Merge tag 'amd-drm-fixes-5.7-2020-04-15' of git://people.freedesktop.org/~agd5f/linux...
[linux-2.6-microblaze.git] / kernel / rcu / tree_plugin.h
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4  * Internal non-public definitions that provide either classic
5  * or preemptible semantics.
6  *
7  * Copyright Red Hat, 2009
8  * Copyright IBM Corporation, 2009
9  *
10  * Author: Ingo Molnar <mingo@elte.hu>
11  *         Paul E. McKenney <paulmck@linux.ibm.com>
12  */
13
14 #include "../locking/rtmutex_common.h"
15
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
20
21 /*
22  * Check the RCU kernel configuration parameters and print informative
23  * messages about anything out of the ordinary.
24  */
25 static void __init rcu_bootup_announce_oddness(void)
26 {
27         if (IS_ENABLED(CONFIG_RCU_TRACE))
28                 pr_info("\tRCU event tracing is enabled.\n");
29         if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30             (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31                 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32                         RCU_FANOUT);
33         if (rcu_fanout_exact)
34                 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35         if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36                 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37         if (IS_ENABLED(CONFIG_PROVE_RCU))
38                 pr_info("\tRCU lockdep checking is enabled.\n");
39         if (RCU_NUM_LVLS >= 4)
40                 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41         if (RCU_FANOUT_LEAF != 16)
42                 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43                         RCU_FANOUT_LEAF);
44         if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45                 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46                         rcu_fanout_leaf);
47         if (nr_cpu_ids != NR_CPUS)
48                 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50         pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51                 kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53         if (blimit != DEFAULT_RCU_BLIMIT)
54                 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55         if (qhimark != DEFAULT_RCU_QHIMARK)
56                 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57         if (qlowmark != DEFAULT_RCU_QLOMARK)
58                 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59         if (qovld != DEFAULT_RCU_QOVLD)
60                 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
61         if (jiffies_till_first_fqs != ULONG_MAX)
62                 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
63         if (jiffies_till_next_fqs != ULONG_MAX)
64                 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
65         if (jiffies_till_sched_qs != ULONG_MAX)
66                 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
67         if (rcu_kick_kthreads)
68                 pr_info("\tKick kthreads if too-long grace period.\n");
69         if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
70                 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
71         if (gp_preinit_delay)
72                 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
73         if (gp_init_delay)
74                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
75         if (gp_cleanup_delay)
76                 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
77         if (!use_softirq)
78                 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
79         if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
80                 pr_info("\tRCU debug extended QS entry/exit.\n");
81         rcupdate_announce_bootup_oddness();
82 }
83
84 #ifdef CONFIG_PREEMPT_RCU
85
86 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
87 static void rcu_read_unlock_special(struct task_struct *t);
88
89 /*
90  * Tell them what RCU they are running.
91  */
92 static void __init rcu_bootup_announce(void)
93 {
94         pr_info("Preemptible hierarchical RCU implementation.\n");
95         rcu_bootup_announce_oddness();
96 }
97
98 /* Flags for rcu_preempt_ctxt_queue() decision table. */
99 #define RCU_GP_TASKS    0x8
100 #define RCU_EXP_TASKS   0x4
101 #define RCU_GP_BLKD     0x2
102 #define RCU_EXP_BLKD    0x1
103
104 /*
105  * Queues a task preempted within an RCU-preempt read-side critical
106  * section into the appropriate location within the ->blkd_tasks list,
107  * depending on the states of any ongoing normal and expedited grace
108  * periods.  The ->gp_tasks pointer indicates which element the normal
109  * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
110  * indicates which element the expedited grace period is waiting on (again,
111  * NULL if none).  If a grace period is waiting on a given element in the
112  * ->blkd_tasks list, it also waits on all subsequent elements.  Thus,
113  * adding a task to the tail of the list blocks any grace period that is
114  * already waiting on one of the elements.  In contrast, adding a task
115  * to the head of the list won't block any grace period that is already
116  * waiting on one of the elements.
117  *
118  * This queuing is imprecise, and can sometimes make an ongoing grace
119  * period wait for a task that is not strictly speaking blocking it.
120  * Given the choice, we needlessly block a normal grace period rather than
121  * blocking an expedited grace period.
122  *
123  * Note that an endless sequence of expedited grace periods still cannot
124  * indefinitely postpone a normal grace period.  Eventually, all of the
125  * fixed number of preempted tasks blocking the normal grace period that are
126  * not also blocking the expedited grace period will resume and complete
127  * their RCU read-side critical sections.  At that point, the ->gp_tasks
128  * pointer will equal the ->exp_tasks pointer, at which point the end of
129  * the corresponding expedited grace period will also be the end of the
130  * normal grace period.
131  */
132 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
133         __releases(rnp->lock) /* But leaves rrupts disabled. */
134 {
135         int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
136                          (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
137                          (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
138                          (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
139         struct task_struct *t = current;
140
141         raw_lockdep_assert_held_rcu_node(rnp);
142         WARN_ON_ONCE(rdp->mynode != rnp);
143         WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
144         /* RCU better not be waiting on newly onlined CPUs! */
145         WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
146                      rdp->grpmask);
147
148         /*
149          * Decide where to queue the newly blocked task.  In theory,
150          * this could be an if-statement.  In practice, when I tried
151          * that, it was quite messy.
152          */
153         switch (blkd_state) {
154         case 0:
155         case                RCU_EXP_TASKS:
156         case                RCU_EXP_TASKS + RCU_GP_BLKD:
157         case RCU_GP_TASKS:
158         case RCU_GP_TASKS + RCU_EXP_TASKS:
159
160                 /*
161                  * Blocking neither GP, or first task blocking the normal
162                  * GP but not blocking the already-waiting expedited GP.
163                  * Queue at the head of the list to avoid unnecessarily
164                  * blocking the already-waiting GPs.
165                  */
166                 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
167                 break;
168
169         case                                              RCU_EXP_BLKD:
170         case                                RCU_GP_BLKD:
171         case                                RCU_GP_BLKD + RCU_EXP_BLKD:
172         case RCU_GP_TASKS +                               RCU_EXP_BLKD:
173         case RCU_GP_TASKS +                 RCU_GP_BLKD + RCU_EXP_BLKD:
174         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
175
176                 /*
177                  * First task arriving that blocks either GP, or first task
178                  * arriving that blocks the expedited GP (with the normal
179                  * GP already waiting), or a task arriving that blocks
180                  * both GPs with both GPs already waiting.  Queue at the
181                  * tail of the list to avoid any GP waiting on any of the
182                  * already queued tasks that are not blocking it.
183                  */
184                 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
185                 break;
186
187         case                RCU_EXP_TASKS +               RCU_EXP_BLKD:
188         case                RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
189         case RCU_GP_TASKS + RCU_EXP_TASKS +               RCU_EXP_BLKD:
190
191                 /*
192                  * Second or subsequent task blocking the expedited GP.
193                  * The task either does not block the normal GP, or is the
194                  * first task blocking the normal GP.  Queue just after
195                  * the first task blocking the expedited GP.
196                  */
197                 list_add(&t->rcu_node_entry, rnp->exp_tasks);
198                 break;
199
200         case RCU_GP_TASKS +                 RCU_GP_BLKD:
201         case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
202
203                 /*
204                  * Second or subsequent task blocking the normal GP.
205                  * The task does not block the expedited GP. Queue just
206                  * after the first task blocking the normal GP.
207                  */
208                 list_add(&t->rcu_node_entry, rnp->gp_tasks);
209                 break;
210
211         default:
212
213                 /* Yet another exercise in excessive paranoia. */
214                 WARN_ON_ONCE(1);
215                 break;
216         }
217
218         /*
219          * We have now queued the task.  If it was the first one to
220          * block either grace period, update the ->gp_tasks and/or
221          * ->exp_tasks pointers, respectively, to reference the newly
222          * blocked tasks.
223          */
224         if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
225                 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
226                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
227         }
228         if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
229                 rnp->exp_tasks = &t->rcu_node_entry;
230         WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
231                      !(rnp->qsmask & rdp->grpmask));
232         WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
233                      !(rnp->expmask & rdp->grpmask));
234         raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
235
236         /*
237          * Report the quiescent state for the expedited GP.  This expedited
238          * GP should not be able to end until we report, so there should be
239          * no need to check for a subsequent expedited GP.  (Though we are
240          * still in a quiescent state in any case.)
241          */
242         if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
243                 rcu_report_exp_rdp(rdp);
244         else
245                 WARN_ON_ONCE(rdp->exp_deferred_qs);
246 }
247
248 /*
249  * Record a preemptible-RCU quiescent state for the specified CPU.
250  * Note that this does not necessarily mean that the task currently running
251  * on the CPU is in a quiescent state:  Instead, it means that the current
252  * grace period need not wait on any RCU read-side critical section that
253  * starts later on this CPU.  It also means that if the current task is
254  * in an RCU read-side critical section, it has already added itself to
255  * some leaf rcu_node structure's ->blkd_tasks list.  In addition to the
256  * current task, there might be any number of other tasks blocked while
257  * in an RCU read-side critical section.
258  *
259  * Callers to this function must disable preemption.
260  */
261 static void rcu_qs(void)
262 {
263         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
264         if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
265                 trace_rcu_grace_period(TPS("rcu_preempt"),
266                                        __this_cpu_read(rcu_data.gp_seq),
267                                        TPS("cpuqs"));
268                 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
269                 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
270                 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
271         }
272 }
273
274 /*
275  * We have entered the scheduler, and the current task might soon be
276  * context-switched away from.  If this task is in an RCU read-side
277  * critical section, we will no longer be able to rely on the CPU to
278  * record that fact, so we enqueue the task on the blkd_tasks list.
279  * The task will dequeue itself when it exits the outermost enclosing
280  * RCU read-side critical section.  Therefore, the current grace period
281  * cannot be permitted to complete until the blkd_tasks list entries
282  * predating the current grace period drain, in other words, until
283  * rnp->gp_tasks becomes NULL.
284  *
285  * Caller must disable interrupts.
