rcu: Remove unused ->rcu_read_unlock_special.b.deferred_qs field
[linux-2.6-microblaze.git] / kernel / rcu / tree_plugin.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *         Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27         if (IS_ENABLED(CONFIG_RCU_TRACE))
28                 pr_info("\tRCU event tracing is enabled.\n");
29         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32                         RCU_FANOUT);
33         if (rcu_fanout_exact)
34                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37         if (IS_ENABLED(CONFIG_PROVE_RCU))
38                 pr_info("\tRCU lockdep checking is enabled.\n");
39         if (RCU_NUM_LVLS >= 4)
40                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41         if (RCU_FANOUT_LEAF != 16)
42                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43                         RCU_FANOUT_LEAF);
44         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46                         rcu_fanout_leaf);
47         if (nr_cpu_ids != NR_CPUS)
48                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51                 kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53         if (blimit != DEFAULT_RCU_BLIMIT)
54                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55         if (qhimark != DEFAULT_RCU_QHIMARK)
56                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57         if (qlowmark != DEFAULT_RCU_QLOMARK)
58                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59         if (qovld != DEFAULT_RCU_QOVLD)
60                 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
61         if (jiffies_till_first_fqs != ULONG_MAX)
62                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
63         if (jiffies_till_next_fqs != ULONG_MAX)
64                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
65         if (jiffies_till_sched_qs != ULONG_MAX)
66                 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
67         if (rcu_kick_kthreads)
68                 pr_info("\tKick kthreads if too-long grace period.\n");
69         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
70                 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
71         if (gp_preinit_delay)
72                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
73         if (gp_init_delay)
74                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
75         if (gp_cleanup_delay)
76                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
77         if (!use_softirq)
78                 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
79         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
80                 pr_info("\tRCU debug extended QS entry/exit.\n");
81         rcupdate_announce_bootup_oddness();
82 }
83
84 #ifdef CONFIG_PREEMPT_RCU
85
86 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
87 static void rcu_read_unlock_special(struct task_struct *t);
88
89 /*
90  * Tell them what RCU they are running.
91  */
92 static void __init rcu_bootup_announce(void)
93 {
94         pr_info("Preemptible hierarchical RCU implementation.\n");
95         rcu_bootup_announce_oddness();
96 }
97
98 /* Flags for rcu_preempt_ctxt_queue() decision table. */
99 #define RCU_GP_TASKS    0x8
100 #define RCU_EXP_TASKS   0x4
101 #define RCU_GP_BLKD     0x2
102 #define RCU_EXP_BLKD    0x1
103
104 /*
105  * Queues a task preempted within an RCU-preempt read-side critical
106  * section into the appropriate location within the ->blkd_tasks list,
107  * depending on the states of any ongoing normal and expedited grace
108  * periods.  The ->gp_tasks pointer indicates which element the normal
109  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
110  * indicates which element the expedited grace period is waiting on (again,
111  * NULL if none).  If a grace period is waiting on a given element in the
112  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
113  * adding a task to the tail of the list blocks any grace period that is
114  * already waiting on one of the elements.  In contrast, adding a task
115  * to the head of the list won't block any grace period that is already
116  * waiting on one of the elements.
117  *
118  * This queuing is imprecise, and can sometimes make an ongoing grace
119  * period wait for a task that is not strictly speaking blocking it.
120  * Given the choice, we needlessly block a normal grace period rather than
121  * blocking an expedited grace period.
122  *
123  * Note that an endless sequence of expedited grace periods still cannot
124  * indefinitely postpone a normal grace period.  Eventually, all of the
125  * fixed number of preempted tasks blocking the normal grace period that are
126  * not also blocking the expedited grace period will resume and complete
127  * their RCU read-side critical sections.  At that point, the ->gp_tasks
128  * pointer will equal the ->exp_tasks pointer, at which point the end of
129  * the corresponding expedited grace period will also be the end of the
130  * normal grace period.
131  */
132 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
133         __releases(rnp->lock) /* But leaves rrupts disabled. */
134 {
135         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
136                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
137                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
138                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
139         struct task_struct *t = current;
140
141         raw_lockdep_assert_held_rcu_node(rnp);
142         WARN_ON_ONCE(rdp->mynode != rnp);
143         WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
144         /* RCU better not be waiting on newly onlined CPUs! */
145         WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
146                      rdp->grpmask);
147
148         /*
149          * Decide where to queue the newly blocked task.  In theory,
150          * this could be an if-statement.  In practice, when I tried
151          * that, it was quite messy.
152          */
153         switch (blkd_state) {
154         case 0:
155         case                RCU_EXP_TASKS:
156         case                RCU_EXP_TASKS + RCU_GP_BLKD:
157         case RCU_GP_TASKS:
158         case RCU_GP_TASKS + RCU_EXP_TASKS:
159
160                 /*
161                  * Blocking neither GP, or first task blocking the normal
162                  * GP but not blocking the already-waiting expedited GP.
163                  * Queue at the head of the list to avoid unnecessarily
164                  * blocking the already-waiting GPs.
165                  */
166                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
167                 break;
168
169         case                                              RCU_EXP_BLKD:
170         case                                RCU_GP_BLKD:
171         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
172         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
173         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
174         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
175
176                 /*
177                  * First task arriving that blocks either GP, or first task
178                  * arriving that blocks the expedited GP (with the normal
179                  * GP already waiting), or a task arriving that blocks
180                  * both GPs with both GPs already waiting.  Queue at the
181                  * tail of the list to avoid any GP waiting on any of the
182                  * already queued tasks that are not blocking it.
183                  */
184                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
185                 break;
186
187         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
188         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
189         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
190
191                 /*
192                  * Second or subsequent task blocking the expedited GP.
193                  * The task either does not block the normal GP, or is the
194                  * first task blocking the normal GP.  Queue just after
195                  * the first task blocking the expedited GP.
196                  */
197                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
198                 break;
199
200         case RCU_GP_TASKS +                 RCU_GP_BLKD:
201         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
202
203                 /*
204                  * Second or subsequent task blocking the normal GP.
205                  * The task does not block the expedited GP. Queue just
206                  * after the first task blocking the normal GP.
207                  */
208                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
209                 break;
210
211         default:
212
213                 /* Yet another exercise in excessive paranoia. */
214                 WARN_ON_ONCE(1);
215                 break;
216         }
217
218         /*
219          * We have now queued the task.  If it was the first one to
220          * block either grace period, update the ->gp_tasks and/or
221          * ->exp_tasks pointers, respectively, to reference the newly
222          * blocked tasks.
223          */
224         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
225                 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
226                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
227         }
228         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
229                 rnp->exp_tasks = &t->rcu_node_entry;
230         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
231                      !(rnp->qsmask & rdp->grpmask));
232         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
233                      !(rnp->expmask & rdp->grpmask));
234         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
235
236         /*
237          * Report the quiescent state for the expedited GP.  This expedited
238          * GP should not be able to end until we report, so there should be
239          * no need to check for a subsequent expedited GP.  (Though we are
240          * still in a quiescent state in any case.)
241          */
242         if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
243                 rcu_report_exp_rdp(rdp);
244         else
245                 WARN_ON_ONCE(rdp->exp_deferred_qs);
246 }
247
248 /*
249  * Record a preemptible-RCU quiescent state for the specified CPU.
250  * Note that this does not necessarily mean that the task currently running
251  * on the CPU is in a quiescent state:  Instead, it means that the current
252  * grace period need not wait on any RCU read-side critical section that
253  * starts later on this CPU.  It also means that if the current task is
254  * in an RCU read-side critical section, it has already added itself to
255  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
256  * current task, there might be any number of other tasks blocked while
257  * in an RCU read-side critical section.
258  *
259  * Callers to this function must disable preemption.
260  */
261 static void rcu_qs(void)
262 {
263         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
264         if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
265                 trace_rcu_grace_period(TPS("rcu_preempt"),
266                                        __this_cpu_read(rcu_data.gp_seq),
267                                        TPS("cpuqs"));
268                 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
269                 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
270                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
271         }
272 }
273
274 /*
275  * We have entered the scheduler, and the current task might soon be
276  * context-switched away from.  If this task is in an RCU read-side
277  * critical section, we will no longer be able to rely on the CPU to
278  * record that fact, so we enqueue the task on the blkd_tasks list.
279  * The task will dequeue itself when it exits the outermost enclosing
280  * RCU read-side critical section.  Therefore, the current grace period
281  * cannot be permitted to complete until the blkd_tasks list entries
282  * predating the current grace period drain, in other words, until
283  * rnp->gp_tasks becomes NULL.
284  *
285  * Caller must disable interrupts.
286  */
287 void rcu_note_context_switch(bool preempt)
288 {
289         struct task_struct *t = current;
290         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
291         struct rcu_node *rnp;
292
293         trace_rcu_utilization(TPS("Start context switch"));
294         lockdep_assert_irqs_disabled();
295         WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
296         if (rcu_preempt_depth() > 0 &&
297             !t->rcu_read_unlock_special.b.blocked) {
298
299                 /* Possibly blocking in an RCU read-side critical section. */
300                 rnp = rdp->mynode;
301                 raw_spin_lock_rcu_node(rnp);
302                 t->rcu_read_unlock_special.b.blocked = true;
303                 t->rcu_blocked_node = rnp;
304
305                 /*
306                  * Verify the CPU's sanity, trace the preemption, and
307                  * then queue the task as required based on the states
308                  * of any ongoing and expedited grace periods.
