dt-bindings: soc: bcm: use absolute path to other schema
[linux-2.6-microblaze.git] / kernel / sched / cpufreq_schedutil.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * CPUFreq governor based on scheduler-provided CPU utilization data.
4  *
5  * Copyright (C) 2016, Intel Corporation
6  * Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
7  */
8
9 #define IOWAIT_BOOST_MIN        (SCHED_CAPACITY_SCALE / 8)
10
11 struct sugov_tunables {
12         struct gov_attr_set     attr_set;
13         unsigned int            rate_limit_us;
14 };
15
16 struct sugov_policy {
17         struct cpufreq_policy   *policy;
18
19         struct sugov_tunables   *tunables;
20         struct list_head        tunables_hook;
21
22         raw_spinlock_t          update_lock;
23         u64                     last_freq_update_time;
24         s64                     freq_update_delay_ns;
25         unsigned int            next_freq;
26         unsigned int            cached_raw_freq;
27
28         /* The next fields are only needed if fast switch cannot be used: */
29         struct                  irq_work irq_work;
30         struct                  kthread_work work;
31         struct                  mutex work_lock;
32         struct                  kthread_worker worker;
33         struct task_struct      *thread;
34         bool                    work_in_progress;
35
36         bool                    limits_changed;
37         bool                    need_freq_update;
38 };
39
40 struct sugov_cpu {
41         struct update_util_data update_util;
42         struct sugov_policy     *sg_policy;
43         unsigned int            cpu;
44
45         bool                    iowait_boost_pending;
46         unsigned int            iowait_boost;
47         u64                     last_update;
48
49         unsigned long           util;
50         unsigned long           bw_dl;
51         unsigned long           max;
52
53         /* The field below is for single-CPU policies only: */
54 #ifdef CONFIG_NO_HZ_COMMON
55         unsigned long           saved_idle_calls;
56 #endif
57 };
58
59 static DEFINE_PER_CPU(struct sugov_cpu, sugov_cpu);
60
61 /************************ Governor internals ***********************/
62
63 static bool sugov_should_update_freq(struct sugov_policy *sg_policy, u64 time)
64 {
65         s64 delta_ns;
66
67         /*
68          * Since cpufreq_update_util() is called with rq->lock held for
69          * the @target_cpu, our per-CPU data is fully serialized.
70          *
71          * However, drivers cannot in general deal with cross-CPU
72          * requests, so while get_next_freq() will work, our
73          * sugov_update_commit() call may not for the fast switching platforms.
74          *
75          * Hence stop here for remote requests if they aren't supported
76          * by the hardware, as calculating the frequency is pointless if
77          * we cannot in fact act on it.
78          *
79          * This is needed on the slow switching platforms too to prevent CPUs
80          * going offline from leaving stale IRQ work items behind.
81          */
82         if (!cpufreq_this_cpu_can_update(sg_policy->policy))
83                 return false;
84
85         if (unlikely(sg_policy->limits_changed)) {
86                 sg_policy->limits_changed = false;
87                 sg_policy->need_freq_update = true;
88                 return true;
89         }
90
91         delta_ns = time - sg_policy->last_freq_update_time;
92
93         return delta_ns >= sg_policy->freq_update_delay_ns;
94 }
95
96 static bool sugov_update_next_freq(struct sugov_policy *sg_policy, u64 time,
97                                    unsigned int next_freq)
98 {
99         if (sg_policy->need_freq_update)
100                 sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
101         else if (sg_policy->next_freq == next_freq)
102                 return false;
103
104         sg_policy->next_freq = next_freq;
105         sg_policy->last_freq_update_time = time;
106
107         return true;
108 }
109
110 static void sugov_deferred_update(struct sugov_policy *sg_policy)
111 {
112         if (!sg_policy->work_in_progress) {
113                 sg_policy->work_in_progress = true;
114                 irq_work_queue(&sg_policy->irq_work);
115         }
116 }
117
118 /**
119  * get_next_freq - Compute a new frequency for a given cpufreq policy.