286  */
287 void rcu_note_context_switch(bool preempt)
288 {
289         struct task_struct *t = current;
290         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
291         struct rcu_node *rnp;
292
293         trace_rcu_utilization(TPS("Start context switch"));
294         lockdep_assert_irqs_disabled();
295         WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
296         if (rcu_preempt_depth() > 0 &&
297             !t->rcu_read_unlock_special.b.blocked) {
298
299                 /* Possibly blocking in an RCU read-side critical section. */
300                 rnp = rdp->mynode;
301                 raw_spin_lock_rcu_node(rnp);
302                 t->rcu_read_unlock_special.b.blocked = true;
303                 t->rcu_blocked_node = rnp;
304
305                 /*
306                  * Verify the CPU's sanity, trace the preemption, and
307                  * then queue the task as required based on the states
308                  * of any ongoing and expedited grace periods.
309                  */
310                 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311                 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312                 trace_rcu_preempt_task(rcu_state.name,
313                                        t->pid,
314                                        (rnp->qsmask & rdp->grpmask)
315                                        ? rnp->gp_seq
316                                        : rcu_seq_snap(&rnp->gp_seq));
317                 rcu_preempt_ctxt_queue(rnp, rdp);
318         } else {
319                 rcu_preempt_deferred_qs(t);
320         }
321
322         /*
323          * Either we were not in an RCU read-side critical section to
324          * begin with, or we have now recorded that critical section
325          * globally.  Either way, we can now note a quiescent state
326          * for this CPU.  Again, if we were in an RCU read-side critical
327          * section, and if that critical section was blocking the current
328          * grace period, then the fact that the task has been enqueued
329          * means that we continue to block the current grace period.
330          */
331         rcu_qs();
332         if (rdp->exp_deferred_qs)
333                 rcu_report_exp_rdp(rdp);
334         trace_rcu_utilization(TPS("End context switch"));
335 }
336 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
337
338 /*
339  * Check for preempted RCU readers blocking the current grace period
340  * for the specified rcu_node structure.  If the caller needs a reliable
341  * answer, it must hold the rcu_node's ->lock.
342  */
343 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
344 {
345         return READ_ONCE(rnp->gp_tasks) != NULL;
346 }
347
348 /* Bias and limit values for ->rcu_read_lock_nesting. */
349 #define RCU_NEST_BIAS INT_MAX
350 #define RCU_NEST_NMAX (-INT_MAX / 2)
351 #define RCU_NEST_PMAX (INT_MAX / 2)
352
353 static void rcu_preempt_read_enter(void)
354 {
355         current->rcu_read_lock_nesting++;
356 }
357
358 static void rcu_preempt_read_exit(void)
359 {
360         current->rcu_read_lock_nesting--;
361 }
362
363 static void rcu_preempt_depth_set(int val)
364 {
365         current->rcu_read_lock_nesting = val;
366 }
367
368 /*
369  * Preemptible RCU implementation for rcu_read_lock().
370  * Just increment ->rcu_read_lock_nesting, shared state will be updated
371  * if we block.
372  */
373 void __rcu_read_lock(void)
374 {
375         rcu_preempt_read_enter();
376         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
377                 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
378         barrier();  /* critical section after entry code. */
379 }
380 EXPORT_SYMBOL_GPL(__rcu_read_lock);
381
382 /*
383  * Preemptible RCU implementation for rcu_read_unlock().
384  * Decrement ->rcu_read_lock_nesting.  If the result is zero (outermost
385  * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
386  * invoke rcu_read_unlock_special() to clean up after a context switch
387  * in an RCU read-side critical section and other special cases.
388  */
389 void __rcu_read_unlock(void)
390 {
391         struct task_struct *t = current;
392
393         if (rcu_preempt_depth() != 1) {
394                 rcu_preempt_read_exit();
395         } else {
396                 barrier();  /* critical section before exit code. */
397                 rcu_preempt_depth_set(-RCU_NEST_BIAS);
398                 barrier();  /* assign before ->rcu_read_unlock_special load */
399                 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
400                         rcu_read_unlock_special(t);
401                 barrier();  /* ->rcu_read_unlock_special load before assign */
402                 rcu_preempt_depth_set(0);
403         }
404         if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
405                 int rrln = rcu_preempt_depth();
406
407                 WARN_ON_ONCE(rrln < 0 && rrln > RCU_NEST_NMAX);
408         }
409 }
410 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
411
412 /*
413  * Advance a ->blkd_tasks-list pointer to the next entry, instead
414  * returning NULL if at the end of the list.
415  */
416 static struct list_head *rcu_next_node_entry(struct task_struct *t,
417                                              struct rcu_node *rnp)
418 {
419         struct list_head *np;
420
421         np = t->rcu_node_entry.next;
422         if (np == &rnp->blkd_tasks)
423                 np = NULL;
424         return np;
425 }
426
427 /*
428  * Return true if the specified rcu_node structure has tasks that were
429  * preempted within an RCU read-side critical section.
430  */
431 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
432 {
433         return !list_empty(&rnp->blkd_tasks);
434 }
435
436 /*
437  * Report deferred quiescent states.  The deferral time can
438  * be quite short, for example, in the case of the call from
439  * rcu_read_unlock_special().
440  */
441 static void
442 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
443 {
444         bool empty_exp;
445         bool empty_norm;
446         bool empty_exp_now;
447         struct list_head *np;
448         bool drop_boost_mutex = false;
449         struct rcu_data *rdp;
450         struct rcu_node *rnp;
451         union rcu_special special;
452
453         /*
454          * If RCU core is waiting for this CPU to exit its critical section,
455          * report the fact that it has exited.  Because irqs are disabled,
456          * t->rcu_read_unlock_special cannot change.
457          */
458         special = t->rcu_read_unlock_special;
459         rdp = this_cpu_ptr(&rcu_data);
460         if (!special.s && !rdp->exp_deferred_qs) {
461                 local_irq_restore(flags);
462                 return;
463         }
464         t->rcu_read_unlock_special.s = 0;
465         if (special.b.need_qs)
466                 rcu_qs();
467
468         /*
469          * Respond to a request by an expedited grace period for a
470          * quiescent state from this CPU.  Note that requests from
471          * tasks are handled when removing the task from the
472          * blocked-tasks list below.
473          */
474         if (rdp->exp_deferred_qs)
475                 rcu_report_exp_rdp(rdp);
476
477         /* Clean up if blocked during RCU read-side critical section. */
478         if (special.b.blocked) {
479
480                 /*
481                  * Remove this task from the list it blocked on.  The task
482                  * now remains queued on the rcu_node corresponding to the
483                  * CPU it first blocked on, so there is no longer any need
484                  * to loop.  Retain a WARN_ON_ONCE() out of sheer paranoia.
485                  */
486                 rnp = t->rcu_blocked_node;
487                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
488                 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
489                 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
490                 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
491                 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
492                              (!empty_norm || rnp->qsmask));
493                 empty_exp = sync_rcu_exp_done(rnp);
494                 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
495                 np = rcu_next_node_entry(t, rnp);
496                 list_del_init(&t->rcu_node_entry);
497                 t->rcu_blocked_node = NULL;
498                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
499                                                 rnp->gp_seq, t->pid);
500                 if (&t->rcu_node_entry == rnp->gp_tasks)
501                         WRITE_ONCE(rnp->gp_tasks, np);
502                 if (&t->rcu_node_entry == rnp->exp_tasks)
503                         rnp->exp_tasks = np;
504                 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
505                         /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
506                         drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
507                         if (&t->rcu_node_entry == rnp->boost_tasks)
508                                 rnp->boost_tasks = np;
509                 }
510
511                 /*
512                  * If this was the last task on the current list, and if
513                  * we aren't waiting on any CPUs, report the quiescent state.
514                  * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
515                  * so we must take a snapshot of the expedited state.
516                  */
517                 empty_exp_now = sync_rcu_exp_done(rnp);
518                 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
519                         trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
520                                                          rnp->gp_seq,
521                                                          0, rnp->qsmask,
522                                                          rnp->level,
523                                                          rnp->grplo,
524                                                          rnp->grphi,
525                                                          !!rnp->gp_tasks);
526                         rcu_report_unblock_qs_rnp(rnp, flags);
527                 } else {
528                         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
529                 }
530
531                 /* Unboost if we were boosted. */
532                 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
533                         rt_mutex_futex_unlock(&rnp->boost_mtx);
534
535                 /*
536                  * If this was the last task on the expedited lists,
537                  * then we need to report up the rcu_node hierarchy.
538                  */
539                 if (!empty_exp && empty_exp_now)
540                         rcu_report_exp_rnp(rnp, true);
541         } else {
542                 local_irq_restore(flags);
543         }
544 }
545
546 /*
547  * Is a deferred quiescent-state pending, and are we also not in
548  * an RCU read-side critical section?  It is the caller's responsibility
549  * to ensure it is otherwise safe to report any deferred quiescent
550  * states.  The reason for this is that it is safe to report a
551  * quiescent state during context switch even though preemption
552  * is disabled.  This function cannot be expected to understand these
553  * nuances, so the caller must handle them.
554  */
555 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
556 {
557         return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
558                 READ_ONCE(t->rcu_read_unlock_special.s)) &&
559                rcu_preempt_depth() <= 0;
560 }
561
562 /*
563  * Report a deferred quiescent state if needed and safe to do so.
564  * As with rcu_preempt_need_deferred_qs(), "safe" involves only
565  * not being in an RCU read-side critical section.  The caller must
566  * evaluate safety in terms of interrupt, softirq, and preemption
567  * disabling.
568  */
569 static void rcu_preempt_deferred_qs(struct task_struct *t)
570 {
571         unsigned long flags;
572         bool couldrecurse = rcu_preempt_depth() >= 0;
573
574         if (!rcu_preempt_need_deferred_qs(t))
575                 return;
576         if (couldrecurse)
577                 rcu_preempt_depth_set(rcu_preempt_depth() - RCU_NEST_BIAS);
578         local_irq_save(flags);
579         rcu_preempt_deferred_qs_irqrestore(t, flags);
580         if (couldrecurse)
581                 rcu_preempt_depth_set(rcu_preempt_depth() + RCU_NEST_BIAS);
582 }
583
584 /*
585  * Minimal handler to give the scheduler a chance to re-evaluate.
586  */
587 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
588 {
589         struct rcu_data *rdp;
590
591         rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
592         rdp->defer_qs_iw_pending = false;
593 }
594
595 /*
596  * Handle special cases during rcu_read_unlock(), such as needing to
597  * notify RCU core processing or task having blocked during the RCU
598  * read-side critical section.
