Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[linux-2.6-microblaze.git] / kernel / sched / debug.c
1 /*
2  * kernel/sched/debug.c
3  *
4  * Print the CFS rbtree and other debugging details
5  *
6  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 #include "sched.h"
13
14 static DEFINE_SPINLOCK(sched_debug_lock);
15
16 /*
17  * This allows printing both to /proc/sched_debug and
18  * to the console
19  */
20 #define SEQ_printf(m, x...)                     \
21  do {                                           \
22         if (m)                                  \
23                 seq_printf(m, x);               \
24         else                                    \
25                 pr_cont(x);                     \
26  } while (0)
27
28 /*
29  * Ease the printing of nsec fields:
30  */
31 static long long nsec_high(unsigned long long nsec)
32 {
33         if ((long long)nsec < 0) {
34                 nsec = -nsec;
35                 do_div(nsec, 1000000);
36                 return -nsec;
37         }
38         do_div(nsec, 1000000);
39
40         return nsec;
41 }
42
43 static unsigned long nsec_low(unsigned long long nsec)
44 {
45         if ((long long)nsec < 0)
46                 nsec = -nsec;
47
48         return do_div(nsec, 1000000);
49 }
50
51 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
52
53 #define SCHED_FEAT(name, enabled)       \
54         #name ,
55
56 static const char * const sched_feat_names[] = {
57 #include "features.h"
58 };
59
60 #undef SCHED_FEAT
61
62 static int sched_feat_show(struct seq_file *m, void *v)
63 {
64         int i;
65
66         for (i = 0; i < __SCHED_FEAT_NR; i++) {
67                 if (!(sysctl_sched_features & (1UL << i)))
68                         seq_puts(m, "NO_");
69                 seq_printf(m, "%s ", sched_feat_names[i]);
70         }
71         seq_puts(m, "\n");
72
73         return 0;
74 }
75
76 #ifdef CONFIG_JUMP_LABEL
77
78 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
79 #define jump_label_key__false STATIC_KEY_INIT_FALSE
80
81 #define SCHED_FEAT(name, enabled)       \
82         jump_label_key__##enabled ,
83
84 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
85 #include "features.h"
86 };
87
88 #undef SCHED_FEAT
89
90 static void sched_feat_disable(int i)
91 {
92         static_key_disable_cpuslocked(&sched_feat_keys[i]);
93 }
94
95 static void sched_feat_enable(int i)
96 {
97         static_key_enable_cpuslocked(&sched_feat_keys[i]);
98 }
99 #else
100 static void sched_feat_disable(int i) { };
101 static void sched_feat_enable(int i) { };
102 #endif /* CONFIG_JUMP_LABEL */
103
104 static int sched_feat_set(char *cmp)
105 {
106         int i;
107         int neg = 0;
108
109         if (strncmp(cmp, "NO_", 3) == 0) {
110                 neg = 1;
111                 cmp += 3;
112         }
113
114         i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
115         if (i < 0)
116                 return i;
117
118         if (neg) {
119                 sysctl_sched_features &= ~(1UL << i);
120                 sched_feat_disable(i);
121         } else {
122                 sysctl_sched_features |= (1UL << i);
123                 sched_feat_enable(i);
124         }
125
126         return 0;
127 }
128
129 static ssize_t
130 sched_feat_write(struct file *filp, const char __user *ubuf,
131                 size_t cnt, loff_t *ppos)
132 {
133         char buf[64];
134         char *cmp;
135         int ret;
136         struct inode *inode;
137
138         if (cnt > 63)
139                 cnt = 63;
140
141         if (copy_from_user(&buf, ubuf, cnt))
142                 return -EFAULT;
143
144         buf[cnt] = 0;
145         cmp = strstrip(buf);
146
147         /* Ensure the static_key remains in a consistent state */
148         inode = file_inode(filp);
149         cpus_read_lock();
150         inode_lock(inode);
151         ret = sched_feat_set(cmp);
152         inode_unlock(inode);
153         cpus_read_unlock();
154         if (ret < 0)
155                 return ret;
156
157         *ppos += cnt;
158
159         return cnt;
160 }
161
162 static int sched_feat_open(struct inode *inode, struct file *filp)
163 {
164         return single_open(filp, sched_feat_show, NULL);
165 }
166
167 static const struct file_operations sched_feat_fops = {
168         .open           = sched_feat_open,
169         .write          = sched_feat_write,
