Merge tag 'pci-v5.11-fixes-1' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include "sched.h"
12
13 #include <linux/sched/cpufreq.h>
14 #include <trace/events/power.h>
15
16 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
17
18 struct sugov_tunables {
19         struct gov_attr_set     attr_set;
20         unsigned int            rate_limit_us;
21 };
22
23 struct sugov_policy {
24         struct cpufreq_policy   *policy;
25
26         struct sugov_tunables   *tunables;
27         struct list_head        tunables_hook;
28
29         raw_spinlock_t          update_lock;    /* For shared policies */
30         u64                     last_freq_update_time;
31         s64                     freq_update_delay_ns;
32         unsigned int            next_freq;
33         unsigned int            cached_raw_freq;
34
35         /* The next fields are only needed if fast switch cannot be used: */
36         struct                  irq_work irq_work;
37         struct                  kthread_work work;
38         struct                  mutex work_lock;
39         struct                  kthread_worker worker;
40         struct task_struct      *thread;
41         bool                    work_in_progress;
42
43         bool                    limits_changed;
44         bool                    need_freq_update;
45 };
46
47 struct sugov_cpu {
48         struct update_util_data update_util;
49         struct sugov_policy     *sg_policy;
50         unsigned int            cpu;
51
52         bool                    iowait_boost_pending;
53         unsigned int            iowait_boost;
54         u64                     last_update;
55
56         unsigned long           util;
57         unsigned long           bw_dl;
58         unsigned long           max;
59
60         /* The field below is for single-CPU policies only: */
61 #ifdef CONFIG_NO_HZ_COMMON
62         unsigned long           saved_idle_calls;
63 #endif
64 };
65
66 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
67
68 /************************ Governor internals ***********************/
69
70 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
71 {
72         s64 delta_ns;
73
74         /*
75          * Since cpufreq_update_util() is called with rq->lock held for
76          * the @target_cpu, our per-CPU data is fully serialized.
77          *
78          * However, drivers cannot in general deal with cross-CPU
79          * requests, so while get_next_freq() will work, our
80          * sugov_update_commit() call may not for the fast switching platforms.
81          *
82          * Hence stop here for remote requests if they aren't supported
83          * by the hardware, as calculating the frequency is pointless if
84          * we cannot in fact act on it.
85          *
86          * This is needed on the slow switching platforms too to prevent CPUs
87          * going offline from leaving stale IRQ work items behind.
88          */
89         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
90                 return false;
91
92         if (unlikely(sg_policy->limits_changed)) {
93                 sg_policy->limits_changed = false;
94                 sg_policy->need_freq_update = true;
95                 return true;
96         }
97
98         delta_ns = time - sg_policy->last_freq_update_time;
99
100         return delta_ns >= sg_policy->freq_update_delay_ns;
101 }
102
103 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
104                                    unsigned int next_freq)
105 {
106         if (sg_policy->need_freq_update)
107                 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
108         else if (sg_policy->next_freq == next_freq)
109                 return false;
110
111         sg_policy->next_freq = next_freq;
112         sg_policy->last_freq_update_time = time;
113
114         return true;
115 }
116
117 static void sugov_fast_switch(struct sugov_policy *sg_policy, u64 time,
118                               unsigned int next_freq)
119 {
120         if (sugov_update_next_freq(sg_policy, time, next_freq))
121                 cpufreq_driver_fast_switch(sg_policy->policy, next_freq);
122 }
123
124 static void sugov_deferred_update(struct sugov_policy *sg_policy, u64 time,
125                                   unsigned int next_freq)
126 {
127         if (!sugov_update_next_freq(sg_policy, time, next_freq))
128                 return;
129
130         if (!sg_policy->work_in_progress) {
131                 sg_policy->work_in_progress = true;
132                 irq_work_queue(&sg_policy->irq_work);
133         }
134 }
135
136 /**
137  * get_next_freq - Compute a new frequency for a given cpufreq policy.
138  * @sg_policy: schedutil policy object to compute the new frequency for.
139  * @util: Current CPU utilization.
140  * @max: CPU capacity.