599  */
600 static void rcu_read_unlock_special(struct task_struct *t)
601 {
602         unsigned long flags;
603         bool preempt_bh_were_disabled =
604                         !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
605         bool irqs_were_disabled;
606
607         /* NMI handlers cannot block and cannot safely manipulate state. */
608         if (in_nmi())
609                 return;
610
611         local_irq_save(flags);
612         irqs_were_disabled = irqs_disabled_flags(flags);
613         if (preempt_bh_were_disabled || irqs_were_disabled) {
614                 bool exp;
615                 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
616                 struct rcu_node *rnp = rdp->mynode;
617
618                 exp = (t->rcu_blocked_node && t->rcu_blocked_node->exp_tasks) ||
619                       (rdp->grpmask & READ_ONCE(rnp->expmask)) ||
620                       tick_nohz_full_cpu(rdp->cpu);
621                 // Need to defer quiescent state until everything is enabled.
622                 if (irqs_were_disabled && use_softirq &&
623                     (in_interrupt() ||
624                      (exp && !t->rcu_read_unlock_special.b.deferred_qs))) {
625                         // Using softirq, safe to awaken, and we get
626                         // no help from enabling irqs, unlike bh/preempt.
627                         raise_softirq_irqoff(RCU_SOFTIRQ);
628                 } else {
629                         // Enabling BH or preempt does reschedule, so...
630                         // Also if no expediting or NO_HZ_FULL, slow is OK.
631                         set_tsk_need_resched(current);
632                         set_preempt_need_resched();
633                         if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
634                             !rdp->defer_qs_iw_pending && exp) {
635                                 // Get scheduler to re-evaluate and call hooks.
636                                 // If !IRQ_WORK, FQS scan will eventually IPI.
637                                 init_irq_work(&rdp->defer_qs_iw,
638                                               rcu_preempt_deferred_qs_handler);
639                                 rdp->defer_qs_iw_pending = true;
640                                 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
641                         }
642                 }
643                 t->rcu_read_unlock_special.b.deferred_qs = true;
644                 local_irq_restore(flags);
645                 return;
646         }
647         rcu_preempt_deferred_qs_irqrestore(t, flags);
648 }
649
650 /*
651  * Check that the list of blocked tasks for the newly completed grace
652  * period is in fact empty.  It is a serious bug to complete a grace
653  * period that still has RCU readers blocked!  This function must be
654  * invoked -before- updating this rnp's ->gp_seq.
655  *
656  * Also, if there are blocked tasks on the list, they automatically
657  * block the newly created grace period, so set up ->gp_tasks accordingly.
658  */
659 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
660 {
661         struct task_struct *t;
662
663         RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
664         raw_lockdep_assert_held_rcu_node(rnp);
665         if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
666                 dump_blkd_tasks(rnp, 10);
667         if (rcu_preempt_has_tasks(rnp) &&
668             (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
669                 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
670                 t = container_of(rnp->gp_tasks, struct task_struct,
671                                  rcu_node_entry);
672                 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
673                                                 rnp->gp_seq, t->pid);
674         }
675         WARN_ON_ONCE(rnp->qsmask);
676 }
677
678 /*
679  * Check for a quiescent state from the current CPU, including voluntary
680  * context switches for Tasks RCU.  When a task blocks, the task is
681  * recorded in the corresponding CPU's rcu_node structure, which is checked
682  * elsewhere, hence this function need only check for quiescent states
683  * related to the current CPU, not to those related to tasks.
684  */
685 static void rcu_flavor_sched_clock_irq(int user)
686 {
687         struct task_struct *t = current;
688
689         if (user || rcu_is_cpu_rrupt_from_idle()) {
690                 rcu_note_voluntary_context_switch(current);
691         }
692         if (rcu_preempt_depth() > 0 ||
693             (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
694                 /* No QS, force context switch if deferred. */
695                 if (rcu_preempt_need_deferred_qs(t)) {
696                         set_tsk_need_resched(t);
697                         set_preempt_need_resched();
698                 }
699         } else if (rcu_preempt_need_deferred_qs(t)) {
700                 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
701                 return;
702         } else if (!rcu_preempt_depth()) {
703                 rcu_qs(); /* Report immediate QS. */
704                 return;
705         }
706
707         /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
708         if (rcu_preempt_depth() > 0 &&
709             __this_cpu_read(rcu_data.core_needs_qs) &&
710             __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
711             !t->rcu_read_unlock_special.b.need_qs &&
712             time_after(jiffies, rcu_state.gp_start + HZ))
713                 t->rcu_read_unlock_special.b.need_qs = true;
714 }
715
716 /*
717  * Check for a task exiting while in a preemptible-RCU read-side
718  * critical section, clean up if so.  No need to issue warnings, as
719  * debug_check_no_locks_held() already does this if lockdep is enabled.
720  * Besides, if this function does anything other than just immediately
721  * return, there was a bug of some sort.  Spewing warnings from this
722  * function is like as not to simply obscure important prior warnings.
723  */
724 void exit_rcu(void)
725 {
726         struct task_struct *t = current;
727
728         if (unlikely(!list_empty(&current->rcu_node_entry))) {
729                 rcu_preempt_depth_set(1);
730                 barrier();
731                 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
732         } else if (unlikely(rcu_preempt_depth())) {
733                 rcu_preempt_depth_set(1);
734         } else {
735                 return;
736         }
737         __rcu_read_unlock();
738         rcu_preempt_deferred_qs(current);
739 }
740
741 /*
742  * Dump the blocked-tasks state, but limit the list dump to the
743  * specified number of elements.
744  */
745 static void
746 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
747 {
748         int cpu;
749         int i;
750         struct list_head *lhp;
751         bool onl;
752         struct rcu_data *rdp;
753         struct rcu_node *rnp1;
754
755         raw_lockdep_assert_held_rcu_node(rnp);
756         pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
757                 __func__, rnp->grplo, rnp->grphi, rnp->level,
758                 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
759         for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
760                 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
761                         __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
762         pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
763                 __func__, READ_ONCE(rnp->gp_tasks), rnp->boost_tasks,
764                 rnp->exp_tasks);
765         pr_info("%s: ->blkd_tasks", __func__);
766         i = 0;
767         list_for_each(lhp, &rnp->blkd_tasks) {
768                 pr_cont(" %p", lhp);
769                 if (++i >= ncheck)
770                         break;
771         }
772         pr_cont("\n");
773         for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
774                 rdp = per_cpu_ptr(&rcu_data, cpu);
775                 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
776                 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
777                         cpu, ".o"[onl],
778                         (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
779                         (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
780         }
781 }
782
783 #else /* #ifdef CONFIG_PREEMPT_RCU */
784
785 /*
786  * Tell them what RCU they are running.
787  */
788 static void __init rcu_bootup_announce(void)
789 {
790         pr_info("Hierarchical RCU implementation.\n");
791         rcu_bootup_announce_oddness();
792 }
793
794 /*
795  * Note a quiescent state for PREEMPTION=n.  Because we do not need to know
796  * how many quiescent states passed, just if there was at least one since
797  * the start of the grace period, this just sets a flag.  The caller must
798  * have disabled preemption.
799  */
800 static void rcu_qs(void)
801 {
802         RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
803         if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
804                 return;
805         trace_rcu_grace_period(TPS("rcu_sched"),
806                                __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
807         __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
808         if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
809                 return;
810         __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
811         rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
812 }
813
814 /*
815  * Register an urgently needed quiescent state.  If there is an
816  * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
817  * dyntick-idle quiescent state visible to other CPUs, which will in
818  * some cases serve for expedited as well as normal grace periods.
819  * Either way, register a lightweight quiescent state.
820  */
821 void rcu_all_qs(void)
822 {
823         unsigned long flags;
824
825         if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
826                 return;
827         preempt_disable();
828         /* Load rcu_urgent_qs before other flags. */
829         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
830                 preempt_enable();
831                 return;
832         }
833         this_cpu_write(rcu_data.rcu_urgent_qs, false);
834         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
835                 local_irq_save(flags);
836                 rcu_momentary_dyntick_idle();
837                 local_irq_restore(flags);
838         }
839         rcu_qs();
840         preempt_enable();
841 }
842 EXPORT_SYMBOL_GPL(rcu_all_qs);
843
844 /*
845  * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
846  */
847 void rcu_note_context_switch(bool preempt)
848 {
849         trace_rcu_utilization(TPS("Start context switch"));
850         rcu_qs();
851         /* Load rcu_urgent_qs before other flags. */
852         if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
853                 goto out;
854         this_cpu_write(rcu_data.rcu_urgent_qs, false);
855         if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
856                 rcu_momentary_dyntick_idle();
857         if (!preempt)
858                 rcu_tasks_qs(current);
859 out:
860         trace_rcu_utilization(TPS("End context switch"));
861 }
862 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
863
864 /*
865  * Because preemptible RCU does not exist, there are never any preempted
866  * RCU readers.
867  */
868 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
869 {
870         return 0;
871 }
872
873 /*
874  * Because there is no preemptible RCU, there can be no readers blocked.
875  */
876 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
877 {
878         return false;
879 }
880
881 /*
882  * Because there is no preemptible RCU, there can be no deferred quiescent
883  * states.
884  */
885 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
886 {
887         return false;
888 }
889 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
890
891 /*
892  * Because there is no preemptible RCU, there can be no readers blocked,
893  * so there is no need to check for blocked tasks.  So check only for
894  * bogus qsmask values.
895  */
896 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
897 {
898         WARN_ON_ONCE(rnp->qsmask);
899 }
900
901 /*
902  * Check to see if this CPU is in a non-context-switch quiescent state,
903  * namely user mode and idle loop.
904  */
905 static void rcu_flavor_sched_clock_irq(int user)
906 {
907         if (user || rcu_is_cpu_rrupt_from_idle()) {
908
909                 /*
910                  * Get here if this CPU took its interrupt from user
911                  * mode or from the idle loop, and if this is not a
912                  * nested interrupt.  In this case, the CPU is in
913                  * a quiescent state, so note it.
914                  *
915                  * No memory barrier is required here because rcu_qs()
916                  * references only CPU-local variables that other CPUs
917                  * neither access nor modify, at least not while the
918                  * corresponding CPU is online.
919                  */
920
921                 rcu_qs();
922         }
923 }
924
925 /*
926  * Because preemptible RCU does not exist, tasks cannot possibly exit
927  * while in preemptible RCU read-side critical sections.
928  */
929 void exit_rcu(void)
930 {
931 }
932
933 /*
934  * Dump the guaranteed-empty blocked-tasks state.  Trust but verify.
935  */
936 static void
937 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
938 {
939         WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
940 }
941
942 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
943
944 /*
945  * If boosting, set rcuc kthreads to realtime priority.
