Merge tag 'hwmon-for-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[linux-2.6-microblaze.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
10
11 struct sugov_tunables {
12         struct gov_attr_set     attr_set;
13         unsigned int            rate_limit_us;
14 };
15
16 struct sugov_policy {
17         struct cpufreq_policy   *policy;
18
19         struct sugov_tunables   *tunables;
20         struct list_head        tunables_hook;
21
22         raw_spinlock_t          update_lock;
23         u64                     last_freq_update_time;
24         s64                     freq_update_delay_ns;
25         unsigned int            next_freq;
26         unsigned int            cached_raw_freq;
27
28         /* The next fields are only needed if fast switch cannot be used: */
29         struct                  irq_work irq_work;
30         struct                  kthread_work work;
31         struct                  mutex work_lock;
32         struct                  kthread_worker worker;
33         struct task_struct      *thread;
34         bool                    work_in_progress;
35
36         bool                    limits_changed;
37         bool                    need_freq_update;
38 };
39
40 struct sugov_cpu {
41         struct update_util_data update_util;
42         struct sugov_policy     *sg_policy;
43         unsigned int            cpu;
44
45         bool                    iowait_boost_pending;
46         unsigned int            iowait_boost;
47         u64                     last_update;
48
49         unsigned long           util;
50         unsigned long           bw_min;
51
52         /* The field below is for single-CPU policies only: */
53 #ifdef CONFIG_NO_HZ_COMMON
54         unsigned long           saved_idle_calls;
55 #endif
56 };
57
58 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
59
60 /************************ Governor internals ***********************/
61
62 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
63 {
64         s64 delta_ns;
65
66         /*
67          * Since cpufreq_update_util() is called with rq->lock held for
68          * the @target_cpu, our per-CPU data is fully serialized.
69          *
70          * However, drivers cannot in general deal with cross-CPU
71          * requests, so while get_next_freq() will work, our
72          * sugov_update_commit() call may not for the fast switching platforms.
73          *
74          * Hence stop here for remote requests if they aren't supported
75          * by the hardware, as calculating the frequency is pointless if
76          * we cannot in fact act on it.
77          *
78          * This is needed on the slow switching platforms too to prevent CPUs
79          * going offline from leaving stale IRQ work items behind.
80          */
81         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
82                 return false;
83
84         if (unlikely(sg_policy->limits_changed)) {
85                 sg_policy->limits_changed = false;
86                 sg_policy->need_freq_update = true;
87                 return true;
88         }
89
90         delta_ns = time - sg_policy->last_freq_update_time;
91
92         return delta_ns >= sg_policy->freq_update_delay_ns;
93 }
94
95 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
96                                    unsigned int next_freq)
97 {
98         if (sg_policy->need_freq_update)
99                 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
100         else if (sg_policy->next_freq == next_freq)
101                 return false;
102
103         sg_policy->next_freq = next_freq;
104         sg_policy->last_freq_update_time = time;
105
106         return true;
107 }
108
109 static void sugov_deferred_update(struct sugov_policy *sg_policy)
110 {
111         if (!sg_policy->work_in_progress) {
112                 sg_policy->work_in_progress = true;
113                 irq_work_queue(&sg_policy->irq_work);
114         }
115 }
116
117 /**
118  * get_capacity_ref_freq - get the reference frequency that has been used to
119  * correlate frequency and compute capacity for a given cpufreq policy. We use
120  * the CPU managing it for the arch_scale_freq_ref() call in the function.
121  * @policy: the cpufreq policy of the CPU in question.
122  *
123  * Return: the reference CPU frequency to compute a capacity.
124  */
125 static __always_inline
126 unsigned long get_capacity_ref_freq(struct cpufreq_policy *policy)
127 {
128         unsigned int freq = arch_scale_freq_ref(policy->cpu);
129
130         if (freq)
131                 return freq;
132
133         if (arch_scale_freq_invariant())
134                 return policy->cpuinfo.max_freq;
135
136         return policy->cur;
137 }
138
139 /**
140  * get_next_freq - Compute a new frequency for a given cpufreq policy.
141  * @sg_policy: schedutil policy object to compute the new frequency for.
142  * @util: Current CPU utilization.
143  * @max: CPU capacity.
