membarrier: Explicitly sync remote cores when SYNC_CORE is requested
[linux-2.6-microblaze.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15
16 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
17
18 struct sugov_tunables {
19         struct gov_attr_set     attr_set;
20         unsigned int            rate_limit_us;
21 };
22
23 struct sugov_policy {
24         struct cpufreq_policy   *policy;
25
26         struct sugov_tunables   *tunables;
27         struct list_head        tunables_hook;
28
29         raw_spinlock_t          update_lock;    /* For shared policies */
30         u64                     last_freq_update_time;
31         s64                     freq_update_delay_ns;
32         unsigned int            next_freq;
33         unsigned int            cached_raw_freq;
34
35         /* The next fields are only needed if fast switch cannot be used: */
36         struct                  irq_work irq_work;
37         struct                  kthread_work work;
38         struct                  mutex work_lock;
39         struct                  kthread_worker worker;
40         struct task_struct      *thread;
41         bool                    work_in_progress;
42
43         bool                    limits_changed;
44         bool                    need_freq_update;
45 };
46
47 struct sugov_cpu {
48         struct update_util_data update_util;
49         struct sugov_policy     *sg_policy;
50         unsigned int            cpu;
51
52         bool                    iowait_boost_pending;
53         unsigned int            iowait_boost;
54         u64                     last_update;
55
56         unsigned long           bw_dl;
57         unsigned long           max;
58
59         /* The field below is for single-CPU policies only: */
60 #ifdef CONFIG_NO_HZ_COMMON
61         unsigned long           saved_idle_calls;
62 #endif
63 };
64
65 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
66
67 /************************ Governor internals ***********************/
68
69 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
70 {
71         s64 delta_ns;
72
73         /*
74          * Since cpufreq_update_util() is called with rq->lock held for
75          * the @target_cpu, our per-CPU data is fully serialized.
76          *
77          * However, drivers cannot in general deal with cross-CPU
78          * requests, so while get_next_freq() will work, our
79          * sugov_update_commit() call may not for the fast switching platforms.
80          *
81          * Hence stop here for remote requests if they aren't supported
82          * by the hardware, as calculating the frequency is pointless if
83          * we cannot in fact act on it.
84          *
85          * This is needed on the slow switching platforms too to prevent CPUs
86          * going offline from leaving stale IRQ work items behind.
87          */
88         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
89                 return false;
90
91         if (unlikely(sg_policy->limits_changed)) {
92                 sg_policy->limits_changed = false;
93                 sg_policy->need_freq_update = true;
94                 return true;
95         }
96
97         delta_ns = time - sg_policy->last_freq_update_time;
98
99         return delta_ns >= sg_policy->freq_update_delay_ns;
100 }
101
102 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
103                                    unsigned int next_freq)
104 {
105         if (!sg_policy->need_freq_update) {
106                 if (sg_policy->next_freq == next_freq)
107                         return false;
108         } else {
109                 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
110         }
111
112         sg_policy->next_freq = next_freq;
113         sg_policy->last_freq_update_time = time;
114
115         return true;
116 }
117
118 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
119                               unsigned int next_freq)
120 {
121         if (sugov_update_next_freq(sg_policy, time, next_freq))
122                 cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
123 }
124
125 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
126                                   unsigned int next_freq)
127 {
128         if (!sugov_update_next_freq(sg_policy, time, next_freq))
129                 return;
130
131         if (!sg_policy->work_in_progress) {
132                 sg_policy->work_in_progress = true;
133                 irq_work_queue(&sg_policy->irq_work);
134         }
135 }
136
137 /**
138  * get_next_freq - Compute a new frequency for a given cpufreq policy.
139  * @sg_policy: schedutil policy object to compute the new frequency for.
140  * @util: Current CPU utilization.
141  * @max: CPU capacity.