309                  */
310                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312                 trace_rcu_preempt_task(rcu_state.name,
313                                        t->pid,
314                                        (rnp->qsmask & rdp->grpmask)
315                                        ? rnp->gp_seq
316                                        : rcu_seq_snap(&rnp->gp_seq));
317                 rcu_preempt_ctxt_queue(rnp, rdp);
318         } else {
319                 rcu_preempt_deferred_qs(t);
320         }
321
322         /*
323          * Either we were not in an RCU read-side critical section to
324          * begin with, or we have now recorded that critical section
325          * globally.  Either way, we can now note a quiescent state
326          * for this CPU.  Again, if we were in an RCU read-side critical
327          * section, and if that critical section was blocking the current
328          * grace period, then the fact that the task has been enqueued
329          * means that we continue to block the current grace period.
330          */
331         rcu_qs();
332         if (rdp->exp_deferred_qs)
333                 rcu_report_exp_rdp(rdp);
334         trace_rcu_utilization(TPS("End context switch"));
335 }
336 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
337
338 /*
339  * Check for preempted RCU readers blocking the current grace period
340  * for the specified rcu_node structure.  If the caller needs a reliable
341  * answer, it must hold the rcu_node's ->lock.
342  */
343 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
344 {
345         return READ_ONCE(rnp->gp_tasks) != NULL;
346 }
347
348 /* Bias and limit values for ->rcu_read_lock_nesting. */
349 #define RCU_NEST_BIAS INT_MAX
350 #define RCU_NEST_NMAX (-INT_MAX / 2)
351 #define RCU_NEST_PMAX (INT_MAX / 2)
352
353 static void rcu_preempt_read_enter(void)
354 {
355         current->rcu_read_lock_nesting++;
356 }
357
358 static void rcu_preempt_read_exit(void)
359 {
360         current->rcu_read_lock_nesting--;
361 }
362
363 static void rcu_preempt_depth_set(int val)
364 {
365         current->rcu_read_lock_nesting = val;
366 }
367
368 /*
369  * Preemptible RCU implementation for rcu_read_lock().
370  * Just increment ->rcu_read_lock_nesting, shared state will be updated
371  * if we block.
372  */
373 void __rcu_read_lock(void)
374 {
375         rcu_preempt_read_enter();
376         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
377                 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
378         barrier();  /* critical section after entry code. */
379 }
380 EXPORT_SYMBOL_GPL(__rcu_read_lock);
381
382 /*
383  * Preemptible RCU implementation for rcu_read_unlock().
384  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
385  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
386  * invoke rcu_read_unlock_special() to clean up after a context switch
387  * in an RCU read-side critical section and other special cases.
388  */
389 void __rcu_read_unlock(void)
390 {
391         struct task_struct *t = current;
392
393         if (rcu_preempt_depth() != 1) {
394                 rcu_preempt_read_exit();
395         } else {
396                 barrier();  /* critical section before exit code. */
397                 rcu_preempt_depth_set(-RCU_NEST_BIAS);
398                 barrier();  /* assign before ->rcu_read_unlock_special load */
399                 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
400                         rcu_read_unlock_special(t);
401                 barrier();  /* ->rcu_read_unlock_special load before assign */
402                 rcu_preempt_depth_set(0);
403         }
404         if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
405                 int rrln = rcu_preempt_depth();
406
407                 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
408         }
409 }
410 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
411
412 /*
413  * Advance a ->blkd_tasks-list pointer to the next entry, instead
414  * returning NULL if at the end of the list.
415  */
416 static struct list_head *rcu_next_node_entry(struct task_struct *t,
417                                              struct rcu_node *rnp)
418 {
419         struct list_head *np;
420
421         np = t->rcu_node_entry.next;
422         if (np == &rnp->blkd_tasks)
423                 np = NULL;
424         return np;
425 }
426
427 /*
428  * Return true if the specified rcu_node structure has tasks that were
429  * preempted within an RCU read-side critical section.
430  */
431 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
432 {
433         return !list_empty(&rnp->blkd_tasks);
434 }
435
436 /*
437  * Report deferred quiescent states.  The deferral time can
438  * be quite short, for example, in the case of the call from
439  * rcu_read_unlock_special().
440  */
441 static void
442 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
443 {
444         bool empty_exp;
445         bool empty_norm;
446         bool empty_exp_now;
447         struct list_head *np;
448         bool drop_boost_mutex = false;
449         struct rcu_data *rdp;
450         struct rcu_node *rnp;
451         union rcu_special special;
452
453         /*
454          * If RCU core is waiting for this CPU to exit its critical section,
455          * report the fact that it has exited.  Because irqs are disabled,
456          * t->rcu_read_unlock_special cannot change.
457          */
458         special = t->rcu_read_unlock_special;
459         rdp = this_cpu_ptr(&rcu_data);
460         if (!special.s && !rdp->exp_deferred_qs) {
461                 local_irq_restore(flags);
462                 return;
463         }
464         t->rcu_read_unlock_special.s = 0;
465         if (special.b.need_qs)
466                 rcu_qs();
467
468         /*
469          * Respond to a request by an expedited grace period for a
470          * quiescent state from this CPU.  Note that requests from
471          * tasks are handled when removing the task from the
472          * blocked-tasks list below.
473          */
474         if (rdp->exp_deferred_qs)
475                 rcu_report_exp_rdp(rdp);
476
477         /* Clean up if blocked during RCU read-side critical section. */
478         if (special.b.blocked) {
479
480                 /*
481                  * Remove this task from the list it blocked on.  The task
482                  * now remains queued on the rcu_node corresponding to the
483                  * CPU it first blocked on, so there is no longer any need
484                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
485                  */
486                 rnp = t->rcu_blocked_node;
487                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
488                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
489                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
490                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
491                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
492                              (!empty_norm || rnp->qsmask));
493                 empty_exp = sync_rcu_exp_done(rnp);
494                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
495                 np = rcu_next_node_entry(t, rnp);
496                 list_del_init(&t->rcu_node_entry);
497                 t->rcu_blocked_node = NULL;
498                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
499                                                 rnp->gp_seq, t->pid);
500                 if (&t->rcu_node_entry == rnp->gp_tasks)
501                         WRITE_ONCE(rnp->gp_tasks, np);
502                 if (&t->rcu_node_entry == rnp->exp_tasks)
503                         rnp->exp_tasks = np;
504                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
505                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
506                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
507                         if (&t->rcu_node_entry == rnp->boost_tasks)
508                                 rnp->boost_tasks = np;
509                 }
510
511                 /*
512                  * If this was the last task on the current list, and if
513                  * we aren't waiting on any CPUs, report the quiescent state.
514                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
515                  * so we must take a snapshot of the expedited state.
516                  */
517                 empty_exp_now = sync_rcu_exp_done(rnp);
518                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
519                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
520                                                          rnp->gp_seq,
521                                                          0, rnp->qsmask,
522                                                          rnp->level,
523                                                          rnp->grplo,
524                                                          rnp->grphi,
525                                                          !!rnp->gp_tasks);
526                         rcu_report_unblock_qs_rnp(rnp, flags);
527                 } else {
528                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529                 }
530
531                 /* Unboost if we were boosted. */
532                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
533                         rt_mutex_futex_unlock(&rnp->boost_mtx);
534
535                 /*
536                  * If this was the last task on the expedited lists,
537                  * then we need to report up the rcu_node hierarchy.
538                  */
539                 if (!empty_exp && empty_exp_now)
540                         rcu_report_exp_rnp(rnp, true);
541         } else {
542                 local_irq_restore(flags);
543         }
544 }
545
546 /*
547  * Is a deferred quiescent-state pending, and are we also not in
548  * an RCU read-side critical section?  It is the caller's responsibility
549  * to ensure it is otherwise safe to report any deferred quiescent
550  * states.  The reason for this is that it is safe to report a
551  * quiescent state during context switch even though preemption
552  * is disabled.  This function cannot be expected to understand these
553  * nuances, so the caller must handle them.
554  */
555 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
556 {
557         return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
558                 READ_ONCE(t->rcu_read_unlock_special.s)) &&
559                rcu_preempt_depth() <= 0;
560 }
561
562 /*
563  * Report a deferred quiescent state if needed and safe to do so.
564  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
565  * not being in an RCU read-side critical section.  The caller must
566  * evaluate safety in terms of interrupt, softirq, and preemption
567  * disabling.
568  */
569 static void rcu_preempt_deferred_qs(struct task_struct *t)
570 {
571         unsigned long flags;
572
573         if (!rcu_preempt_need_deferred_qs(t))
574                 return;
575         local_irq_save(flags);
576         rcu_preempt_deferred_qs_irqrestore(t, flags);
577 }
578
579 /*
580  * Minimal handler to give the scheduler a chance to re-evaluate.
581  */
582 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
583 {
584         struct rcu_data *rdp;
585
586         rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
587         rdp->defer_qs_iw_pending = false;
588 }
589
590 /*
591  * Handle special cases during rcu_read_unlock(), such as needing to
592  * notify RCU core processing or task having blocked during the RCU
593  * read-side critical section.
594  */
595 static void rcu_read_unlock_special(struct task_struct *t)
596 {
597         unsigned long flags;
598         bool preempt_bh_were_disabled =
599                         !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
600         bool irqs_were_disabled;
601
602         /* NMI handlers cannot block and cannot safely manipulate state. */
603         if (in_nmi())
604                 return;
605
606         local_irq_save(flags);
607         irqs_were_disabled = irqs_disabled_flags(flags);
608         if (preempt_bh_were_disabled || irqs_were_disabled) {
609                 bool exp;
610                 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
611                 struct rcu_node *rnp = rdp->mynode;
612
613                 exp = (t->rcu_blocked_node &&
614                        READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
615                       (rdp->grpmask & READ_ONCE(rnp->expmask));
616                 // Need to defer quiescent state until everything is enabled.
617                 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
618                         // Using softirq, safe to awaken, and either the
619                         // wakeup is free or there is an expedited GP.
