Merge tag 'libata-5.10-2020-10-12' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / kernel / power / swap.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * linux/kernel/power/swap.c
4  *
5  * This file provides functions for reading the suspend image from
6  * and writing it to a swap partition.
7  *
8  * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9  * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10  * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
11  */
12
13 #define pr_fmt(fmt) "PM: " fmt
14
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/genhd.h>
20 #include <linux/device.h>
21 #include <linux/bio.h>
22 #include <linux/blkdev.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/pm.h>
26 #include <linux/slab.h>
27 #include <linux/lzo.h>
28 #include <linux/vmalloc.h>
29 #include <linux/cpumask.h>
30 #include <linux/atomic.h>
31 #include <linux/kthread.h>
32 #include <linux/crc32.h>
33 #include <linux/ktime.h>
34
35 #include "power.h"
36
37 #define HIBERNATE_SIG   "S1SUSPEND"
38
39 /*
40  * When reading an {un,}compressed image, we may restore pages in place,
41  * in which case some architectures need these pages cleaning before they
42  * can be executed. We don't know which pages these may be, so clean the lot.
43  */
44 static bool clean_pages_on_read;
45 static bool clean_pages_on_decompress;
46
47 /*
48  *      The swap map is a data structure used for keeping track of each page
49  *      written to a swap partition.  It consists of many swap_map_page
50  *      structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51  *      These structures are stored on the swap and linked together with the
52  *      help of the .next_swap member.
53  *
54  *      The swap map is created during suspend.  The swap map pages are
55  *      allocated and populated one at a time, so we only need one memory
56  *      page to set up the entire structure.
57  *
58  *      During resume we pick up all swap_map_page structures into a list.
59  */
60
61 #define MAP_PAGE_ENTRIES        (PAGE_SIZE / sizeof(sector_t) - 1)
62
63 /*
64  * Number of free pages that are not high.
65  */
66 static inline unsigned long low_free_pages(void)
67 {
68         return nr_free_pages() - nr_free_highpages();
69 }
70
71 /*
72  * Number of pages required to be kept free while writing the image. Always
73  * half of all available low pages before the writing starts.
74  */
75 static inline unsigned long reqd_free_pages(void)
76 {
77         return low_free_pages() / 2;
78 }
79
80 struct swap_map_page {
81         sector_t entries[MAP_PAGE_ENTRIES];
82         sector_t next_swap;
83 };
84
85 struct swap_map_page_list {
86         struct swap_map_page *map;
87         struct swap_map_page_list *next;
88 };
89
90 /**
91  *      The swap_map_handle structure is used for handling swap in
92  *      a file-alike way
93  */
94
95 struct swap_map_handle {
96         struct swap_map_page *cur;
97         struct swap_map_page_list *maps;
98         sector_t cur_swap;
99         sector_t first_sector;
100         unsigned int k;
101         unsigned long reqd_free_pages;
102         u32 crc32;
103 };
104
105 struct swsusp_header {
106         char reserved[PAGE_SIZE - 20 - sizeof(sector_t) - sizeof(int) -
107                       sizeof(u32)];
108         u32     crc32;
109         sector_t image;
110         unsigned int flags;     /* Flags to pass to the "boot" kernel */
111         char    orig_sig[10];
112         char    sig[10];
113 } __packed;
114
115 static struct swsusp_header *swsusp_header;
116
117 /**
118  *      The following functions are used for tracing the allocated
119  *      swap pages, so that they can be freed in case of an error.
120  */
121
122 struct swsusp_extent {
123         struct rb_node node;
124         unsigned long start;
125         unsigned long end;
126 };
127
128 static struct rb_root swsusp_extents = RB_ROOT;
129
130 static int swsusp_extents_insert(unsigned long swap_offset)
131 {
132         struct rb_node **new = &(swsusp_extents.rb_node);
133         struct rb_node *parent = NULL;
134         struct swsusp_extent *ext;
135
136         /* Figure out where to put the new node */
137         while (*new) {
138                 ext = rb_entry(*new, struct swsusp_extent, node);
139                 parent = *new;
140                 if (swap_offset < ext->start) {
141                         /* Try to merge */
142                         if (swap_offset == ext->start - 1) {
143                                 ext->start--;
144                                 return 0;
145                         }
146                         new = &((*new)->rb_left);
147                 } else if (swap_offset > ext->end) {
148                         /* Try to merge */
149                         if (swap_offset == ext->end + 1) {
150                                 ext->end++;
151                                 return 0;
152                         }
153                         new = &((*new)->rb_right);
154                 } else {
155                         /* It already is in the tree */
156                         return -EINVAL;
157                 }
158         }
159         /* Add the new node and rebalance the tree. */
160         ext = kzalloc(sizeof(struct swsusp_extent), GFP_KERNEL);
161         if (!ext)
162                 return -ENOMEM;
163
164         ext->start = swap_offset;
165         ext->end = swap_offset;
166         rb_link_node(&ext->node, parent, new);
167         rb_insert_color(&ext->node, &swsusp_extents);
168         return 0;
169 }
170
171 /**
172  *      alloc_swapdev_block - allocate a swap page and register that it has
173  *      been allocated, so that it can be freed in case of an error.