120  * @sg_policy: schedutil policy object to compute the new frequency for.
121  * @util: Current CPU utilization.
122  * @max: CPU capacity.
123  *
124  * If the utilization is frequency-invariant, choose the new frequency to be
125  * proportional to it, that is
126  *
127  * next_freq = C * max_freq * util / max
128  *
129  * Otherwise, approximate the would-be frequency-invariant utilization by
130  * util_raw * (curr_freq / max_freq) which leads to
131  *
132  * next_freq = C * curr_freq * util_raw / max
133  *
134  * Take C = 1.25 for the frequency tipping point at (util / max) = 0.8.
135  *
136  * The lowest driver-supported frequency which is equal or greater than the raw
137  * next_freq (as calculated above) is returned, subject to policy min/max and
138  * cpufreq driver limitations.
139  */
140 static unsigned int get_next_freq(struct sugov_policy *sg_policy,
141                                   unsigned long util, unsigned long max)
142 {
143         struct cpufreq_policy *policy = sg_policy->policy;
144         unsigned int freq = arch_scale_freq_invariant() ?
145                                 policy->cpuinfo.max_freq : policy->cur;
146
147         util = map_util_perf(util);
148         freq = map_util_freq(util, freq, max);
149
150         if (freq == sg_policy->cached_raw_freq && !sg_policy->need_freq_update)
151                 return sg_policy->next_freq;
152
153         sg_policy->cached_raw_freq = freq;
154         return cpufreq_driver_resolve_freq(policy, freq);
155 }
156
157 static void sugov_get_util(struct sugov_cpu *sg_cpu)
158 {
159         struct rq *rq = cpu_rq(sg_cpu->cpu);
160         unsigned long max = arch_scale_cpu_capacity(sg_cpu->cpu);
161
162         sg_cpu->max = max;
163         sg_cpu->bw_dl = cpu_bw_dl(rq);
164         sg_cpu->util = effective_cpu_util(sg_cpu->cpu, cpu_util_cfs(sg_cpu->cpu), max,
165                                           FREQUENCY_UTIL, NULL);
166 }
167
168 /**
169  * sugov_iowait_reset() - Reset the IO boost status of a CPU.
170  * @sg_cpu: the sugov data for the CPU to boost
171  * @time: the update time from the caller
172  * @set_iowait_boost: true if an IO boost has been requested
173  *
174  * The IO wait boost of a task is disabled after a tick since the last update
175  * of a CPU. If a new IO wait boost is requested after more then a tick, then
176  * we enable the boost starting from IOWAIT_BOOST_MIN, which improves energy
177  * efficiency by ignoring sporadic wakeups from IO.
178  */
179 static bool sugov_iowait_reset(struct sugov_cpu *sg_cpu, u64 time,
180                                bool set_iowait_boost)
181 {
182         s64 delta_ns = time - sg_cpu->last_update;
183
184         /* Reset boost only if a tick has elapsed since last request */
185         if (delta_ns <= TICK_NSEC)
186                 return false;
187
188         sg_cpu->iowait_boost = set_iowait_boost ? IOWAIT_BOOST_MIN : 0;
189         sg_cpu->iowait_boost_pending = set_iowait_boost;
190
191         return true;
192 }
193
194 /**
195  * sugov_iowait_boost() - Updates the IO boost status of a CPU.
196  * @sg_cpu: the sugov data for the CPU to boost
197  * @time: the update time from the caller
198  * @flags: SCHED_CPUFREQ_IOWAIT if the task is waking up after an IO wait
199  *
200  * Each time a task wakes up after an IO operation, the CPU utilization can be
201  * boosted to a certain utilization which doubles at each "frequent and
202  * successive" wakeup from IO, ranging from IOWAIT_BOOST_MIN to the utilization
203  * of the maximum OPP.
204  *
205  * To keep doubling, an IO boost has to be requested at least once per tick,
206  * otherwise we restart from the utilization of the minimum OPP.
