower prio task should be moved to another CPU.
1455          * Even though this will probably make the lower prio task
1456          * lose its cache, we do not want to bounce a higher task
1457          * around just because it gave up its CPU, perhaps for a
1458          * lock?
1459          *
1460          * For equal prio tasks, we just let the scheduler sort it out.
1461          *
1462          * Otherwise, just let it ride on the affined RQ and the
1463          * post-schedule router will push the preempted task away
1464          *
1465          * This test is optimistic, if we get it wrong the load-balancer
1466          * will have to sort it out.
1467          *
1468          * We take into account the capacity of the CPU to ensure it fits the
1469          * requirement of the task - which is only important on heterogeneous
1470          * systems like big.LITTLE.
1471          */
1472         test = curr &&
1473                unlikely(rt_task(curr)) &&
1474                (curr->nr_cpus_allowed < 2 || curr->prio <= p->prio);
1475
1476         if (test || !rt_task_fits_capacity(p, cpu)) {
1477                 int target = find_lowest_rq(p);
1478
1479                 /*
1480                  * Bail out if we were forcing a migration to find a better
1481                  * fitting CPU but our search failed.
1482                  */
1483                 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1484                         goto out_unlock;
1485
1486                 /*
1487                  * Don't bother moving it if the destination CPU is
1488                  * not running a lower priority task.
1489                  */
1490                 if (target != -1 &&
1491                     p->prio < cpu_rq(target)->rt.highest_prio.curr)
1492                         cpu = target;
1493         }
1494
1495 out_unlock:
1496         rcu_read_unlock();
1497
1498 out:
1499         return cpu;
1500 }
1501
1502 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1503 {
1504         /*
1505          * Current can't be migrated, useless to reschedule,
1506          * let's hope p can move out.
1507          */
1508         if (rq->curr->nr_cpus_allowed == 1 ||
1509             !cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
1510                 return;
1511
1512         /*
1513          * p is migratable, so let's not schedule it and
1514          * see if it is pushed or pulled somewhere else.
1515          */
1516         if (p->nr_cpus_allowed != 1 &&
1517             cpupri_find(&rq->rd->cpupri, p, NULL))
1518                 return;
1519
1520         /*
1521          * There appear to be other CPUs that can accept
1522          * the current task but none can run 'p', so lets reschedule
1523          * to try and push the current task away:
1524          */
1525         requeue_task_rt(rq, p, 1);
1526         resched_curr(rq);
1527 }
1528
1529 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1530 {
1531         if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1532                 /*
1533                  * This is OK, because current is on_cpu, which avoids it being
1534                  * picked for load-balance and preemption/IRQs are still
1535                  * disabled avoiding further scheduler activity on it and we've
1536                  * not yet started the picking loop.
1537                  */
1538                 rq_unpin_lock(rq, rf);
1539                 pull_rt_task(rq);
1540                 rq_repin_lock(rq, rf);
1541         }
1542
1543         return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1544 }
1545 #endif /* CONFIG_SMP */
1546
1547 /*
1548  * Preempt the current task with a newly woken task if needed:
1549  */
1550 static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
1551 {
1552         if (p->prio < rq->curr->prio) {
1553                 resched_curr(rq);
1554                 return;
1555         }
1556
1557 #ifdef CONFIG_SMP
1558         /*
1559          * If:
1560          *
1561          * - the newly woken task is of equal priority to the current task
1562          * - the newly woken task is non-migratable while current is migratable
1563          * - current will be preempted on the next reschedule
1564          *
1565          * we should check to see if current can readily move to a different
1566          * cpu.  If so, we will reschedule to allow the push logic to try
1567          * to move current somewhere else, making room for our non-migratable
1568          * task.
1569          */
1570         if (p->prio == rq->curr->prio && !test_tsk_need_resched(rq->curr))
1571                 check_preempt_equal_prio(rq, p);
1572 #endif
1573 }
1574
1575 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1576 {
1577         p->se.exec_start = rq_clock_task(rq);
1578
1579         /* The running task is never eligible for pushing */
1580         dequeue_pushable_task(rq, p);
1581
1582         if (!first)
1583                 return;
1584
1585         /*
1586          * If prev task was rt, put_prev_task() has already updated the
1587          * utilization. We only care of the case where we start to schedule a
1588          * rt task
1589          */
1590         if (rq->curr->sched_class != &rt_sched_class)
1591                 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1592
1593         rt_queue_push_tasks(rq);
1594 }
1595
1596 static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
1597                                                    struct rt_rq *rt_rq)
1598 {
1599         struct rt_prio_array *array = &rt_rq->active;
1600         struct sched_rt_entity *next = NULL;
1601         struct list_head *queue;
1602         int idx;
1603
1604         idx = sched_find_first_bit(array->bitmap);
1605         BUG_ON(idx >= MAX_RT_PRIO);
1606
1607         queue = array->queue + idx;
1608         next = list_entry(queue->next, struct sched_rt_entity, run_list);
1609
1610         return next;
1611 }
1612
1613 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1614 {
1615         struct sched_rt_entity *rt_se;
1616         struct rt_rq *rt_rq  = &rq->rt;
1617
1618         do {
1619                 rt_se = pick_next_rt_entity(rq, rt_rq);
1620                 BUG_ON(!rt_se);