174  */
175
176 sector_t alloc_swapdev_block(int swap)
177 {
178         unsigned long offset;
179
180         offset = swp_offset(get_swap_page_of_type(swap));
181         if (offset) {
182                 if (swsusp_extents_insert(offset))
183                         swap_free(swp_entry(swap, offset));
184                 else
185                         return swapdev_block(swap, offset);
186         }
187         return 0;
188 }
189
190 /**
191  *      free_all_swap_pages - free swap pages allocated for saving image data.
192  *      It also frees the extents used to register which swap entries had been
193  *      allocated.
194  */
195
196 void free_all_swap_pages(int swap)
197 {
198         struct rb_node *node;
199
200         while ((node = swsusp_extents.rb_node)) {
201                 struct swsusp_extent *ext;
202                 unsigned long offset;
203
204                 ext = rb_entry(node, struct swsusp_extent, node);
205                 rb_erase(node, &swsusp_extents);
206                 for (offset = ext->start; offset <= ext->end; offset++)
207                         swap_free(swp_entry(swap, offset));
208
209                 kfree(ext);
210         }
211 }
212
213 int swsusp_swap_in_use(void)
214 {
215         return (swsusp_extents.rb_node != NULL);
216 }
217
218 /*
219  * General things
220  */
221
222 static unsigned short root_swap = 0xffff;
223 static struct block_device *hib_resume_bdev;
224
225 struct hib_bio_batch {
226         atomic_t                count;
227         wait_queue_head_t       wait;
228         blk_status_t            error;
229 };
230
231 static void hib_init_batch(struct hib_bio_batch *hb)
232 {
233         atomic_set(&hb->count, 0);
234         init_waitqueue_head(&hb->wait);
235         hb->error = BLK_STS_OK;
236 }
237
238 static void hib_end_io(struct bio *bio)
239 {
240         struct hib_bio_batch *hb = bio->bi_private;
241         struct page *page = bio_first_page_all(bio);
242
243         if (bio->bi_status) {
244                 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
245                          MAJOR(bio_dev(bio)), MINOR(bio_dev(bio)),
246                          (unsigned long long)bio->bi_iter.bi_sector);
247         }
248
249         if (bio_data_dir(bio) == WRITE)
250                 put_page(page);
251         else if (clean_pages_on_read)
252                 flush_icache_range((unsigned long)page_address(page),
253                                    (unsigned long)page_address(page) + PAGE_SIZE);
254
255         if (bio->bi_status && !hb->error)
256                 hb->error = bio->bi_status;
257         if (atomic_dec_and_test(&hb->count))
258                 wake_up(&hb->wait);
259
260         bio_put(bio);
261 }
262
263 static int hib_submit_io(int op, int op_flags, pgoff_t page_off, void *addr,
264                 struct hib_bio_batch *hb)
265 {
266         struct page *page = virt_to_page(addr);
267         struct bio *bio;
268         int error = 0;
269
270         bio = bio_alloc(GFP_NOIO | __GFP_HIGH, 1);
271         bio->bi_iter.bi_sector = page_off * (PAGE_SIZE >> 9);
272         bio_set_dev(bio, hib_resume_bdev);
273         bio_set_op_attrs(bio, op, op_flags);
274
275         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
276                 pr_err("Adding page to bio failed at %llu\n",
277                        (unsigned long long)bio->bi_iter.bi_sector);
278                 bio_put(bio);
279                 return -EFAULT;
280         }
281
282         if (hb) {
283                 bio->bi_end_io = hib_end_io;
284                 bio->bi_private = hb;
285                 atomic_inc(&hb->count);
286                 submit_bio(bio);
287         } else {
288                 error = submit_bio_wait(bio);
289                 bio_put(bio);
290         }
291
292         return error;
293 }
294
295 static blk_status_t hib_wait_io(struct hib_bio_batch *hb)
296 {
297         wait_event(hb->wait, atomic_read(&hb->count) == 0);
298         return blk_status_to_errno(hb->error);
299 }
300
301 /*
302  * Saving part
303  */
304
305 static int mark_swapfiles(struct swap_map_handle *handle, unsigned int flags)
306 {
307         int error;
308
309         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
310                       swsusp_header, NULL);
311         if (!memcmp("SWAP-SPACE",swsusp_header->sig, 10) ||
312             !memcmp("SWAPSPACE2",swsusp_header->sig, 10)) {