620                         raise_softirq_irqoff(RCU_SOFTIRQ);
621                 } else {
622                         // Enabling BH or preempt does reschedule, so...
623                         // Also if no expediting, slow is OK.
624                         // Plus nohz_full CPUs eventually get tick enabled.
625                         set_tsk_need_resched(current);
626                         set_preempt_need_resched();
627                         if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
628                             !rdp->defer_qs_iw_pending && exp) {
629                                 // Get scheduler to re-evaluate and call hooks.
630                                 // If !IRQ_WORK, FQS scan will eventually IPI.
631                                 init_irq_work(&rdp->defer_qs_iw,
632                                               rcu_preempt_deferred_qs_handler);
633                                 rdp->defer_qs_iw_pending = true;
634                                 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
635                         }
636                 }
637                 local_irq_restore(flags);
638                 return;
639         }
640         rcu_preempt_deferred_qs_irqrestore(t, flags);
641 }
642
643 /*
644  * Check that the list of blocked tasks for the newly completed grace
645  * period is in fact empty.  It is a serious bug to complete a grace
646  * period that still has RCU readers blocked!  This function must be
647  * invoked -before- updating this rnp's ->gp_seq.
648  *
649  * Also, if there are blocked tasks on the list, they automatically
650  * block the newly created grace period, so set up ->gp_tasks accordingly.
651  */
652 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
653 {
654         struct task_struct *t;
655
656         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
657         raw_lockdep_assert_held_rcu_node(rnp);
658         if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
659                 dump_blkd_tasks(rnp, 10);
660         if (rcu_preempt_has_tasks(rnp) &&
661             (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
662                 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
663                 t = container_of(rnp->gp_tasks, struct task_struct,
664                                  rcu_node_entry);
665                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
666                                                 rnp->gp_seq, t->pid);
667         }
668         WARN_ON_ONCE(rnp->qsmask);
669 }
670
671 /*
672  * Check for a quiescent state from the current CPU, including voluntary
673  * context switches for Tasks RCU.  When a task blocks, the task is
674  * recorded in the corresponding CPU's rcu_node structure, which is checked
675  * elsewhere, hence this function need only check for quiescent states
676  * related to the current CPU, not to those related to tasks.
677  */
678 static void rcu_flavor_sched_clock_irq(int user)
679 {
680         struct task_struct *t = current;
681
682         if (user || rcu_is_cpu_rrupt_from_idle()) {
683                 rcu_note_voluntary_context_switch(current);
684         }
685         if (rcu_preempt_depth() > 0 ||
686             (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
687                 /* No QS, force context switch if deferred. */
688                 if (rcu_preempt_need_deferred_qs(t)) {
689                         set_tsk_need_resched(t);
690                         set_preempt_need_resched();
691                 }
692         } else if (rcu_preempt_need_deferred_qs(t)) {
693                 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
694                 return;
695         } else if (!rcu_preempt_depth()) {
696                 rcu_qs(); /* Report immediate QS. */
697                 return;
698         }
699
700         /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
701         if (rcu_preempt_depth() > 0 &&
702             __this_cpu_read(rcu_data.core_needs_qs) &&
703             __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
704             !t->rcu_read_unlock_special.b.need_qs &&
705             time_after(jiffies, rcu_state.gp_start + HZ))
706                 t->rcu_read_unlock_special.b.need_qs = true;
707 }
708
709 /*
710  * Check for a task exiting while in a preemptible-RCU read-side
711  * critical section, clean up if so.  No need to issue warnings, as
712  * debug_check_no_locks_held() already does this if lockdep is enabled.
713  * Besides, if this function does anything other than just immediately
714  * return, there was a bug of some sort.  Spewing warnings from this
715  * function is like as not to simply obscure important prior warnings.
716  */
717 void exit_rcu(void)
718 {
719         struct task_struct *t = current;
720
721         if (unlikely(!list_empty(&current->rcu_node_entry))) {
722                 rcu_preempt_depth_set(1);
723                 barrier();
724                 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
725         } else if (unlikely(rcu_preempt_depth())) {
726                 rcu_preempt_depth_set(1);
727         } else {
728                 return;
729         }
730         __rcu_read_unlock();
731         rcu_preempt_deferred_qs(current);
732 }
733
734 /*
735  * Dump the blocked-tasks state, but limit the list dump to the
736  * specified number of elements.
737  */
738 static void
739 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
740 {
741         int cpu;
742         int i;
743         struct list_head *lhp;
744         bool onl;
745         struct rcu_data *rdp;
746         struct rcu_node *rnp1;
747
748         raw_lockdep_assert_held_rcu_node(rnp);
749         pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
750                 __func__, rnp->grplo, rnp->grphi, rnp->level,
751                 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
752         for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
753                 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
754                         __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
755         pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
756                 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
757                 rnp->exp_tasks);
758         pr_info("%s: ->blkd_tasks", __func__);
759         i = 0;
760         list_for_each(lhp, &rnp->blkd_tasks) {
761                 pr_cont(" %p", lhp);
762                 if (++i >= ncheck)
763                         break;
764         }
765         pr_cont("\n");
766         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
767                 rdp = per_cpu_ptr(&rcu_data, cpu);
768                 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
769                 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
770                         cpu, ".o"[onl],
771                         (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
772                         (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
773         }
774 }
775
776 #else /* #ifdef CONFIG_PREEMPT_RCU */
777
778 /*
779  * Tell them what RCU they are running.
780  */
781 static void __init rcu_bootup_announce(void)
782 {
783         pr_info("Hierarchical RCU implementation.\n");
784         rcu_bootup_announce_oddness();
785 }
786
787 /*
788  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
789  * how many quiescent states passed, just if there was at least one since
790  * the start of the grace period, this just sets a flag.  The caller must
791  * have disabled preemption.
792  */
793 static void rcu_qs(void)
794 {
795         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
796         if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
797                 return;
798         trace_rcu_grace_period(TPS("rcu_sched"),
799                                __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
800         __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
801         if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
802                 return;
803         __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
804         rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
805 }
806
807 /*
808  * Register an urgently needed quiescent state.  If there is an
809  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
810  * dyntick-idle quiescent state visible to other CPUs, which will in
811  * some cases serve for expedited as well as normal grace periods.
812  * Either way, register a lightweight quiescent state.
813  */
814 void rcu_all_qs(void)
815 {
816         unsigned long flags;
817
818         if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
819                 return;
820         preempt_disable();
821         /* Load rcu_urgent_qs before other flags. */
822         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
823                 preempt_enable();
824                 return;
825         }
826         this_cpu_write(rcu_data.rcu_urgent_qs, false);
827         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
828                 local_irq_save(flags);
829                 rcu_momentary_dyntick_idle();
830                 local_irq_restore(flags);
831         }
832         rcu_qs();
833         preempt_enable();
834 }
835 EXPORT_SYMBOL_GPL(rcu_all_qs);
836
837 /*
838  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
839  */
840 void rcu_note_context_switch(bool preempt)
841 {
842         trace_rcu_utilization(TPS("Start context switch"));
843         rcu_qs();
844         /* Load rcu_urgent_qs before other flags. */
845         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
846                 goto out;
847         this_cpu_write(rcu_data.rcu_urgent_qs, false);
848         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
849                 rcu_momentary_dyntick_idle();
850         if (!preempt)
851                 rcu_tasks_qs(current);
852 out:
853         trace_rcu_utilization(TPS("End context switch"));
854 }
855 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
856
857 /*
858  * Because preemptible RCU does not exist, there are never any preempted
859  * RCU readers.
860  */
861 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
862 {
863         return 0;
864 }
865
866 /*
867  * Because there is no preemptible RCU, there can be no readers blocked.
868  */
869 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
870 {
871         return false;
872 }
873
874 /*
875  * Because there is no preemptible RCU, there can be no deferred quiescent
876  * states.
877  */
878 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
879 {
880         return false;
881 }
882 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
883
884 /*
885  * Because there is no preemptible RCU, there can be no readers blocked,
886  * so there is no need to check for blocked tasks.  So check only for
887  * bogus qsmask values.
888  */
889 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
890 {
891         WARN_ON_ONCE(rnp->qsmask);
892 }
893
894 /*
895  * Check to see if this CPU is in a non-context-switch quiescent state,
896  * namely user mode and idle loop.
897  */
898 static void rcu_flavor_sched_clock_irq(int user)
899 {
900         if (user || rcu_is_cpu_rrupt_from_idle()) {
901
902                 /*
903                  * Get here if this CPU took its interrupt from user
904                  * mode or from the idle loop, and if this is not a
905                  * nested interrupt.  In this case, the CPU is in
906                  * a quiescent state, so note it.
907                  *
908                  * No memory barrier is required here because rcu_qs()
909                  * references only CPU-local variables that other CPUs
910                  * neither access nor modify, at least not while the
911                  * corresponding CPU is online.
912                  */
913
914                 rcu_qs();
915         }
916 }
917
918 /*
919  * Because preemptible RCU does not exist, tasks cannot possibly exit
920  * while in preemptible RCU read-side critical sections.
921  */
922 void exit_rcu(void)
923 {
924 }
925
926 /*
927  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
928  */
929 static void
930 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
931 {
932         WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
933 }
934
935 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
936
937 /*
938  * If boosting, set rcuc kthreads to realtime priority.
939  */
940 static void rcu_cpu_kthread_setup(unsigned int cpu)
941 {
942 #ifdef CONFIG_RCU_BOOST
943         struct sched_param sp;
944
945         sp.sched_priority = kthread_prio;
946         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
947 #endif /* #ifdef CONFIG_RCU_BOOST */
948 }
949
950 #ifdef CONFIG_RCU_BOOST
951
952 /*
953  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
954  * or ->boost_tasks, advancing the pointer to the next task in the
955  * ->blkd_tasks list.