1621                 rt_rq = group_rt_rq(rt_se);
1622         } while (rt_rq);
1623
1624         return rt_task_of(rt_se);
1625 }
1626
1627 static struct task_struct *pick_next_task_rt(struct rq *rq)
1628 {
1629         struct task_struct *p;
1630
1631         if (!sched_rt_runnable(rq))
1632                 return NULL;
1633
1634         p = _pick_next_task_rt(rq);
1635         set_next_task_rt(rq, p, true);
1636         return p;
1637 }
1638
1639 static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
1640 {
1641         update_curr_rt(rq);
1642
1643         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1644
1645         /*
1646          * The previous task needs to be made eligible for pushing
1647          * if it is still active
1648          */
1649         if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1650                 enqueue_pushable_task(rq, p);
1651 }
1652
1653 #ifdef CONFIG_SMP
1654
1655 /* Only try algorithms three times */
1656 #define RT_MAX_TRIES 3
1657
1658 static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
1659 {
1660         if (!task_running(rq, p) &&
1661             cpumask_test_cpu(cpu, p->cpus_ptr))
1662                 return 1;
1663
1664         return 0;
1665 }
1666
1667 /*
1668  * Return the highest pushable rq's task, which is suitable to be executed
1669  * on the CPU, NULL otherwise
1670  */
1671 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1672 {
1673         struct plist_head *head = &rq->rt.pushable_tasks;
1674         struct task_struct *p;
1675
1676         if (!has_pushable_tasks(rq))
1677                 return NULL;
1678
1679         plist_for_each_entry(p, head, pushable_tasks) {
1680                 if (pick_rt_task(rq, p, cpu))
1681                         return p;
1682         }
1683
1684         return NULL;
1685 }
1686
1687 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1688
1689 static int find_lowest_rq(struct task_struct *task)
1690 {
1691         struct sched_domain *sd;
1692         struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1693         int this_cpu = smp_processor_id();
1694         int cpu      = task_cpu(task);
1695         int ret;
1696
1697         /* Make sure the mask is initialized first */
1698         if (unlikely(!lowest_mask))
1699                 return -1;
1700
1701         if (task->nr_cpus_allowed == 1)
1702                 return -1; /* No other targets possible */
1703
1704         /*
1705          * If we're on asym system ensure we consider the different capacities
1706          * of the CPUs when searching for the lowest_mask.
1707          */
1708         if (static_branch_unlikely(&sched_asym_cpucapacity)) {
1709
1710                 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1711                                           task, lowest_mask,
1712                                           rt_task_fits_capacity);
1713         } else {
1714
1715                 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1716                                   task, lowest_mask);
1717         }
1718
1719         if (!ret)
1720                 return -1; /* No targets found */
1721
1722         /*
1723          * At this point we have built a mask of CPUs representing the
1724          * lowest priority tasks in the system.  Now we want to elect
1725          * the best one based on our affinity and topology.
1726          *
1727          * We prioritize the last CPU that the task executed on since
1728          * it is most likely cache-hot in that location.
1729          */
1730         if (cpumask_test_cpu(cpu, lowest_mask))
1731                 return cpu;
1732
1733         /*
1734          * Otherwise, we consult the sched_domains span maps to figure
1735          * out which CPU is logically closest to our hot cache data.
1736          */
1737         if (!cpumask_test_cpu(this_cpu, lowest_mask))
1738                 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1739
1740         rcu_read_lock();
1741         for_each_domain(cpu, sd) {
1742                 if (sd->flags & SD_WAKE_AFFINE) {
1743                         int best_cpu;
1744
1745                         /*
1746                          * "this_cpu" is cheaper to preempt than a
1747                          * remote processor.
1748                          */
1749                         if (this_cpu != -1 &&
1750                             cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1751                                 rcu_read_unlock();
1752                                 return this_cpu;
1753                         }
1754
1755                         best_cpu = cpumask_first_and(lowest_mask,
1756                                                      sched_domain_span(sd));
1757                         if (best_cpu < nr_cpu_ids) {
1758                                 rcu_read_unlock();
1759                                 return best_cpu;
1760                         }
1761                 }
1762         }
1763         rcu_read_unlock();
1764
1765         /*
1766          * And finally, if there were no matches within the domains
1767          * just give the caller *something* to work with from the compatible
1768          * locations.
1769          */
1770         if (this_cpu != -1)
1771                 return this_cpu;
1772
1773         cpu = cpumask_any(lowest_mask);
1774         if (cpu < nr_cpu_ids)
1775                 return cpu;
1776
1777         return -1;
1778 }
1779
1780 /* Will lock the rq it finds */
1781 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1782 {
1783         struct rq *lowest_rq = NULL;
1784         int tries;
1785         int cpu;
1786
1787         for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1788                 cpu = find_lowest_rq(task);
1789
1790                 if ((cpu == -1) || (cpu == rq->cpu))
1791                         break;
1792
1793                 lowest_rq = cpu_rq(cpu);
1794
1795                 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1796                         /*
1797                          * Target rq has tasks of equal or higher priority,
1798                          * retrying does not release any lock and is unlikely
1799                          * to yield a different result.