141  *
142  * If the utilization is frequency-invariant, choose the new frequency to be
143  * proportional to it, that is
144  *
145  * next_freq = C * max_freq * util / max
146  *
147  * Otherwise, approximate the would-be frequency-invariant utilization by
148  * util_raw * (curr_freq / max_freq) which leads to
149  *
150  * next_freq = C * curr_freq * util_raw / max
151  *
152  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
153  *
154  * The lowest driver-supported frequency which is equal or greater than the raw
155  * next_freq (as calculated above) is returned, subject to policy min/max and
156  * cpufreq driver limitations.
157  */
158 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
159                                   unsigned long util, unsigned long max)
160 {
161         struct cpufreq_policy *policy = sg_policy->policy;
162         unsigned int freq = arch_scale_freq_invariant() ?
163                                 policy->cpuinfo.max_freq : policy->cur;
164
165         freq = map_util_freq(util, freq, max);
166
167         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
168                 return sg_policy->next_freq;
169
170         sg_policy->cached_raw_freq = freq;
171         return cpufreq_driver_resolve_freq(policy, freq);
172 }
173
174 /*
175  * This function computes an effective utilization for the given CPU, to be
176  * used for frequency selection given the linear relation: f = u * f_max.
177  *
178  * The scheduler tracks the following metrics:
179  *
180  *   cpu_util_{cfs,rt,dl,irq}()
181  *   cpu_bw_dl()
182  *
183  * Where the cfs,rt and dl util numbers are tracked with the same metric and
184  * synchronized windows and are thus directly comparable.
185  *
186  * The cfs,rt,dl utilization are the running times measured with rq->clock_task
187  * which excludes things like IRQ and steal-time. These latter are then accrued
188  * in the irq utilization.
189  *
190  * The DL bandwidth number otoh is not a measured metric but a value computed
191  * based on the task model parameters and gives the minimal utilization
192  * required to meet deadlines.
193  */
194 unsigned long schedutil_cpu_util(int cpu, unsigned long util_cfs,
195                                  unsigned long max, enum schedutil_type type,
196                                  struct task_struct *p)
197 {
198         unsigned long dl_util, util, irq;
199         struct rq *rq = cpu_rq(cpu);
200
201         if (!uclamp_is_used() &&
202             type == FREQUENCY_UTIL && rt_rq_is_runnable(&rq->rt)) {
203                 return max;
204         }
205
206         /*
207          * Early check to see if IRQ/steal time saturates the CPU, can be
208          * because of inaccuracies in how we track these -- see
209          * update_irq_load_avg().
210          */
211         irq = cpu_util_irq(rq);
212         if (unlikely(irq >= max))
213                 return max;
214
215         /*
216          * Because the time spend on RT/DL tasks is visible as 'lost' time to
217          * CFS tasks and we use the same metric to track the effective
218          * utilization (PELT windows are synchronized) we can directly add them
219          * to obtain the CPU's actual utilization.
220          *
221          * CFS and RT utilization can be boosted or capped, depending on
222          * utilization clamp constraints requested by currently RUNNABLE
223          * tasks.
224          * When there are no CFS RUNNABLE tasks, clamps are released and
225          * frequency will be gracefully reduced with the utilization decay.
226          */
227         util = util_cfs + cpu_util_rt(rq);
228         if (type == FREQUENCY_UTIL)
229                 util = uclamp_rq_util_with(rq, util, p);
230
231         dl_util = cpu_util_dl(rq);
232
233         /*
234          * For frequency selection we do not make cpu_util_dl() a permanent part
235          * of this sum because we want to use cpu_bw_dl() later on, but we need
236          * to check if the CFS+RT+DL sum is saturated (ie. no idle time) such
237          * that we select f_max when there is no idle time.
238          *
239          * NOTE: numerical errors or stop class might cause us to not quite hit
240          * saturation when we should -- something for later.
241          */
242         if (util + dl_util >= max)
243                 return max;
244
245         /*
246          * OTOH, for energy computation we need the estimated running time, so
247          * include util_dl and ignore dl_bw.
