2 #include "sched-pelt.h"
4 int __update_load_avg_blocked_se(u64 now, struct sched_entity *se);
5 int __update_load_avg_se(u64 now, struct cfs_rq *cfs_rq, struct sched_entity *se);
6 int __update_load_avg_cfs_rq(u64 now, struct cfs_rq *cfs_rq);
7 int update_rt_rq_load_avg(u64 now, struct rq *rq, int running);
8 int update_dl_rq_load_avg(u64 now, struct rq *rq, int running);
10 #ifdef CONFIG_SCHED_THERMAL_PRESSURE
11 int update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity);
13 static inline u64 thermal_load_avg(struct rq *rq)
15 return READ_ONCE(rq->avg_thermal.load_avg);
19 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
24 static inline u64 thermal_load_avg(struct rq *rq)
30 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
31 int update_irq_load_avg(struct rq *rq, u64 running);
34 update_irq_load_avg(struct rq *rq, u64 running)
40 static inline u32 get_pelt_divider(struct sched_avg *avg)
42 return LOAD_AVG_MAX - 1024 + avg->period_contrib;
45 static inline void cfs_se_util_change(struct sched_avg *avg)
47 unsigned int enqueued;
49 if (!sched_feat(UTIL_EST))
52 /* Avoid store if the flag has been already reset */
53 enqueued = avg->util_est.enqueued;
54 if (!(enqueued & UTIL_AVG_UNCHANGED))
57 /* Reset flag to report util_avg has been updated */
58 enqueued &= ~UTIL_AVG_UNCHANGED;
59 WRITE_ONCE(avg->util_est.enqueued, enqueued);
63 * The clock_pelt scales the time to reflect the effective amount of
64 * computation done during the running delta time but then sync back to
65 * clock_task when rq is idle.
68 * absolute time | 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16
69 * @ max capacity ------******---------------******---------------
70 * @ half capacity ------************---------************---------
71 * clock pelt | 1| 2| 3| 4| 7| 8| 9| 10| 11|14|15|16
74 static inline void update_rq_clock_pelt(struct rq *rq, s64 delta)
76 if (unlikely(is_idle_task(rq->curr))) {
77 /* The rq is idle, we can sync to clock_task */
78 rq->clock_pelt = rq_clock_task(rq);
83 * When a rq runs at a lower compute capacity, it will need
84 * more time to do the same amount of work than at max
85 * capacity. In order to be invariant, we scale the delta to
86 * reflect how much work has been really done.
87 * Running longer results in stealing idle time that will
88 * disturb the load signal compared to max capacity. This
89 * stolen idle time will be automatically reflected when the
90 * rq will be idle and the clock will be synced with
95 * Scale the elapsed time to reflect the real amount of
98 delta = cap_scale(delta, arch_scale_cpu_capacity(cpu_of(rq)));
99 delta = cap_scale(delta, arch_scale_freq_capacity(cpu_of(rq)));
101 rq->clock_pelt += delta;
105 * When rq becomes idle, we have to check if it has lost idle time
106 * because it was fully busy. A rq is fully used when the /Sum util_sum
107 * is greater or equal to:
108 * (LOAD_AVG_MAX - 1024 + rq->cfs.avg.period_contrib) << SCHED_CAPACITY_SHIFT;
109 * For optimization and computing rounding purpose, we don't take into account
110 * the position in the current window (period_contrib) and we use the higher
111 * bound of util_sum to decide.
113 static inline void update_idle_rq_clock_pelt(struct rq *rq)
115 u32 divider = ((LOAD_AVG_MAX - 1024) << SCHED_CAPACITY_SHIFT) - LOAD_AVG_MAX;
116 u32 util_sum = rq->cfs.avg.util_sum;
117 util_sum += rq->avg_rt.util_sum;
118 util_sum += rq->avg_dl.util_sum;
121 * Reflecting stolen time makes sense only if the idle
122 * phase would be present at max capacity. As soon as the
123 * utilization of a rq has reached the maximum value, it is
124 * considered as an always running rq without idle time to
125 * steal. This potential idle time is considered as lost in
126 * this case. We keep track of this lost idle time compare to
129 if (util_sum >= divider)
130 rq->lost_idle_time += rq_clock_task(rq) - rq->clock_pelt;
133 static inline u64 rq_clock_pelt(struct rq *rq)
135 lockdep_assert_rq_held(rq);
136 assert_clock_updated(rq);
138 return rq->clock_pelt - rq->lost_idle_time;
141 #ifdef CONFIG_CFS_BANDWIDTH
142 /* rq->task_clock normalized against any time this cfs_rq has spent throttled */
143 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
145 if (unlikely(cfs_rq->throttle_count))
146 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
148 return rq_clock_pelt(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
151 static inline u64 cfs_rq_clock_pelt(struct cfs_rq *cfs_rq)
153 return rq_clock_pelt(rq_of(cfs_rq));
160 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
166 update_rt_rq_load_avg(u64 now, struct rq *rq, int running)
172 update_dl_rq_load_avg(u64 now, struct rq *rq, int running)
178 update_thermal_load_avg(u64 now, struct rq *rq, u64 capacity)
183 static inline u64 thermal_load_avg(struct rq *rq)
189 update_irq_load_avg(struct rq *rq, u64 running)
194 static inline u64 rq_clock_pelt(struct rq *rq)
196 return rq_clock_task(rq);
200 update_rq_clock_pelt(struct rq *rq, s64 delta) { }
203 update_idle_rq_clock_pelt(struct rq *rq) { }