170         .read           = seq_read,
171         .llseek         = seq_lseek,
172         .release        = single_release,
173 };
174
175 __read_mostly bool sched_debug_enabled;
176
177 static __init int sched_init_debug(void)
178 {
179         debugfs_create_file("sched_features", 0644, NULL, NULL,
180                         &sched_feat_fops);
181
182         debugfs_create_bool("sched_debug", 0644, NULL,
183                         &sched_debug_enabled);
184
185         return 0;
186 }
187 late_initcall(sched_init_debug);
188
189 #ifdef CONFIG_SMP
190
191 #ifdef CONFIG_SYSCTL
192
193 static struct ctl_table sd_ctl_dir[] = {
194         {
195                 .procname       = "sched_domain",
196                 .mode           = 0555,
197         },
198         {}
199 };
200
201 static struct ctl_table sd_ctl_root[] = {
202         {
203                 .procname       = "kernel",
204                 .mode           = 0555,
205                 .child          = sd_ctl_dir,
206         },
207         {}
208 };
209
210 static struct ctl_table *sd_alloc_ctl_entry(int n)
211 {
212         struct ctl_table *entry =
213                 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
214
215         return entry;
216 }
217
218 static void sd_free_ctl_entry(struct ctl_table **tablep)
219 {
220         struct ctl_table *entry;
221
222         /*
223          * In the intermediate directories, both the child directory and
224          * procname are dynamically allocated and could fail but the mode
225          * will always be set. In the lowest directory the names are
226          * static strings and all have proc handlers.
227          */
228         for (entry = *tablep; entry->mode; entry++) {
229                 if (entry->child)
230                         sd_free_ctl_entry(&entry->child);
231                 if (entry->proc_handler == NULL)
232                         kfree(entry->procname);
233         }
234
235         kfree(*tablep);
236         *tablep = NULL;
237 }
238
239 static int min_load_idx = 0;
240 static int max_load_idx = CPU_LOAD_IDX_MAX-1;
241
242 static void
243 set_table_entry(struct ctl_table *entry,
244                 const char *procname, void *data, int maxlen,
245                 umode_t mode, proc_handler *proc_handler,
246                 bool load_idx)
247 {
248         entry->procname = procname;
249         entry->data = data;
250         entry->maxlen = maxlen;
251         entry->mode = mode;
252         entry->proc_handler = proc_handler;
253
254         if (load_idx) {
255                 entry->extra1 = &min_load_idx;
256                 entry->extra2 = &max_load_idx;
257         }
258 }
259
260 static struct ctl_table *
261 sd_alloc_ctl_domain_table(struct sched_domain *sd)
262 {
263         struct ctl_table *table = sd_alloc_ctl_entry(14);
264
265         if (table == NULL)
266                 return NULL;
267
268         set_table_entry(&table[0] , "min_interval",        &sd->min_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
269         set_table_entry(&table[1] , "max_interval",        &sd->max_interval,        sizeof(long), 0644, proc_doulongvec_minmax, false);
270         set_table_entry(&table[2] , "busy_idx",            &sd->busy_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
271         set_table_entry(&table[3] , "idle_idx",            &sd->idle_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
272         set_table_entry(&table[4] , "newidle_idx",         &sd->newidle_idx,         sizeof(int) , 0644, proc_dointvec_minmax,   true );
273         set_table_entry(&table[5] , "wake_idx",            &sd->wake_idx,            sizeof(int) , 0644, proc_dointvec_minmax,   true );
274         set_table_entry(&table[6] , "forkexec_idx",        &sd->forkexec_idx,        sizeof(int) , 0644, proc_dointvec_minmax,   true );
275         set_table_entry(&table[7] , "busy_factor",         &sd->busy_factor,         sizeof(int) , 0644, proc_dointvec_minmax,   false);
276         set_table_entry(&table[8] , "imbalance_pct",       &sd->imbalance_pct,       sizeof(int) , 0644, proc_dointvec_minmax,   false);
277         set_table_entry(&table[9] , "cache_nice_tries",    &sd->cache_nice_tries,    sizeof(int) , 0644, proc_dointvec_minmax,   false);
278         set_table_entry(&table[10], "flags",               &sd->flags,               sizeof(int) , 0644, proc_dointvec_minmax,   false);