1800                          */
1801                         lowest_rq = NULL;
1802                         break;
1803                 }
1804
1805                 /* if the prio of this runqueue changed, try again */
1806                 if (double_lock_balance(rq, lowest_rq)) {
1807                         /*
1808                          * We had to unlock the run queue. In
1809                          * the mean time, task could have
1810                          * migrated already or had its affinity changed.
1811                          * Also make sure that it wasn't scheduled on its rq.
1812                          */
1813                         if (unlikely(task_rq(task) != rq ||
1814                                      !cpumask_test_cpu(lowest_rq->cpu, task->cpus_ptr) ||
1815                                      task_running(rq, task) ||
1816                                      !rt_task(task) ||
1817                                      !task_on_rq_queued(task))) {
1818
1819                                 double_unlock_balance(rq, lowest_rq);
1820                                 lowest_rq = NULL;
1821                                 break;
1822                         }
1823                 }
1824
1825                 /* If this rq is still suitable use it. */
1826                 if (lowest_rq->rt.highest_prio.curr > task->prio)
1827                         break;
1828
1829                 /* try again */
1830                 double_unlock_balance(rq, lowest_rq);
1831                 lowest_rq = NULL;
1832         }
1833
1834         return lowest_rq;
1835 }
1836
1837 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1838 {
1839         struct task_struct *p;
1840
1841         if (!has_pushable_tasks(rq))
1842                 return NULL;
1843
1844         p = plist_first_entry(&rq->rt.pushable_tasks,
1845                               struct task_struct, pushable_tasks);
1846
1847         BUG_ON(rq->cpu != task_cpu(p));
1848         BUG_ON(task_current(rq, p));
1849         BUG_ON(p->nr_cpus_allowed <= 1);
1850
1851         BUG_ON(!task_on_rq_queued(p));
1852         BUG_ON(!rt_task(p));
1853
1854         return p;
1855 }
1856
1857 /*
1858  * If the current CPU has more than one RT task, see if the non
1859  * running task can migrate over to a CPU that is running a task
1860  * of lesser priority.
1861  */
1862 static int push_rt_task(struct rq *rq)
1863 {
1864         struct task_struct *next_task;
1865         struct rq *lowest_rq;
1866         int ret = 0;
1867
1868         if (!rq->rt.overloaded)
1869                 return 0;
1870
1871         next_task = pick_next_pushable_task(rq);
1872         if (!next_task)
1873                 return 0;
1874
1875 retry:
1876         if (WARN_ON(next_task == rq->curr))
1877                 return 0;
1878
1879         /*
1880          * It's possible that the next_task slipped in of
1881          * higher priority than current. If that's the case
1882          * just reschedule current.
1883          */
1884         if (unlikely(next_task->prio < rq->curr->prio)) {
1885                 resched_curr(rq);
1886                 return 0;
1887         }
1888
1889         /* We might release rq lock */
1890         get_task_struct(next_task);
1891
1892         /* find_lock_lowest_rq locks the rq if found */
1893         lowest_rq = find_lock_lowest_rq(next_task, rq);
1894         if (!lowest_rq) {
1895                 struct task_struct *task;
1896                 /*
1897                  * find_lock_lowest_rq releases rq->lock
1898                  * so it is possible that next_task has migrated.
1899                  *
1900                  * We need to make sure that the task is still on the same
1901                  * run-queue and is also still the next task eligible for
1902                  * pushing.
1903                  */
1904                 task = pick_next_pushable_task(rq);
1905                 if (task == next_task) {
1906                         /*
1907                          * The task hasn't migrated, and is still the next
1908                          * eligible task, but we failed to find a run-queue
1909                          * to push it to.  Do not retry in this case, since
1910                          * other CPUs will pull from us when ready.
1911                          */
1912                         goto out;
1913                 }
1914
1915                 if (!task)
1916                         /* No more tasks, just exit */
1917                         goto out;
1918
1919                 /*
1920                  * Something has shifted, try again.
1921                  */
1922                 put_task_struct(next_task);
1923                 next_task = task;
1924                 goto retry;
1925         }
1926
1927         deactivate_task(rq, next_task, 0);
1928         set_task_cpu(next_task, lowest_rq->cpu);
1929         activate_task(lowest_rq, next_task, 0);
1930         ret = 1;
1931
1932         resched_curr(lowest_rq);
1933
1934         double_unlock_balance(rq, lowest_rq);
1935
1936 out:
1937         put_task_struct(next_task);
1938
1939         return ret;
1940 }
1941
1942 static void push_rt_tasks(struct rq *rq)
1943 {
1944         /* push_rt_task will return true if it moved an RT */
1945         while (push_rt_task(rq))
1946                 ;
1947 }
1948
1949 #ifdef HAVE_RT_PUSH_IPI
1950
1951 /*
1952  * When a high priority task schedules out from a CPU and a lower priority
1953  * task is scheduled in, a check is made to see if there's any RT tasks
1954  * on other CPUs that are waiting to run because a higher priority RT task
1955  * is currently running on its CPU. In this case, the CPU with multiple RT
1956  * tasks queued on it (overloaded) needs to be notified that a CPU has opened
1957  * up that may be able to run one of its non-running queued RT tasks.
1958  *
1959  * All CPUs with overloaded RT tasks need to be notified as there is currently
1960  * no way to know which of these CPUs have the highest priority task waiting
1961  * to run. Instead of trying to take a spinlock on each of these CPUs,
1962  * which has shown to cause large latency when done on machines with many
1963  * CPUs, sending an IPI to the CPUs to have them push off the overloaded
1964  * RT tasks waiting to run.