248          */
249         if (type == ENERGY_UTIL)
250                 util += dl_util;
251
252         /*
253          * There is still idle time; further improve the number by using the
254          * irq metric. Because IRQ/steal time is hidden from the task clock we
255          * need to scale the task numbers:
256          *
257          *              max - irq
258          *   U' = irq + --------- * U
259          *                 max
260          */
261         util = scale_irq_capacity(util, irq, max);
262         util += irq;
263
264         /*
265          * Bandwidth required by DEADLINE must always be granted while, for
266          * FAIR and RT, we use blocked utilization of IDLE CPUs as a mechanism
267          * to gracefully reduce the frequency when no tasks show up for longer
268          * periods of time.
269          *
270          * Ideally we would like to set bw_dl as min/guaranteed freq and util +
271          * bw_dl as requested freq. However, cpufreq is not yet ready for such
272          * an interface. So, we only do the latter for now.
273          */
274         if (type == FREQUENCY_UTIL)
275                 util += cpu_bw_dl(rq);
276
277         return min(max, util);
278 }
279
280 static void sugov_get_util(struct sugov_cpu *sg_cpu)
281 {
282         struct rq *rq = cpu_rq(sg_cpu->cpu);
283         unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
284
285         sg_cpu->max = max;
286         sg_cpu->bw_dl = cpu_bw_dl(rq);
287         sg_cpu->util = schedutil_cpu_util(sg_cpu->cpu, cpu_util_cfs(rq), max,
288                                           FREQUENCY_UTIL, NULL);
289 }
290
291 /**
292  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
293  * @sg_cpu: the sugov data for the CPU to boost
294  * @time: the update time from the caller
295  * @set_iowait_boost: true if an IO boost has been requested
296  *
297  * The IO wait boost of a task is disabled after a tick since the last update
298  * of a CPU. If a new IO wait boost is requested after more then a tick, then
299  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
300  * efficiency by ignoring sporadic wakeups from IO.
301  */
302 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
303                                bool set_iowait_boost)
304 {
305         s64 delta_ns = time - sg_cpu->last_update;
306
307         /* Reset boost only if a tick has elapsed since last request */
308         if (delta_ns <= TICK_NSEC)
309                 return false;
310
311         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
312         sg_cpu->iowait_boost_pending = set_iowait_boost;
313
314         return true;
315 }
316
317 /**
318  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
319  * @sg_cpu: the sugov data for the CPU to boost
320  * @time: the update time from the caller
321  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
322  *
323  * Each time a task wakes up after an IO operation, the CPU utilization can be
324  * boosted to a certain utilization which doubles at each "frequent and
325  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
326  * of the maximum OPP.
327  *
328  * To keep doubling, an IO boost has to be requested at least once per tick,
329  * otherwise we restart from the utilization of the minimum OPP.
330  */
331 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
332                                unsigned int flags)
333 {
334         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
335
336         /* Reset boost if the CPU appears to have been idle enough */
337         if (sg_cpu->iowait_boost &&
338             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
339                 return;
340
341         /* Boost only tasks waking up after IO */
342         if (!set_iowait_boost)
343                 return;
344
345         /* Ensure boost doubles only one time at each request */
346         if (sg_cpu->iowait_boost_pending)
347                 return;
348         sg_cpu->iowait_boost_pending = true;
349
350         /* Double the boost at each request */
351         if (sg_cpu->iowait_boost) {
352                 sg_cpu->iowait_boost =
353                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
354                 return;
355         }
356
357         /* First wakeup after IO: start with minimum boost */
358         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
359 }
360
361 /**
362  * sugov_iowait_apply() - Apply the IO boost to a CPU.
363  * @sg_cpu: the sugov data for the cpu to boost
364  * @time: the update time from the caller
365  *
366  * A CPU running a task which woken up after an IO operation can have its
367  * utilization boosted to speed up the completion of those IO operations.
368  * The IO boost value is increased each time a task wakes up from IO, in
369  * sugov_iowait_apply(), and it's instead decreased by this function,
370  * each time an increase has not been requested (!iowait_boost_pending).
371  *
372  * A CPU which also appears to have been idle for at least one tick has also
373  * its IO boost utilization reset.
374  *
375  * This mechanism is designed to boost high frequently IO waiting tasks, while
376  * being more conservative on tasks which does sporadic IO operations.