207  */
208 static void sugov_iowait_boost(struct sugov_cpu *sg_cpu, u64 time,
209                                unsigned int flags)
210 {
211         bool set_iowait_boost = flags & SCHED_CPUFREQ_IOWAIT;
212
213         /* Reset boost if the CPU appears to have been idle enough */
214         if (sg_cpu->iowait_boost &&
215             sugov_iowait_reset(sg_cpu, time, set_iowait_boost))
216                 return;
217
218         /* Boost only tasks waking up after IO */
219         if (!set_iowait_boost)
220                 return;
221
222         /* Ensure boost doubles only one time at each request */
223         if (sg_cpu->iowait_boost_pending)
224                 return;
225         sg_cpu->iowait_boost_pending = true;
226
227         /* Double the boost at each request */
228         if (sg_cpu->iowait_boost) {
229                 sg_cpu->iowait_boost =
230                         min_t(unsigned int, sg_cpu->iowait_boost << 1, SCHED_CAPACITY_SCALE);
231                 return;
232         }
233
234         /* First wakeup after IO: start with minimum boost */
235         sg_cpu->iowait_boost = IOWAIT_BOOST_MIN;
236 }
237
238 /**
239  * sugov_iowait_apply() - Apply the IO boost to a CPU.
240  * @sg_cpu: the sugov data for the cpu to boost
241  * @time: the update time from the caller
242  *
243  * A CPU running a task which woken up after an IO operation can have its
244  * utilization boosted to speed up the completion of those IO operations.
245  * The IO boost value is increased each time a task wakes up from IO, in
246  * sugov_iowait_apply(), and it's instead decreased by this function,
247  * each time an increase has not been requested (!iowait_boost_pending).
248  *
249  * A CPU which also appears to have been idle for at least one tick has also
250  * its IO boost utilization reset.
251  *
252  * This mechanism is designed to boost high frequently IO waiting tasks, while
253  * being more conservative on tasks which does sporadic IO operations.
254  */
255 static void sugov_iowait_apply(struct sugov_cpu *sg_cpu, u64 time)
256 {
257         unsigned long boost;
258
259         /* No boost currently required */
260         if (!sg_cpu->iowait_boost)
261                 return;
262
263         /* Reset boost if the CPU appears to have been idle enough */
264         if (sugov_iowait_reset(sg_cpu, time, false))
265                 return;
266
267         if (!sg_cpu->iowait_boost_pending) {
268                 /*
269                  * No boost pending; reduce the boost value.
270                  */
271                 sg_cpu->iowait_boost >>= 1;
272                 if (sg_cpu->iowait_boost < IOWAIT_BOOST_MIN) {
273                         sg_cpu->iowait_boost = 0;
274                         return;
275                 }
276         }
277
278         sg_cpu->iowait_boost_pending = false;
279
280         /*
281          * sg_cpu->util is already in capacity scale; convert iowait_boost
282          * into the same scale so we can compare.
283          */
284         boost = (sg_cpu->iowait_boost * sg_cpu->max) >> SCHED_CAPACITY_SHIFT;
285         boost = uclamp_rq_util_with(cpu_rq(sg_cpu->cpu), boost, NULL);
286         if (sg_cpu->util < boost)
287                 sg_cpu->util = boost;
288 }
289
290 #ifdef CONFIG_NO_HZ_COMMON
291 static bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu)
292 {
293         unsigned long idle_calls = tick_nohz_get_idle_calls_cpu(sg_cpu->cpu);
294         bool ret = idle_calls == sg_cpu->saved_idle_calls;
295
296         sg_cpu->saved_idle_calls = idle_calls;
297         return ret;
298 }
299 #else
300 static inline bool sugov_cpu_is_busy(struct sugov_cpu *sg_cpu) { return false; }
301 #endif /* CONFIG_NO_HZ_COMMON */
302
303 /*
304  * Make sugov_should_update_freq() ignore the rate limit when DL
305  * has increased the utilization.