956  *
957  * Note that irqs must be enabled: boosting the task can block.
958  * Returns 1 if there are more tasks needing to be boosted.
959  */
960 static int rcu_boost(struct rcu_node *rnp)
961 {
962         unsigned long flags;
963         struct task_struct *t;
964         struct list_head *tb;
965
966         if (READ_ONCE(rnp->exp_tasks) == NULL &&
967             READ_ONCE(rnp->boost_tasks) == NULL)
968                 return 0;  /* Nothing left to boost. */
969
970         raw_spin_lock_irqsave_rcu_node(rnp, flags);
971
972         /*
973          * Recheck under the lock: all tasks in need of boosting
974          * might exit their RCU read-side critical sections on their own.
975          */
976         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
977                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
978                 return 0;
979         }
980
981         /*
982          * Preferentially boost tasks blocking expedited grace periods.
983          * This cannot starve the normal grace periods because a second
984          * expedited grace period must boost all blocked tasks, including
985          * those blocking the pre-existing normal grace period.
986          */
987         if (rnp->exp_tasks != NULL)
988                 tb = rnp->exp_tasks;
989         else
990                 tb = rnp->boost_tasks;
991
992         /*
993          * We boost task t by manufacturing an rt_mutex that appears to
994          * be held by task t.  We leave a pointer to that rt_mutex where
995          * task t can find it, and task t will release the mutex when it
996          * exits its outermost RCU read-side critical section.  Then
997          * simply acquiring this artificial rt_mutex will boost task
998          * t's priority.  (Thanks to tglx for suggesting this approach!)
999          *
1000          * Note that task t must acquire rnp->lock to remove itself from
1001          * the ->blkd_tasks list, which it will do from exit() if from
1002          * nowhere else.  We therefore are guaranteed that task t will
1003          * stay around at least until we drop rnp->lock.  Note that
1004          * rnp->lock also resolves races between our priority boosting
1005          * and task t's exiting its outermost RCU read-side critical
1006          * section.
1007          */
1008         t = container_of(tb, struct task_struct, rcu_node_entry);
1009         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1010         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1011         /* Lock only for side effect: boosts task t's priority. */
1012         rt_mutex_lock(&rnp->boost_mtx);
1013         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1014
1015         return READ_ONCE(rnp->exp_tasks) != NULL ||
1016                READ_ONCE(rnp->boost_tasks) != NULL;
1017 }
1018
1019 /*
1020  * Priority-boosting kthread, one per leaf rcu_node.
1021  */
1022 static int rcu_boost_kthread(void *arg)
1023 {
1024         struct rcu_node *rnp = (struct rcu_node *)arg;
1025         int spincnt = 0;
1026         int more2boost;
1027
1028         trace_rcu_utilization(TPS("Start boost kthread@init"));
1029         for (;;) {
1030                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1031                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1032                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1033                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1034                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1035                 more2boost = rcu_boost(rnp);
1036                 if (more2boost)
1037                         spincnt++;
1038                 else
1039                         spincnt = 0;
1040                 if (spincnt > 10) {
1041                         WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1042                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1043                         schedule_timeout_interruptible(2);
1044                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1045                         spincnt = 0;
1046                 }
1047         }
1048         /* NOTREACHED */
1049         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1050         return 0;
1051 }
1052
1053 /*
1054  * Check to see if it is time to start boosting RCU readers that are
1055  * blocking the current grace period, and, if so, tell the per-rcu_node
1056  * kthread to start boosting them.  If there is an expedited grace
1057  * period in progress, it is always time to boost.
1058  *
1059  * The caller must hold rnp->lock, which this function releases.
1060  * The ->boost_kthread_task is immortal, so we don't need to worry
1061  * about it going away.
1062  */
1063 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1064         __releases(rnp->lock)
1065 {
1066         raw_lockdep_assert_held_rcu_node(rnp);
1067         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1068                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1069                 return;
1070         }
1071         if (rnp->exp_tasks != NULL ||
1072             (rnp->gp_tasks != NULL &&
1073              rnp->boost_tasks == NULL &&
1074              rnp->qsmask == 0 &&
1075              (ULONG_CMP_GE(jiffies, rnp->boost_time) || rcu_state.cbovld))) {
1076                 if (rnp->exp_tasks == NULL)
1077                         rnp->boost_tasks = rnp->gp_tasks;
1078                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1079                 rcu_wake_cond(rnp->boost_kthread_task,
1080                               READ_ONCE(rnp->boost_kthread_status));
1081         } else {
1082                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1083         }
1084 }
1085
1086 /*
1087  * Is the current CPU running the RCU-callbacks kthread?
1088  * Caller must have preemption disabled.
1089  */
1090 static bool rcu_is_callbacks_kthread(void)
1091 {
1092         return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1093 }
1094
1095 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1096
1097 /*
1098  * Do priority-boost accounting for the start of a new grace period.
1099  */
1100 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1101 {
1102         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1103 }
1104
1105 /*
1106  * Create an RCU-boost kthread for the specified node if one does not
1107  * already exist.  We only create this kthread for preemptible RCU.
1108  * Returns zero if all is well, a negated errno otherwise.
1109  */
1110 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1111 {
1112         int rnp_index = rnp - rcu_get_root();
1113         unsigned long flags;
1114         struct sched_param sp;
1115         struct task_struct *t;
1116
1117         if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1118                 return;
1119
1120         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1121                 return;
1122
1123         rcu_state.boost = 1;
1124
1125         if (rnp->boost_kthread_task != NULL)
1126                 return;
1127
1128         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1129                            "rcub/%d", rnp_index);
1130         if (WARN_ON_ONCE(IS_ERR(t)))
1131                 return;
1132
1133         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1134         rnp->boost_kthread_task = t;
1135         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1136         sp.sched_priority = kthread_prio;
1137         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1138         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1139 }
1140
1141 /*
1142  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1143  * served by the rcu_node in question.  The CPU hotplug lock is still
1144  * held, so the value of rnp->qsmaskinit will be stable.
1145  *
1146  * We don't include outgoingcpu in the affinity set, use -1 if there is
1147  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1148  * this function allows the kthread to execute on any CPU.
1149  */
1150 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1151 {
1152         struct task_struct *t = rnp->boost_kthread_task;
1153         unsigned long mask = rcu_rnp_online_cpus(rnp);
1154         cpumask_var_t cm;
1155         int cpu;
1156
1157         if (!t)
1158                 return;
1159         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1160                 return;
1161         for_each_leaf_node_possible_cpu(rnp, cpu)
1162                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1163                     cpu != outgoingcpu)
1164                         cpumask_set_cpu(cpu, cm);
1165         if (cpumask_weight(cm) == 0)
1166                 cpumask_setall(cm);
1167         set_cpus_allowed_ptr(t, cm);
1168         free_cpumask_var(cm);
1169 }
1170
1171 /*
1172  * Spawn boost kthreads -- called as soon as the scheduler is running.
1173  */
1174 static void __init rcu_spawn_boost_kthreads(void)
1175 {
1176         struct rcu_node *rnp;
1177
1178         rcu_for_each_leaf_node(rnp)
1179                 rcu_spawn_one_boost_kthread(rnp);
1180 }
1181
1182 static void rcu_prepare_kthreads(int cpu)
1183 {
1184         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1185         struct rcu_node *rnp = rdp->mynode;
1186
1187         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1188         if (rcu_scheduler_fully_active)
1189                 rcu_spawn_one_boost_kthread(rnp);
1190 }
1191
1192 #else /* #ifdef CONFIG_RCU_BOOST */
1193
1194 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1195         __releases(rnp->lock)
1196 {
1197         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1198 }
1199
1200 static bool rcu_is_callbacks_kthread(void)
1201 {
1202         return false;
1203 }
1204
1205 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1206 {
1207 }
1208
1209 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1210 {
1211 }
1212
1213 static void __init rcu_spawn_boost_kthreads(void)
1214 {
1215 }
1216
1217 static void rcu_prepare_kthreads(int cpu)
1218 {
1219 }
1220
1221 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1222
1223 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1224
1225 /*
1226  * Check to see if any future non-offloaded RCU-related work will need
1227  * to be done by the current CPU, even if none need be done immediately,
1228  * returning 1 if so.  This function is part of the RCU implementation;
1229  * it is -not- an exported member of the RCU API.
1230  *
1231  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1232  * CPU has RCU callbacks queued.
1233  */
1234 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1235 {
1236         *nextevt = KTIME_MAX;
1237         return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1238                !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1239 }
1240
1241 /*
1242  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1243  * after it.
1244  */
1245 static void rcu_cleanup_after_idle(void)
1246 {
1247 }
1248
1249 /*
1250  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1251  * is nothing.
1252  */
1253 static void rcu_prepare_for_idle(void)
1254 {
1255 }
1256
1257 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1258
1259 /*
1260  * This code is invoked when a CPU goes idle, at which point we want
1261  * to have the CPU do everything required for RCU so that it can enter
1262  * the energy-efficient dyntick-idle mode.
1263  *
1264  * The following preprocessor symbol controls this:
1265  *
1266  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1267  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1268  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1269  *      benchmarkers who might otherwise be tempted to set this to a large
1270  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1271  *      system.  And if you are -that- concerned about energy efficiency,
1272  *      just power the system down and be done with it!
1273  *
1274  * The value below works well in practice.  If future workloads require
1275  * adjustment, they can be converted into kernel config parameters, though
1276  * making the state machine smarter might be a better option.