946  */
947 static void rcu_cpu_kthread_setup(unsigned int cpu)
948 {
949 #ifdef CONFIG_RCU_BOOST
950         struct sched_param sp;
951
952         sp.sched_priority = kthread_prio;
953         sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
954 #endif /* #ifdef CONFIG_RCU_BOOST */
955 }
956
957 #ifdef CONFIG_RCU_BOOST
958
959 /*
960  * Carry out RCU priority boosting on the task indicated by ->exp_tasks
961  * or ->boost_tasks, advancing the pointer to the next task in the
962  * ->blkd_tasks list.
963  *
964  * Note that irqs must be enabled: boosting the task can block.
965  * Returns 1 if there are more tasks needing to be boosted.
966  */
967 static int rcu_boost(struct rcu_node *rnp)
968 {
969         unsigned long flags;
970         struct task_struct *t;
971         struct list_head *tb;
972
973         if (READ_ONCE(rnp->exp_tasks) == NULL &&
974             READ_ONCE(rnp->boost_tasks) == NULL)
975                 return 0;  /* Nothing left to boost. */
976
977         raw_spin_lock_irqsave_rcu_node(rnp, flags);
978
979         /*
980          * Recheck under the lock: all tasks in need of boosting
981          * might exit their RCU read-side critical sections on their own.
982          */
983         if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
984                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
985                 return 0;
986         }
987
988         /*
989          * Preferentially boost tasks blocking expedited grace periods.
990          * This cannot starve the normal grace periods because a second
991          * expedited grace period must boost all blocked tasks, including
992          * those blocking the pre-existing normal grace period.
993          */
994         if (rnp->exp_tasks != NULL)
995                 tb = rnp->exp_tasks;
996         else
997                 tb = rnp->boost_tasks;
998
999         /*
1000          * We boost task t by manufacturing an rt_mutex that appears to
1001          * be held by task t.  We leave a pointer to that rt_mutex where
1002          * task t can find it, and task t will release the mutex when it
1003          * exits its outermost RCU read-side critical section.  Then
1004          * simply acquiring this artificial rt_mutex will boost task
1005          * t's priority.  (Thanks to tglx for suggesting this approach!)
1006          *
1007          * Note that task t must acquire rnp->lock to remove itself from
1008          * the ->blkd_tasks list, which it will do from exit() if from
1009          * nowhere else.  We therefore are guaranteed that task t will
1010          * stay around at least until we drop rnp->lock.  Note that
1011          * rnp->lock also resolves races between our priority boosting
1012          * and task t's exiting its outermost RCU read-side critical
1013          * section.
1014          */
1015         t = container_of(tb, struct task_struct, rcu_node_entry);
1016         rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1017         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1018         /* Lock only for side effect: boosts task t's priority. */
1019         rt_mutex_lock(&rnp->boost_mtx);
1020         rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */
1021
1022         return READ_ONCE(rnp->exp_tasks) != NULL ||
1023                READ_ONCE(rnp->boost_tasks) != NULL;
1024 }
1025
1026 /*
1027  * Priority-boosting kthread, one per leaf rcu_node.
1028  */
1029 static int rcu_boost_kthread(void *arg)
1030 {
1031         struct rcu_node *rnp = (struct rcu_node *)arg;
1032         int spincnt = 0;
1033         int more2boost;
1034
1035         trace_rcu_utilization(TPS("Start boost kthread@init"));
1036         for (;;) {
1037                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1038                 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1039                 rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
1040                 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1041                 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1042                 more2boost = rcu_boost(rnp);
1043                 if (more2boost)
1044                         spincnt++;
1045                 else
1046                         spincnt = 0;
1047                 if (spincnt > 10) {
1048                         WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1049                         trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1050                         schedule_timeout_interruptible(2);
1051                         trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1052                         spincnt = 0;
1053                 }
1054         }
1055         /* NOTREACHED */
1056         trace_rcu_utilization(TPS("End boost kthread@notreached"));
1057         return 0;
1058 }
1059
1060 /*
1061  * Check to see if it is time to start boosting RCU readers that are
1062  * blocking the current grace period, and, if so, tell the per-rcu_node
1063  * kthread to start boosting them.  If there is an expedited grace
1064  * period in progress, it is always time to boost.
1065  *
1066  * The caller must hold rnp->lock, which this function releases.
1067  * The ->boost_kthread_task is immortal, so we don't need to worry
1068  * about it going away.
1069  */
1070 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1071         __releases(rnp->lock)
1072 {
1073         raw_lockdep_assert_held_rcu_node(rnp);
1074         if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1075                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1076                 return;
1077         }
1078         if (rnp->exp_tasks != NULL ||
1079             (rnp->gp_tasks != NULL &&
1080              rnp->boost_tasks == NULL &&
1081              rnp->qsmask == 0 &&
1082              (ULONG_CMP_GE(jiffies, rnp->boost_time) || rcu_state.cbovld))) {
1083                 if (rnp->exp_tasks == NULL)
1084                         rnp->boost_tasks = rnp->gp_tasks;
1085                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1086                 rcu_wake_cond(rnp->boost_kthread_task,
1087                               READ_ONCE(rnp->boost_kthread_status));
1088         } else {
1089                 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1090         }
1091 }
1092
1093 /*
1094  * Is the current CPU running the RCU-callbacks kthread?
1095  * Caller must have preemption disabled.
1096  */
1097 static bool rcu_is_callbacks_kthread(void)
1098 {
1099         return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1100 }
1101
1102 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1103
1104 /*
1105  * Do priority-boost accounting for the start of a new grace period.
1106  */
1107 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1108 {
1109         rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1110 }
1111
1112 /*
1113  * Create an RCU-boost kthread for the specified node if one does not
1114  * already exist.  We only create this kthread for preemptible RCU.
1115  * Returns zero if all is well, a negated errno otherwise.
1116  */
1117 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1118 {
1119         int rnp_index = rnp - rcu_get_root();
1120         unsigned long flags;
1121         struct sched_param sp;
1122         struct task_struct *t;
1123
1124         if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1125                 return;
1126
1127         if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1128                 return;
1129
1130         rcu_state.boost = 1;
1131
1132         if (rnp->boost_kthread_task != NULL)
1133                 return;
1134
1135         t = kthread_create(rcu_boost_kthread, (void *)rnp,
1136                            "rcub/%d", rnp_index);
1137         if (WARN_ON_ONCE(IS_ERR(t)))
1138                 return;
1139
1140         raw_spin_lock_irqsave_rcu_node(rnp, flags);
1141         rnp->boost_kthread_task = t;
1142         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1143         sp.sched_priority = kthread_prio;
1144         sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1145         wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1146 }
1147
1148 /*
1149  * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1150  * served by the rcu_node in question.  The CPU hotplug lock is still
1151  * held, so the value of rnp->qsmaskinit will be stable.
1152  *
1153  * We don't include outgoingcpu in the affinity set, use -1 if there is
1154  * no outgoing CPU.  If there are no CPUs left in the affinity set,
1155  * this function allows the kthread to execute on any CPU.
1156  */
1157 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1158 {
1159         struct task_struct *t = rnp->boost_kthread_task;
1160         unsigned long mask = rcu_rnp_online_cpus(rnp);
1161         cpumask_var_t cm;
1162         int cpu;
1163
1164         if (!t)
1165                 return;
1166         if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1167                 return;
1168         for_each_leaf_node_possible_cpu(rnp, cpu)
1169                 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1170                     cpu != outgoingcpu)
1171                         cpumask_set_cpu(cpu, cm);
1172         if (cpumask_weight(cm) == 0)
1173                 cpumask_setall(cm);
1174         set_cpus_allowed_ptr(t, cm);
1175         free_cpumask_var(cm);
1176 }
1177
1178 /*
1179  * Spawn boost kthreads -- called as soon as the scheduler is running.
1180  */
1181 static void __init rcu_spawn_boost_kthreads(void)
1182 {
1183         struct rcu_node *rnp;
1184
1185         rcu_for_each_leaf_node(rnp)
1186                 rcu_spawn_one_boost_kthread(rnp);
1187 }
1188
1189 static void rcu_prepare_kthreads(int cpu)
1190 {
1191         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1192         struct rcu_node *rnp = rdp->mynode;
1193
1194         /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1195         if (rcu_scheduler_fully_active)
1196                 rcu_spawn_one_boost_kthread(rnp);
1197 }
1198
1199 #else /* #ifdef CONFIG_RCU_BOOST */
1200
1201 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1202         __releases(rnp->lock)
1203 {
1204         raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1205 }
1206
1207 static bool rcu_is_callbacks_kthread(void)
1208 {
1209         return false;
1210 }
1211
1212 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1213 {
1214 }
1215
1216 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1217 {
1218 }
1219
1220 static void __init rcu_spawn_boost_kthreads(void)
1221 {
1222 }
1223
1224 static void rcu_prepare_kthreads(int cpu)
1225 {
1226 }
1227
1228 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1229
1230 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1231
1232 /*
1233  * Check to see if any future non-offloaded RCU-related work will need
1234  * to be done by the current CPU, even if none need be done immediately,
1235  * returning 1 if so.  This function is part of the RCU implementation;
1236  * it is -not- an exported member of the RCU API.
1237  *
1238  * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1239  * CPU has RCU callbacks queued.
1240  */
1241 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1242 {
1243         *nextevt = KTIME_MAX;
1244         return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1245                !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1246 }
1247
1248 /*
1249  * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1250  * after it.
1251  */
1252 static void rcu_cleanup_after_idle(void)
1253 {
1254 }
1255
1256 /*
1257  * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1258  * is nothing.
1259  */
1260 static void rcu_prepare_for_idle(void)
1261 {
1262 }
1263
1264 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1265
1266 /*
1267  * This code is invoked when a CPU goes idle, at which point we want
1268  * to have the CPU do everything required for RCU so that it can enter
1269  * the energy-efficient dyntick-idle mode.
1270  *
1271  * The following preprocessor symbol controls this:
1272  *
1273  * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1274  *      to sleep in dyntick-idle mode with RCU callbacks pending.  This
1275  *      is sized to be roughly one RCU grace period.  Those energy-efficiency
1276  *      benchmarkers who might otherwise be tempted to set this to a large
1277  *      number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1278  *      system.  And if you are -that- concerned about energy efficiency,
1279  *      just power the system down and be done with it!