142  *
143  * If the utilization is frequency-invariant, choose the new frequency to be
144  * proportional to it, that is
145  *
146  * next_freq = C * max_freq * util / max
147  *
148  * Otherwise, approximate the would-be frequency-invariant utilization by
149  * util_raw * (curr_freq / max_freq) which leads to
150  *
151  * next_freq = C * curr_freq * util_raw / max
152  *
153  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
154  *
155  * The lowest driver-supported frequency which is equal or greater than the raw
156  * next_freq (as calculated above) is returned, subject to policy min/max and
157  * cpufreq driver limitations.
158  */
159 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
160                                   unsigned long util, unsigned long max)
161 {
162         struct cpufreq_policy *policy = sg_policy->policy;
163         unsigned int freq = arch_scale_freq_invariant() ?
164                                 policy->cpuinfo.max_freq : policy->cur;
165
166         freq = map_util_freq(util, freq, max);
167
168         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
169                 return sg_policy->next_freq;
170
171         sg_policy->cached_raw_freq = freq;
172         return cpufreq_driver_resolve_freq(policy, freq);
173 }
174
175 /*
176  * This function computes an effective utilization for the given CPU, to be
177  * used for frequency selection given the linear relation: f = u * f_max.
178  *
179  * The scheduler tracks the following metrics:
180  *
181  *   cpu_util_{cfs,rt,dl,irq}()
182  *   cpu_bw_dl()
183  *
184  * Where the cfs,rt and dl util numbers are tracked with the same metric and
185  * synchronized windows and are thus directly comparable.
186  *
187  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
188  * which excludes things like IRQ and steal-time. These latter are then accrued
189  * in the irq utilization.
190  *
191  * The DL bandwidth number otoh is not a measured metric but a value computed
192  * based on the task model parameters and gives the minimal utilization
193  * required to meet deadlines.
194  */
195 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
196                                  unsigned long max, enum schedutil_type type,
197                                  struct task_struct *p)
198 {
199         unsigned long dl_util, util, irq;
200         struct rq *rq = cpu_rq(cpu);
201
202         if (!uclamp_is_used() &&
203             type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
204                 return max;
205         }
206
207         /*
208          * Early check to see if IRQ/steal time saturates the CPU, can be
209          * because of inaccuracies in how we track these -- see
210          * update_irq_load_avg().
211          */
212         irq = cpu_util_irq(rq);
213         if (unlikely(irq >= max))
214                 return max;
215
216         /*
217          * Because the time spend on RT/DL tasks is visible as 'lost' time to
218          * CFS tasks and we use the same metric to track the effective
219          * utilization (PELT windows are synchronized) we can directly add them
220          * to obtain the CPU's actual utilization.
221          *
222          * CFS and RT utilization can be boosted or capped, depending on
223          * utilization clamp constraints requested by currently RUNNABLE
224          * tasks.
225          * When there are no CFS RUNNABLE tasks, clamps are released and
226          * frequency will be gracefully reduced with the utilization decay.
227          */
228         util = util_cfs + cpu_util_rt(rq);
229         if (type == FREQUENCY_UTIL)
230                 util = uclamp_rq_util_with(rq, util, p);
231
232         dl_util = cpu_util_dl(rq);
233
234         /*
235          * For frequency selection we do not make cpu_util_dl() a permanent part
236          * of this sum because we want to use cpu_bw_dl() later on, but we need
237          * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
238          * that we select f_max when there is no idle time.
239          *
240          * NOTE: numerical errors or stop class might cause us to not quite hit
241          * saturation when we should -- something for later.
242          */
243         if (util + dl_util >= max)
244                 return max;
245
246         /*
247          * OTOH, for energy computation we need the estimated running time, so
248          * include util_dl and ignore dl_bw.
249          */
250         if (type == ENERGY_UTIL)
251                 util += dl_util;
252
253         /*
254          * There is still idle time; further improve the number by using the
255          * irq metric. Because IRQ/steal time is hidden from the task clock we
256          * need to scale the task numbers:
257          *
258          *              max - irq
259          *   U' = irq + --------- * U
260          *                 max
261          */
262         util = scale_irq_capacity(util, irq, max);
263         util += irq;
264
265         /*
266          * Bandwidth required by DEADLINE must always be granted while, for
267          * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
268          * to gracefully reduce the frequency when no tasks show up for longer
269          * periods of time.