279         set_table_entry(&table[11], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax, false);
280         set_table_entry(&table[12], "name",                sd->name,            CORENAME_MAX_SIZE, 0444, proc_dostring,          false);
281         /* &table[13] is terminator */
282
283         return table;
284 }
285
286 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
287 {
288         struct ctl_table *entry, *table;
289         struct sched_domain *sd;
290         int domain_num = 0, i;
291         char buf[32];
292
293         for_each_domain(cpu, sd)
294                 domain_num++;
295         entry = table = sd_alloc_ctl_entry(domain_num + 1);
296         if (table == NULL)
297                 return NULL;
298
299         i = 0;
300         for_each_domain(cpu, sd) {
301                 snprintf(buf, 32, "domain%d", i);
302                 entry->procname = kstrdup(buf, GFP_KERNEL);
303                 entry->mode = 0555;
304                 entry->child = sd_alloc_ctl_domain_table(sd);
305                 entry++;
306                 i++;
307         }
308         return table;
309 }
310
311 static cpumask_var_t            sd_sysctl_cpus;
312 static struct ctl_table_header  *sd_sysctl_header;
313
314 void register_sched_domain_sysctl(void)
315 {
316         static struct ctl_table *cpu_entries;
317         static struct ctl_table **cpu_idx;
318         static bool init_done = false;
319         char buf[32];
320         int i;
321
322         if (!cpu_entries) {
323                 cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
324                 if (!cpu_entries)
325                         return;
326
327                 WARN_ON(sd_ctl_dir[0].child);
328                 sd_ctl_dir[0].child = cpu_entries;
329         }
330
331         if (!cpu_idx) {
332                 struct ctl_table *e = cpu_entries;
333
334                 cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
335                 if (!cpu_idx)
336                         return;
337
338                 /* deal with sparse possible map */
339                 for_each_possible_cpu(i) {
340                         cpu_idx[i] = e;
341                         e++;
342                 }
343         }
344
345         if (!cpumask_available(sd_sysctl_cpus)) {
346                 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
347                         return;
348         }
349
350         if (!init_done) {
351                 init_done = true;
352                 /* init to possible to not have holes in @cpu_entries */
353                 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
354         }
355
356         for_each_cpu(i, sd_sysctl_cpus) {
357                 struct ctl_table *e = cpu_idx[i];
358
359                 if (e->child)
360                         sd_free_ctl_entry(&e->child);
361
362                 if (!e->procname) {
363                         snprintf(buf, 32, "cpu%d", i);
364                         e->procname = kstrdup(buf, GFP_KERNEL);
365                 }
366                 e->mode = 0555;
367                 e->child = sd_alloc_ctl_cpu_table(i);
368
369                 __cpumask_clear_cpu(i, sd_sysctl_cpus);
370         }
371
372         WARN_ON(sd_sysctl_header);
373         sd_sysctl_header = register_sysctl_table(sd_ctl_root);
374 }
375
376 void dirty_sched_domain_sysctl(int cpu)
377 {
378         if (cpumask_available(sd_sysctl_cpus))
379                 __cpumask_set_cpu(cpu, sd_sysctl_cpus);
380 }
381
382 /* may be called multiple times per register */
383 void unregister_sched_domain_sysctl(void)
384 {
385         unregister_sysctl_table(sd_sysctl_header);
386         sd_sysctl_header = NULL;
387 }
388 #endif /* CONFIG_SYSCTL */
389 #endif /* CONFIG_SMP */
390
391 #ifdef CONFIG_FAIR_GROUP_SCHED
392 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
393 {
394         struct sched_entity *se = tg->se[cpu];
395
396 #define P(F)            SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)F)
397 #define P_SCHEDSTAT(F)  SEQ_printf(m, "  .%-30s: %lld\n",       #F, (long long)schedstat_val(F))
398 #define PN(F)           SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
399 #define PN_SCHEDSTAT(F) SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
400
401         if (!se)
402                 return;
403
404         PN(se->exec_start);