144  *
145  * If the utilization is frequency-invariant, choose the new frequency to be
146  * proportional to it, that is
147  *
148  * next_freq = C * max_freq * util / max
149  *
150  * Otherwise, approximate the would-be frequency-invariant utilization by
151  * util_raw * (curr_freq / max_freq) which leads to
152  *
153  * next_freq = C * curr_freq * util_raw / max
154  *
155  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
156  *
157  * The lowest driver-supported frequency which is equal or greater than the raw
158  * next_freq (as calculated above) is returned, subject to policy min/max and
159  * cpufreq driver limitations.
160  */
161 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
162                                   unsigned long util, unsigned long max)
163 {
164         struct cpufreq_policy *policy = sg_policy->policy;
165         unsigned int freq;
166
167         freq = get_capacity_ref_freq(policy);
168         freq = map_util_freq(util, freq, max);
169
170         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
171                 return sg_policy->next_freq;
172
173         sg_policy->cached_raw_freq = freq;
174         return cpufreq_driver_resolve_freq(policy, freq);
175 }
176
177 unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
178                                  unsigned long min,
179                                  unsigned long max)
180 {
181         /* Add dvfs headroom to actual utilization */
182         actual = map_util_perf(actual);
183         /* Actually we don't need to target the max performance */
184         if (actual < max)
185                 max = actual;
186
187         /*
188          * Ensure at least minimum performance while providing more compute
189          * capacity when possible.
190          */
191         return max(min, max);
192 }
193
194 static void sugov_get_util(struct sugov_cpu *sg_cpu, unsigned long boost)
195 {
196         unsigned long min, max, util = cpu_util_cfs_boost(sg_cpu->cpu);
197
198         util = effective_cpu_util(sg_cpu->cpu, util, &min, &max);
199         util = max(util, boost);
200         sg_cpu->bw_min = min;
201         sg_cpu->util = sugov_effective_cpu_perf(sg_cpu->cpu, util, min, max);
202 }
203
204 /**
205  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
206  * @sg_cpu: the sugov data for the CPU to boost
207  * @time: the update time from the caller
208  * @set_iowait_boost: true if an IO boost has been requested
209  *
210  * The IO wait boost of a task is disabled after a tick since the last update
211  * of a CPU. If a new IO wait boost is requested after more then a tick, then
212  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
213  * efficiency by ignoring sporadic wakeups from IO.
214  */
215 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
216                                bool set_iowait_boost)
217 {
218         s64 delta_ns = time - sg_cpu->last_update;
219
220         /* Reset boost only if a tick has elapsed since last request */
221         if (delta_ns <= TICK_NSEC)
222                 return false;
223
224         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
225         sg_cpu->iowait_boost_pending = set_iowait_boost;
226
227         return true;
228 }
229
230 /**
231  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
232  * @sg_cpu: the sugov data for the CPU to boost
233  * @time: the update time from the caller
234  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
235  *
236  * Each time a task wakes up after an IO operation, the CPU utilization can be
237  * boosted to a certain utilization which doubles at each "frequent and
238  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
239  * of the maximum OPP.
240  *
241  * To keep doubling, an IO boost has to be requested at least once per tick,
242  * otherwise we restart from the utilization of the minimum OPP.
243  */
244 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
245                                unsigned int flags)
246 {
247         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
248
249         /* Reset boost if the CPU appears to have been idle enough */
250         if (sg_cpu->iowait_boost &&
251             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
252                 return;
253
254         /* Boost only tasks waking up after IO */
255         if (!set_iowait_boost)
256                 return;
257
258         /* Ensure boost doubles only one time at each request */
259         if (sg_cpu->iowait_boost_pending)
260                 return;
261         sg_cpu->iowait_boost_pending = true;
262
263         /* Double the boost at each request */
264         if (sg_cpu->iowait_boost) {
265                 sg_cpu->iowait_boost =
266                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
267                 return;
268         }
269
270         /* First wakeup after IO: start with minimum boost */
271         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
272 }
273
274 /**
275  * sugov_iowait_apply() - Apply the IO boost to a CPU.
276  * @sg_cpu: the sugov data for the cpu to boost
277  * @time: the update time from the caller
278  * @max_cap: the max CPU capacity
279  *
280  * A CPU running a task which woken up after an IO operation can have its
281  * utilization boosted to speed up the completion of those IO operations.
282  * The IO boost value is increased each time a task wakes up from IO, in
283  * sugov_iowait_apply(), and it's instead decreased by this function,
284  * each time an increase has not been requested (!iowait_boost_pending).
285  *
286  * A CPU which also appears to have been idle for at least one tick has also
287  * its IO boost utilization reset.