270          *
271          * Ideally we would like to set bw_dl as min/guaranteed freq and util +
272          * bw_dl as requested freq. However, cpufreq is not yet ready for such
273          * an interface. So, we only do the latter for now.
274          */
275         if (type == FREQUENCY_UTIL)
276                 util += cpu_bw_dl(rq);
277
278         return min(max, util);
279 }
280
281 static unsigned long sugov_get_util(struct sugov_cpu *sg_cpu)
282 {
283         struct rq *rq = cpu_rq(sg_cpu->cpu);
284         unsigned long util = cpu_util_cfs(rq);
285         unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
286
287         sg_cpu->max = max;
288         sg_cpu->bw_dl = cpu_bw_dl(rq);
289
290         return schedutil_cpu_util(sg_cpu->cpu, util, max, FREQUENCY_UTIL, NULL);
291 }
292
293 /**
294  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
295  * @sg_cpu: the sugov data for the CPU to boost
296  * @time: the update time from the caller
297  * @set_iowait_boost: true if an IO boost has been requested
298  *
299  * The IO wait boost of a task is disabled after a tick since the last update
300  * of a CPU. If a new IO wait boost is requested after more then a tick, then
301  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
302  * efficiency by ignoring sporadic wakeups from IO.
303  */
304 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
305                                bool set_iowait_boost)
306 {
307         s64 delta_ns = time - sg_cpu->last_update;
308
309         /* Reset boost only if a tick has elapsed since last request */
310         if (delta_ns <= TICK_NSEC)
311                 return false;
312
313         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
314         sg_cpu->iowait_boost_pending = set_iowait_boost;
315
316         return true;
317 }
318
319 /**
320  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
321  * @sg_cpu: the sugov data for the CPU to boost
322  * @time: the update time from the caller
323  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
324  *
325  * Each time a task wakes up after an IO operation, the CPU utilization can be
326  * boosted to a certain utilization which doubles at each "frequent and
327  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
328  * of the maximum OPP.
329  *
330  * To keep doubling, an IO boost has to be requested at least once per tick,
331  * otherwise we restart from the utilization of the minimum OPP.
332  */
333 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
334                                unsigned int flags)
335 {
336         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
337
338         /* Reset boost if the CPU appears to have been idle enough */
339         if (sg_cpu->iowait_boost &&
340             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
341                 return;
342
343         /* Boost only tasks waking up after IO */
344         if (!set_iowait_boost)
345                 return;
346
347         /* Ensure boost doubles only one time at each request */
348         if (sg_cpu->iowait_boost_pending)
349                 return;
350         sg_cpu->iowait_boost_pending = true;
351
352         /* Double the boost at each request */
353         if (sg_cpu->iowait_boost) {
354                 sg_cpu->iowait_boost =
355                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
356                 return;
357         }
358
359         /* First wakeup after IO: start with minimum boost */
360         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
361 }
362
363 /**
364  * sugov_iowait_apply() - Apply the IO boost to a CPU.
365  * @sg_cpu: the sugov data for the cpu to boost
366  * @time: the update time from the caller
367  * @util: the utilization to (eventually) boost
368  * @max: the maximum value the utilization can be boosted to
369  *
370  * A CPU running a task which woken up after an IO operation can have its
371  * utilization boosted to speed up the completion of those IO operations.
372  * The IO boost value is increased each time a task wakes up from IO, in
373  * sugov_iowait_apply(), and it's instead decreased by this function,
374  * each time an increase has not been requested (!iowait_boost_pending).
375  *
376  * A CPU which also appears to have been idle for at least one tick has also
377  * its IO boost utilization reset.
378  *
379  * This mechanism is designed to boost high frequently IO waiting tasks, while
380  * being more conservative on tasks which does sporadic IO operations.