1280  *
1281  * The value below works well in practice.  If future workloads require
1282  * adjustment, they can be converted into kernel config parameters, though
1283  * making the state machine smarter might be a better option.
1284  */
1285 #define RCU_IDLE_GP_DELAY 4             /* Roughly one grace period. */
1286
1287 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1288 module_param(rcu_idle_gp_delay, int, 0644);
1289
1290 /*
1291  * Try to advance callbacks on the current CPU, but only if it has been
1292  * awhile since the last time we did so.  Afterwards, if there are any
1293  * callbacks ready for immediate invocation, return true.
1294  */
1295 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1296 {
1297         bool cbs_ready = false;
1298         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1299         struct rcu_node *rnp;
1300
1301         /* Exit early if we advanced recently. */
1302         if (jiffies == rdp->last_advance_all)
1303                 return false;
1304         rdp->last_advance_all = jiffies;
1305
1306         rnp = rdp->mynode;
1307
1308         /*
1309          * Don't bother checking unless a grace period has
1310          * completed since we last checked and there are
1311          * callbacks not yet ready to invoke.
1312          */
1313         if ((rcu_seq_completed_gp(rdp->gp_seq,
1314                                   rcu_seq_current(&rnp->gp_seq)) ||
1315              unlikely(READ_ONCE(rdp->gpwrap))) &&
1316             rcu_segcblist_pend_cbs(&rdp->cblist))
1317                 note_gp_changes(rdp);
1318
1319         if (rcu_segcblist_ready_cbs(&rdp->cblist))
1320                 cbs_ready = true;
1321         return cbs_ready;
1322 }
1323
1324 /*
1325  * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1326  * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
1327  * caller about what to set the timeout.
1328  *
1329  * The caller must have disabled interrupts.
1330  */
1331 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1332 {
1333         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1334         unsigned long dj;
1335
1336         lockdep_assert_irqs_disabled();
1337
1338         /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1339         if (rcu_segcblist_empty(&rdp->cblist) ||
1340             rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1341                 *nextevt = KTIME_MAX;
1342                 return 0;
1343         }
1344
1345         /* Attempt to advance callbacks. */
1346         if (rcu_try_advance_all_cbs()) {
1347                 /* Some ready to invoke, so initiate later invocation. */
1348                 invoke_rcu_core();
1349                 return 1;
1350         }
1351         rdp->last_accelerate = jiffies;
1352
1353         /* Request timer and round. */
1354         dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1355
1356         *nextevt = basemono + dj * TICK_NSEC;
1357         return 0;
1358 }
1359
1360 /*
1361  * Prepare a CPU for idle from an RCU perspective.  The first major task is to
1362  * sense whether nohz mode has been enabled or disabled via sysfs.  The second
1363  * major task is to accelerate (that is, assign grace-period numbers to) any
1364  * recently arrived callbacks.
1365  *
1366  * The caller must have disabled interrupts.
1367  */
1368 static void rcu_prepare_for_idle(void)
1369 {
1370         bool needwake;
1371         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1372         struct rcu_node *rnp;
1373         int tne;
1374
1375         lockdep_assert_irqs_disabled();
1376         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1377                 return;
1378
1379         /* Handle nohz enablement switches conservatively. */
1380         tne = READ_ONCE(tick_nohz_active);
1381         if (tne != rdp->tick_nohz_enabled_snap) {
1382                 if (!rcu_segcblist_empty(&rdp->cblist))
1383                         invoke_rcu_core(); /* force nohz to see update. */
1384                 rdp->tick_nohz_enabled_snap = tne;
1385                 return;
1386         }
1387         if (!tne)
1388                 return;
1389
1390         /*
1391          * If we have not yet accelerated this jiffy, accelerate all
1392          * callbacks on this CPU.
1393          */
1394         if (rdp->last_accelerate == jiffies)
1395                 return;
1396         rdp->last_accelerate = jiffies;
1397         if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1398                 rnp = rdp->mynode;
1399                 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1400                 needwake = rcu_accelerate_cbs(rnp, rdp);
1401                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1402                 if (needwake)
1403                         rcu_gp_kthread_wake();
1404         }
1405 }
1406
1407 /*
1408  * Clean up for exit from idle.  Attempt to advance callbacks based on
1409  * any grace periods that elapsed while the CPU was idle, and if any
1410  * callbacks are now ready to invoke, initiate invocation.
1411  */
1412 static void rcu_cleanup_after_idle(void)
1413 {
1414         struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1415
1416         lockdep_assert_irqs_disabled();
1417         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1418                 return;
1419         if (rcu_try_advance_all_cbs())
1420                 invoke_rcu_core();
1421 }
1422
1423 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1424
1425 #ifdef CONFIG_RCU_NOCB_CPU
1426
1427 /*
1428  * Offload callback processing from the boot-time-specified set of CPUs
1429  * specified by rcu_nocb_mask.  For the CPUs in the set, there are kthreads
1430  * created that pull the callbacks from the corresponding CPU, wait for
1431  * a grace period to elapse, and invoke the callbacks.  These kthreads
1432  * are organized into GP kthreads, which manage incoming callbacks, wait for
1433  * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1434  * invoke callbacks.  Each GP kthread invokes its own CBs.  The no-CBs CPUs
1435  * do a wake_up() on their GP kthread when they insert a callback into any
1436  * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1437  * in which case each kthread actively polls its CPU.  (Which isn't so great
1438  * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1439  *
1440  * This is intended to be used in conjunction with Frederic Weisbecker's
1441  * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1442  * running CPU-bound user-mode computations.
1443  *
1444  * Offloading of callbacks can also be used as an energy-efficiency
1445  * measure because CPUs with no RCU callbacks queued are more aggressive
1446  * about entering dyntick-idle mode.
1447  */
1448
1449
1450 /*
1451  * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1452  * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1453  * comma-separated list of CPUs and/or CPU ranges.  If an invalid list is
1454  * given, a warning is emitted and all CPUs are offloaded.
1455  */
1456 static int __init rcu_nocb_setup(char *str)
1457 {
1458         alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1459         if (!strcasecmp(str, "all"))
1460                 cpumask_setall(rcu_nocb_mask);
1461         else
1462                 if (cpulist_parse(str, rcu_nocb_mask)) {
1463                         pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1464                         cpumask_setall(rcu_nocb_mask);
1465                 }
1466         return 1;
1467 }
1468 __setup("rcu_nocbs=", rcu_nocb_setup);
1469
1470 static int __init parse_rcu_nocb_poll(char *arg)
1471 {
1472         rcu_nocb_poll = true;
1473         return 0;
1474 }
1475 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1476
1477 /*
1478  * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1479  * After all, the main point of bypassing is to avoid lock contention
1480  * on ->nocb_lock, which only can happen at high call_rcu() rates.
1481  */
1482 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1483 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1484
1485 /*
1486  * Acquire the specified rcu_data structure's ->nocb_bypass_lock.  If the
1487  * lock isn't immediately available, increment ->nocb_lock_contended to
1488  * flag the contention.
1489  */
1490 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1491         __acquires(&rdp->nocb_bypass_lock)
1492 {
1493         lockdep_assert_irqs_disabled();
1494         if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1495                 return;
1496         atomic_inc(&rdp->nocb_lock_contended);
1497         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1498         smp_mb__after_atomic(); /* atomic_inc() before lock. */
1499         raw_spin_lock(&rdp->nocb_bypass_lock);
1500         smp_mb__before_atomic(); /* atomic_dec() after lock. */
1501         atomic_dec(&rdp->nocb_lock_contended);
1502 }
1503
1504 /*
1505  * Spinwait until the specified rcu_data structure's ->nocb_lock is
1506  * not contended.  Please note that this is extremely special-purpose,
1507  * relying on the fact that at most two kthreads and one CPU contend for
1508  * this lock, and also that the two kthreads are guaranteed to have frequent
1509  * grace-period-duration time intervals between successive acquisitions
1510  * of the lock.  This allows us to use an extremely simple throttling
1511  * mechanism, and further to apply it only to the CPU doing floods of
1512  * call_rcu() invocations.  Don't try this at home!
1513  */
1514 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1515 {
1516         WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1517         while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1518                 cpu_relax();
1519 }
1520
1521 /*
1522  * Conditionally acquire the specified rcu_data structure's
1523  * ->nocb_bypass_lock.
1524  */
1525 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1526 {
1527         lockdep_assert_irqs_disabled();
1528         return raw_spin_trylock(&rdp->nocb_bypass_lock);
1529 }
1530
1531 /*
1532  * Release the specified rcu_data structure's ->nocb_bypass_lock.
1533  */
1534 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1535         __releases(&rdp->nocb_bypass_lock)
1536 {
1537         lockdep_assert_irqs_disabled();
1538         raw_spin_unlock(&rdp->nocb_bypass_lock);
1539 }
1540
1541 /*
1542  * Acquire the specified rcu_data structure's ->nocb_lock, but only
1543  * if it corresponds to a no-CBs CPU.
1544  */
1545 static void rcu_nocb_lock(struct rcu_data *rdp)
1546 {
1547         lockdep_assert_irqs_disabled();
1548         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1549                 return;
1550         raw_spin_lock(&rdp->nocb_lock);
1551 }
1552
1553 /*
1554  * Release the specified rcu_data structure's ->nocb_lock, but only
1555  * if it corresponds to a no-CBs CPU.
1556  */
1557 static void rcu_nocb_unlock(struct rcu_data *rdp)
1558 {
1559         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1560                 lockdep_assert_irqs_disabled();
1561                 raw_spin_unlock(&rdp->nocb_lock);
1562         }
1563 }
1564
1565 /*
1566  * Release the specified rcu_data structure's ->nocb_lock and restore
1567  * interrupts, but only if it corresponds to a no-CBs CPU.
1568  */
1569 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1570                                        unsigned long flags)
1571 {
1572         if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1573                 lockdep_assert_irqs_disabled();
1574                 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1575         } else {
1576                 local_irq_restore(flags);
1577         }
1578 }
1579
1580 /* Lockdep check that ->cblist may be safely accessed. */
1581 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1582 {
1583         lockdep_assert_irqs_disabled();
1584         if (rcu_segcblist_is_offloaded(&rdp->cblist))
1585                 lockdep_assert_held(&rdp->nocb_lock);
1586 }
1587
1588 /*
1589  * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1590  * grace period.