1277  */
1278 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1279
1280 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1281 module_param(rcu_idle_gp_delay, int, 0644);
1282
1283 /*
1284  * Try to advance callbacks on the current CPU, but only if it has been
1285  * awhile since the last time we did so.  Afterwards, if there are any
1286  * callbacks ready for immediate invocation, return true.
1287  */
1288 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1289 {
1290         bool cbs_ready = false;
1291         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1292         struct rcu_node *rnp;
1293
1294         /* Exit early if we advanced recently. */
1295         if (jiffies == rdp->last_advance_all)
1296                 return false;
1297         rdp->last_advance_all = jiffies;
1298
1299         rnp = rdp->mynode;
1300
1301         /*
1302          * Don't bother checking unless a grace period has
1303          * completed since we last checked and there are
1304          * callbacks not yet ready to invoke.
1305          */
1306         if ((rcu_seq_completed_gp(rdp->gp_seq,
1307                                   rcu_seq_current(&rnp->gp_seq)) ||
1308              unlikely(READ_ONCE(rdp->gpwrap))) &&
1309             rcu_segcblist_pend_cbs(&rdp->cblist))
1310                 note_gp_changes(rdp);
1311
1312         if (rcu_segcblist_ready_cbs(&rdp->cblist))
1313                 cbs_ready = true;
1314         return cbs_ready;
1315 }
1316
1317 /*
1318  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1319  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1320  * caller about what to set the timeout.
1321  *
1322  * The caller must have disabled interrupts.
1323  */
1324 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1325 {
1326         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1327         unsigned long dj;
1328
1329         lockdep_assert_irqs_disabled();
1330
1331         /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1332         if (rcu_segcblist_empty(&rdp->cblist) ||
1333             rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1334                 *nextevt = KTIME_MAX;
1335                 return 0;
1336         }
1337
1338         /* Attempt to advance callbacks. */
1339         if (rcu_try_advance_all_cbs()) {
1340                 /* Some ready to invoke, so initiate later invocation. */
1341                 invoke_rcu_core();
1342                 return 1;
1343         }
1344         rdp->last_accelerate = jiffies;
1345
1346         /* Request timer and round. */
1347         dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1348
1349         *nextevt = basemono + dj * TICK_NSEC;
1350         return 0;
1351 }
1352
1353 /*
1354  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1355  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1356  * major task is to accelerate (that is, assign grace-period numbers to) any
1357  * recently arrived callbacks.
1358  *
1359  * The caller must have disabled interrupts.
1360  */
1361 static void rcu_prepare_for_idle(void)
1362 {
1363         bool needwake;
1364         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1365         struct rcu_node *rnp;
1366         int tne;
1367
1368         lockdep_assert_irqs_disabled();
1369         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1370                 return;
1371
1372         /* Handle nohz enablement switches conservatively. */
1373         tne = READ_ONCE(tick_nohz_active);
1374         if (tne != rdp->tick_nohz_enabled_snap) {
1375                 if (!rcu_segcblist_empty(&rdp->cblist))
1376                         invoke_rcu_core(); /* force nohz to see update. */
1377                 rdp->tick_nohz_enabled_snap = tne;
1378                 return;
1379         }
1380         if (!tne)
1381                 return;
1382
1383         /*
1384          * If we have not yet accelerated this jiffy, accelerate all
1385          * callbacks on this CPU.
1386          */
1387         if (rdp->last_accelerate == jiffies)
1388                 return;
1389         rdp->last_accelerate = jiffies;
1390         if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1391                 rnp = rdp->mynode;
1392                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1393                 needwake = rcu_accelerate_cbs(rnp, rdp);
1394                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1395                 if (needwake)
1396                         rcu_gp_kthread_wake();
1397         }
1398 }
1399
1400 /*
1401  * Clean up for exit from idle.  Attempt to advance callbacks based on
1402  * any grace periods that elapsed while the CPU was idle, and if any
1403  * callbacks are now ready to invoke, initiate invocation.
1404  */
1405 static void rcu_cleanup_after_idle(void)
1406 {
1407         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1408
1409         lockdep_assert_irqs_disabled();
1410         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1411                 return;
1412         if (rcu_try_advance_all_cbs())
1413                 invoke_rcu_core();
1414 }
1415
1416 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1417
1418 #ifdef CONFIG_RCU_NOCB_CPU
1419
1420 /*
1421  * Offload callback processing from the boot-time-specified set of CPUs
1422  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1423  * created that pull the callbacks from the corresponding CPU, wait for
1424  * a grace period to elapse, and invoke the callbacks.  These kthreads
1425  * are organized into GP kthreads, which manage incoming callbacks, wait for
1426  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1427  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1428  * do a wake_up() on their GP kthread when they insert a callback into any
1429  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1430  * in which case each kthread actively polls its CPU.  (Which isn't so great
1431  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1432  *
1433  * This is intended to be used in conjunction with Frederic Weisbecker's
1434  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1435  * running CPU-bound user-mode computations.
1436  *
1437  * Offloading of callbacks can also be used as an energy-efficiency
1438  * measure because CPUs with no RCU callbacks queued are more aggressive
1439  * about entering dyntick-idle mode.
1440  */
1441
1442
1443 /*
1444  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1445  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1446  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1447  * given, a warning is emitted and all CPUs are offloaded.
1448  */
1449 static int __init rcu_nocb_setup(char *str)
1450 {
1451         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1452         if (!strcasecmp(str, "all"))
1453                 cpumask_setall(rcu_nocb_mask);
1454         else
1455                 if (cpulist_parse(str, rcu_nocb_mask)) {
1456                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1457                         cpumask_setall(rcu_nocb_mask);
1458                 }
1459         return 1;
1460 }
1461 __setup("rcu_nocbs=", rcu_nocb_setup);
1462
1463 static int __init parse_rcu_nocb_poll(char *arg)
1464 {
1465         rcu_nocb_poll = true;
1466         return 0;
1467 }
1468 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1469
1470 /*
1471  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1472  * After all, the main point of bypassing is to avoid lock contention
1473  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1474  */
1475 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1476 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1477
1478 /*
1479  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1480  * lock isn't immediately available, increment ->nocb_lock_contended to
1481  * flag the contention.
1482  */
1483 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1484         __acquires(&rdp->nocb_bypass_lock)
1485 {
1486         lockdep_assert_irqs_disabled();
1487         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1488                 return;
1489         atomic_inc(&rdp->nocb_lock_contended);
1490         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1491         smp_mb__after_atomic(); /* atomic_inc() before lock. */
1492         raw_spin_lock(&rdp->nocb_bypass_lock);
1493         smp_mb__before_atomic(); /* atomic_dec() after lock. */
1494         atomic_dec(&rdp->nocb_lock_contended);
1495 }
1496
1497 /*
1498  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1499  * not contended.  Please note that this is extremely special-purpose,
1500  * relying on the fact that at most two kthreads and one CPU contend for
1501  * this lock, and also that the two kthreads are guaranteed to have frequent
1502  * grace-period-duration time intervals between successive acquisitions
1503  * of the lock.  This allows us to use an extremely simple throttling
1504  * mechanism, and further to apply it only to the CPU doing floods of
1505  * call_rcu() invocations.  Don't try this at home!
1506  */
1507 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1508 {
1509         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1510         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1511                 cpu_relax();
1512 }
1513
1514 /*
1515  * Conditionally acquire the specified rcu_data structure's
1516  * ->nocb_bypass_lock.
1517  */
1518 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1519 {
1520         lockdep_assert_irqs_disabled();
1521         return raw_spin_trylock(&rdp->nocb_bypass_lock);
1522 }
1523
1524 /*
1525  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1526  */
1527 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1528         __releases(&rdp->nocb_bypass_lock)
1529 {
1530         lockdep_assert_irqs_disabled();
1531         raw_spin_unlock(&rdp->nocb_bypass_lock);
1532 }
1533
1534 /*
1535  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1536  * if it corresponds to a no-CBs CPU.
1537  */
1538 static void rcu_nocb_lock(struct rcu_data *rdp)
1539 {
1540         lockdep_assert_irqs_disabled();
1541         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1542                 return;
1543         raw_spin_lock(&rdp->nocb_lock);
1544 }
1545
1546 /*
1547  * Release the specified rcu_data structure's ->nocb_lock, but only
1548  * if it corresponds to a no-CBs CPU.
1549  */
1550 static void rcu_nocb_unlock(struct rcu_data *rdp)
1551 {
1552         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1553                 lockdep_assert_irqs_disabled();
1554                 raw_spin_unlock(&rdp->nocb_lock);
1555         }
1556 }
1557
1558 /*
1559  * Release the specified rcu_data structure's ->nocb_lock and restore
1560  * interrupts, but only if it corresponds to a no-CBs CPU.
1561  */
1562 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1563                                        unsigned long flags)
1564 {
1565         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1566                 lockdep_assert_irqs_disabled();
1567                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1568         } else {
1569                 local_irq_restore(flags);
1570         }
1571 }
1572
1573 /* Lockdep check that ->cblist may be safely accessed. */
1574 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1575 {
1576         lockdep_assert_irqs_disabled();
1577         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1578                 lockdep_assert_held(&rdp->nocb_lock);
1579 }
1580
1581 /*
1582  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1583  * grace period.
1584  */
1585 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1586 {
1587         swake_up_all(sq);
1588 }
1589
1590 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1591 {
1592         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1593 }
1594
1595 static void rcu_init_one_nocb(struct rcu_node *rnp)
1596 {
1597         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1598         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1599 }
1600
1601 /* Is the specified CPU a no-CBs CPU? */
1602 bool rcu_is_nocb_cpu(int cpu)
1603 {
1604         if (cpumask_available(rcu_nocb_mask))
1605                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1606         return false;
1607 }
1608
1609 /*
1610  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1611  * and this function releases it.