381  */
382 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
383                                         unsigned long util, unsigned long max)
384 {
385         unsigned long boost;
386
387         /* No boost currently required */
388         if (!sg_cpu->iowait_boost)
389                 return util;
390
391         /* Reset boost if the CPU appears to have been idle enough */
392         if (sugov_iowait_reset(sg_cpu, time, false))
393                 return util;
394
395         if (!sg_cpu->iowait_boost_pending) {
396                 /*
397                  * No boost pending; reduce the boost value.
398                  */
399                 sg_cpu->iowait_boost >>= 1;
400                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
401                         sg_cpu->iowait_boost = 0;
402                         return util;
403                 }
404         }
405
406         sg_cpu->iowait_boost_pending = false;
407
408         /*
409          * @util is already in capacity scale; convert iowait_boost
410          * into the same scale so we can compare.
411          */
412         boost = (sg_cpu->iowait_boost * max) >> SCHED_CAPACITY_SHIFT;
413         return max(boost, util);
414 }
415
416 #ifdef CONFIG_NO_HZ_COMMON
417 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
418 {
419         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
420         bool ret = idle_calls == sg_cpu->saved_idle_calls;
421
422         sg_cpu->saved_idle_calls = idle_calls;
423         return ret;
424 }
425 #else
426 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
427 #endif /* CONFIG_NO_HZ_COMMON */
428
429 /*
430  * Make sugov_should_update_freq() ignore the rate limit when DL
431  * has increased the utilization.
432  */
433 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
434 {
435         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
436                 sg_policy->limits_changed = true;
437 }
438
439 static void sugov_update_single(struct update_util_data *hook, u64 time,
440                                 unsigned int flags)
441 {
442         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
443         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
444         unsigned long util, max;
445         unsigned int next_f;
446         unsigned int cached_freq = sg_policy->cached_raw_freq;
447
448         sugov_iowait_boost(sg_cpu, time, flags);
449         sg_cpu->last_update = time;
450
451         ignore_dl_rate_limit(sg_cpu, sg_policy);
452
453         if (!sugov_should_update_freq(sg_policy, time))
454                 return;
455
456         util = sugov_get_util(sg_cpu);
457         max = sg_cpu->max;
458         util = sugov_iowait_apply(sg_cpu, time, util, max);
459         next_f = get_next_freq(sg_policy, util, max);
460         /*
461          * Do not reduce the frequency if the CPU has not been idle
462          * recently, as the reduction is likely to be premature then.
463          */
464         if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
465                 next_f = sg_policy->next_freq;
466
467                 /* Restore cached freq as next_freq has changed */
468                 sg_policy->cached_raw_freq = cached_freq;
469         }
470
471         /*
472          * This code runs under rq->lock for the target CPU, so it won't run
473          * concurrently on two different CPUs for the same target and it is not
474          * necessary to acquire the lock in the fast switch case.
475          */
476         if (sg_policy->policy->fast_switch_enabled) {
477                 sugov_fast_switch(sg_policy, time, next_f);
478         } else {
479                 raw_spin_lock(&sg_policy->update_lock);
480                 sugov_deferred_update(sg_policy, time, next_f);
481                 raw_spin_unlock(&sg_policy->update_lock);
482         }
483 }
484
485 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
486 {
487         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
488         struct cpufreq_policy *policy = sg_policy->policy;
489         unsigned long util = 0, max = 1;
490         unsigned int j;
491
492         for_each_cpu(j, policy->cpus) {
493                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
494                 unsigned long j_util, j_max;
495
496                 j_util = sugov_get_util(j_sg_cpu);
497                 j_max = j_sg_cpu->max;
498                 j_util = sugov_iowait_apply(j_sg_cpu, time, j_util, j_max);
499
500                 if (j_util * max > j_max * util) {
501                         util = j_util;
502                         max = j_max;
503                 }
504         }
505
506         return get_next_freq(sg_policy, util, max);
507 }
508
509 static void
510 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
511 {
512         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
513         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
514         unsigned int next_f;
515
516         raw_spin_lock(&sg_policy->update_lock);
517
518         sugov_iowait_boost(sg_cpu, time, flags);
519         sg_cpu->last_update = time;
520
521         ignore_dl_rate_limit(sg_cpu, sg_policy);
522
523         if (sugov_should_update_freq(sg_policy, time)) {
524                 next_f = sugov_next_freq_shared(sg_cpu, time);
525
526                 if (sg_policy->policy->fast_switch_enabled)
527                         sugov_fast_switch(sg_policy, time, next_f);
528                 else
529                         sugov_deferred_update(sg_policy, time, next_f);
530         }
531
532         raw_spin_unlock(&sg_policy->update_lock);
533 }
534
535 static void sugov_work(struct kthread_work *work)
536 {
537         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
538         unsigned int freq;
539         unsigned long flags;
540
541         /*
542          * Hold sg_policy->update_lock shortly to handle the case where:
543          * incase sg_policy->next_freq is read here, and then updated by
544          * sugov_deferred_update() just before work_in_progress is set to false
545          * here, we may miss queueing the new update.