1591  */
1592 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1593 {
1594         swake_up_all(sq);
1595 }
1596
1597 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1598 {
1599         return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1600 }
1601
1602 static void rcu_init_one_nocb(struct rcu_node *rnp)
1603 {
1604         init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1605         init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1606 }
1607
1608 /* Is the specified CPU a no-CBs CPU? */
1609 bool rcu_is_nocb_cpu(int cpu)
1610 {
1611         if (cpumask_available(rcu_nocb_mask))
1612                 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1613         return false;
1614 }
1615
1616 /*
1617  * Kick the GP kthread for this NOCB group.  Caller holds ->nocb_lock
1618  * and this function releases it.
1619  */
1620 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1621                            unsigned long flags)
1622         __releases(rdp->nocb_lock)
1623 {
1624         bool needwake = false;
1625         struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1626
1627         lockdep_assert_held(&rdp->nocb_lock);
1628         if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1629                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1630                                     TPS("AlreadyAwake"));
1631                 rcu_nocb_unlock_irqrestore(rdp, flags);
1632                 return;
1633         }
1634         del_timer(&rdp->nocb_timer);
1635         rcu_nocb_unlock_irqrestore(rdp, flags);
1636         raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1637         if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1638                 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1639                 needwake = true;
1640                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1641         }
1642         raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1643         if (needwake)
1644                 wake_up_process(rdp_gp->nocb_gp_kthread);
1645 }
1646
1647 /*
1648  * Arrange to wake the GP kthread for this NOCB group at some future
1649  * time when it is safe to do so.
1650  */
1651 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1652                                const char *reason)
1653 {
1654         if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1655                 mod_timer(&rdp->nocb_timer, jiffies + 1);
1656         if (rdp->nocb_defer_wakeup < waketype)
1657                 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1658         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1659 }
1660
1661 /*
1662  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1663  * However, if there is a callback to be enqueued and if ->nocb_bypass
1664  * proves to be initially empty, just return false because the no-CB GP
1665  * kthread may need to be awakened in this case.
1666  *
1667  * Note that this function always returns true if rhp is NULL.
1668  */
1669 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1670                                      unsigned long j)
1671 {
1672         struct rcu_cblist rcl;
1673
1674         WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1675         rcu_lockdep_assert_cblist_protected(rdp);
1676         lockdep_assert_held(&rdp->nocb_bypass_lock);
1677         if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1678                 raw_spin_unlock(&rdp->nocb_bypass_lock);
1679                 return false;
1680         }
1681         /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1682         if (rhp)
1683                 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1684         rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1685         rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1686         WRITE_ONCE(rdp->nocb_bypass_first, j);
1687         rcu_nocb_bypass_unlock(rdp);
1688         return true;
1689 }
1690
1691 /*
1692  * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1693  * However, if there is a callback to be enqueued and if ->nocb_bypass
1694  * proves to be initially empty, just return false because the no-CB GP
1695  * kthread may need to be awakened in this case.
1696  *
1697  * Note that this function always returns true if rhp is NULL.
1698  */
1699 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1700                                   unsigned long j)
1701 {
1702         if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1703                 return true;
1704         rcu_lockdep_assert_cblist_protected(rdp);
1705         rcu_nocb_bypass_lock(rdp);
1706         return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1707 }
1708
1709 /*
1710  * If the ->nocb_bypass_lock is immediately available, flush the
1711  * ->nocb_bypass queue into ->cblist.
1712  */
1713 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1714 {
1715         rcu_lockdep_assert_cblist_protected(rdp);
1716         if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1717             !rcu_nocb_bypass_trylock(rdp))
1718                 return;
1719         WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1720 }
1721
1722 /*
1723  * See whether it is appropriate to use the ->nocb_bypass list in order
1724  * to control contention on ->nocb_lock.  A limited number of direct
1725  * enqueues are permitted into ->cblist per jiffy.  If ->nocb_bypass
1726  * is non-empty, further callbacks must be placed into ->nocb_bypass,
1727  * otherwise rcu_barrier() breaks.  Use rcu_nocb_flush_bypass() to switch
1728  * back to direct use of ->cblist.  However, ->nocb_bypass should not be
1729  * used if ->cblist is empty, because otherwise callbacks can be stranded
1730  * on ->nocb_bypass because we cannot count on the current CPU ever again
1731  * invoking call_rcu().  The general rule is that if ->nocb_bypass is
1732  * non-empty, the corresponding no-CBs grace-period kthread must not be
1733  * in an indefinite sleep state.
1734  *
1735  * Finally, it is not permitted to use the bypass during early boot,
1736  * as doing so would confuse the auto-initialization code.  Besides
1737  * which, there is no point in worrying about lock contention while
1738  * there is only one CPU in operation.
1739  */
1740 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1741                                 bool *was_alldone, unsigned long flags)
1742 {
1743         unsigned long c;
1744         unsigned long cur_gp_seq;
1745         unsigned long j = jiffies;
1746         long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1747
1748         if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1749                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1750                 return false; /* Not offloaded, no bypassing. */
1751         }
1752         lockdep_assert_irqs_disabled();
1753
1754         // Don't use ->nocb_bypass during early boot.
1755         if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1756                 rcu_nocb_lock(rdp);
1757                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1758                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1759                 return false;
1760         }
1761
1762         // If we have advanced to a new jiffy, reset counts to allow
1763         // moving back from ->nocb_bypass to ->cblist.
1764         if (j == rdp->nocb_nobypass_last) {
1765                 c = rdp->nocb_nobypass_count + 1;
1766         } else {
1767                 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1768                 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1769                 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1770                                  nocb_nobypass_lim_per_jiffy))
1771                         c = 0;
1772                 else if (c > nocb_nobypass_lim_per_jiffy)
1773                         c = nocb_nobypass_lim_per_jiffy;
1774         }
1775         WRITE_ONCE(rdp->nocb_nobypass_count, c);
1776
1777         // If there hasn't yet been all that many ->cblist enqueues
1778         // this jiffy, tell the caller to enqueue onto ->cblist.  But flush
1779         // ->nocb_bypass first.
1780         if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1781                 rcu_nocb_lock(rdp);
1782                 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1783                 if (*was_alldone)
1784                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1785                                             TPS("FirstQ"));
1786                 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1787                 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1788                 return false; // Caller must enqueue the callback.
1789         }
1790
1791         // If ->nocb_bypass has been used too long or is too full,
1792         // flush ->nocb_bypass to ->cblist.
1793         if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1794             ncbs >= qhimark) {
1795                 rcu_nocb_lock(rdp);
1796                 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1797                         *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1798                         if (*was_alldone)
1799                                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1800                                                     TPS("FirstQ"));
1801                         WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1802                         return false; // Caller must enqueue the callback.
1803                 }
1804                 if (j != rdp->nocb_gp_adv_time &&
1805                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1806                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1807                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1808                         rdp->nocb_gp_adv_time = j;
1809                 }
1810                 rcu_nocb_unlock_irqrestore(rdp, flags);
1811                 return true; // Callback already enqueued.
1812         }
1813
1814         // We need to use the bypass.
1815         rcu_nocb_wait_contended(rdp);
1816         rcu_nocb_bypass_lock(rdp);
1817         ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1818         rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1819         rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1820         if (!ncbs) {
1821                 WRITE_ONCE(rdp->nocb_bypass_first, j);
1822                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1823         }
1824         rcu_nocb_bypass_unlock(rdp);
1825         smp_mb(); /* Order enqueue before wake. */
1826         if (ncbs) {
1827                 local_irq_restore(flags);
1828         } else {
1829                 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1830                 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1831                 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1832                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1833                                             TPS("FirstBQwake"));
1834                         __call_rcu_nocb_wake(rdp, true, flags);
1835                 } else {
1836                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1837                                             TPS("FirstBQnoWake"));
1838                         rcu_nocb_unlock_irqrestore(rdp, flags);
1839                 }
1840         }
1841         return true; // Callback already enqueued.
1842 }
1843
1844 /*
1845  * Awaken the no-CBs grace-period kthead if needed, either due to it
1846  * legitimately being asleep or due to overload conditions.
1847  *
1848  * If warranted, also wake up the kthread servicing this CPUs queues.
1849  */
1850 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1851                                  unsigned long flags)
1852                                  __releases(rdp->nocb_lock)
1853 {
1854         unsigned long cur_gp_seq;
1855         unsigned long j;
1856         long len;
1857         struct task_struct *t;
1858
1859         // If we are being polled or there is no kthread, just leave.
1860         t = READ_ONCE(rdp->nocb_gp_kthread);
1861         if (rcu_nocb_poll || !t) {
1862                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1863                                     TPS("WakeNotPoll"));
1864                 rcu_nocb_unlock_irqrestore(rdp, flags);
1865                 return;
1866         }
1867         // Need to actually to a wakeup.
1868         len = rcu_segcblist_n_cbs(&rdp->cblist);
1869         if (was_alldone) {
1870                 rdp->qlen_last_fqs_check = len;
1871                 if (!irqs_disabled_flags(flags)) {
1872                         /* ... if queue was empty ... */
1873                         wake_nocb_gp(rdp, false, flags);
1874                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1875                                             TPS("WakeEmpty"));
1876                 } else {
1877                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1878                                            TPS("WakeEmptyIsDeferred"));
1879                         rcu_nocb_unlock_irqrestore(rdp, flags);
1880                 }
1881         } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1882                 /* ... or if many callbacks queued. */
1883                 rdp->qlen_last_fqs_check = len;
1884                 j = jiffies;
1885                 if (j != rdp->nocb_gp_adv_time &&
1886                     rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1887                     rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1888                         rcu_advance_cbs_nowake(rdp->mynode, rdp);
1889                         rdp->nocb_gp_adv_time = j;
1890                 }
1891                 smp_mb(); /* Enqueue before timer_pending(). */
1892                 if ((rdp->nocb_cb_sleep ||
1893                      !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1894                     !timer_pending(&rdp->nocb_bypass_timer))
1895                         wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1896                                            TPS("WakeOvfIsDeferred"));
1897                 rcu_nocb_unlock_irqrestore(rdp, flags);
1898         } else {
1899                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1900                 rcu_nocb_unlock_irqrestore(rdp, flags);
1901         }
1902         return;
1903 }
1904
1905 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1906 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1907 {
1908         unsigned long flags;
1909         struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1910
1911         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1912         rcu_nocb_lock_irqsave(rdp, flags);
1913         smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1914         __call_rcu_nocb_wake(rdp, true, flags);
1915 }
1916
1917 /*
1918  * No-CBs GP kthreads come here to wait for additional callbacks to show up
1919  * or for grace periods to end.