377  */
378 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time)
379 {
380         unsigned long boost;
381
382         /* No boost currently required */
383         if (!sg_cpu->iowait_boost)
384                 return;
385
386         /* Reset boost if the CPU appears to have been idle enough */
387         if (sugov_iowait_reset(sg_cpu, time, false))
388                 return;
389
390         if (!sg_cpu->iowait_boost_pending) {
391                 /*
392                  * No boost pending; reduce the boost value.
393                  */
394                 sg_cpu->iowait_boost >>= 1;
395                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
396                         sg_cpu->iowait_boost = 0;
397                         return;
398                 }
399         }
400
401         sg_cpu->iowait_boost_pending = false;
402
403         /*
404          * sg_cpu->util is already in capacity scale; convert iowait_boost
405          * into the same scale so we can compare.
406          */
407         boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT;
408         if (sg_cpu->util < boost)
409                 sg_cpu->util = boost;
410 }
411
412 #ifdef CONFIG_NO_HZ_COMMON
413 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
414 {
415         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
416         bool ret = idle_calls == sg_cpu->saved_idle_calls;
417
418         sg_cpu->saved_idle_calls = idle_calls;
419         return ret;
420 }
421 #else
422 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
423 #endif /* CONFIG_NO_HZ_COMMON */
424
425 /*
426  * Make sugov_should_update_freq() ignore the rate limit when DL
427  * has increased the utilization.
428  */
429 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu, struct sugov_policy *sg_policy)
430 {
431         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
432                 sg_policy->limits_changed = true;
433 }
434
435 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
436                                               u64 time, unsigned int flags)
437 {
438         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
439
440         sugov_iowait_boost(sg_cpu, time, flags);
441         sg_cpu->last_update = time;
442
443         ignore_dl_rate_limit(sg_cpu, sg_policy);
444
445         if (!sugov_should_update_freq(sg_policy, time))
446                 return false;
447
448         sugov_get_util(sg_cpu);
449         sugov_iowait_apply(sg_cpu, time);
450
451         return true;
452 }
453
454 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
455                                      unsigned int flags)
456 {
457         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
458         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
459         unsigned int cached_freq = sg_policy->cached_raw_freq;
460         unsigned int next_f;
461
462         if (!sugov_update_single_common(sg_cpu, time, flags))
463                 return;
464
465         next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max);
466         /*
467          * Do not reduce the frequency if the CPU has not been idle
468          * recently, as the reduction is likely to be premature then.
469          */
470         if (sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
471                 next_f = sg_policy->next_freq;
472
473                 /* Restore cached freq as next_freq has changed */
474                 sg_policy->cached_raw_freq = cached_freq;
475         }
476
477         /*
478          * This code runs under rq->lock for the target CPU, so it won't run
479          * concurrently on two different CPUs for the same target and it is not
480          * necessary to acquire the lock in the fast switch case.
481          */
482         if (sg_policy->policy->fast_switch_enabled) {
483                 sugov_fast_switch(sg_policy, time, next_f);
484         } else {
485                 raw_spin_lock(&sg_policy->update_lock);
486                 sugov_deferred_update(sg_policy, time, next_f);
487                 raw_spin_unlock(&sg_policy->update_lock);
488         }
489 }
490
491 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
492                                      unsigned int flags)
493 {
494         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
495         unsigned long prev_util = sg_cpu->util;
496
497         /*
498          * Fall back to the "frequency" path if frequency invariance is not
499          * supported, because the direct mapping between the utilization and
500          * the performance levels depends on the frequency invariance.
501          */
502         if (!arch_scale_freq_invariant()) {
503                 sugov_update_single_freq(hook, time, flags);
504                 return;
505         }
506
507         if (!sugov_update_single_common(sg_cpu, time, flags))
508                 return;
509
510         /*
511          * Do not reduce the target performance level if the CPU has not been
512          * idle recently, as the reduction is likely to be premature then.