288  *
289  * This mechanism is designed to boost high frequently IO waiting tasks, while
290  * being more conservative on tasks which does sporadic IO operations.
291  */
292 static unsigned long sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time,
293                                unsigned long max_cap)
294 {
295         /* No boost currently required */
296         if (!sg_cpu->iowait_boost)
297                 return 0;
298
299         /* Reset boost if the CPU appears to have been idle enough */
300         if (sugov_iowait_reset(sg_cpu, time, false))
301                 return 0;
302
303         if (!sg_cpu->iowait_boost_pending) {
304                 /*
305                  * No boost pending; reduce the boost value.
306                  */
307                 sg_cpu->iowait_boost >>= 1;
308                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
309                         sg_cpu->iowait_boost = 0;
310                         return 0;
311                 }
312         }
313
314         sg_cpu->iowait_boost_pending = false;
315
316         /*
317          * sg_cpu->util is already in capacity scale; convert iowait_boost
318          * into the same scale so we can compare.
319          */
320         return (sg_cpu->iowait_boost * max_cap) >> SCHED_CAPACITY_SHIFT;
321 }
322
323 #ifdef CONFIG_NO_HZ_COMMON
324 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
325 {
326         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
327         bool ret = idle_calls == sg_cpu->saved_idle_calls;
328
329         sg_cpu->saved_idle_calls = idle_calls;
330         return ret;
331 }
332 #else
333 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
334 #endif /* CONFIG_NO_HZ_COMMON */
335
336 /*
337  * Make sugov_should_update_freq() ignore the rate limit when DL
338  * has increased the utilization.
339  */
340 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
341 {
342         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_min)
343                 sg_cpu->sg_policy->limits_changed = true;
344 }
345
346 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
347                                               u64 time, unsigned long max_cap,
348                                               unsigned int flags)
349 {
350         unsigned long boost;
351
352         sugov_iowait_boost(sg_cpu, time, flags);
353         sg_cpu->last_update = time;
354
355         ignore_dl_rate_limit(sg_cpu);
356
357         if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
358                 return false;
359
360         boost = sugov_iowait_apply(sg_cpu, time, max_cap);
361         sugov_get_util(sg_cpu, boost);
362
363         return true;
364 }
365
366 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
367                                      unsigned int flags)
368 {
369         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
370         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
371         unsigned int cached_freq = sg_policy->cached_raw_freq;
372         unsigned long max_cap;
373         unsigned int next_f;
374
375         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
376
377         if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
378                 return;
379
380         next_f = get_next_freq(sg_policy, sg_cpu->util, max_cap);
381         /*
382          * Do not reduce the frequency if the CPU has not been idle
383          * recently, as the reduction is likely to be premature then.
384          *
385          * Except when the rq is capped by uclamp_max.
386          */
387         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
388             sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq &&
389             !sg_policy->need_freq_update) {
390                 next_f = sg_policy->next_freq;
391
392                 /* Restore cached freq as next_freq has changed */
393                 sg_policy->cached_raw_freq = cached_freq;
394         }
395
396         if (!sugov_update_next_freq(sg_policy, time, next_f))
397                 return;
398
399         /*
400          * This code runs under rq->lock for the target CPU, so it won't run
401          * concurrently on two different CPUs for the same target and it is not
402          * necessary to acquire the lock in the fast switch case.
403          */
404         if (sg_policy->policy->fast_switch_enabled) {
405                 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
406         } else {
407                 raw_spin_lock(&sg_policy->update_lock);
408                 sugov_deferred_update(sg_policy);
409                 raw_spin_unlock(&sg_policy->update_lock);
410         }
411 }
412
413 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
414                                      unsigned int flags)
415 {
416         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
417         unsigned long prev_util = sg_cpu->util;
418         unsigned long max_cap;
419
420         /*
421          * Fall back to the "frequency" path if frequency invariance is not
422          * supported, because the direct mapping between the utilization and
423          * the performance levels depends on the frequency invariance.
424          */
425         if (!arch_scale_freq_invariant()) {
426                 sugov_update_single_freq(hook, time, flags);
427                 return;
428         }
429
430         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
431
432         if (!sugov_update_single_common(sg_cpu, time, max_cap, flags))
433                 return;
434
435         /*
436          * Do not reduce the target performance level if the CPU has not been
437          * idle recently, as the reduction is likely to be premature then.