313                 memcpy(swsusp_header->orig_sig,swsusp_header->sig, 10);
314                 memcpy(swsusp_header->sig, HIBERNATE_SIG, 10);
315                 swsusp_header->image = handle->first_sector;
316                 swsusp_header->flags = flags;
317                 if (flags & SF_CRC32_MODE)
318                         swsusp_header->crc32 = handle->crc32;
319                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
320                                       swsusp_resume_block, swsusp_header, NULL);
321         } else {
322                 pr_err("Swap header not found!\n");
323                 error = -ENODEV;
324         }
325         return error;
326 }
327
328 /**
329  *      swsusp_swap_check - check if the resume device is a swap device
330  *      and get its index (if so)
331  *
332  *      This is called before saving image
333  */
334 static int swsusp_swap_check(void)
335 {
336         int res;
337
338         if (swsusp_resume_device)
339                 res = swap_type_of(swsusp_resume_device, swsusp_resume_block);
340         else
341                 res = find_first_swap(&swsusp_resume_device);
342         if (res < 0)
343                 return res;
344         root_swap = res;
345
346         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device, FMODE_WRITE,
347                         NULL);
348         if (IS_ERR(hib_resume_bdev))
349                 return PTR_ERR(hib_resume_bdev);
350
351         res = set_blocksize(hib_resume_bdev, PAGE_SIZE);
352         if (res < 0)
353                 blkdev_put(hib_resume_bdev, FMODE_WRITE);
354
355         return res;
356 }
357
358 /**
359  *      write_page - Write one page to given swap location.
360  *      @buf:           Address we're writing.
361  *      @offset:        Offset of the swap page we're writing to.
362  *      @hb:            bio completion batch
363  */
364
365 static int write_page(void *buf, sector_t offset, struct hib_bio_batch *hb)
366 {
367         void *src;
368         int ret;
369
370         if (!offset)
371                 return -ENOSPC;
372
373         if (hb) {
374                 src = (void *)__get_free_page(GFP_NOIO | __GFP_NOWARN |
375                                               __GFP_NORETRY);
376                 if (src) {
377                         copy_page(src, buf);
378                 } else {
379                         ret = hib_wait_io(hb); /* Free pages */
380                         if (ret)
381                                 return ret;
382                         src = (void *)__get_free_page(GFP_NOIO |
383                                                       __GFP_NOWARN |
384                                                       __GFP_NORETRY);
385                         if (src) {
386                                 copy_page(src, buf);
387                         } else {
388                                 WARN_ON_ONCE(1);
389                                 hb = NULL;      /* Go synchronous */
390                                 src = buf;
391                         }
392                 }
393         } else {
394                 src = buf;
395         }
396         return hib_submit_io(REQ_OP_WRITE, REQ_SYNC, offset, src, hb);
397 }
398
399 static void release_swap_writer(struct swap_map_handle *handle)
400 {
401         if (handle->cur)
402                 free_page((unsigned long)handle->cur);
403         handle->cur = NULL;
404 }
405
406 static int get_swap_writer(struct swap_map_handle *handle)
407 {
408         int ret;
409
410         ret = swsusp_swap_check();
411         if (ret) {
412                 if (ret != -ENOSPC)
413                         pr_err("Cannot find swap device, try swapon -a\n");
414                 return ret;
415         }
416         handle->cur = (struct swap_map_page *)get_zeroed_page(GFP_KERNEL);
417         if (!handle->cur) {
418                 ret = -ENOMEM;
419                 goto err_close;
420         }
421         handle->cur_swap = alloc_swapdev_block(root_swap);
422         if (!handle->cur_swap) {
423                 ret = -ENOSPC;
424                 goto err_rel;
425         }
426         handle->k = 0;
427         handle->reqd_free_pages = reqd_free_pages();
428         handle->first_sector = handle->cur_swap;
429         return 0;
430 err_rel:
431         release_swap_writer(handle);
432 err_close:
433         swsusp_close(FMODE_WRITE);