405         PN(se->vruntime);
406         PN(se->sum_exec_runtime);
407
408         if (schedstat_enabled()) {
409                 PN_SCHEDSTAT(se->statistics.wait_start);
410                 PN_SCHEDSTAT(se->statistics.sleep_start);
411                 PN_SCHEDSTAT(se->statistics.block_start);
412                 PN_SCHEDSTAT(se->statistics.sleep_max);
413                 PN_SCHEDSTAT(se->statistics.block_max);
414                 PN_SCHEDSTAT(se->statistics.exec_max);
415                 PN_SCHEDSTAT(se->statistics.slice_max);
416                 PN_SCHEDSTAT(se->statistics.wait_max);
417                 PN_SCHEDSTAT(se->statistics.wait_sum);
418                 P_SCHEDSTAT(se->statistics.wait_count);
419         }
420
421         P(se->load.weight);
422         P(se->runnable_weight);
423 #ifdef CONFIG_SMP
424         P(se->avg.load_avg);
425         P(se->avg.util_avg);
426         P(se->avg.runnable_load_avg);
427 #endif
428
429 #undef PN_SCHEDSTAT
430 #undef PN
431 #undef P_SCHEDSTAT
432 #undef P
433 }
434 #endif
435
436 #ifdef CONFIG_CGROUP_SCHED
437 static char group_path[PATH_MAX];
438
439 static char *task_group_path(struct task_group *tg)
440 {
441         if (autogroup_path(tg, group_path, PATH_MAX))
442                 return group_path;
443
444         cgroup_path(tg->css.cgroup, group_path, PATH_MAX);
445
446         return group_path;
447 }
448 #endif
449
450 static void
451 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
452 {
453         if (rq->curr == p)
454                 SEQ_printf(m, ">R");
455         else
456                 SEQ_printf(m, " %c", task_state_to_char(p));
457
458         SEQ_printf(m, "%15s %5d %9Ld.%06ld %9Ld %5d ",
459                 p->comm, task_pid_nr(p),
460                 SPLIT_NS(p->se.vruntime),
461                 (long long)(p->nvcsw + p->nivcsw),
462                 p->prio);
463
464         SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
465                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
466                 SPLIT_NS(p->se.sum_exec_runtime),
467                 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
468
469 #ifdef CONFIG_NUMA_BALANCING
470         SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
471 #endif
472 #ifdef CONFIG_CGROUP_SCHED
473         SEQ_printf(m, " %s", task_group_path(task_group(p)));
474 #endif
475
476         SEQ_printf(m, "\n");
477 }
478
479 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
480 {
481         struct task_struct *g, *p;
482
483         SEQ_printf(m, "\n");
484         SEQ_printf(m, "runnable tasks:\n");
485         SEQ_printf(m, " S           task   PID         tree-key  switches  prio"
486                    "     wait-time             sum-exec        sum-sleep\n");
487         SEQ_printf(m, "-------------------------------------------------------"
488                    "----------------------------------------------------\n");
489
490         rcu_read_lock();
491         for_each_process_thread(g, p) {
492                 if (task_cpu(p) != rq_cpu)
493                         continue;
494
495                 print_task(m, rq, p);
496         }
497         rcu_read_unlock();
498 }
499
500 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
501 {
502         s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
503                 spread, rq0_min_vruntime, spread0;
504         struct rq *rq = cpu_rq(cpu);
505         struct sched_entity *last;
506         unsigned long flags;
507
508 #ifdef CONFIG_FAIR_GROUP_SCHED
509         SEQ_printf(m, "\n");
510         SEQ_printf(m, "cfs_rq[%d]:%s\n", cpu, task_group_path(cfs_rq->tg));
511 #else
512         SEQ_printf(m, "\n");
513         SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
514 #endif
515         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
516                         SPLIT_NS(cfs_rq->exec_clock));
517
518         raw_spin_lock_irqsave(&rq->lock, flags);
519         if (rb_first_cached(&cfs_rq->tasks_timeline))
520                 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
521         last = __pick_last_entity(cfs_rq);
522         if (last)
523                 max_vruntime = last->vruntime;
524         min_vruntime = cfs_rq->min_vruntime;
525         rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
526         raw_spin_unlock_irqrestore(&rq->lock, flags);