438          *
439          * Except when the rq is capped by uclamp_max.
440          */
441         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
442             sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
443                 sg_cpu->util = prev_util;
444
445         cpufreq_driver_adjust_perf(sg_cpu->cpu, sg_cpu->bw_min,
446                                    sg_cpu->util, max_cap);
447
448         sg_cpu->sg_policy->last_freq_update_time = time;
449 }
450
451 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
452 {
453         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
454         struct cpufreq_policy *policy = sg_policy->policy;
455         unsigned long util = 0, max_cap;
456         unsigned int j;
457
458         max_cap = arch_scale_cpu_capacity(sg_cpu->cpu);
459
460         for_each_cpu(j, policy->cpus) {
461                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
462                 unsigned long boost;
463
464                 boost = sugov_iowait_apply(j_sg_cpu, time, max_cap);
465                 sugov_get_util(j_sg_cpu, boost);
466
467                 util = max(j_sg_cpu->util, util);
468         }
469
470         return get_next_freq(sg_policy, util, max_cap);
471 }
472
473 static void
474 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
475 {
476         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
477         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
478         unsigned int next_f;
479
480         raw_spin_lock(&sg_policy->update_lock);
481
482         sugov_iowait_boost(sg_cpu, time, flags);
483         sg_cpu->last_update = time;
484
485         ignore_dl_rate_limit(sg_cpu);
486
487         if (sugov_should_update_freq(sg_policy, time)) {
488                 next_f = sugov_next_freq_shared(sg_cpu, time);
489
490                 if (!sugov_update_next_freq(sg_policy, time, next_f))
491                         goto unlock;
492
493                 if (sg_policy->policy->fast_switch_enabled)
494                         cpufreq_driver_fast_switch(sg_policy->policy, next_f);
495                 else
496                         sugov_deferred_update(sg_policy);
497         }
498 unlock:
499         raw_spin_unlock(&sg_policy->update_lock);
500 }
501
502 static void sugov_work(struct kthread_work *work)
503 {
504         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
505         unsigned int freq;
506         unsigned long flags;
507
508         /*
509          * Hold sg_policy->update_lock shortly to handle the case where:
510          * in case sg_policy->next_freq is read here, and then updated by
511          * sugov_deferred_update() just before work_in_progress is set to false
512          * here, we may miss queueing the new update.
513          *
514          * Note: If a work was queued after the update_lock is released,
515          * sugov_work() will just be called again by kthread_work code; and the
516          * request will be proceed before the sugov thread sleeps.
517          */
518         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
519         freq = sg_policy->next_freq;
520         sg_policy->work_in_progress = false;
521         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
522
523         mutex_lock(&sg_policy->work_lock);
524         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
525         mutex_unlock(&sg_policy->work_lock);
526 }
527
528 static void sugov_irq_work(struct irq_work *irq_work)
529 {
530         struct sugov_policy *sg_policy;
531
532         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
533
534         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
535 }
536
537 /************************** sysfs interface ************************/
538
539 static struct sugov_tunables *global_tunables;
540 static DEFINE_MUTEX(global_tunables_lock);
541
542 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
543 {
544         return container_of(attr_set, struct sugov_tunables, attr_set);
545 }
546
547 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
548 {
549         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
550
551         return sprintf(buf, "%u\n", tunables->rate_limit_us);
552 }
553
554 static ssize_t
555 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
556 {
557         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
558         struct sugov_policy *sg_policy;
559         unsigned int rate_limit_us;
560
561         if (kstrtouint(buf, 10, &rate_limit_us))
562                 return -EINVAL;
563
564         tunables->rate_limit_us = rate_limit_us;
565
566         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
567                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
568
569         return count;
570 }
571
572 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
573
574 static struct attribute *sugov_attrs[] = {
575         &rate_limit_us.attr,
576         NULL
577 };
578 ATTRIBUTE_GROUPS(sugov);
579
580 static void sugov_tunables_free(struct kobject *kobj)
581 {
582         struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
583
584         kfree(to_sugov_tunables(attr_set));
585 }
586
587 static const struct kobj_type sugov_tunables_ktype = {
588         .default_groups = sugov_groups,
589         .sysfs_ops = &governor_sysfs_ops,
590         .release = &sugov_tunables_free,
591 };
592
593 /********************** cpufreq governor interface *********************/
594
595 #ifdef CONFIG_ENERGY_MODEL
596 static void rebuild_sd_workfn(struct work_struct *work)
597 {
598         rebuild_sched_domains_energy();
599 }
600
601 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
602
603 /*
604  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
605  * on governor changes to make sure the scheduler knows about it.