306  */
307 static inline void ignore_dl_rate_limit(struct sugov_cpu *sg_cpu)
308 {
309         if (cpu_bw_dl(cpu_rq(sg_cpu->cpu)) > sg_cpu->bw_dl)
310                 sg_cpu->sg_policy->limits_changed = true;
311 }
312
313 static inline bool sugov_update_single_common(struct sugov_cpu *sg_cpu,
314                                               u64 time, unsigned int flags)
315 {
316         sugov_iowait_boost(sg_cpu, time, flags);
317         sg_cpu->last_update = time;
318
319         ignore_dl_rate_limit(sg_cpu);
320
321         if (!sugov_should_update_freq(sg_cpu->sg_policy, time))
322                 return false;
323
324         sugov_get_util(sg_cpu);
325         sugov_iowait_apply(sg_cpu, time);
326
327         return true;
328 }
329
330 static void sugov_update_single_freq(struct update_util_data *hook, u64 time,
331                                      unsigned int flags)
332 {
333         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
334         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
335         unsigned int cached_freq = sg_policy->cached_raw_freq;
336         unsigned int next_f;
337
338         if (!sugov_update_single_common(sg_cpu, time, flags))
339                 return;
340
341         next_f = get_next_freq(sg_policy, sg_cpu->util, sg_cpu->max);
342         /*
343          * Do not reduce the frequency if the CPU has not been idle
344          * recently, as the reduction is likely to be premature then.
345          *
346          * Except when the rq is capped by uclamp_max.
347          */
348         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
349             sugov_cpu_is_busy(sg_cpu) && next_f < sg_policy->next_freq) {
350                 next_f = sg_policy->next_freq;
351
352                 /* Restore cached freq as next_freq has changed */
353                 sg_policy->cached_raw_freq = cached_freq;
354         }
355
356         if (!sugov_update_next_freq(sg_policy, time, next_f))
357                 return;
358
359         /*
360          * This code runs under rq->lock for the target CPU, so it won't run
361          * concurrently on two different CPUs for the same target and it is not
362          * necessary to acquire the lock in the fast switch case.
363          */
364         if (sg_policy->policy->fast_switch_enabled) {
365                 cpufreq_driver_fast_switch(sg_policy->policy, next_f);
366         } else {
367                 raw_spin_lock(&sg_policy->update_lock);
368                 sugov_deferred_update(sg_policy);
369                 raw_spin_unlock(&sg_policy->update_lock);
370         }
371 }
372
373 static void sugov_update_single_perf(struct update_util_data *hook, u64 time,
374                                      unsigned int flags)
375 {
376         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
377         unsigned long prev_util = sg_cpu->util;
378
379         /*
380          * Fall back to the "frequency" path if frequency invariance is not
381          * supported, because the direct mapping between the utilization and
382          * the performance levels depends on the frequency invariance.
383          */
384         if (!arch_scale_freq_invariant()) {
385                 sugov_update_single_freq(hook, time, flags);
386                 return;
387         }
388
389         if (!sugov_update_single_common(sg_cpu, time, flags))
390                 return;
391
392         /*
393          * Do not reduce the target performance level if the CPU has not been
394          * idle recently, as the reduction is likely to be premature then.
395          *
396          * Except when the rq is capped by uclamp_max.