546          *
547          * Note: If a work was queued after the update_lock is released,
548          * sugov_work() will just be called again by kthread_work code; and the
549          * request will be proceed before the sugov thread sleeps.
550          */
551         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
552         freq = sg_policy->next_freq;
553         sg_policy->work_in_progress = false;
554         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
555
556         mutex_lock(&sg_policy->work_lock);
557         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
558         mutex_unlock(&sg_policy->work_lock);
559 }
560
561 static void sugov_irq_work(struct irq_work *irq_work)
562 {
563         struct sugov_policy *sg_policy;
564
565         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
566
567         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
568 }
569
570 /************************** sysfs interface ************************/
571
572 static struct sugov_tunables *global_tunables;
573 static DEFINE_MUTEX(global_tunables_lock);
574
575 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
576 {
577         return container_of(attr_set, struct sugov_tunables, attr_set);
578 }
579
580 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
581 {
582         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
583
584         return sprintf(buf, "%u\n", tunables->rate_limit_us);
585 }
586
587 static ssize_t
588 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
589 {
590         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
591         struct sugov_policy *sg_policy;
592         unsigned int rate_limit_us;
593
594         if (kstrtouint(buf, 10, &rate_limit_us))
595                 return -EINVAL;
596
597         tunables->rate_limit_us = rate_limit_us;
598
599         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
600                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
601
602         return count;
603 }
604
605 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
606
607 static struct attribute *sugov_attrs[] = {
608         &rate_limit_us.attr,
609         NULL
610 };
611 ATTRIBUTE_GROUPS(sugov);
612
613 static struct kobj_type sugov_tunables_ktype = {
614         .default_groups = sugov_groups,
615         .sysfs_ops = &governor_sysfs_ops,
616 };
617
618 /********************** cpufreq governor interface *********************/
619
620 struct cpufreq_governor schedutil_gov;
621
622 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
623 {
624         struct sugov_policy *sg_policy;
625
626         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
627         if (!sg_policy)
628                 return NULL;
629
630         sg_policy->policy = policy;
631         raw_spin_lock_init(&sg_policy->update_lock);
632         return sg_policy;
633 }
634
635 static void sugov_policy_free(struct sugov_policy *sg_policy)
636 {
637         kfree(sg_policy);
638 }
639
640 static int sugov_kthread_create(struct sugov_policy *sg_policy)
641 {
642         struct task_struct *thread;
643         struct sched_attr attr = {
644                 .size           = sizeof(struct sched_attr),
645                 .sched_policy   = SCHED_DEADLINE,
646                 .sched_flags    = SCHED_FLAG_SUGOV,
647                 .sched_nice     = 0,
648                 .sched_priority = 0,
649                 /*
650                  * Fake (unused) bandwidth; workaround to "fix"
651                  * priority inheritance.