1612  */
1613 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1614                            unsigned long flags)
1615         __releases(rdp->nocb_lock)
1616 {
1617         bool needwake = false;
1618         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1619
1620         lockdep_assert_held(&rdp->nocb_lock);
1621         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1622                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1623                                     TPS("AlreadyAwake"));
1624                 rcu_nocb_unlock_irqrestore(rdp, flags);
1625                 return;
1626         }
1627         del_timer(&rdp->nocb_timer);
1628         rcu_nocb_unlock_irqrestore(rdp, flags);
1629         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1630         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1631                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1632                 needwake = true;
1633                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1634         }
1635         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1636         if (needwake)
1637                 wake_up_process(rdp_gp->nocb_gp_kthread);
1638 }
1639
1640 /*
1641  * Arrange to wake the GP kthread for this NOCB group at some future
1642  * time when it is safe to do so.
1643  */
1644 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1645                                const char *reason)
1646 {
1647         if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1648                 mod_timer(&rdp->nocb_timer, jiffies + 1);
1649         if (rdp->nocb_defer_wakeup < waketype)
1650                 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1651         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1652 }
1653
1654 /*
1655  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1656  * However, if there is a callback to be enqueued and if ->nocb_bypass
1657  * proves to be initially empty, just return false because the no-CB GP
1658  * kthread may need to be awakened in this case.
1659  *
1660  * Note that this function always returns true if rhp is NULL.
1661  */
1662 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1663                                      unsigned long j)
1664 {
1665         struct rcu_cblist rcl;
1666
1667         WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1668         rcu_lockdep_assert_cblist_protected(rdp);
1669         lockdep_assert_held(&rdp->nocb_bypass_lock);
1670         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1671                 raw_spin_unlock(&rdp->nocb_bypass_lock);
1672                 return false;
1673         }
1674         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1675         if (rhp)
1676                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1677         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1678         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1679         WRITE_ONCE(rdp->nocb_bypass_first, j);
1680         rcu_nocb_bypass_unlock(rdp);
1681         return true;
1682 }
1683
1684 /*
1685  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1686  * However, if there is a callback to be enqueued and if ->nocb_bypass
1687  * proves to be initially empty, just return false because the no-CB GP
1688  * kthread may need to be awakened in this case.
1689  *
1690  * Note that this function always returns true if rhp is NULL.
1691  */
1692 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1693                                   unsigned long j)
1694 {
1695         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1696                 return true;
1697         rcu_lockdep_assert_cblist_protected(rdp);
1698         rcu_nocb_bypass_lock(rdp);
1699         return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1700 }
1701
1702 /*
1703  * If the ->nocb_bypass_lock is immediately available, flush the
1704  * ->nocb_bypass queue into ->cblist.
1705  */
1706 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1707 {
1708         rcu_lockdep_assert_cblist_protected(rdp);
1709         if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1710             !rcu_nocb_bypass_trylock(rdp))
1711                 return;
1712         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1713 }
1714
1715 /*
1716  * See whether it is appropriate to use the ->nocb_bypass list in order
1717  * to control contention on ->nocb_lock.  A limited number of direct
1718  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1719  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1720  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1721  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1722  * used if ->cblist is empty, because otherwise callbacks can be stranded
1723  * on ->nocb_bypass because we cannot count on the current CPU ever again
1724  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1725  * non-empty, the corresponding no-CBs grace-period kthread must not be
1726  * in an indefinite sleep state.
1727  *
1728  * Finally, it is not permitted to use the bypass during early boot,
1729  * as doing so would confuse the auto-initialization code.  Besides
1730  * which, there is no point in worrying about lock contention while
1731  * there is only one CPU in operation.
1732  */
1733 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1734                                 bool *was_alldone, unsigned long flags)
1735 {
1736         unsigned long c;
1737         unsigned long cur_gp_seq;
1738         unsigned long j = jiffies;
1739         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1740
1741         if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1742                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1743                 return false; /* Not offloaded, no bypassing. */
1744         }
1745         lockdep_assert_irqs_disabled();
1746
1747         // Don't use ->nocb_bypass during early boot.
1748         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1749                 rcu_nocb_lock(rdp);
1750                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1751                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1752                 return false;
1753         }
1754
1755         // If we have advanced to a new jiffy, reset counts to allow
1756         // moving back from ->nocb_bypass to ->cblist.
1757         if (j == rdp->nocb_nobypass_last) {
1758                 c = rdp->nocb_nobypass_count + 1;
1759         } else {
1760                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1761                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1762                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1763                                  nocb_nobypass_lim_per_jiffy))
1764                         c = 0;
1765                 else if (c > nocb_nobypass_lim_per_jiffy)
1766                         c = nocb_nobypass_lim_per_jiffy;
1767         }
1768         WRITE_ONCE(rdp->nocb_nobypass_count, c);
1769
1770         // If there hasn't yet been all that many ->cblist enqueues
1771         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1772         // ->nocb_bypass first.
1773         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1774                 rcu_nocb_lock(rdp);
1775                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1776                 if (*was_alldone)
1777                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1778                                             TPS("FirstQ"));
1779                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1780                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1781                 return false; // Caller must enqueue the callback.
1782         }
1783
1784         // If ->nocb_bypass has been used too long or is too full,
1785         // flush ->nocb_bypass to ->cblist.
1786         if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1787             ncbs >= qhimark) {
1788                 rcu_nocb_lock(rdp);
1789                 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1790                         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1791                         if (*was_alldone)
1792                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1793                                                     TPS("FirstQ"));
1794                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1795                         return false; // Caller must enqueue the callback.
1796                 }
1797                 if (j != rdp->nocb_gp_adv_time &&
1798                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1799                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1800                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1801                         rdp->nocb_gp_adv_time = j;
1802                 }
1803                 rcu_nocb_unlock_irqrestore(rdp, flags);
1804                 return true; // Callback already enqueued.
1805         }
1806
1807         // We need to use the bypass.
1808         rcu_nocb_wait_contended(rdp);
1809         rcu_nocb_bypass_lock(rdp);
1810         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1811         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1812         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1813         if (!ncbs) {
1814                 WRITE_ONCE(rdp->nocb_bypass_first, j);
1815                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1816         }
1817         rcu_nocb_bypass_unlock(rdp);
1818         smp_mb(); /* Order enqueue before wake. */
1819         if (ncbs) {
1820                 local_irq_restore(flags);
1821         } else {
1822                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1823                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1824                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1825                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1826                                             TPS("FirstBQwake"));
1827                         __call_rcu_nocb_wake(rdp, true, flags);
1828                 } else {
1829                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1830                                             TPS("FirstBQnoWake"));
1831                         rcu_nocb_unlock_irqrestore(rdp, flags);
1832                 }
1833         }
1834         return true; // Callback already enqueued.
1835 }
1836
1837 /*
1838  * Awaken the no-CBs grace-period kthead if needed, either due to it
1839  * legitimately being asleep or due to overload conditions.
1840  *
1841  * If warranted, also wake up the kthread servicing this CPUs queues.
1842  */
1843 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1844                                  unsigned long flags)
1845                                  __releases(rdp->nocb_lock)
1846 {
1847         unsigned long cur_gp_seq;
1848         unsigned long j;
1849         long len;
1850         struct task_struct *t;
1851
1852         // If we are being polled or there is no kthread, just leave.
1853         t = READ_ONCE(rdp->nocb_gp_kthread);
1854         if (rcu_nocb_poll || !t) {
1855                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1856                                     TPS("WakeNotPoll"));
1857                 rcu_nocb_unlock_irqrestore(rdp, flags);
1858                 return;
1859         }
1860         // Need to actually to a wakeup.
1861         len = rcu_segcblist_n_cbs(&rdp->cblist);
1862         if (was_alldone) {
1863                 rdp->qlen_last_fqs_check = len;
1864                 if (!irqs_disabled_flags(flags)) {
1865                         /* ... if queue was empty ... */
1866                         wake_nocb_gp(rdp, false, flags);
1867                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1868                                             TPS("WakeEmpty"));
1869                 } else {
1870                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1871                                            TPS("WakeEmptyIsDeferred"));
1872                         rcu_nocb_unlock_irqrestore(rdp, flags);
1873                 }
1874         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1875                 /* ... or if many callbacks queued. */
1876                 rdp->qlen_last_fqs_check = len;
1877                 j = jiffies;
1878                 if (j != rdp->nocb_gp_adv_time &&
1879                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1880                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1881                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1882                         rdp->nocb_gp_adv_time = j;
1883                 }
1884                 smp_mb(); /* Enqueue before timer_pending(). */
1885                 if ((rdp->nocb_cb_sleep ||
1886                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1887                     !timer_pending(&rdp->nocb_bypass_timer))
1888                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1889                                            TPS("WakeOvfIsDeferred"));
1890                 rcu_nocb_unlock_irqrestore(rdp, flags);
1891         } else {
1892                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1893                 rcu_nocb_unlock_irqrestore(rdp, flags);
1894         }
1895         return;
1896 }
1897
1898 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1899 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1900 {
1901         unsigned long flags;
1902         struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1903
1904         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1905         rcu_nocb_lock_irqsave(rdp, flags);
1906         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1907         __call_rcu_nocb_wake(rdp, true, flags);
1908 }
1909
1910 /*
1911  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1912  * or for grace periods to end.
1913  */
1914 static void nocb_gp_wait(struct rcu_data *my_rdp)
1915 {
1916         bool bypass = false;
1917         long bypass_ncbs;
1918         int __maybe_unused cpu = my_rdp->cpu;
1919         unsigned long cur_gp_seq;
1920         unsigned long flags;
1921         bool gotcbs = false;
1922         unsigned long j = jiffies;
1923         bool needwait_gp = false; // This prevents actual uninitialized use.