397          */
398         if (!uclamp_rq_is_capped(cpu_rq(sg_cpu->cpu)) &&
399             sugov_cpu_is_busy(sg_cpu) && sg_cpu->util < prev_util)
400                 sg_cpu->util = prev_util;
401
402         cpufreq_driver_adjust_perf(sg_cpu->cpu, map_util_perf(sg_cpu->bw_dl),
403                                    map_util_perf(sg_cpu->util), sg_cpu->max);
404
405         sg_cpu->sg_policy->last_freq_update_time = time;
406 }
407
408 static unsigned int sugov_next_freq_shared(struct sugov_cpu *sg_cpu, u64 time)
409 {
410         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
411         struct cpufreq_policy *policy = sg_policy->policy;
412         unsigned long util = 0, max = 1;
413         unsigned int j;
414
415         for_each_cpu(j, policy->cpus) {
416                 struct sugov_cpu *j_sg_cpu = &per_cpu(sugov_cpu, j);
417                 unsigned long j_util, j_max;
418
419                 sugov_get_util(j_sg_cpu);
420                 sugov_iowait_apply(j_sg_cpu, time);
421                 j_util = j_sg_cpu->util;
422                 j_max = j_sg_cpu->max;
423
424                 if (j_util * max > j_max * util) {
425                         util = j_util;
426                         max = j_max;
427                 }
428         }
429
430         return get_next_freq(sg_policy, util, max);
431 }
432
433 static void
434 sugov_update_shared(struct update_util_data *hook, u64 time, unsigned int flags)
435 {
436         struct sugov_cpu *sg_cpu = container_of(hook, struct sugov_cpu, update_util);
437         struct sugov_policy *sg_policy = sg_cpu->sg_policy;
438         unsigned int next_f;
439
440         raw_spin_lock(&sg_policy->update_lock);
441
442         sugov_iowait_boost(sg_cpu, time, flags);
443         sg_cpu->last_update = time;
444
445         ignore_dl_rate_limit(sg_cpu);
446
447         if (sugov_should_update_freq(sg_policy, time)) {
448                 next_f = sugov_next_freq_shared(sg_cpu, time);
449
450                 if (!sugov_update_next_freq(sg_policy, time, next_f))
451                         goto unlock;
452
453                 if (sg_policy->policy->fast_switch_enabled)
454                         cpufreq_driver_fast_switch(sg_policy->policy, next_f);
455                 else
456                         sugov_deferred_update(sg_policy);
457         }
458 unlock:
459         raw_spin_unlock(&sg_policy->update_lock);
460 }
461
462 static void sugov_work(struct kthread_work *work)
463 {
464         struct sugov_policy *sg_policy = container_of(work, struct sugov_policy, work);
465         unsigned int freq;
466         unsigned long flags;
467
468         /*
469          * Hold sg_policy->update_lock shortly to handle the case where:
470          * in case sg_policy->next_freq is read here, and then updated by
471          * sugov_deferred_update() just before work_in_progress is set to false
472          * here, we may miss queueing the new update.
473          *
474          * Note: If a work was queued after the update_lock is released,
475          * sugov_work() will just be called again by kthread_work code; and the
476          * request will be proceed before the sugov thread sleeps.
477          */
478         raw_spin_lock_irqsave(&sg_policy->update_lock, flags);
479         freq = sg_policy->next_freq;
480         sg_policy->work_in_progress = false;
481         raw_spin_unlock_irqrestore(&sg_policy->update_lock, flags);
482
483         mutex_lock(&sg_policy->work_lock);
484         __cpufreq_driver_target(sg_policy->policy, freq, CPUFREQ_RELATION_L);
485         mutex_unlock(&sg_policy->work_lock);
486 }
487
488 static void sugov_irq_work(struct irq_work *irq_work)
489 {
490         struct sugov_policy *sg_policy;
491
492         sg_policy = container_of(irq_work, struct sugov_policy, irq_work);
493
494         kthread_queue_work(&sg_policy->worker, &sg_policy->work);
495 }
496
497 /************************** sysfs interface ************************/
498
499 static struct sugov_tunables *global_tunables;
500 static DEFINE_MUTEX(global_tunables_lock);
501
502 static inline struct sugov_tunables *to_sugov_tunables(struct gov_attr_set *attr_set)