606  */
607 static void sugov_eas_rebuild_sd(void)
608 {
609         /*
610          * When called from the cpufreq_register_driver() path, the
611          * cpu_hotplug_lock is already held, so use a work item to
612          * avoid nested locking in rebuild_sched_domains().
613          */
614         schedule_work(&rebuild_sd_work);
615 }
616 #else
617 static inline void sugov_eas_rebuild_sd(void) { };
618 #endif
619
620 struct cpufreq_governor schedutil_gov;
621
622 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
623 {
624         struct sugov_policy *sg_policy;
625
626         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
627         if (!sg_policy)
628                 return NULL;
629
630         sg_policy->policy = policy;
631         raw_spin_lock_init(&sg_policy->update_lock);
632         return sg_policy;
633 }
634
635 static void sugov_policy_free(struct sugov_policy *sg_policy)
636 {
637         kfree(sg_policy);
638 }
639
640 static int sugov_kthread_create(struct sugov_policy *sg_policy)
641 {
642         struct task_struct *thread;
643         struct sched_attr attr = {
644                 .size           = sizeof(struct sched_attr),
645                 .sched_policy   = SCHED_DEADLINE,
646                 .sched_flags    = SCHED_FLAG_SUGOV,
647                 .sched_nice     = 0,
648                 .sched_priority = 0,
649                 /*
650                  * Fake (unused) bandwidth; workaround to "fix"
651                  * priority inheritance.
652                  */
653                 .sched_runtime  =  1000000,
654                 .sched_deadline = 10000000,
655                 .sched_period   = 10000000,
656         };
657         struct cpufreq_policy *policy = sg_policy->policy;
658         int ret;
659
660         /* kthread only required for slow path */
661         if (policy->fast_switch_enabled)
662                 return 0;
663
664         kthread_init_work(&sg_policy->work, sugov_work);
665         kthread_init_worker(&sg_policy->worker);
666         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
667                                 "sugov:%d",
668                                 cpumask_first(policy->related_cpus));
669         if (IS_ERR(thread)) {
670                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
671                 return PTR_ERR(thread);
672         }
673
674         ret = sched_setattr_nocheck(thread, &attr);
675         if (ret) {
676                 kthread_stop(thread);
677                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
678                 return ret;
679         }
680
681         sg_policy->thread = thread;
682         kthread_bind_mask(thread, policy->related_cpus);
683         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
684         mutex_init(&sg_policy->work_lock);
685
686         wake_up_process(thread);
687
688         return 0;
689 }
690
691 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
692 {
693         /* kthread only required for slow path */
694         if (sg_policy->policy->fast_switch_enabled)
695                 return;
696
697         kthread_flush_worker(&sg_policy->worker);
698         kthread_stop(sg_policy->thread);
699         mutex_destroy(&sg_policy->work_lock);
700 }
701
702 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
703 {
704         struct sugov_tunables *tunables;
705
706         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
707         if (tunables) {
708                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
709                 if (!have_governor_per_policy())
710                         global_tunables = tunables;
711         }
712         return tunables;
713 }
714
715 static void sugov_clear_global_tunables(void)
716 {
717         if (!have_governor_per_policy())
718                 global_tunables = NULL;
719 }
720
721 static int sugov_init(struct cpufreq_policy *policy)
722 {
723         struct sugov_policy *sg_policy;
724         struct sugov_tunables *tunables;
725         int ret = 0;
726
727         /* State should be equivalent to EXIT */
728         if (policy->governor_data)
729                 return -EBUSY;
730
731         cpufreq_enable_fast_switch(policy);
732
733         sg_policy = sugov_policy_alloc(policy);
734         if (!sg_policy) {
735                 ret = -ENOMEM;
736                 goto disable_fast_switch;
737         }
738
739         ret = sugov_kthread_create(sg_policy);
740         if (ret)
741                 goto free_sg_policy;
742
743         mutex_lock(&global_tunables_lock);
744
745         if (global_tunables) {
746                 if (WARN_ON(have_governor_per_policy())) {
747                         ret = -EINVAL;
748                         goto stop_kthread;
749                 }
750                 policy->governor_data = sg_policy;
751                 sg_policy->tunables = global_tunables;
752
753                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