1965  *
1966  * Just sending an IPI to each of the CPUs is also an issue, as on large
1967  * count CPU machines, this can cause an IPI storm on a CPU, especially
1968  * if its the only CPU with multiple RT tasks queued, and a large number
1969  * of CPUs scheduling a lower priority task at the same time.
1970  *
1971  * Each root domain has its own irq work function that can iterate over
1972  * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
1973  * tassk must be checked if there's one or many CPUs that are lowering
1974  * their priority, there's a single irq work iterator that will try to
1975  * push off RT tasks that are waiting to run.
1976  *
1977  * When a CPU schedules a lower priority task, it will kick off the
1978  * irq work iterator that will jump to each CPU with overloaded RT tasks.
1979  * As it only takes the first CPU that schedules a lower priority task
1980  * to start the process, the rto_start variable is incremented and if
1981  * the atomic result is one, then that CPU will try to take the rto_lock.
1982  * This prevents high contention on the lock as the process handles all
1983  * CPUs scheduling lower priority tasks.
1984  *
1985  * All CPUs that are scheduling a lower priority task will increment the
1986  * rt_loop_next variable. This will make sure that the irq work iterator
1987  * checks all RT overloaded CPUs whenever a CPU schedules a new lower
1988  * priority task, even if the iterator is in the middle of a scan. Incrementing
1989  * the rt_loop_next will cause the iterator to perform another scan.
1990  *
1991  */
1992 static int rto_next_cpu(struct root_domain *rd)
1993 {
1994         int next;
1995         int cpu;
1996
1997         /*
1998          * When starting the IPI RT pushing, the rto_cpu is set to -1,
1999          * rt_next_cpu() will simply return the first CPU found in
2000          * the rto_mask.
2001          *
2002          * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2003          * will return the next CPU found in the rto_mask.
2004          *
2005          * If there are no more CPUs left in the rto_mask, then a check is made
2006          * against rto_loop and rto_loop_next. rto_loop is only updated with
2007          * the rto_lock held, but any CPU may increment the rto_loop_next
2008          * without any locking.
2009          */
2010         for (;;) {
2011
2012                 /* When rto_cpu is -1 this acts like cpumask_first() */
2013                 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2014
2015                 rd->rto_cpu = cpu;
2016
2017                 if (cpu < nr_cpu_ids)
2018                         return cpu;
2019
2020                 rd->rto_cpu = -1;
2021
2022                 /*
2023                  * ACQUIRE ensures we see the @rto_mask changes
2024                  * made prior to the @next value observed.
2025                  *
2026                  * Matches WMB in rt_set_overload().
2027                  */
2028                 next = atomic_read_acquire(&rd->rto_loop_next);
2029
2030                 if (rd->rto_loop == next)
2031                         break;
2032
2033                 rd->rto_loop = next;
2034         }
2035
2036         return -1;
2037 }
2038
2039 static inline bool rto_start_trylock(atomic_t *v)
2040 {
2041         return !atomic_cmpxchg_acquire(v, 0, 1);
2042 }
2043
2044 static inline void rto_start_unlock(atomic_t *v)
2045 {
2046         atomic_set_release(v, 0);
2047 }
2048
2049 static void tell_cpu_to_push(struct rq *rq)
2050 {
2051         int cpu = -1;
2052
2053         /* Keep the loop going if the IPI is currently active */
2054         atomic_inc(&rq->rd->rto_loop_next);
2055
2056         /* Only one CPU can initiate a loop at a time */
2057         if (!rto_start_trylock(&rq->rd->rto_loop_start))
2058                 return;
2059
2060         raw_spin_lock(&rq->rd->rto_lock);
2061
2062         /*
2063          * The rto_cpu is updated under the lock, if it has a valid CPU
2064          * then the IPI is still running and will continue due to the
2065          * update to loop_next, and nothing needs to be done here.
2066          * Otherwise it is finishing up and an ipi needs to be sent.
2067          */
2068         if (rq->rd->rto_cpu < 0)
2069                 cpu = rto_next_cpu(rq->rd);
2070
2071         raw_spin_unlock(&rq->rd->rto_lock);
2072
2073         rto_start_unlock(&rq->rd->rto_loop_start);
2074
2075         if (cpu >= 0) {
2076                 /* Make sure the rd does not get freed while pushing */
2077                 sched_get_rd(rq->rd);
2078                 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2079         }
2080 }
2081
2082 /* Called from hardirq context */
2083 void rto_push_irq_work_func(struct irq_work *work)
2084 {
2085         struct root_domain *rd =
2086                 container_of(work, struct root_domain, rto_push_work);
2087         struct rq *rq;
2088         int cpu;
2089
2090         rq = this_rq();
2091
2092         /*
2093          * We do not need to grab the lock to check for has_pushable_tasks.
2094          * When it gets updated, a check is made if a push is possible.