503 {
504         return container_of(attr_set, struct sugov_tunables, attr_set);
505 }
506
507 static ssize_t rate_limit_us_show(struct gov_attr_set *attr_set, char *buf)
508 {
509         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
510
511         return sprintf(buf, "%u\n", tunables->rate_limit_us);
512 }
513
514 static ssize_t
515 rate_limit_us_store(struct gov_attr_set *attr_set, const char *buf, size_t count)
516 {
517         struct sugov_tunables *tunables = to_sugov_tunables(attr_set);
518         struct sugov_policy *sg_policy;
519         unsigned int rate_limit_us;
520
521         if (kstrtouint(buf, 10, &rate_limit_us))
522                 return -EINVAL;
523
524         tunables->rate_limit_us = rate_limit_us;
525
526         list_for_each_entry(sg_policy, &attr_set->policy_list, tunables_hook)
527                 sg_policy->freq_update_delay_ns = rate_limit_us * NSEC_PER_USEC;
528
529         return count;
530 }
531
532 static struct governor_attr rate_limit_us = __ATTR_RW(rate_limit_us);
533
534 static struct attribute *sugov_attrs[] = {
535         &rate_limit_us.attr,
536         NULL
537 };
538 ATTRIBUTE_GROUPS(sugov);
539
540 static void sugov_tunables_free(struct kobject *kobj)
541 {
542         struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
543
544         kfree(to_sugov_tunables(attr_set));
545 }
546
547 static struct kobj_type sugov_tunables_ktype = {
548         .default_groups = sugov_groups,
549         .sysfs_ops = &governor_sysfs_ops,
550         .release = &sugov_tunables_free,
551 };
552
553 /********************** cpufreq governor interface *********************/
554
555 struct cpufreq_governor schedutil_gov;
556
557 static struct sugov_policy *sugov_policy_alloc(struct cpufreq_policy *policy)
558 {
559         struct sugov_policy *sg_policy;
560
561         sg_policy = kzalloc(sizeof(*sg_policy), GFP_KERNEL);
562         if (!sg_policy)
563                 return NULL;
564
565         sg_policy->policy = policy;
566         raw_spin_lock_init(&sg_policy->update_lock);
567         return sg_policy;
568 }
569
570 static void sugov_policy_free(struct sugov_policy *sg_policy)
571 {
572         kfree(sg_policy);
573 }
574
575 static int sugov_kthread_create(struct sugov_policy *sg_policy)
576 {
577         struct task_struct *thread;
578         struct sched_attr attr = {
579                 .size           = sizeof(struct sched_attr),
580                 .sched_policy   = SCHED_DEADLINE,
581                 .sched_flags    = SCHED_FLAG_SUGOV,
582                 .sched_nice     = 0,
583                 .sched_priority = 0,
584                 /*
585                  * Fake (unused) bandwidth; workaround to "fix"
586                  * priority inheritance.
587                  */
588                 .sched_runtime  =  1000000,
589                 .sched_deadline = 10000000,
590                 .sched_period   = 10000000,
591         };
592         struct cpufreq_policy *policy = sg_policy->policy;
593         int ret;
594
595         /* kthread only required for slow path */
596         if (policy->fast_switch_enabled)
597                 return 0;
598
599         kthread_init_work(&sg_policy->work, sugov_work);
600         kthread_init_worker(&sg_policy->worker);
601         thread = kthread_create(kthread_worker_fn, &sg_policy->worker,
602                                 "sugov:%d",
603                                 cpumask_first(policy->related_cpus));
604         if (IS_ERR(thread)) {
605                 pr_err("failed to create sugov thread: %ld\n", PTR_ERR(thread));
606                 return PTR_ERR(thread);
607         }
608
609         ret = sched_setattr_nocheck(thread, &attr);
610         if (ret) {
611                 kthread_stop(thread);
612                 pr_warn("%s: failed to set SCHED_DEADLINE\n", __func__);
613                 return ret;
614         }
615
616         sg_policy->thread = thread;
617         kthread_bind_mask(thread, policy->related_cpus);
618         init_irq_work(&sg_policy->irq_work, sugov_irq_work);
619         mutex_init(&sg_policy->work_lock);
620
621         wake_up_process(thread);
622
623         return 0;