754                 goto out;
755         }
756
757         tunables = sugov_tunables_alloc(sg_policy);
758         if (!tunables) {
759                 ret = -ENOMEM;
760                 goto stop_kthread;
761         }
762
763         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
764
765         policy->governor_data = sg_policy;
766         sg_policy->tunables = tunables;
767
768         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
769                                    get_governor_parent_kobj(policy), "%s",
770                                    schedutil_gov.name);
771         if (ret)
772                 goto fail;
773
774         sugov_eas_rebuild_sd();
775
776 out:
777         mutex_unlock(&global_tunables_lock);
778         return 0;
779
780 fail:
781         kobject_put(&tunables->attr_set.kobj);
782         policy->governor_data = NULL;
783         sugov_clear_global_tunables();
784
785 stop_kthread:
786         sugov_kthread_stop(sg_policy);
787         mutex_unlock(&global_tunables_lock);
788
789 free_sg_policy:
790         sugov_policy_free(sg_policy);
791
792 disable_fast_switch:
793         cpufreq_disable_fast_switch(policy);
794
795         pr_err("initialization failed (error %d)\n", ret);
796         return ret;
797 }
798
799 static void sugov_exit(struct cpufreq_policy *policy)
800 {
801         struct sugov_policy *sg_policy = policy->governor_data;
802         struct sugov_tunables *tunables = sg_policy->tunables;
803         unsigned int count;
804
805         mutex_lock(&global_tunables_lock);
806
807         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
808         policy->governor_data = NULL;
809         if (!count)
810                 sugov_clear_global_tunables();
811
812         mutex_unlock(&global_tunables_lock);
813
814         sugov_kthread_stop(sg_policy);
815         sugov_policy_free(sg_policy);
816         cpufreq_disable_fast_switch(policy);
817
818         sugov_eas_rebuild_sd();
819 }
820
821 static int sugov_start(struct cpufreq_policy *policy)
822 {
823         struct sugov_policy *sg_policy = policy->governor_data;
824         void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
825         unsigned int cpu;
826
827         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
828         sg_policy->last_freq_update_time        = 0;
829         sg_policy->next_freq                    = 0;
830         sg_policy->work_in_progress             = false;
831         sg_policy->limits_changed               = false;
832         sg_policy->cached_raw_freq              = 0;
833
834         sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
835
836         if (policy_is_shared(policy))
837                 uu = sugov_update_shared;
838         else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
839                 uu = sugov_update_single_perf;
840         else
841                 uu = sugov_update_single_freq;
842
843         for_each_cpu(cpu, policy->cpus) {
844                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
845
846                 memset(sg_cpu, 0, sizeof(*sg_cpu));
847                 sg_cpu->cpu = cpu;
848                 sg_cpu->sg_policy = sg_policy;
849                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
850         }
851         return 0;
852 }
853
854 static void sugov_stop(struct cpufreq_policy *policy)
855 {
856         struct sugov_policy *sg_policy = policy->governor_data;
857         unsigned int cpu;
858
859         for_each_cpu(cpu, policy->cpus)
860                 cpufreq_remove_update_util_hook(cpu);
861
862         synchronize_rcu();
863
864         if (!policy->fast_switch_enabled) {
865                 irq_work_sync(&sg_policy->irq_work);
866                 kthread_cancel_work_sync(&sg_policy->work);
867         }
868 }
869
870 static void sugov_limits(struct cpufreq_policy *policy)
871 {
872         struct sugov_policy *sg_policy = policy->governor_data;
873
874         if (!policy->fast_switch_enabled) {
875                 mutex_lock(&sg_policy->work_lock);
876                 cpufreq_policy_apply_limits(policy);
877                 mutex_unlock(&sg_policy->work_lock);
878         }
879
880         sg_policy->limits_changed = true;
881 }
882
883 struct cpufreq_governor schedutil_gov = {
884         .name                   = "schedutil",
885         .owner                  = THIS_MODULE,
886         .flags                  = CPUFREQ_GOV_DYNAMIC_SWITCHING,
887         .init                   = sugov_init,
888         .exit                   = sugov_exit,
889         .start                  = sugov_start,
890         .stop                   = sugov_stop,
891         .limits                 = sugov_limits,
892 };
893
894 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
895 struct cpufreq_governor *cpufreq_default_governor(void)
896 {
897         return &schedutil_gov;
898 }
899 #endif
900
901 cpufreq_governor_init(schedutil_gov);