513          */
514         if (sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
515                 sg_cpu->util = prev_util;
516
517         cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
518                                    map_util_perf(sg_cpu->util), sg_cpu->max);
519
520         sg_cpu->sg_policy->last_freq_update_time = time;
521 }
522
523 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
524 {
525         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
526         struct cpufreq_policy *policy = sg_policy->policy;
527         unsigned long util = 0, max = 1;
528         unsigned int j;
529
530         for_each_cpu(j, policy->cpus) {
531                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
532                 unsigned long j_util, j_max;
533
534                 sugov_get_util(j_sg_cpu);
535                 sugov_iowait_apply(j_sg_cpu, time);
536                 j_util = j_sg_cpu->util;
537                 j_max = j_sg_cpu->max;
538
539                 if (j_util * max > j_max * util) {
540                         util = j_util;
541                         max = j_max;
542                 }
543         }
544
545         return get_next_freq(sg_policy, util, max);
546 }
547
548 static void
549 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
550 {
551         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
552         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
553         unsigned int next_f;
554
555         raw_spin_lock(&sg_policy->update_lock);
556
557         sugov_iowait_boost(sg_cpu, time, flags);
558         sg_cpu->last_update = time;
559
560         ignore_dl_rate_limit(sg_cpu, sg_policy);
561
562         if (sugov_should_update_freq(sg_policy, time)) {
563                 next_f = sugov_next_freq_shared(sg_cpu, time);
564
565                 if (sg_policy->policy->fast_switch_enabled)
566                         sugov_fast_switch(sg_policy, time, next_f);
567                 else
568                         sugov_deferred_update(sg_policy, time, next_f);
569         }
570
571         raw_spin_unlock(&sg_policy->update_lock);
572 }
573
574 static void sugov_work(struct kthread_work *work)
575 {
576         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
577         unsigned int freq;
578         unsigned long flags;
579
580         /*
581          * Hold sg_policy->update_lock shortly to handle the case where:
582          * incase sg_policy->next_freq is read here, and then updated by
583          * sugov_deferred_update() just before work_in_progress is set to false
584          * here, we may miss queueing the new update.
585          *
586          * Note: If a work was queued after the update_lock is released,
587          * sugov_work() will just be called again by kthread_work code; and the
588          * request will be proceed before the sugov thread sleeps.
589          */
590         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
591         freq = sg_policy->next_freq;
592         sg_policy->work_in_progress = false;
593         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
594
595         mutex_lock(&sg_policy->work_lock);
596         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
597         mutex_unlock(&sg_policy->work_lock);
598 }
599
600 static void sugov_irq_work(struct irq_work *irq_work)
601 {
602         struct sugov_policy *sg_policy;
603
604         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
605
606         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
607 }
608
609 /************************** sysfs interface ************************/
610
611 static struct sugov_tunables *global_tunables;
612 static DEFINE_MUTEX(global_tunables_lock);
613
614 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
615 {
616         return container_of(attr_set, struct sugov_tunables, attr_set);
617 }
618
619 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
620 {
621         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
622
623         return sprintf(buf, "%u\n", tunables->rate_limit_us);
624 }
625
626 static ssize_t
627 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
628 {
629         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
630         struct sugov_policy *sg_policy;
631         unsigned int rate_limit_us;
632
633         if (kstrtouint(buf, 10, &rate_limit_us))
634                 return -EINVAL;
635
636         tunables->rate_limit_us = rate_limit_us;
637
638         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
639                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
640
641         return count;
642 }
643
644 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
645
646 static struct attribute *sugov_attrs[] = {
647         &rate_limit_us.attr,
648         NULL
649 };
650 ATTRIBUTE_GROUPS(sugov);
651
652 static struct kobj_type sugov_tunables_ktype = {
653         .default_groups = sugov_groups,
654         .sysfs_ops = &governor_sysfs_ops,
655 };
656
657 /********************** cpufreq governor interface *********************/
658
659 struct cpufreq_governor schedutil_gov;
660
661 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
662 {
663         struct sugov_policy *sg_policy;
664
665         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
666         if (!sg_policy)
667                 return NULL;
668
669         sg_policy->policy = policy;
670         raw_spin_lock_init(&sg_policy->update_lock);
671         return sg_policy;
672 }
673
674 static void sugov_policy_free(struct sugov_policy *sg_policy)
675 {
676         kfree(sg_policy);
677 }
678
679 static int sugov_kthread_create(struct sugov_policy *sg_policy)
680 {
681         struct task_struct *thread;
682         struct sched_attr attr = {
683                 .size           = sizeof(struct sched_attr),
684                 .sched_policy   = SCHED_DEADLINE,
685                 .sched_flags    = SCHED_FLAG_SUGOV,
686                 .sched_nice     = 0,
687                 .sched_priority = 0,
688                 /*
689                  * Fake (unused) bandwidth; workaround to "fix"
690                  * priority inheritance.