2095          */
2096         if (has_pushable_tasks(rq)) {
2097                 raw_spin_lock(&rq->lock);
2098                 push_rt_tasks(rq);
2099                 raw_spin_unlock(&rq->lock);
2100         }
2101
2102         raw_spin_lock(&rd->rto_lock);
2103
2104         /* Pass the IPI to the next rt overloaded queue */
2105         cpu = rto_next_cpu(rd);
2106
2107         raw_spin_unlock(&rd->rto_lock);
2108
2109         if (cpu < 0) {
2110                 sched_put_rd(rd);
2111                 return;
2112         }
2113
2114         /* Try the next RT overloaded CPU */
2115         irq_work_queue_on(&rd->rto_push_work, cpu);
2116 }
2117 #endif /* HAVE_RT_PUSH_IPI */
2118
2119 static void pull_rt_task(struct rq *this_rq)
2120 {
2121         int this_cpu = this_rq->cpu, cpu;
2122         bool resched = false;
2123         struct task_struct *p;
2124         struct rq *src_rq;
2125         int rt_overload_count = rt_overloaded(this_rq);
2126
2127         if (likely(!rt_overload_count))
2128                 return;
2129
2130         /*
2131          * Match the barrier from rt_set_overloaded; this guarantees that if we
2132          * see overloaded we must also see the rto_mask bit.
2133          */
2134         smp_rmb();
2135
2136         /* If we are the only overloaded CPU do nothing */
2137         if (rt_overload_count == 1 &&
2138             cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2139                 return;
2140
2141 #ifdef HAVE_RT_PUSH_IPI
2142         if (sched_feat(RT_PUSH_IPI)) {
2143                 tell_cpu_to_push(this_rq);
2144                 return;
2145         }
2146 #endif
2147
2148         for_each_cpu(cpu, this_rq->rd->rto_mask) {
2149                 if (this_cpu == cpu)
2150                         continue;
2151
2152                 src_rq = cpu_rq(cpu);
2153
2154                 /*
2155                  * Don't bother taking the src_rq->lock if the next highest
2156                  * task is known to be lower-priority than our current task.
2157                  * This may look racy, but if this value is about to go
2158                  * logically higher, the src_rq will push this task away.
2159                  * And if its going logically lower, we do not care
2160                  */
2161                 if (src_rq->rt.highest_prio.next >=
2162                     this_rq->rt.highest_prio.curr)
2163                         continue;
2164
2165                 /*
2166                  * We can potentially drop this_rq's lock in
2167                  * double_lock_balance, and another CPU could
2168                  * alter this_rq
2169                  */
2170                 double_lock_balance(this_rq, src_rq);
2171
2172                 /*
2173                  * We can pull only a task, which is pushable
2174                  * on its rq, and no others.
2175                  */
2176                 p = pick_highest_pushable_task(src_rq, this_cpu);
2177
2178                 /*
2179                  * Do we have an RT task that preempts
2180                  * the to-be-scheduled task?
2181                  */
2182                 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2183                         WARN_ON(p == src_rq->curr);
2184                         WARN_ON(!task_on_rq_queued(p));
2185
2186                         /*
2187                          * There's a chance that p is higher in priority
2188                          * than what's currently running on its CPU.
2189                          * This is just that p is wakeing up and hasn't
2190                          * had a chance to schedule. We only pull
2191                          * p if it is lower in priority than the
2192                          * current task on the run queue
2193                          */
2194                         if (p->prio < src_rq->curr->prio)
2195                                 goto skip;
2196
2197                         resched = true;
2198
2199                         deactivate_task(src_rq, p, 0);
2200                         set_task_cpu(p, this_cpu);
2201                         activate_task(this_rq, p, 0);
2202                         /*
2203                          * We continue with the search, just in
2204                          * case there's an even higher prio task
2205                          * in another runqueue. (low likelihood
2206                          * but possible)
2207                          */
2208                 }
2209 skip:
2210                 double_unlock_balance(this_rq, src_rq);
2211         }
2212
2213         if (resched)
2214                 resched_curr(this_rq);
2215 }
2216
2217 /*
2218  * If we are not running and we are not going to reschedule soon, we should
2219  * try to push tasks away now
2220  */
2221 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2222 {
2223         bool need_to_push = !task_running(rq, p) &&
2224                             !test_tsk_need_resched(rq->curr) &&
2225                             p->nr_cpus_allowed > 1 &&
2226                             (dl_task(rq->curr) || rt_task(rq->curr)) &&
2227                             (rq->curr->nr_cpus_allowed < 2 ||
2228                              rq->curr->prio <= p->prio);
2229
2230         if (need_to_push)
2231                 push_rt_tasks(rq);
2232 }
2233
2234 /* Assumes rq->lock is held */
2235 static void rq_online_rt(struct rq *rq)
2236 {
2237         if (rq->rt.overloaded)
2238                 rt_set_overload(rq);
2239
2240         __enable_runtime(rq);
2241
2242         cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2243 }
2244
2245 /* Assumes rq->lock is held */
2246 static void rq_offline_rt(struct rq *rq)
2247 {
2248         if (rq->rt.overloaded)
2249                 rt_clear_overload(rq);
2250
2251         __disable_runtime(rq);
2252
2253         cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2254 }
2255
2256 /*
2257  * When switch from the rt queue, we bring ourselves to a position
2258  * that we might want to pull RT tasks from other runqueues.
2259  */
2260 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2261 {
2262         /*
2263          * If there are other RT tasks then we will reschedule
2264          * and the scheduling of the other RT tasks will handle
2265          * the balancing. But if we are the last RT task
2266          * we may need to handle the pulling of RT tasks
2267          * now.