624 }
625
626 static void sugov_kthread_stop(struct sugov_policy *sg_policy)
627 {
628         /* kthread only required for slow path */
629         if (sg_policy->policy->fast_switch_enabled)
630                 return;
631
632         kthread_flush_worker(&sg_policy->worker);
633         kthread_stop(sg_policy->thread);
634         mutex_destroy(&sg_policy->work_lock);
635 }
636
637 static struct sugov_tunables *sugov_tunables_alloc(struct sugov_policy *sg_policy)
638 {
639         struct sugov_tunables *tunables;
640
641         tunables = kzalloc(sizeof(*tunables), GFP_KERNEL);
642         if (tunables) {
643                 gov_attr_set_init(&tunables->attr_set, &sg_policy->tunables_hook);
644                 if (!have_governor_per_policy())
645                         global_tunables = tunables;
646         }
647         return tunables;
648 }
649
650 static void sugov_clear_global_tunables(void)
651 {
652         if (!have_governor_per_policy())
653                 global_tunables = NULL;
654 }
655
656 static int sugov_init(struct cpufreq_policy *policy)
657 {
658         struct sugov_policy *sg_policy;
659         struct sugov_tunables *tunables;
660         int ret = 0;
661
662         /* State should be equivalent to EXIT */
663         if (policy->governor_data)
664                 return -EBUSY;
665
666         cpufreq_enable_fast_switch(policy);
667
668         sg_policy = sugov_policy_alloc(policy);
669         if (!sg_policy) {
670                 ret = -ENOMEM;
671                 goto disable_fast_switch;
672         }
673
674         ret = sugov_kthread_create(sg_policy);
675         if (ret)
676                 goto free_sg_policy;
677
678         mutex_lock(&global_tunables_lock);
679
680         if (global_tunables) {
681                 if (WARN_ON(have_governor_per_policy())) {
682                         ret = -EINVAL;
683                         goto stop_kthread;
684                 }
685                 policy->governor_data = sg_policy;
686                 sg_policy->tunables = global_tunables;
687
688                 gov_attr_set_get(&global_tunables->attr_set, &sg_policy->tunables_hook);
689                 goto out;
690         }
691
692         tunables = sugov_tunables_alloc(sg_policy);
693         if (!tunables) {
694                 ret = -ENOMEM;
695                 goto stop_kthread;
696         }
697
698         tunables->rate_limit_us = cpufreq_policy_transition_delay_us(policy);
699
700         policy->governor_data = sg_policy;
701         sg_policy->tunables = tunables;
702
703         ret = kobject_init_and_add(&tunables->attr_set.kobj, &sugov_tunables_ktype,
704                                    get_governor_parent_kobj(policy), "%s",
705                                    schedutil_gov.name);
706         if (ret)
707                 goto fail;
708
709 out:
710         mutex_unlock(&global_tunables_lock);
711         return 0;
712
713 fail:
714         kobject_put(&tunables->attr_set.kobj);
715         policy->governor_data = NULL;
716         sugov_clear_global_tunables();
717
718 stop_kthread:
719         sugov_kthread_stop(sg_policy);
720         mutex_unlock(&global_tunables_lock);
721
722 free_sg_policy:
723         sugov_policy_free(sg_policy);
724
725 disable_fast_switch:
726         cpufreq_disable_fast_switch(policy);
727
728         pr_err("initialization failed (error %d)\n", ret);
729         return ret;
730 }
731
732 static void sugov_exit(struct cpufreq_policy *policy)
733 {
734         struct sugov_policy *sg_policy = policy->governor_data;
735         struct sugov_tunables *tunables = sg_policy->tunables;
736         unsigned int count;
737
738         mutex_lock(&global_tunables_lock);
739
740         count = gov_attr_set_put(&tunables->attr_set, &sg_policy->tunables_hook);
741         policy->governor_data = NULL;
742         if (!count)
743                 sugov_clear_global_tunables();
744
745         mutex_unlock(&global_tunables_lock);
746
747         sugov_kthread_stop(sg_policy);
748         sugov_policy_free(sg_policy);
749         cpufreq_disable_fast_switch(policy);
750 }
751
752 static int sugov_start(struct cpufreq_policy *policy)