691                  */
692                 .sched_runtime  =  1000000,
693                 .sched_deadline = 10000000,
694                 .sched_period   = 10000000,
695         };
696         struct cpufreq_policy *policy = sg_policy->policy;
697         int ret;
698
699         /* kthread only required for slow path */
700         if (policy->fast_switch_enabled)
701                 return 0;
702
703         kthread_init_work(&sg_policy->work, sugov_work);
704         kthread_init_worker(&sg_policy->worker);
705         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
706                                 "sugov:%d",
707                                 cpumask_first(policy->related_cpus));
708         if (IS_ERR(thread)) {
709                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
710                 return PTR_ERR(thread);
711         }
712
713         ret = sched_setattr_nocheck(thread, &attr);
714         if (ret) {
715                 kthread_stop(thread);
716                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
717                 return ret;
718         }
719
720         sg_policy->thread = thread;
721         kthread_bind_mask(thread, policy->related_cpus);
722         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
723         mutex_init(&sg_policy->work_lock);
724
725         wake_up_process(thread);
726
727         return 0;
728 }
729
730 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
731 {
732         /* kthread only required for slow path */
733         if (sg_policy->policy->fast_switch_enabled)
734                 return;
735
736         kthread_flush_worker(&sg_policy->worker);
737         kthread_stop(sg_policy->thread);
738         mutex_destroy(&sg_policy->work_lock);
739 }
740
741 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
742 {
743         struct sugov_tunables *tunables;
744
745         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
746         if (tunables) {
747                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
748                 if (!have_governor_per_policy())
749                         global_tunables = tunables;
750         }
751         return tunables;
752 }
753
754 static void sugov_tunables_free(struct sugov_tunables *tunables)
755 {
756         if (!have_governor_per_policy())
757                 global_tunables = NULL;
758
759         kfree(tunables);
760 }
761
762 static int sugov_init(struct cpufreq_policy *policy)
763 {
764         struct sugov_policy *sg_policy;
765         struct sugov_tunables *tunables;
766         int ret = 0;
767
768         /* State should be equivalent to EXIT */
769         if (policy->governor_data)
770                 return -EBUSY;
771
772         cpufreq_enable_fast_switch(policy);
773
774         sg_policy = sugov_policy_alloc(policy);
775         if (!sg_policy) {
776                 ret = -ENOMEM;
777                 goto disable_fast_switch;
778         }
779
780         ret = sugov_kthread_create(sg_policy);
781         if (ret)
782                 goto free_sg_policy;
783
784         mutex_lock(&global_tunables_lock);
785
786         if (global_tunables) {
787                 if (WARN_ON(have_governor_per_policy())) {
788                         ret = -EINVAL;
789                         goto stop_kthread;
790                 }
791                 policy->governor_data = sg_policy;
792                 sg_policy->tunables = global_tunables;
793
794                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
795                 goto out;
796         }
797
798         tunables = sugov_tunables_alloc(sg_policy);
799         if (!tunables) {
800                 ret = -ENOMEM;
801                 goto stop_kthread;
802         }
803
804         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
805
806         policy->governor_data = sg_policy;
807         sg_policy->tunables = tunables;
808
809         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
810                                    get_governor_parent_kobj(policy), "%s",
811                                    schedutil_gov.name);
812         if (ret)
813                 goto fail;
814
815 out:
816         mutex_unlock(&global_tunables_lock);
817         return 0;
818
819 fail:
820         kobject_put(&tunables->attr_set.kobj);
821         policy->governor_data = NULL;
822         sugov_tunables_free(tunables);
823
824 stop_kthread:
825         sugov_kthread_stop(sg_policy);
826         mutex_unlock(&global_tunables_lock);
827
828 free_sg_policy:
829         sugov_policy_free(sg_policy);
830
831 disable_fast_switch:
832         cpufreq_disable_fast_switch(policy);
833
834         pr_err("initialization failed (error %d)\n", ret);
835         return ret;