2268          */
2269         if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2270                 return;
2271
2272         rt_queue_pull_task(rq);
2273 }
2274
2275 void __init init_sched_rt_class(void)
2276 {
2277         unsigned int i;
2278
2279         for_each_possible_cpu(i) {
2280                 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2281                                         GFP_KERNEL, cpu_to_node(i));
2282         }
2283 }
2284 #endif /* CONFIG_SMP */
2285
2286 /*
2287  * When switching a task to RT, we may overload the runqueue
2288  * with RT tasks. In this case we try to push them off to
2289  * other runqueues.
2290  */
2291 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2292 {
2293         /*
2294          * If we are already running, then there's nothing
2295          * that needs to be done. But if we are not running
2296          * we may need to preempt the current running task.
2297          * If that current running task is also an RT task
2298          * then see if we can move to another run queue.
2299          */
2300         if (task_on_rq_queued(p) && rq->curr != p) {
2301 #ifdef CONFIG_SMP
2302                 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2303                         rt_queue_push_tasks(rq);
2304 #endif /* CONFIG_SMP */
2305                 if (p->prio < rq->curr->prio && cpu_online(cpu_of(rq)))
2306                         resched_curr(rq);
2307         }
2308 }
2309
2310 /*
2311  * Priority of the task has changed. This may cause
2312  * us to initiate a push or pull.
2313  */
2314 static void
2315 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2316 {
2317         if (!task_on_rq_queued(p))
2318                 return;
2319
2320         if (rq->curr == p) {
2321 #ifdef CONFIG_SMP
2322                 /*
2323                  * If our priority decreases while running, we
2324                  * may need to pull tasks to this runqueue.
2325                  */
2326                 if (oldprio < p->prio)
2327                         rt_queue_pull_task(rq);
2328
2329                 /*
2330                  * If there's a higher priority task waiting to run
2331                  * then reschedule.
2332                  */
2333                 if (p->prio > rq->rt.highest_prio.curr)
2334                         resched_curr(rq);
2335 #else
2336                 /* For UP simply resched on drop of prio */
2337                 if (oldprio < p->prio)
2338                         resched_curr(rq);
2339 #endif /* CONFIG_SMP */
2340         } else {
2341                 /*
2342                  * This task is not running, but if it is
2343                  * greater than the current running task
2344                  * then reschedule.
2345                  */
2346                 if (p->prio < rq->curr->prio)
2347                         resched_curr(rq);
2348         }
2349 }
2350
2351 #ifdef CONFIG_POSIX_TIMERS
2352 static void watchdog(struct rq *rq, struct task_struct *p)
2353 {
2354         unsigned long soft, hard;
2355
2356         /* max may change after cur was read, this will be fixed next tick */
2357         soft = task_rlimit(p, RLIMIT_RTTIME);
2358         hard = task_rlimit_max(p, RLIMIT_RTTIME);
2359
2360         if (soft != RLIM_INFINITY) {
2361                 unsigned long next;
2362
2363                 if (p->rt.watchdog_stamp != jiffies) {
2364                         p->rt.timeout++;
2365                         p->rt.watchdog_stamp = jiffies;
2366                 }
2367
2368                 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2369                 if (p->rt.timeout > next) {
2370                         posix_cputimers_rt_watchdog(&p->posix_cputimers,
2371                                                     p->se.sum_exec_runtime);
2372                 }
2373         }
2374 }
2375 #else
2376 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2377 #endif
2378
2379 /*
2380  * scheduler tick hitting a task of our scheduling class.
2381  *
2382  * NOTE: This function can be called remotely by the tick offload that
2383  * goes along full dynticks. Therefore no local assumption can be made
2384  * and everything must be accessed through the @rq and @curr passed in
2385  * parameters.
2386  */
2387 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2388 {
2389         struct sched_rt_entity *rt_se = &p->rt;
2390
2391         update_curr_rt(rq);
2392         update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2393
2394         watchdog(rq, p);
2395
2396         /*
2397          * RR tasks need a special form of timeslice management.
2398          * FIFO tasks have no timeslices.