527         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
528                         SPLIT_NS(MIN_vruntime));
529         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
530                         SPLIT_NS(min_vruntime));
531         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
532                         SPLIT_NS(max_vruntime));
533         spread = max_vruntime - MIN_vruntime;
534         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
535                         SPLIT_NS(spread));
536         spread0 = min_vruntime - rq0_min_vruntime;
537         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
538                         SPLIT_NS(spread0));
539         SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
540                         cfs_rq->nr_spread_over);
541         SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
542         SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
543 #ifdef CONFIG_SMP
544         SEQ_printf(m, "  .%-30s: %ld\n", "runnable_weight", cfs_rq->runnable_weight);
545         SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
546                         cfs_rq->avg.load_avg);
547         SEQ_printf(m, "  .%-30s: %lu\n", "runnable_load_avg",
548                         cfs_rq->avg.runnable_load_avg);
549         SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
550                         cfs_rq->avg.util_avg);
551         SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
552                         cfs_rq->avg.util_est.enqueued);
553         SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
554                         cfs_rq->removed.load_avg);
555         SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
556                         cfs_rq->removed.util_avg);
557         SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_sum",
558                         cfs_rq->removed.runnable_sum);
559 #ifdef CONFIG_FAIR_GROUP_SCHED
560         SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
561                         cfs_rq->tg_load_avg_contrib);
562         SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
563                         atomic_long_read(&cfs_rq->tg->load_avg));
564 #endif
565 #endif
566 #ifdef CONFIG_CFS_BANDWIDTH
567         SEQ_printf(m, "  .%-30s: %d\n", "throttled",
568                         cfs_rq->throttled);
569         SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
570                         cfs_rq->throttle_count);
571 #endif
572
573 #ifdef CONFIG_FAIR_GROUP_SCHED
574         print_cfs_group_stats(m, cpu, cfs_rq->tg);
575 #endif
576 }
577
578 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
579 {
580 #ifdef CONFIG_RT_GROUP_SCHED
581         SEQ_printf(m, "\n");
582         SEQ_printf(m, "rt_rq[%d]:%s\n", cpu, task_group_path(rt_rq->tg));
583 #else
584         SEQ_printf(m, "\n");
585         SEQ_printf(m, "rt_rq[%d]:\n", cpu);
586 #endif
587
588 #define P(x) \
589         SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
590 #define PU(x) \
591         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
592 #define PN(x) \
593         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
594
595         PU(rt_nr_running);
596 #ifdef CONFIG_SMP
597         PU(rt_nr_migratory);
598 #endif
599         P(rt_throttled);
600         PN(rt_time);
601         PN(rt_runtime);
602
603 #undef PN
604 #undef PU
605 #undef P
606 }
607
608 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
609 {
610         struct dl_bw *dl_bw;
611
612         SEQ_printf(m, "\n");
613         SEQ_printf(m, "dl_rq[%d]:\n", cpu);
614
615 #define PU(x) \
616         SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
617
618         PU(dl_nr_running);
619 #ifdef CONFIG_SMP
620         PU(dl_nr_migratory);
621         dl_bw = &cpu_rq(cpu)->rd->dl_bw;
622 #else
623         dl_bw = &dl_rq->dl_bw;
624 #endif
625         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
626         SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
627
628 #undef PU
629 }
630
631 static void print_cpu(struct seq_file *m, int cpu)
632 {
633         struct rq *rq = cpu_rq(cpu);
634         unsigned long flags;
635
636 #ifdef CONFIG_X86
637         {
638                 unsigned int freq = cpu_khz ? : 1;
639
640                 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
641                            cpu, freq / 1000, (freq % 1000));