1924         bool needwake;
1925         bool needwake_gp;
1926         struct rcu_data *rdp;
1927         struct rcu_node *rnp;
1928         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1929         bool wasempty = false;
1930
1931         /*
1932          * Each pass through the following loop checks for CBs and for the
1933          * nearest grace period (if any) to wait for next.  The CB kthreads
1934          * and the global grace-period kthread are awakened if needed.
1935          */
1936         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1937                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1938                 rcu_nocb_lock_irqsave(rdp, flags);
1939                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1940                 if (bypass_ncbs &&
1941                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1942                      bypass_ncbs > 2 * qhimark)) {
1943                         // Bypass full or old, so flush it.
1944                         (void)rcu_nocb_try_flush_bypass(rdp, j);
1945                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1946                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1947                         rcu_nocb_unlock_irqrestore(rdp, flags);
1948                         continue; /* No callbacks here, try next. */
1949                 }
1950                 if (bypass_ncbs) {
1951                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1952                                             TPS("Bypass"));
1953                         bypass = true;
1954                 }
1955                 rnp = rdp->mynode;
1956                 if (bypass) {  // Avoid race with first bypass CB.
1957                         WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1958                                    RCU_NOCB_WAKE_NOT);
1959                         del_timer(&my_rdp->nocb_timer);
1960                 }
1961                 // Advance callbacks if helpful and low contention.
1962                 needwake_gp = false;
1963                 if (!rcu_segcblist_restempty(&rdp->cblist,
1964                                              RCU_NEXT_READY_TAIL) ||
1965                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1966                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1967                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1968                         needwake_gp = rcu_advance_cbs(rnp, rdp);
1969                         wasempty = rcu_segcblist_restempty(&rdp->cblist,
1970                                                            RCU_NEXT_READY_TAIL);
1971                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1972                 }
1973                 // Need to wait on some grace period?
1974                 WARN_ON_ONCE(wasempty &&
1975                              !rcu_segcblist_restempty(&rdp->cblist,
1976                                                       RCU_NEXT_READY_TAIL));
1977                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1978                         if (!needwait_gp ||
1979                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1980                                 wait_gp_seq = cur_gp_seq;
1981                         needwait_gp = true;
1982                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1983                                             TPS("NeedWaitGP"));
1984                 }
1985                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1986                         needwake = rdp->nocb_cb_sleep;
1987                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
1988                         smp_mb(); /* CB invocation -after- GP end. */
1989                 } else {
1990                         needwake = false;
1991                 }
1992                 rcu_nocb_unlock_irqrestore(rdp, flags);
1993                 if (needwake) {
1994                         swake_up_one(&rdp->nocb_cb_wq);
1995                         gotcbs = true;
1996                 }
1997                 if (needwake_gp)
1998                         rcu_gp_kthread_wake();
1999         }
2000
2001         my_rdp->nocb_gp_bypass = bypass;
2002         my_rdp->nocb_gp_gp = needwait_gp;
2003         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2004         if (bypass && !rcu_nocb_poll) {
2005                 // At least one child with non-empty ->nocb_bypass, so set
2006                 // timer in order to avoid stranding its callbacks.
2007                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2008                 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2009                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2010         }
2011         if (rcu_nocb_poll) {
2012                 /* Polling, so trace if first poll in the series. */
2013                 if (gotcbs)
2014                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2015                 schedule_timeout_interruptible(1);
2016         } else if (!needwait_gp) {
2017                 /* Wait for callbacks to appear. */
2018                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2019                 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2020                                 !READ_ONCE(my_rdp->nocb_gp_sleep));
2021                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2022         } else {
2023                 rnp = my_rdp->mynode;
2024                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2025                 swait_event_interruptible_exclusive(
2026                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2027                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2028                         !READ_ONCE(my_rdp->nocb_gp_sleep));
2029                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2030         }
2031         if (!rcu_nocb_poll) {
2032                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2033                 if (bypass)
2034                         del_timer(&my_rdp->nocb_bypass_timer);
2035                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2036                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2037         }
2038         my_rdp->nocb_gp_seq = -1;
2039         WARN_ON(signal_pending(current));
2040 }
2041
2042 /*
2043  * No-CBs grace-period-wait kthread.  There is one of these per group
2044  * of CPUs, but only once at least one CPU in that group has come online
2045  * at least once since boot.  This kthread checks for newly posted
2046  * callbacks from any of the CPUs it is responsible for, waits for a
2047  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2048  * that then have callback-invocation work to do.
2049  */
2050 static int rcu_nocb_gp_kthread(void *arg)
2051 {
2052         struct rcu_data *rdp = arg;
2053
2054         for (;;) {
2055                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2056                 nocb_gp_wait(rdp);
2057                 cond_resched_tasks_rcu_qs();
2058         }
2059         return 0;
2060 }
2061
2062 /*
2063  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2064  * then, if there are no more, wait for more to appear.
2065  */
2066 static void nocb_cb_wait(struct rcu_data *rdp)
2067 {
2068         unsigned long cur_gp_seq;
2069         unsigned long flags;
2070         bool needwake_gp = false;
2071         struct rcu_node *rnp = rdp->mynode;
2072
2073         local_irq_save(flags);
2074         rcu_momentary_dyntick_idle();
2075         local_irq_restore(flags);
2076         local_bh_disable();
2077         rcu_do_batch(rdp);
2078         local_bh_enable();
2079         lockdep_assert_irqs_enabled();
2080         rcu_nocb_lock_irqsave(rdp, flags);
2081         if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2082             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2083             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2084                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2085                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2086         }
2087         if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2088                 rcu_nocb_unlock_irqrestore(rdp, flags);
2089                 if (needwake_gp)
2090                         rcu_gp_kthread_wake();
2091                 return;
2092         }
2093
2094         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2095         WRITE_ONCE(rdp->nocb_cb_sleep, true);
2096         rcu_nocb_unlock_irqrestore(rdp, flags);
2097         if (needwake_gp)
2098                 rcu_gp_kthread_wake();
2099         swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2100                                  !READ_ONCE(rdp->nocb_cb_sleep));
2101         if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2102                 /* ^^^ Ensure CB invocation follows _sleep test. */
2103                 return;
2104         }
2105         WARN_ON(signal_pending(current));
2106         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2107 }
2108
2109 /*
2110  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2111  * nocb_cb_wait() to do the dirty work.
2112  */
2113 static int rcu_nocb_cb_kthread(void *arg)
2114 {
2115         struct rcu_data *rdp = arg;
2116
2117         // Each pass through this loop does one callback batch, and,
2118         // if there are no more ready callbacks, waits for them.
2119         for (;;) {
2120                 nocb_cb_wait(rdp);
2121                 cond_resched_tasks_rcu_qs();
2122         }
2123         return 0;
2124 }
2125
2126 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2127 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2128 {
2129         return READ_ONCE(rdp->nocb_defer_wakeup);
2130 }
2131
2132 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2133 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2134 {
2135         unsigned long flags;
2136         int ndw;
2137
2138         rcu_nocb_lock_irqsave(rdp, flags);
2139         if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2140                 rcu_nocb_unlock_irqrestore(rdp, flags);
2141                 return;
2142         }
2143         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2144         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2145         wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2146         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2147 }
2148
2149 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2150 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2151 {
2152         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2153
2154         do_nocb_deferred_wakeup_common(rdp);
2155 }
2156
2157 /*
2158  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2159  * This means we do an inexact common-case check.  Note that if
2160  * we miss, ->nocb_timer will eventually clean things up.
2161  */
2162 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2163 {
2164         if (rcu_nocb_need_deferred_wakeup(rdp))
2165                 do_nocb_deferred_wakeup_common(rdp);
2166 }
2167
2168 void __init rcu_init_nohz(void)
2169 {
2170         int cpu;
2171         bool need_rcu_nocb_mask = false;
2172         struct rcu_data *rdp;
2173
2174 #if defined(CONFIG_NO_HZ_FULL)
2175         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2176                 need_rcu_nocb_mask = true;
2177 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2178
2179         if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2180                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2181                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2182                         return;
2183                 }
2184         }
2185         if (!cpumask_available(rcu_nocb_mask))
2186                 return;
2187
2188 #if defined(CONFIG_NO_HZ_FULL)
2189         if (tick_nohz_full_running)
2190                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2191 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2192
2193         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2194                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2195                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2196                             rcu_nocb_mask);
2197         }
2198         if (cpumask_empty(rcu_nocb_mask))
2199                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2200         else
2201                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2202                         cpumask_pr_args(rcu_nocb_mask));
2203         if (rcu_nocb_poll)
2204                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2205
2206         for_each_cpu(cpu, rcu_nocb_mask) {
2207                 rdp = per_cpu_ptr(&rcu_data, cpu);
2208                 if (rcu_segcblist_empty(&rdp->cblist))
2209                         rcu_segcblist_init(&rdp->cblist);
2210                 rcu_segcblist_offload(&rdp->cblist);
2211         }
2212         rcu_organize_nocb_kthreads();
2213 }
2214
2215 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2216 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2217 {
2218         init_swait_queue_head(&rdp->nocb_cb_wq);
2219         init_swait_queue_head(&rdp->nocb_gp_wq);
2220         raw_spin_lock_init(&rdp->nocb_lock);
2221         raw_spin_lock_init(&rdp->nocb_bypass_lock);
2222         raw_spin_lock_init(&rdp->nocb_gp_lock);
2223         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2224         timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2225         rcu_cblist_init(&rdp->nocb_bypass);
2226 }
2227
2228 /*
2229  * If the specified CPU is a no-CBs CPU that does not already have its
2230  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2231  * for this CPU's group has not yet been created, spawn it as well.