2399          */
2400         if (p->policy != SCHED_RR)
2401                 return;
2402
2403         if (--p->rt.time_slice)
2404                 return;
2405
2406         p->rt.time_slice = sched_rr_timeslice;
2407
2408         /*
2409          * Requeue to the end of queue if we (and all of our ancestors) are not
2410          * the only element on the queue
2411          */
2412         for_each_sched_rt_entity(rt_se) {
2413                 if (rt_se->run_list.prev != rt_se->run_list.next) {
2414                         requeue_task_rt(rq, p, 0);
2415                         resched_curr(rq);
2416                         return;
2417                 }
2418         }
2419 }
2420
2421 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2422 {
2423         /*
2424          * Time slice is 0 for SCHED_FIFO tasks
2425          */
2426         if (task->policy == SCHED_RR)
2427                 return sched_rr_timeslice;
2428         else
2429                 return 0;
2430 }
2431
2432 const struct sched_class rt_sched_class
2433         __section("__rt_sched_class") = {
2434         .enqueue_task           = enqueue_task_rt,
2435         .dequeue_task           = dequeue_task_rt,
2436         .yield_task             = yield_task_rt,
2437
2438         .check_preempt_curr     = check_preempt_curr_rt,
2439
2440         .pick_next_task         = pick_next_task_rt,
2441         .put_prev_task          = put_prev_task_rt,
2442         .set_next_task          = set_next_task_rt,
2443
2444 #ifdef CONFIG_SMP
2445         .balance                = balance_rt,
2446         .select_task_rq         = select_task_rq_rt,
2447         .set_cpus_allowed       = set_cpus_allowed_common,
2448         .rq_online              = rq_online_rt,
2449         .rq_offline             = rq_offline_rt,
2450         .task_woken             = task_woken_rt,
2451         .switched_from          = switched_from_rt,
2452 #endif
2453
2454         .task_tick              = task_tick_rt,
2455
2456         .get_rr_interval        = get_rr_interval_rt,
2457
2458         .prio_changed           = prio_changed_rt,
2459         .switched_to            = switched_to_rt,
2460
2461         .update_curr            = update_curr_rt,
2462
2463 #ifdef CONFIG_UCLAMP_TASK
2464         .uclamp_enabled         = 1,
2465 #endif
2466 };
2467
2468 #ifdef CONFIG_RT_GROUP_SCHED
2469 /*
2470  * Ensure that the real time constraints are schedulable.
2471  */
2472 static DEFINE_MUTEX(rt_constraints_mutex);
2473
2474 static inline int tg_has_rt_tasks(struct task_group *tg)
2475 {
2476         struct task_struct *task;
2477         struct css_task_iter it;
2478         int ret = 0;
2479
2480         /*
2481          * Autogroups do not have RT tasks; see autogroup_create().
2482          */
2483         if (task_group_is_autogroup(tg))
2484                 return 0;
2485
2486         css_task_iter_start(&tg->css, 0, &it);
2487         while (!ret && (task = css_task_iter_next(&it)))
2488                 ret |= rt_task(task);
2489         css_task_iter_end(&it);
2490
2491         return ret;
2492 }
2493
2494 struct rt_schedulable_data {
2495         struct task_group *tg;
2496         u64 rt_period;
2497         u64 rt_runtime;
2498 };
2499
2500 static int tg_rt_schedulable(struct task_group *tg, void *data)
2501 {
2502         struct rt_schedulable_data *d = data;
2503         struct task_group *child;
2504         unsigned long total, sum = 0;
2505         u64 period, runtime;
2506
2507         period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2508         runtime = tg->rt_bandwidth.rt_runtime;
2509
2510         if (tg == d->tg) {
2511                 period = d->rt_period;
2512                 runtime = d->rt_runtime;
2513         }
2514
2515         /*
2516          * Cannot have more runtime than the period.
2517          */
2518         if (runtime > period && runtime != RUNTIME_INF)
2519                 return -EINVAL;
2520
2521         /*
2522          * Ensure we don't starve existing RT tasks if runtime turns zero.
2523          */
2524         if (rt_bandwidth_enabled() && !runtime &&
2525             tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2526                 return -EBUSY;
2527
2528         total = to_ratio(period, runtime);
2529
2530         /*
2531          * Nobody can have more than the global setting allows.
2532          */
2533         if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2534                 return -EINVAL;
2535
2536         /*
2537          * The sum of our children's runtime should not exceed our own.
2538          */
2539         list_for_each_entry_rcu(child, &tg->children, siblings) {
2540                 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2541                 runtime = child->rt_bandwidth.rt_runtime;
2542
2543                 if (child == d->tg) {
2544                         period = d->rt_period;
2545                         runtime = d->rt_runtime;
2546                 }
2547
2548                 sum += to_ratio(period, runtime);
2549         }
2550
2551         if (sum > total)
2552                 return -EINVAL;
2553
2554         return 0;
2555 }
2556
2557 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2558 {
2559         int ret;
2560
2561         struct rt_schedulable_data data = {
2562                 .tg = tg,
2563                 .rt_period = period,
2564                 .rt_runtime = runtime,
2565         };
2566
2567         rcu_read_lock();
2568         ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2569         rcu_read_unlock();
2570
2571         return ret;
2572 }
2573
2574 static int tg_set_rt_bandwidth(struct task_group *tg,
2575                 u64 rt_period, u64 rt_runtime)
2576 {
2577         int i, err = 0;
2578
2579         /*
2580          * Disallowing the root group RT runtime is BAD, it would disallow the
2581          * kernel creating (and or operating) RT threads.
2582          */
2583         if (tg == &root_task_group && rt_runtime == 0)
2584                 return -EINVAL;
2585
2586         /* No period doesn't make any sense. */
2587         if (rt_period == 0)
2588                 return -EINVAL;
2589
2590         /*
2591          * Bound quota to defend quota against overflow during bandwidth shift.