652                  */
653                 .sched_runtime  =  1000000,
654                 .sched_deadline = 10000000,
655                 .sched_period   = 10000000,
656         };
657         struct cpufreq_policy *policy = sg_policy->policy;
658         int ret;
659
660         /* kthread only required for slow path */
661         if (policy->fast_switch_enabled)
662                 return 0;
663
664         kthread_init_work(&sg_policy->work, sugov_work);
665         kthread_init_worker(&sg_policy->worker);
666         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
667                                 "sugov:%d",
668                                 cpumask_first(policy->related_cpus));
669         if (IS_ERR(thread)) {
670                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
671                 return PTR_ERR(thread);
672         }
673
674         ret = sched_setattr_nocheck(thread, &attr);
675         if (ret) {
676                 kthread_stop(thread);
677                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
678                 return ret;
679         }
680
681         sg_policy->thread = thread;
682         kthread_bind_mask(thread, policy->related_cpus);
683         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
684         mutex_init(&sg_policy->work_lock);
685
686         wake_up_process(thread);
687
688         return 0;
689 }
690
691 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
692 {
693         /* kthread only required for slow path */
694         if (sg_policy->policy->fast_switch_enabled)
695                 return;
696
697         kthread_flush_worker(&sg_policy->worker);
698         kthread_stop(sg_policy->thread);
699         mutex_destroy(&sg_policy->work_lock);
700 }
701
702 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
703 {
704         struct sugov_tunables *tunables;
705
706         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
707         if (tunables) {
708                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
709                 if (!have_governor_per_policy())
710                         global_tunables = tunables;
711         }
712         return tunables;
713 }
714
715 static void sugov_tunables_free(struct sugov_tunables *tunables)
716 {
717         if (!have_governor_per_policy())
718                 global_tunables = NULL;
719
720         kfree(tunables);
721 }
722
723 static int sugov_init(struct cpufreq_policy *policy)
724 {
725         struct sugov_policy *sg_policy;
726         struct sugov_tunables *tunables;
727         int ret = 0;
728
729         /* State should be equivalent to EXIT */
730         if (policy->governor_data)
731                 return -EBUSY;
732
733         cpufreq_enable_fast_switch(policy);
734
735         sg_policy = sugov_policy_alloc(policy);
736         if (!sg_policy) {
737                 ret = -ENOMEM;
738                 goto disable_fast_switch;
739         }
740
741         ret = sugov_kthread_create(sg_policy);
742         if (ret)
743                 goto free_sg_policy;
744
745         mutex_lock(&global_tunables_lock);
746
747         if (global_tunables) {
748                 if (WARN_ON(have_governor_per_policy())) {
749                         ret = -EINVAL;
750                         goto stop_kthread;
751                 }
752                 policy->governor_data = sg_policy;
753                 sg_policy->tunables = global_tunables;
754
755                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
756                 goto out;
757         }
758
759         tunables = sugov_tunables_alloc(sg_policy);
760         if (!tunables) {
761                 ret = -ENOMEM;
762                 goto stop_kthread;
763         }
764
765         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
766
767         policy->governor_data = sg_policy;
768         sg_policy->tunables = tunables;
769
770         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
771                                    get_governor_parent_kobj(policy), "%s",
772                                    schedutil_gov.name);
773         if (ret)
774                 goto fail;
775
776 out:
777         mutex_unlock(&global_tunables_lock);
778         return 0;
779
780 fail:
781         kobject_put(&tunables->attr_set.kobj);
782         policy->governor_data = NULL;
783         sugov_tunables_free(tunables);
784
785 stop_kthread:
786         sugov_kthread_stop(sg_policy);
787         mutex_unlock(&global_tunables_lock);
788
789 free_sg_policy:
790         sugov_policy_free(sg_policy);
791
792 disable_fast_switch:
793         cpufreq_disable_fast_switch(policy);
794
795         pr_err("initialization failed (error %d)\n", ret);
796         return ret;
797 }
798
799 static void sugov_exit(struct cpufreq_policy *policy)