1920  */
1921 static void nocb_gp_wait(struct rcu_data *my_rdp)
1922 {
1923         bool bypass = false;
1924         long bypass_ncbs;
1925         int __maybe_unused cpu = my_rdp->cpu;
1926         unsigned long cur_gp_seq;
1927         unsigned long flags;
1928         bool gotcbs = false;
1929         unsigned long j = jiffies;
1930         bool needwait_gp = false; // This prevents actual uninitialized use.
1931         bool needwake;
1932         bool needwake_gp;
1933         struct rcu_data *rdp;
1934         struct rcu_node *rnp;
1935         unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1936         bool wasempty = false;
1937
1938         /*
1939          * Each pass through the following loop checks for CBs and for the
1940          * nearest grace period (if any) to wait for next.  The CB kthreads
1941          * and the global grace-period kthread are awakened if needed.
1942          */
1943         for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1944                 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1945                 rcu_nocb_lock_irqsave(rdp, flags);
1946                 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1947                 if (bypass_ncbs &&
1948                     (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1949                      bypass_ncbs > 2 * qhimark)) {
1950                         // Bypass full or old, so flush it.
1951                         (void)rcu_nocb_try_flush_bypass(rdp, j);
1952                         bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1953                 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1954                         rcu_nocb_unlock_irqrestore(rdp, flags);
1955                         continue; /* No callbacks here, try next. */
1956                 }
1957                 if (bypass_ncbs) {
1958                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1959                                             TPS("Bypass"));
1960                         bypass = true;
1961                 }
1962                 rnp = rdp->mynode;
1963                 if (bypass) {  // Avoid race with first bypass CB.
1964                         WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1965                                    RCU_NOCB_WAKE_NOT);
1966                         del_timer(&my_rdp->nocb_timer);
1967                 }
1968                 // Advance callbacks if helpful and low contention.
1969                 needwake_gp = false;
1970                 if (!rcu_segcblist_restempty(&rdp->cblist,
1971                                              RCU_NEXT_READY_TAIL) ||
1972                     (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1973                      rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1974                         raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1975                         needwake_gp = rcu_advance_cbs(rnp, rdp);
1976                         wasempty = rcu_segcblist_restempty(&rdp->cblist,
1977                                                            RCU_NEXT_READY_TAIL);
1978                         raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1979                 }
1980                 // Need to wait on some grace period?
1981                 WARN_ON_ONCE(wasempty &&
1982                              !rcu_segcblist_restempty(&rdp->cblist,
1983                                                       RCU_NEXT_READY_TAIL));
1984                 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1985                         if (!needwait_gp ||
1986                             ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1987                                 wait_gp_seq = cur_gp_seq;
1988                         needwait_gp = true;
1989                         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1990                                             TPS("NeedWaitGP"));
1991                 }
1992                 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1993                         needwake = rdp->nocb_cb_sleep;
1994                         WRITE_ONCE(rdp->nocb_cb_sleep, false);
1995                         smp_mb(); /* CB invocation -after- GP end. */
1996                 } else {
1997                         needwake = false;
1998                 }
1999                 rcu_nocb_unlock_irqrestore(rdp, flags);
2000                 if (needwake) {
2001                         swake_up_one(&rdp->nocb_cb_wq);
2002                         gotcbs = true;
2003                 }
2004                 if (needwake_gp)
2005                         rcu_gp_kthread_wake();
2006         }
2007
2008         my_rdp->nocb_gp_bypass = bypass;
2009         my_rdp->nocb_gp_gp = needwait_gp;
2010         my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
2011         if (bypass && !rcu_nocb_poll) {
2012                 // At least one child with non-empty ->nocb_bypass, so set
2013                 // timer in order to avoid stranding its callbacks.
2014                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2015                 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2016                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2017         }
2018         if (rcu_nocb_poll) {
2019                 /* Polling, so trace if first poll in the series. */
2020                 if (gotcbs)
2021                         trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2022                 schedule_timeout_interruptible(1);
2023         } else if (!needwait_gp) {
2024                 /* Wait for callbacks to appear. */
2025                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2026                 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2027                                 !READ_ONCE(my_rdp->nocb_gp_sleep));
2028                 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2029         } else {
2030                 rnp = my_rdp->mynode;
2031                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2032                 swait_event_interruptible_exclusive(
2033                         rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2034                         rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2035                         !READ_ONCE(my_rdp->nocb_gp_sleep));
2036                 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2037         }
2038         if (!rcu_nocb_poll) {
2039                 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2040                 if (bypass)
2041                         del_timer(&my_rdp->nocb_bypass_timer);
2042                 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2043                 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2044         }
2045         my_rdp->nocb_gp_seq = -1;
2046         WARN_ON(signal_pending(current));
2047 }
2048
2049 /*
2050  * No-CBs grace-period-wait kthread.  There is one of these per group
2051  * of CPUs, but only once at least one CPU in that group has come online
2052  * at least once since boot.  This kthread checks for newly posted
2053  * callbacks from any of the CPUs it is responsible for, waits for a
2054  * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2055  * that then have callback-invocation work to do.
2056  */
2057 static int rcu_nocb_gp_kthread(void *arg)
2058 {
2059         struct rcu_data *rdp = arg;
2060
2061         for (;;) {
2062                 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2063                 nocb_gp_wait(rdp);
2064                 cond_resched_tasks_rcu_qs();
2065         }
2066         return 0;
2067 }
2068
2069 /*
2070  * Invoke any ready callbacks from the corresponding no-CBs CPU,
2071  * then, if there are no more, wait for more to appear.
2072  */
2073 static void nocb_cb_wait(struct rcu_data *rdp)
2074 {
2075         unsigned long cur_gp_seq;
2076         unsigned long flags;
2077         bool needwake_gp = false;
2078         struct rcu_node *rnp = rdp->mynode;
2079
2080         local_irq_save(flags);
2081         rcu_momentary_dyntick_idle();
2082         local_irq_restore(flags);
2083         local_bh_disable();
2084         rcu_do_batch(rdp);
2085         local_bh_enable();
2086         lockdep_assert_irqs_enabled();
2087         rcu_nocb_lock_irqsave(rdp, flags);
2088         if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2089             rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2090             raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2091                 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2092                 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2093         }
2094         if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2095                 rcu_nocb_unlock_irqrestore(rdp, flags);
2096                 if (needwake_gp)
2097                         rcu_gp_kthread_wake();
2098                 return;
2099         }
2100
2101         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2102         WRITE_ONCE(rdp->nocb_cb_sleep, true);
2103         rcu_nocb_unlock_irqrestore(rdp, flags);
2104         if (needwake_gp)
2105                 rcu_gp_kthread_wake();
2106         swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2107                                  !READ_ONCE(rdp->nocb_cb_sleep));
2108         if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2109                 /* ^^^ Ensure CB invocation follows _sleep test. */
2110                 return;
2111         }
2112         WARN_ON(signal_pending(current));
2113         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2114 }
2115
2116 /*
2117  * Per-rcu_data kthread, but only for no-CBs CPUs.  Repeatedly invoke
2118  * nocb_cb_wait() to do the dirty work.
2119  */
2120 static int rcu_nocb_cb_kthread(void *arg)
2121 {
2122         struct rcu_data *rdp = arg;
2123
2124         // Each pass through this loop does one callback batch, and,
2125         // if there are no more ready callbacks, waits for them.
2126         for (;;) {
2127                 nocb_cb_wait(rdp);
2128                 cond_resched_tasks_rcu_qs();
2129         }
2130         return 0;
2131 }
2132
2133 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2134 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2135 {
2136         return READ_ONCE(rdp->nocb_defer_wakeup);
2137 }
2138
2139 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2140 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2141 {
2142         unsigned long flags;
2143         int ndw;
2144
2145         rcu_nocb_lock_irqsave(rdp, flags);
2146         if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2147                 rcu_nocb_unlock_irqrestore(rdp, flags);
2148                 return;
2149         }
2150         ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2151         WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2152         wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2153         trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2154 }
2155
2156 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2157 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2158 {
2159         struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2160
2161         do_nocb_deferred_wakeup_common(rdp);
2162 }
2163
2164 /*
2165  * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2166  * This means we do an inexact common-case check.  Note that if
2167  * we miss, ->nocb_timer will eventually clean things up.
2168  */
2169 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2170 {
2171         if (rcu_nocb_need_deferred_wakeup(rdp))
2172                 do_nocb_deferred_wakeup_common(rdp);
2173 }
2174
2175 void __init rcu_init_nohz(void)
2176 {
2177         int cpu;
2178         bool need_rcu_nocb_mask = false;
2179         struct rcu_data *rdp;
2180
2181 #if defined(CONFIG_NO_HZ_FULL)
2182         if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2183                 need_rcu_nocb_mask = true;
2184 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2185
2186         if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2187                 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2188                         pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2189                         return;
2190                 }
2191         }
2192         if (!cpumask_available(rcu_nocb_mask))
2193                 return;
2194
2195 #if defined(CONFIG_NO_HZ_FULL)
2196         if (tick_nohz_full_running)
2197                 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2198 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2199
2200         if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2201                 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2202                 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2203                             rcu_nocb_mask);
2204         }
2205         if (cpumask_empty(rcu_nocb_mask))
2206                 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2207         else
2208                 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2209                         cpumask_pr_args(rcu_nocb_mask));
2210         if (rcu_nocb_poll)
2211                 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2212
2213         for_each_cpu(cpu, rcu_nocb_mask) {
2214                 rdp = per_cpu_ptr(&rcu_data, cpu);
2215                 if (rcu_segcblist_empty(&rdp->cblist))
2216                         rcu_segcblist_init(&rdp->cblist);
2217                 rcu_segcblist_offload(&rdp->cblist);
2218         }
2219         rcu_organize_nocb_kthreads();
2220 }
2221
2222 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2223 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2224 {
2225         init_swait_queue_head(&rdp->nocb_cb_wq);
2226         init_swait_queue_head(&rdp->nocb_gp_wq);
2227         raw_spin_lock_init(&rdp->nocb_lock);
2228         raw_spin_lock_init(&rdp->nocb_bypass_lock);
2229         raw_spin_lock_init(&rdp->nocb_gp_lock);
2230         timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2231         timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2232         rcu_cblist_init(&rdp->nocb_bypass);
2233 }
2234
2235 /*
2236  * If the specified CPU is a no-CBs CPU that does not already have its
2237  * rcuo CB kthread, spawn it.  Additionally, if the rcuo GP kthread
2238  * for this CPU's group has not yet been created, spawn it as well.