753 {
754         struct sugov_policy *sg_policy = policy->governor_data;
755         void (*uu)(struct update_util_data *data, u64 time, unsigned int flags);
756         unsigned int cpu;
757
758         sg_policy->freq_update_delay_ns = sg_policy->tunables->rate_limit_us * NSEC_PER_USEC;
759         sg_policy->last_freq_update_time        = 0;
760         sg_policy->next_freq                    = 0;
761         sg_policy->work_in_progress             = false;
762         sg_policy->limits_changed               = false;
763         sg_policy->cached_raw_freq              = 0;
764
765         sg_policy->need_freq_update = cpufreq_driver_test_flags(CPUFREQ_NEED_UPDATE_LIMITS);
766
767         for_each_cpu(cpu, policy->cpus) {
768                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
769
770                 memset(sg_cpu, 0, sizeof(*sg_cpu));
771                 sg_cpu->cpu                     = cpu;
772                 sg_cpu->sg_policy               = sg_policy;
773         }
774
775         if (policy_is_shared(policy))
776                 uu = sugov_update_shared;
777         else if (policy->fast_switch_enabled && cpufreq_driver_has_adjust_perf())
778                 uu = sugov_update_single_perf;
779         else
780                 uu = sugov_update_single_freq;
781
782         for_each_cpu(cpu, policy->cpus) {
783                 struct sugov_cpu *sg_cpu = &per_cpu(sugov_cpu, cpu);
784
785                 cpufreq_add_update_util_hook(cpu, &sg_cpu->update_util, uu);
786         }
787         return 0;
788 }
789
790 static void sugov_stop(struct cpufreq_policy *policy)
791 {
792         struct sugov_policy *sg_policy = policy->governor_data;
793         unsigned int cpu;
794
795         for_each_cpu(cpu, policy->cpus)
796                 cpufreq_remove_update_util_hook(cpu);
797
798         synchronize_rcu();
799
800         if (!policy->fast_switch_enabled) {
801                 irq_work_sync(&sg_policy->irq_work);
802                 kthread_cancel_work_sync(&sg_policy->work);
803         }
804 }
805
806 static void sugov_limits(struct cpufreq_policy *policy)
807 {
808         struct sugov_policy *sg_policy = policy->governor_data;
809
810         if (!policy->fast_switch_enabled) {
811                 mutex_lock(&sg_policy->work_lock);
812                 cpufreq_policy_apply_limits(policy);
813                 mutex_unlock(&sg_policy->work_lock);
814         }
815
816         sg_policy->limits_changed = true;
817 }
818
819 struct cpufreq_governor schedutil_gov = {
820         .name                   = "schedutil",
821         .owner                  = THIS_MODULE,
822         .flags                  = CPUFREQ_GOV_DYNAMIC_SWITCHING,
823         .init                   = sugov_init,
824         .exit                   = sugov_exit,
825         .start                  = sugov_start,
826         .stop                   = sugov_stop,
827         .limits                 = sugov_limits,
828 };
829
830 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_SCHEDUTIL
831 struct cpufreq_governor *cpufreq_default_governor(void)
832 {
833         return &schedutil_gov;
834 }
835 #endif
836
837 cpufreq_governor_init(schedutil_gov);
838
839 #ifdef CONFIG_ENERGY_MODEL
840 static void rebuild_sd_workfn(struct work_struct *work)
841 {
842         rebuild_sched_domains_energy();
843 }
844 static DECLARE_WORK(rebuild_sd_work, rebuild_sd_workfn);
845
846 /*
847  * EAS shouldn't be attempted without sugov, so rebuild the sched_domains
848  * on governor changes to make sure the scheduler knows about it.
849  */
850 void sched_cpufreq_governor_change(struct cpufreq_policy *policy,
851                                   struct cpufreq_governor *old_gov)
852 {
853         if (old_gov == &schedutil_gov || policy->governor == &schedutil_gov) {
854                 /*
855                  * When called from the cpufreq_register_driver() path, the
856                  * cpu_hotplug_lock is already held, so use a work item to
857                  * avoid nested locking in rebuild_sched_domains().
858                  */
859                 schedule_work(&rebuild_sd_work);
860         }
861
862 }
863 #endif