642         }
643 #else
644         SEQ_printf(m, "cpu#%d\n", cpu);
645 #endif
646
647 #define P(x)                                                            \
648 do {                                                                    \
649         if (sizeof(rq->x) == 4)                                         \
650                 SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));    \
651         else                                                            \
652                 SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
653 } while (0)
654
655 #define PN(x) \
656         SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
657
658         P(nr_running);
659         SEQ_printf(m, "  .%-30s: %lu\n", "load",
660                    rq->load.weight);
661         P(nr_switches);
662         P(nr_load_updates);
663         P(nr_uninterruptible);
664         PN(next_balance);
665         SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
666         PN(clock);
667         PN(clock_task);
668         P(cpu_load[0]);
669         P(cpu_load[1]);
670         P(cpu_load[2]);
671         P(cpu_load[3]);
672         P(cpu_load[4]);
673 #undef P
674 #undef PN
675
676 #ifdef CONFIG_SMP
677 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
678         P64(avg_idle);
679         P64(max_idle_balance_cost);
680 #undef P64
681 #endif
682
683 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
684         if (schedstat_enabled()) {
685                 P(yld_count);
686                 P(sched_count);
687                 P(sched_goidle);
688                 P(ttwu_count);
689                 P(ttwu_local);
690         }
691 #undef P
692
693         spin_lock_irqsave(&sched_debug_lock, flags);
694         print_cfs_stats(m, cpu);
695         print_rt_stats(m, cpu);
696         print_dl_stats(m, cpu);
697
698         print_rq(m, rq, cpu);
699         spin_unlock_irqrestore(&sched_debug_lock, flags);
700         SEQ_printf(m, "\n");
701 }
702
703 static const char *sched_tunable_scaling_names[] = {
704         "none",
705         "logarithmic",
706         "linear"
707 };
708
709 static void sched_debug_header(struct seq_file *m)
710 {
711         u64 ktime, sched_clk, cpu_clk;
712         unsigned long flags;
713
714         local_irq_save(flags);
715         ktime = ktime_to_ns(ktime_get());
716         sched_clk = sched_clock();
717         cpu_clk = local_clock();
718         local_irq_restore(flags);
719
720         SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
721                 init_utsname()->release,
722                 (int)strcspn(init_utsname()->version, " "),
723                 init_utsname()->version);
724
725 #define P(x) \
726         SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
727 #define PN(x) \
728         SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
729         PN(ktime);
730         PN(sched_clk);
731         PN(cpu_clk);
732         P(jiffies);
733 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
734         P(sched_clock_stable());
735 #endif
736 #undef PN
737 #undef P
738
739         SEQ_printf(m, "\n");
740         SEQ_printf(m, "sysctl_sched\n");
741
742 #define P(x) \
743         SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
744 #define PN(x) \
745         SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
746         PN(sysctl_sched_latency);
747         PN(sysctl_sched_min_granularity);
748         PN(sysctl_sched_wakeup_granularity);
749         P(sysctl_sched_child_runs_first);
750         P(sysctl_sched_features);
751 #undef PN
752 #undef P
753
754         SEQ_printf(m, "  .%-40s: %d (%s)\n",
755                 "sysctl_sched_tunable_scaling",
756                 sysctl_sched_tunable_scaling,
757                 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
758         SEQ_printf(m, "\n");
759 }
760
761 static int sched_debug_show(struct seq_file *m, void *v)
762 {
763         int cpu = (unsigned long)(v - 2);
764
765         if (cpu != -1)
766                 print_cpu(m, cpu);
767         else
768                 sched_debug_header(m);
769
770         return 0;
771 }
772
773 void sysrq_sched_debug_show(void)
774 {
775         int cpu;
776
777         sched_debug_header(NULL);
778         for_each_online_cpu(cpu)
779                 print_cpu(NULL, cpu);
780
781 }
782
783 /*
784  * This itererator needs some explanation.