2239  */
2240 static void rcu_spawn_one_nocb_kthread(int cpu)
2241 {
2242         struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2243         struct rcu_data *rdp_gp;
2244         struct task_struct *t;
2245
2246         /*
2247          * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2248          * then nothing to do.
2249          */
2250         if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2251                 return;
2252
2253         /* If we didn't spawn the GP kthread first, reorganize! */
2254         rdp_gp = rdp->nocb_gp_rdp;
2255         if (!rdp_gp->nocb_gp_kthread) {
2256                 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2257                                 "rcuog/%d", rdp_gp->cpu);
2258                 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2259                         return;
2260                 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2261         }
2262
2263         /* Spawn the kthread for this CPU. */
2264         t = kthread_run(rcu_nocb_cb_kthread, rdp,
2265                         "rcuo%c/%d", rcu_state.abbr, cpu);
2266         if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2267                 return;
2268         WRITE_ONCE(rdp->nocb_cb_kthread, t);
2269         WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2270 }
2271
2272 /*
2273  * If the specified CPU is a no-CBs CPU that does not already have its
2274  * rcuo kthread, spawn it.
2275  */
2276 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2277 {
2278         if (rcu_scheduler_fully_active)
2279                 rcu_spawn_one_nocb_kthread(cpu);
2280 }
2281
2282 /*
2283  * Once the scheduler is running, spawn rcuo kthreads for all online
2284  * no-CBs CPUs.  This assumes that the early_initcall()s happen before
2285  * non-boot CPUs come online -- if this changes, we will need to add
2286  * some mutual exclusion.
2287  */
2288 static void __init rcu_spawn_nocb_kthreads(void)
2289 {
2290         int cpu;
2291
2292         for_each_online_cpu(cpu)
2293                 rcu_spawn_cpu_nocb_kthread(cpu);
2294 }
2295
2296 /* How many CB CPU IDs per GP kthread?  Default of -1 for sqrt(nr_cpu_ids). */
2297 static int rcu_nocb_gp_stride = -1;
2298 module_param(rcu_nocb_gp_stride, int, 0444);
2299
2300 /*
2301  * Initialize GP-CB relationships for all no-CBs CPU.
2302  */
2303 static void __init rcu_organize_nocb_kthreads(void)
2304 {
2305         int cpu;
2306         bool firsttime = true;
2307         bool gotnocbs = false;
2308         bool gotnocbscbs = true;
2309         int ls = rcu_nocb_gp_stride;
2310         int nl = 0;  /* Next GP kthread. */
2311         struct rcu_data *rdp;
2312         struct rcu_data *rdp_gp = NULL;  /* Suppress misguided gcc warn. */
2313         struct rcu_data *rdp_prev = NULL;
2314
2315         if (!cpumask_available(rcu_nocb_mask))
2316                 return;
2317         if (ls == -1) {
2318                 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2319                 rcu_nocb_gp_stride = ls;
2320         }
2321
2322         /*
2323          * Each pass through this loop sets up one rcu_data structure.
2324          * Should the corresponding CPU come online in the future, then
2325          * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2326          */
2327         for_each_cpu(cpu, rcu_nocb_mask) {
2328                 rdp = per_cpu_ptr(&rcu_data, cpu);
2329                 if (rdp->cpu >= nl) {
2330                         /* New GP kthread, set up for CBs & next GP. */
2331                         gotnocbs = true;
2332                         nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2333                         rdp->nocb_gp_rdp = rdp;
2334                         rdp_gp = rdp;
2335                         if (dump_tree) {
2336                                 if (!firsttime)
2337                                         pr_cont("%s\n", gotnocbscbs
2338                                                         ? "" : " (self only)");
2339                                 gotnocbscbs = false;
2340                                 firsttime = false;
2341                                 pr_alert("%s: No-CB GP kthread CPU %d:",
2342                                          __func__, cpu);
2343                         }
2344                 } else {
2345                         /* Another CB kthread, link to previous GP kthread. */
2346                         gotnocbscbs = true;
2347                         rdp->nocb_gp_rdp = rdp_gp;
2348                         rdp_prev->nocb_next_cb_rdp = rdp;
2349                         if (dump_tree)
2350                                 pr_cont(" %d", cpu);
2351                 }
2352                 rdp_prev = rdp;
2353         }
2354         if (gotnocbs && dump_tree)
2355                 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2356 }
2357
2358 /*
2359  * Bind the current task to the offloaded CPUs.  If there are no offloaded
2360  * CPUs, leave the task unbound.  Splat if the bind attempt fails.
2361  */
2362 void rcu_bind_current_to_nocb(void)
2363 {
2364         if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2365                 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2366 }
2367 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2368
2369 /*
2370  * Dump out nocb grace-period kthread state for the specified rcu_data
2371  * structure.
2372  */
2373 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2374 {
2375         struct rcu_node *rnp = rdp->mynode;
2376
2377         pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2378                 rdp->cpu,
2379                 "kK"[!!rdp->nocb_gp_kthread],
2380                 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2381                 "dD"[!!rdp->nocb_defer_wakeup],
2382                 "tT"[timer_pending(&rdp->nocb_timer)],
2383                 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2384                 "sS"[!!rdp->nocb_gp_sleep],
2385                 ".W"[swait_active(&rdp->nocb_gp_wq)],
2386                 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2387                 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2388                 ".B"[!!rdp->nocb_gp_bypass],
2389                 ".G"[!!rdp->nocb_gp_gp],
2390                 (long)rdp->nocb_gp_seq,
2391                 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2392 }
2393
2394 /* Dump out nocb kthread state for the specified rcu_data structure. */
2395 static void show_rcu_nocb_state(struct rcu_data *rdp)
2396 {
2397         struct rcu_segcblist *rsclp = &rdp->cblist;
2398         bool waslocked;
2399         bool wastimer;
2400         bool wassleep;
2401
2402         if (rdp->nocb_gp_rdp == rdp)
2403                 show_rcu_nocb_gp_state(rdp);
2404
2405         pr_info("   CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2406                 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2407                 "kK"[!!rdp->nocb_cb_kthread],
2408                 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2409                 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2410                 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2411                 "sS"[!!rdp->nocb_cb_sleep],
2412                 ".W"[swait_active(&rdp->nocb_cb_wq)],
2413                 jiffies - rdp->nocb_bypass_first,
2414                 jiffies - rdp->nocb_nobypass_last,
2415                 rdp->nocb_nobypass_count,
2416                 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2417                 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2418                 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2419                 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2420                 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2421                 rcu_segcblist_n_cbs(&rdp->cblist));
2422
2423         /* It is OK for GP kthreads to have GP state. */
2424         if (rdp->nocb_gp_rdp == rdp)
2425                 return;
2426
2427         waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2428         wastimer = timer_pending(&rdp->nocb_timer);
2429         wassleep = swait_active(&rdp->nocb_gp_wq);
2430         if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2431             !waslocked && !wastimer && !wassleep)
2432                 return;  /* Nothing untowards. */
2433
2434         pr_info("   !!! %c%c%c%c %c\n",
2435                 "lL"[waslocked],
2436                 "dD"[!!rdp->nocb_defer_wakeup],
2437                 "tT"[wastimer],
2438                 "sS"[!!rdp->nocb_gp_sleep],
2439                 ".W"[wassleep]);
2440 }
2441
2442 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2443
2444 /* No ->nocb_lock to acquire.  */
2445 static void rcu_nocb_lock(struct rcu_data *rdp)
2446 {
2447 }
2448
2449 /* No ->nocb_lock to release.  */
2450 static void rcu_nocb_unlock(struct rcu_data *rdp)
2451 {
2452 }
2453
2454 /* No ->nocb_lock to release.  */
2455 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2456                                        unsigned long flags)
2457 {
2458         local_irq_restore(flags);
2459 }
2460
2461 /* Lockdep check that ->cblist may be safely accessed. */
2462 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2463 {
2464         lockdep_assert_irqs_disabled();
2465 }
2466
2467 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2468 {
2469 }
2470
2471 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2472 {
2473         return NULL;
2474 }
2475
2476 static void rcu_init_one_nocb(struct rcu_node *rnp)
2477 {
2478 }
2479
2480 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2481                                   unsigned long j)
2482 {
2483         return true;
2484 }
2485
2486 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2487                                 bool *was_alldone, unsigned long flags)
2488 {
2489         return false;
2490 }
2491
2492 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2493                                  unsigned long flags)
2494 {
2495         WARN_ON_ONCE(1);  /* Should be dead code! */
2496 }
2497
2498 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2499 {
2500 }
2501
2502 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2503 {
2504         return false;
2505 }
2506
2507 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2508 {
2509 }
2510
2511 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2512 {
2513 }
2514
2515 static void __init rcu_spawn_nocb_kthreads(void)
2516 {
2517 }
2518
2519 static void show_rcu_nocb_state(struct rcu_data *rdp)
2520 {
2521 }
2522
2523 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2524
2525 /*
2526  * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2527  * grace-period kthread will do force_quiescent_state() processing?
2528  * The idea is to avoid waking up RCU core processing on such a
2529  * CPU unless the grace period has extended for too long.
2530  *
2531  * This code relies on the fact that all NO_HZ_FULL CPUs are also
2532  * CONFIG_RCU_NOCB_CPU CPUs.
2533  */
2534 static bool rcu_nohz_full_cpu(void)
2535 {
2536 #ifdef CONFIG_NO_HZ_FULL
2537         if (tick_nohz_full_cpu(smp_processor_id()) &&
2538             (!rcu_gp_in_progress() ||
2539              ULONG_CMP_LT(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2540                 return true;
2541 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2542         return false;
2543 }
2544
2545 /*
2546  * Bind the RCU grace-period kthreads to the housekeeping CPU.
2547  */
2548 static void rcu_bind_gp_kthread(void)
2549 {
2550         if (!tick_nohz_full_enabled())
2551                 return;
2552         housekeeping_affine(current, HK_FLAG_RCU);
2553 }
2554
2555 /* Record the current task on dyntick-idle entry. */
2556 static void rcu_dynticks_task_enter(void)
2557 {
2558 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2559         WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2560 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2561 }
2562
2563 /* Record no current task on dyntick-idle exit. */
2564 static void rcu_dynticks_task_exit(void)
2565 {
2566 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2567         WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2568 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2569 }