836 }
837
838 static void sugov_exit(struct cpufreq_policy *policy)
839 {
840         struct sugov_policy *sg_policy = policy->governor_data;
841         struct sugov_tunables *tunables = sg_policy->tunables;
842         unsigned int count;
843
844         mutex_lock(&global_tunables_lock);
845
846         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
847         policy->governor_data = NULL;
848         if (!count)
849                 sugov_tunables_free(tunables);
850
851         mutex_unlock(&global_tunables_lock);
852
853         sugov_kthread_stop(sg_policy);
854         sugov_policy_free(sg_policy);
855         cpufreq_disable_fast_switch(policy);
856 }
857
858 static int sugov_start(struct cpufreq_policy *policy)
859 {
860         struct sugov_policy *sg_policy = policy->governor_data;
861         void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
862         unsigned int cpu;
863
864         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
865         sg_policy->last_freq_update_time        = 0;
866         sg_policy->next_freq                    = 0;
867         sg_policy->work_in_progress             = false;
868         sg_policy->limits_changed               = false;
869         sg_policy->cached_raw_freq              = 0;
870
871         sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
872
873         for_each_cpu(cpu, policy->cpus) {
874                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
875
876                 memset(sg_cpu, 0, sizeof(*sg_cpu));
877                 sg_cpu->cpu                     = cpu;
878                 sg_cpu->sg_policy               = sg_policy;
879         }
880
881         if (policy_is_shared(policy))
882                 uu = sugov_update_shared;
883         else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
884                 uu = sugov_update_single_perf;
885         else
886                 uu = sugov_update_single_freq;
887
888         for_each_cpu(cpu, policy->cpus) {
889                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
890
891                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
892         }
893         return 0;
894 }
895
896 static void sugov_stop(struct cpufreq_policy *policy)
897 {
898         struct sugov_policy *sg_policy = policy->governor_data;
899         unsigned int cpu;
900
901         for_each_cpu(cpu, policy->cpus)
902                 cpufreq_remove_update_util_hook(cpu);
903
904         synchronize_rcu();
905
906         if (!policy->fast_switch_enabled) {
907                 irq_work_sync(&sg_policy->irq_work);
908                 kthread_cancel_work_sync(&sg_policy->work);
909         }
910 }
911
912 static void sugov_limits(struct cpufreq_policy *policy)
913 {
914         struct sugov_policy *sg_policy = policy->governor_data;
915
916         if (!policy->fast_switch_enabled) {
917                 mutex_lock(&sg_policy->work_lock);
918                 cpufreq_policy_apply_limits(policy);
919                 mutex_unlock(&sg_policy->work_lock);
920         }
921
922         sg_policy->limits_changed = true;
923 }
924
925 struct cpufreq_governor schedutil_gov = {
926         .name                   = "schedutil",
927         .owner                  = THIS_MODULE,
928         .flags                  = CPUFREQ_GOV_DYNAMIC_SWITCHING,
929         .init                   = sugov_init,
930         .exit                   = sugov_exit,
931         .start                  = sugov_start,
932         .stop                   = sugov_stop,
933         .limits                 = sugov_limits,
934 };
935
936 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
937 struct cpufreq_governor *cpufreq_default_governor(void)
938 {
939         return &schedutil_gov;
940 }
941 #endif
942
943 cpufreq_governor_init(schedutil_gov);
944
945 #ifdef CONFIG_ENERGY_MODEL
946 static void rebuild_sd_workfn(struct work_struct *work)
947 {
948         rebuild_sched_domains_energy();
949 }
950 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
951
952 /*
953  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
954  * on governor changes to make sure the scheduler knows about it.
955  */
956 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
957                                   struct cpufreq_governor *old_gov)
958 {
959         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
960                 /*
961                  * When called from the cpufreq_register_driver() path, the
962                  * cpu_hotplug_lock is already held, so use a work item to
963                  * avoid nested locking in rebuild_sched_domains().
964                  */
965                 schedule_work(&rebuild_sd_work);
966         }
967
968 }
969 #endif