785  * It returns 1 for the header position.
786  * This means 2 is CPU 0.
787  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
788  * to use cpumask_* to iterate over the CPUs.
789  */
790 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
791 {
792         unsigned long n = *offset;
793
794         if (n == 0)
795                 return (void *) 1;
796
797         n--;
798
799         if (n > 0)
800                 n = cpumask_next(n - 1, cpu_online_mask);
801         else
802                 n = cpumask_first(cpu_online_mask);
803
804         *offset = n + 1;
805
806         if (n < nr_cpu_ids)
807                 return (void *)(unsigned long)(n + 2);
808
809         return NULL;
810 }
811
812 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
813 {
814         (*offset)++;
815         return sched_debug_start(file, offset);
816 }
817
818 static void sched_debug_stop(struct seq_file *file, void *data)
819 {
820 }
821
822 static const struct seq_operations sched_debug_sops = {
823         .start          = sched_debug_start,
824         .next           = sched_debug_next,
825         .stop           = sched_debug_stop,
826         .show           = sched_debug_show,
827 };
828
829 static int __init init_sched_debug_procfs(void)
830 {
831         if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
832                 return -ENOMEM;
833         return 0;
834 }
835
836 __initcall(init_sched_debug_procfs);
837
838 #define __P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)F)
839 #define   P(F)  SEQ_printf(m, "%-45s:%21Ld\n",       #F, (long long)p->F)
840 #define __PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
841 #define   PN(F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
842
843
844 #ifdef CONFIG_NUMA_BALANCING
845 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
846                 unsigned long tpf, unsigned long gsf, unsigned long gpf)
847 {
848         SEQ_printf(m, "numa_faults node=%d ", node);
849         SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
850         SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
851 }
852 #endif
853
854
855 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
856 {
857 #ifdef CONFIG_NUMA_BALANCING
858         struct mempolicy *pol;
859
860         if (p->mm)
861                 P(mm->numa_scan_seq);
862
863         task_lock(p);
864         pol = p->mempolicy;
865         if (pol && !(pol->flags & MPOL_F_MORON))
866                 pol = NULL;
867         mpol_get(pol);
868         task_unlock(p);
869
870         P(numa_pages_migrated);
871         P(numa_preferred_nid);
872         P(total_numa_faults);
873         SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
874                         task_node(p), task_numa_group_id(p));
875         show_numa_stats(p, m);
876         mpol_put(pol);
877 #endif
878 }
879
880 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
881                                                   struct seq_file *m)
882 {
883         unsigned long nr_switches;
884
885         SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
886                                                 get_nr_threads(p));
887         SEQ_printf(m,
888                 "---------------------------------------------------------"
889                 "----------\n");
890 #define __P(F) \
891         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)F)
892 #define P(F) \
893         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)p->F)
894 #define P_SCHEDSTAT(F) \
895         SEQ_printf(m, "%-45s:%21Ld\n", #F, (long long)schedstat_val(p->F))
896 #define __PN(F) \
897         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)F))
898 #define PN(F) \
899         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)p->F))
900 #define PN_SCHEDSTAT(F) \
901         SEQ_printf(m, "%-45s:%14Ld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(p->F)))
902
903         PN(se.exec_start);
904         PN(se.vruntime);
905         PN(se.sum_exec_runtime);
906
907         nr_switches = p->nvcsw + p->nivcsw;
908
909         P(se.nr_migrations);