800 {
801         struct sugov_policy *sg_policy = policy->governor_data;
802         struct sugov_tunables *tunables = sg_policy->tunables;
803         unsigned int count;
804
805         mutex_lock(&global_tunables_lock);
806
807         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
808         policy->governor_data = NULL;
809         if (!count)
810                 sugov_tunables_free(tunables);
811
812         mutex_unlock(&global_tunables_lock);
813
814         sugov_kthread_stop(sg_policy);
815         sugov_policy_free(sg_policy);
816         cpufreq_disable_fast_switch(policy);
817 }
818
819 static int sugov_start(struct cpufreq_policy *policy)
820 {
821         struct sugov_policy *sg_policy = policy->governor_data;
822         unsigned int cpu;
823
824         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
825         sg_policy->last_freq_update_time        = 0;
826         sg_policy->next_freq                    = 0;
827         sg_policy->work_in_progress             = false;
828         sg_policy->limits_changed               = false;
829         sg_policy->cached_raw_freq              = 0;
830
831         sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
832
833         for_each_cpu(cpu, policy->cpus) {
834                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
835
836                 memset(sg_cpu, 0, sizeof(*sg_cpu));
837                 sg_cpu->cpu                     = cpu;
838                 sg_cpu->sg_policy               = sg_policy;
839         }
840
841         for_each_cpu(cpu, policy->cpus) {
842                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
843
844                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util,
845                                              policy_is_shared(policy) ?
846                                                         sugov_update_shared :
847                                                         sugov_update_single);
848         }
849         return 0;
850 }
851
852 static void sugov_stop(struct cpufreq_policy *policy)
853 {
854         struct sugov_policy *sg_policy = policy->governor_data;
855         unsigned int cpu;
856
857         for_each_cpu(cpu, policy->cpus)
858                 cpufreq_remove_update_util_hook(cpu);
859
860         synchronize_rcu();
861
862         if (!policy->fast_switch_enabled) {
863                 irq_work_sync(&sg_policy->irq_work);
864                 kthread_cancel_work_sync(&sg_policy->work);
865         }
866 }
867
868 static void sugov_limits(struct cpufreq_policy *policy)
869 {
870         struct sugov_policy *sg_policy = policy->governor_data;
871
872         if (!policy->fast_switch_enabled) {
873                 mutex_lock(&sg_policy->work_lock);
874                 cpufreq_policy_apply_limits(policy);
875                 mutex_unlock(&sg_policy->work_lock);
876         }
877
878         sg_policy->limits_changed = true;
879 }
880
881 struct cpufreq_governor schedutil_gov = {
882         .name                   = "schedutil",
883         .owner                  = THIS_MODULE,
884         .flags                  = CPUFREQ_GOV_DYNAMIC_SWITCHING,
885         .init                   = sugov_init,
886         .exit                   = sugov_exit,
887         .start                  = sugov_start,
888         .stop                   = sugov_stop,
889         .limits                 = sugov_limits,
890 };
891
892 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
893 struct cpufreq_governor *cpufreq_default_governor(void)
894 {
895         return &schedutil_gov;
896 }
897 #endif
898
899 cpufreq_governor_init(schedutil_gov);
900
901 #ifdef CONFIG_ENERGY_MODEL
902 extern bool sched_energy_update;
903 extern struct mutex sched_energy_mutex;
904
905 static void rebuild_sd_workfn(struct work_struct *work)
906 {
907         mutex_lock(&sched_energy_mutex);
908         sched_energy_update = true;
909         rebuild_sched_domains();
910         sched_energy_update = false;
911         mutex_unlock(&sched_energy_mutex);
912 }
913 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
914
915 /*
916  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
917  * on governor changes to make sure the scheduler knows about it.
918  */
919 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
920                                   struct cpufreq_governor *old_gov)
921 {
922         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
923                 /*
924                  * When called from the cpufreq_register_driver() path, the
925                  * cpu_hotplug_lock is already held, so use a work item to
926                  * avoid nested locking in rebuild_sched_domains().
927                  */
928                 schedule_work(&rebuild_sd_work);
929         }
930
931 }
932 #endif