2232  */
2233 static void rcu_spawn_one_nocb_kthread(int cpu)
2234 {
2235         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2236         struct rcu_data *rdp_gp;
2237         struct task_struct *t;
2238
2239         /*
2240          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2241          * then nothing to do.
2242          */
2243         if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2244                 return;
2245
2246         /* If we didn't spawn the GP kthread first, reorganize! */
2247         rdp_gp = rdp->nocb_gp_rdp;
2248         if (!rdp_gp->nocb_gp_kthread) {
2249                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2250                                 "rcuog/%d", rdp_gp->cpu);
2251                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2252                         return;
2253                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2254         }
2255
2256         /* Spawn the kthread for this CPU. */
2257         t = kthread_run(rcu_nocb_cb_kthread, rdp,
2258                         "rcuo%c/%d", rcu_state.abbr, cpu);
2259         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2260                 return;
2261         WRITE_ONCE(rdp->nocb_cb_kthread, t);
2262         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2263 }
2264
2265 /*
2266  * If the specified CPU is a no-CBs CPU that does not already have its
2267  * rcuo kthread, spawn it.
2268  */
2269 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2270 {
2271         if (rcu_scheduler_fully_active)
2272                 rcu_spawn_one_nocb_kthread(cpu);
2273 }
2274
2275 /*
2276  * Once the scheduler is running, spawn rcuo kthreads for all online
2277  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2278  * non-boot CPUs come online -- if this changes, we will need to add
2279  * some mutual exclusion.
2280  */
2281 static void __init rcu_spawn_nocb_kthreads(void)
2282 {
2283         int cpu;
2284
2285         for_each_online_cpu(cpu)
2286                 rcu_spawn_cpu_nocb_kthread(cpu);
2287 }
2288
2289 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2290 static int rcu_nocb_gp_stride = -1;
2291 module_param(rcu_nocb_gp_stride, int, 0444);
2292
2293 /*
2294  * Initialize GP-CB relationships for all no-CBs CPU.
2295  */
2296 static void __init rcu_organize_nocb_kthreads(void)
2297 {
2298         int cpu;
2299         bool firsttime = true;
2300         bool gotnocbs = false;
2301         bool gotnocbscbs = true;
2302         int ls = rcu_nocb_gp_stride;
2303         int nl = 0;  /* Next GP kthread. */
2304         struct rcu_data *rdp;
2305         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2306         struct rcu_data *rdp_prev = NULL;
2307
2308         if (!cpumask_available(rcu_nocb_mask))
2309                 return;
2310         if (ls == -1) {
2311                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2312                 rcu_nocb_gp_stride = ls;
2313         }
2314
2315         /*
2316          * Each pass through this loop sets up one rcu_data structure.
2317          * Should the corresponding CPU come online in the future, then
2318          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2319          */
2320         for_each_cpu(cpu, rcu_nocb_mask) {
2321                 rdp = per_cpu_ptr(&rcu_data, cpu);
2322                 if (rdp->cpu >= nl) {
2323                         /* New GP kthread, set up for CBs & next GP. */
2324                         gotnocbs = true;
2325                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2326                         rdp->nocb_gp_rdp = rdp;
2327                         rdp_gp = rdp;
2328                         if (dump_tree) {
2329                                 if (!firsttime)
2330                                         pr_cont("%s\n", gotnocbscbs
2331                                                         ? "" : " (self only)");
2332                                 gotnocbscbs = false;
2333                                 firsttime = false;
2334                                 pr_alert("%s: No-CB GP kthread CPU %d:",
2335                                          __func__, cpu);
2336                         }
2337                 } else {
2338                         /* Another CB kthread, link to previous GP kthread. */
2339                         gotnocbscbs = true;
2340                         rdp->nocb_gp_rdp = rdp_gp;
2341                         rdp_prev->nocb_next_cb_rdp = rdp;
2342                         if (dump_tree)
2343                                 pr_cont(" %d", cpu);
2344                 }
2345                 rdp_prev = rdp;
2346         }
2347         if (gotnocbs && dump_tree)
2348                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2349 }
2350
2351 /*
2352  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2353  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2354  */
2355 void rcu_bind_current_to_nocb(void)
2356 {
2357         if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2358                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2359 }
2360 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2361
2362 /*
2363  * Dump out nocb grace-period kthread state for the specified rcu_data
2364  * structure.
2365  */
2366 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2367 {
2368         struct rcu_node *rnp = rdp->mynode;
2369
2370         pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2371                 rdp->cpu,
2372                 "kK"[!!rdp->nocb_gp_kthread],
2373                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2374                 "dD"[!!rdp->nocb_defer_wakeup],
2375                 "tT"[timer_pending(&rdp->nocb_timer)],
2376                 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2377                 "sS"[!!rdp->nocb_gp_sleep],
2378                 ".W"[swait_active(&rdp->nocb_gp_wq)],
2379                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2380                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2381                 ".B"[!!rdp->nocb_gp_bypass],
2382                 ".G"[!!rdp->nocb_gp_gp],
2383                 (long)rdp->nocb_gp_seq,
2384                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2385 }
2386
2387 /* Dump out nocb kthread state for the specified rcu_data structure. */
2388 static void show_rcu_nocb_state(struct rcu_data *rdp)
2389 {
2390         struct rcu_segcblist *rsclp = &rdp->cblist;
2391         bool waslocked;
2392         bool wastimer;
2393         bool wassleep;
2394
2395         if (rdp->nocb_gp_rdp == rdp)
2396                 show_rcu_nocb_gp_state(rdp);
2397
2398         pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2399                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2400                 "kK"[!!rdp->nocb_cb_kthread],
2401                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2402                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2403                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2404                 "sS"[!!rdp->nocb_cb_sleep],
2405                 ".W"[swait_active(&rdp->nocb_cb_wq)],
2406                 jiffies - rdp->nocb_bypass_first,
2407                 jiffies - rdp->nocb_nobypass_last,
2408                 rdp->nocb_nobypass_count,
2409                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2410                 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2411                 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2412                 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2413                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2414                 rcu_segcblist_n_cbs(&rdp->cblist));
2415
2416         /* It is OK for GP kthreads to have GP state. */
2417         if (rdp->nocb_gp_rdp == rdp)
2418                 return;
2419
2420         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2421         wastimer = timer_pending(&rdp->nocb_timer);
2422         wassleep = swait_active(&rdp->nocb_gp_wq);
2423         if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2424             !waslocked && !wastimer && !wassleep)
2425                 return;  /* Nothing untowards. */
2426
2427         pr_info("   !!! %c%c%c%c %c\n",
2428                 "lL"[waslocked],
2429                 "dD"[!!rdp->nocb_defer_wakeup],
2430                 "tT"[wastimer],
2431                 "sS"[!!rdp->nocb_gp_sleep],
2432                 ".W"[wassleep]);
2433 }
2434
2435 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2436
2437 /* No ->nocb_lock to acquire.  */
2438 static void rcu_nocb_lock(struct rcu_data *rdp)
2439 {
2440 }
2441
2442 /* No ->nocb_lock to release.  */
2443 static void rcu_nocb_unlock(struct rcu_data *rdp)
2444 {
2445 }
2446
2447 /* No ->nocb_lock to release.  */
2448 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2449                                        unsigned long flags)
2450 {
2451         local_irq_restore(flags);
2452 }
2453
2454 /* Lockdep check that ->cblist may be safely accessed. */
2455 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2456 {
2457         lockdep_assert_irqs_disabled();
2458 }
2459
2460 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2461 {
2462 }
2463
2464 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2465 {
2466         return NULL;
2467 }
2468
2469 static void rcu_init_one_nocb(struct rcu_node *rnp)
2470 {
2471 }
2472
2473 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2474                                   unsigned long j)
2475 {
2476         return true;
2477 }
2478
2479 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2480                                 bool *was_alldone, unsigned long flags)
2481 {
2482         return false;
2483 }
2484
2485 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2486                                  unsigned long flags)
2487 {
2488         WARN_ON_ONCE(1);  /* Should be dead code! */
2489 }
2490
2491 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2492 {
2493 }
2494
2495 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2496 {
2497         return false;
2498 }
2499
2500 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2501 {
2502 }
2503
2504 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2505 {
2506 }
2507
2508 static void __init rcu_spawn_nocb_kthreads(void)
2509 {
2510 }
2511
2512 static void show_rcu_nocb_state(struct rcu_data *rdp)
2513 {
2514 }
2515
2516 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2517
2518 /*
2519  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2520  * grace-period kthread will do force_quiescent_state() processing?
2521  * The idea is to avoid waking up RCU core processing on such a
2522  * CPU unless the grace period has extended for too long.
2523  *
2524  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2525  * CONFIG_RCU_NOCB_CPU CPUs.
2526  */
2527 static bool rcu_nohz_full_cpu(void)
2528 {
2529 #ifdef CONFIG_NO_HZ_FULL
2530         if (tick_nohz_full_cpu(smp_processor_id()) &&
2531             (!rcu_gp_in_progress() ||
2532              ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2533                 return true;
2534 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2535         return false;
2536 }
2537
2538 /*
2539  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2540  */
2541 static void rcu_bind_gp_kthread(void)
2542 {
2543         if (!tick_nohz_full_enabled())
2544                 return;
2545         housekeeping_affine(current, HK_FLAG_RCU);
2546 }
2547
2548 /* Record the current task on dyntick-idle entry. */
2549 static void rcu_dynticks_task_enter(void)
2550 {
2551 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2552         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2553 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2554 }
2555
2556 /* Record no current task on dyntick-idle exit. */
2557 static void rcu_dynticks_task_exit(void)
2558 {
2559 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2560         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2561 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2562 }