910
911         if (schedstat_enabled()) {
912                 u64 avg_atom, avg_per_cpu;
913
914                 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
915                 PN_SCHEDSTAT(se.statistics.wait_start);
916                 PN_SCHEDSTAT(se.statistics.sleep_start);
917                 PN_SCHEDSTAT(se.statistics.block_start);
918                 PN_SCHEDSTAT(se.statistics.sleep_max);
919                 PN_SCHEDSTAT(se.statistics.block_max);
920                 PN_SCHEDSTAT(se.statistics.exec_max);
921                 PN_SCHEDSTAT(se.statistics.slice_max);
922                 PN_SCHEDSTAT(se.statistics.wait_max);
923                 PN_SCHEDSTAT(se.statistics.wait_sum);
924                 P_SCHEDSTAT(se.statistics.wait_count);
925                 PN_SCHEDSTAT(se.statistics.iowait_sum);
926                 P_SCHEDSTAT(se.statistics.iowait_count);
927                 P_SCHEDSTAT(se.statistics.nr_migrations_cold);
928                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
929                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
930                 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
931                 P_SCHEDSTAT(se.statistics.nr_forced_migrations);
932                 P_SCHEDSTAT(se.statistics.nr_wakeups);
933                 P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
934                 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
935                 P_SCHEDSTAT(se.statistics.nr_wakeups_local);
936                 P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
937                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
938                 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
939                 P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
940                 P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
941
942                 avg_atom = p->se.sum_exec_runtime;
943                 if (nr_switches)
944                         avg_atom = div64_ul(avg_atom, nr_switches);
945                 else
946                         avg_atom = -1LL;
947
948                 avg_per_cpu = p->se.sum_exec_runtime;
949                 if (p->se.nr_migrations) {
950                         avg_per_cpu = div64_u64(avg_per_cpu,
951                                                 p->se.nr_migrations);
952                 } else {
953                         avg_per_cpu = -1LL;
954                 }
955
956                 __PN(avg_atom);
957                 __PN(avg_per_cpu);
958         }
959
960         __P(nr_switches);
961         SEQ_printf(m, "%-45s:%21Ld\n",
962                    "nr_voluntary_switches", (long long)p->nvcsw);
963         SEQ_printf(m, "%-45s:%21Ld\n",
964                    "nr_involuntary_switches", (long long)p->nivcsw);
965
966         P(se.load.weight);
967         P(se.runnable_weight);
968 #ifdef CONFIG_SMP
969         P(se.avg.load_sum);
970         P(se.avg.runnable_load_sum);
971         P(se.avg.util_sum);
972         P(se.avg.load_avg);
973         P(se.avg.runnable_load_avg);
974         P(se.avg.util_avg);
975         P(se.avg.last_update_time);
976         P(se.avg.util_est.ewma);
977         P(se.avg.util_est.enqueued);
978 #endif
979         P(policy);
980         P(prio);
981         if (task_has_dl_policy(p)) {
982                 P(dl.runtime);
983                 P(dl.deadline);
984         }
985 #undef PN_SCHEDSTAT
986 #undef PN
987 #undef __PN
988 #undef P_SCHEDSTAT
989 #undef P
990 #undef __P
991
992         {
993                 unsigned int this_cpu = raw_smp_processor_id();
994                 u64 t0, t1;
995
996                 t0 = cpu_clock(this_cpu);
997                 t1 = cpu_clock(this_cpu);
998                 SEQ_printf(m, "%-45s:%21Ld\n",
999                            "clock-delta", (long long)(t1-t0));
1000         }
1001
1002         sched_show_numa(p, m);
1003 }
1004
1005 void proc_sched_set_task(struct task_struct *p)
1006 {
1007 #ifdef CONFIG_SCHEDSTATS
1008         memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1009 #endif
1010 }