2592          */
2593         if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2594                 return -EINVAL;
2595
2596         mutex_lock(&rt_constraints_mutex);
2597         err = __rt_schedulable(tg, rt_period, rt_runtime);
2598         if (err)
2599                 goto unlock;
2600
2601         raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2602         tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2603         tg->rt_bandwidth.rt_runtime = rt_runtime;
2604
2605         for_each_possible_cpu(i) {
2606                 struct rt_rq *rt_rq = tg->rt_rq[i];
2607
2608                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2609                 rt_rq->rt_runtime = rt_runtime;
2610                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2611         }
2612         raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2613 unlock:
2614         mutex_unlock(&rt_constraints_mutex);
2615
2616         return err;
2617 }
2618
2619 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2620 {
2621         u64 rt_runtime, rt_period;
2622
2623         rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2624         rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2625         if (rt_runtime_us < 0)
2626                 rt_runtime = RUNTIME_INF;
2627         else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2628                 return -EINVAL;
2629
2630         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2631 }
2632
2633 long sched_group_rt_runtime(struct task_group *tg)
2634 {
2635         u64 rt_runtime_us;
2636
2637         if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2638                 return -1;
2639
2640         rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2641         do_div(rt_runtime_us, NSEC_PER_USEC);
2642         return rt_runtime_us;
2643 }
2644
2645 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2646 {
2647         u64 rt_runtime, rt_period;
2648
2649         if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2650                 return -EINVAL;
2651
2652         rt_period = rt_period_us * NSEC_PER_USEC;
2653         rt_runtime = tg->rt_bandwidth.rt_runtime;
2654
2655         return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2656 }
2657
2658 long sched_group_rt_period(struct task_group *tg)
2659 {
2660         u64 rt_period_us;
2661
2662         rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2663         do_div(rt_period_us, NSEC_PER_USEC);
2664         return rt_period_us;
2665 }
2666
2667 static int sched_rt_global_constraints(void)
2668 {
2669         int ret = 0;
2670
2671         mutex_lock(&rt_constraints_mutex);
2672         ret = __rt_schedulable(NULL, 0, 0);
2673         mutex_unlock(&rt_constraints_mutex);
2674
2675         return ret;
2676 }
2677
2678 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2679 {
2680         /* Don't accept realtime tasks when there is no way for them to run */
2681         if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2682                 return 0;
2683
2684         return 1;
2685 }
2686
2687 #else /* !CONFIG_RT_GROUP_SCHED */
2688 static int sched_rt_global_constraints(void)
2689 {
2690         unsigned long flags;
2691         int i;
2692
2693         raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
2694         for_each_possible_cpu(i) {
2695                 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
2696
2697                 raw_spin_lock(&rt_rq->rt_runtime_lock);
2698                 rt_rq->rt_runtime = global_rt_runtime();
2699                 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2700         }
2701         raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
2702
2703         return 0;
2704 }
2705 #endif /* CONFIG_RT_GROUP_SCHED */
2706
2707 static int sched_rt_global_validate(void)
2708 {
2709         if (sysctl_sched_rt_period <= 0)
2710                 return -EINVAL;
2711
2712         if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2713                 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2714                  ((u64)sysctl_sched_rt_runtime *
2715                         NSEC_PER_USEC > max_rt_runtime)))
2716                 return -EINVAL;
2717
2718         return 0;
2719 }
2720
2721 static void sched_rt_do_global(void)
2722 {
2723         def_rt_bandwidth.rt_runtime = global_rt_runtime();
2724         def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
2725 }
2726
2727 int sched_rt_handler(struct ctl_table *table, int write, void *buffer,
2728                 size_t *lenp, loff_t *ppos)
2729 {
2730         int old_period, old_runtime;
2731         static DEFINE_MUTEX(mutex);
2732         int ret;
2733
2734         mutex_lock(&mutex);
2735         old_period = sysctl_sched_rt_period;
2736         old_runtime = sysctl_sched_rt_runtime;
2737
2738         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2739
2740         if (!ret && write) {
2741                 ret = sched_rt_global_validate();
2742                 if (ret)
2743                         goto undo;
2744
2745                 ret = sched_dl_global_validate();
2746                 if (ret)
2747                         goto undo;
2748
2749                 ret = sched_rt_global_constraints();
2750                 if (ret)
2751                         goto undo;
2752
2753                 sched_rt_do_global();
2754                 sched_dl_do_global();
2755         }
2756         if (0) {
2757 undo:
2758                 sysctl_sched_rt_period = old_period;
2759                 sysctl_sched_rt_runtime = old_runtime;
2760         }
2761         mutex_unlock(&mutex);
2762
2763         return ret;
2764 }
2765
2766 int sched_rr_handler(struct ctl_table *table, int write, void *buffer,
2767                 size_t *lenp, loff_t *ppos)
2768 {
2769         int ret;
2770         static DEFINE_MUTEX(mutex);
2771
2772         mutex_lock(&mutex);
2773         ret = proc_dointvec(table, write, buffer, lenp, ppos);
2774         /*
2775          * Make sure that internally we keep jiffies.
2776          * Also, writing zero resets the timeslice to default:
2777          */
2778         if (!ret && write) {
2779                 sched_rr_timeslice =
2780                         sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2781                         msecs_to_jiffies(sysctl_sched_rr_timeslice);
2782         }
2783         mutex_unlock(&mutex);
2784
2785         return ret;
2786 }
2787
2788 #ifdef CONFIG_SCHED_DEBUG
2789 void print_rt_stats(struct seq_file *m, int cpu)
2790 {
2791         rt_rq_iter_t iter;
2792         struct rt_rq *rt_rq;
2793
2794         rcu_read_lock();
2795         for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2796                 print_rt_rq(m, cpu, rt_rq);
2797         rcu_read_unlock();
2798 }
2799 #endif /* CONFIG_SCHED_DEBUG */