434         return ret;
435 }
436
437 static int swap_write_page(struct swap_map_handle *handle, void *buf,
438                 struct hib_bio_batch *hb)
439 {
440         int error = 0;
441         sector_t offset;
442
443         if (!handle->cur)
444                 return -EINVAL;
445         offset = alloc_swapdev_block(root_swap);
446         error = write_page(buf, offset, hb);
447         if (error)
448                 return error;
449         handle->cur->entries[handle->k++] = offset;
450         if (handle->k >= MAP_PAGE_ENTRIES) {
451                 offset = alloc_swapdev_block(root_swap);
452                 if (!offset)
453                         return -ENOSPC;
454                 handle->cur->next_swap = offset;
455                 error = write_page(handle->cur, handle->cur_swap, hb);
456                 if (error)
457                         goto out;
458                 clear_page(handle->cur);
459                 handle->cur_swap = offset;
460                 handle->k = 0;
461
462                 if (hb && low_free_pages() <= handle->reqd_free_pages) {
463                         error = hib_wait_io(hb);
464                         if (error)
465                                 goto out;
466                         /*
467                          * Recalculate the number of required free pages, to
468                          * make sure we never take more than half.
469                          */
470                         handle->reqd_free_pages = reqd_free_pages();
471                 }
472         }
473  out:
474         return error;
475 }
476
477 static int flush_swap_writer(struct swap_map_handle *handle)
478 {
479         if (handle->cur && handle->cur_swap)
480                 return write_page(handle->cur, handle->cur_swap, NULL);
481         else
482                 return -EINVAL;
483 }
484
485 static int swap_writer_finish(struct swap_map_handle *handle,
486                 unsigned int flags, int error)
487 {
488         if (!error) {
489                 flush_swap_writer(handle);
490                 pr_info("S");
491                 error = mark_swapfiles(handle, flags);
492                 pr_cont("|\n");
493         }
494
495         if (error)
496                 free_all_swap_pages(root_swap);
497         release_swap_writer(handle);
498         swsusp_close(FMODE_WRITE);
499
500         return error;
501 }
502
503 /* We need to remember how much compressed data we need to read. */
504 #define LZO_HEADER      sizeof(size_t)
505
506 /* Number of pages/bytes we'll compress at one time. */
507 #define LZO_UNC_PAGES   32
508 #define LZO_UNC_SIZE    (LZO_UNC_PAGES * PAGE_SIZE)
509
510 /* Number of pages/bytes we need for compressed data (worst case). */
511 #define LZO_CMP_PAGES   DIV_ROUND_UP(lzo1x_worst_compress(LZO_UNC_SIZE) + \
512                                      LZO_HEADER, PAGE_SIZE)
513 #define LZO_CMP_SIZE    (LZO_CMP_PAGES * PAGE_SIZE)
514
515 /* Maximum number of threads for compression/decompression. */
516 #define LZO_THREADS     3
517
518 /* Minimum/maximum number of pages for read buffering. */
519 #define LZO_MIN_RD_PAGES        1024
520 #define LZO_MAX_RD_PAGES        8192
521
522
523 /**
524  *      save_image - save the suspend image data
525  */
526
527 static int save_image(struct swap_map_handle *handle,
528                       struct snapshot_handle *snapshot,
529                       unsigned int nr_to_write)
530 {
531         unsigned int m;
532         int ret;
533         int nr_pages;
534         int err2;
535         struct hib_bio_batch hb;
536         ktime_t start;
537         ktime_t stop;
538
539         hib_init_batch(&hb);
540
541         pr_info("Saving image data pages (%u pages)...\n",
542                 nr_to_write);
543         m = nr_to_write / 10;
544         if (!m)
545                 m = 1;
546         nr_pages = 0;
547         start = ktime_get();
548         while (1) {
549                 ret = snapshot_read_next(snapshot);
550                 if (ret <= 0)
551                         break;
552                 ret = swap_write_page(handle, data_of(*snapshot), &hb);
553                 if (ret)
554                         break;
555                 if (!(nr_pages % m))
556                         pr_info("Image saving progress: %3d%%\n",
557                                 nr_pages / m * 10);
558                 nr_pages++;
559         }
560         err2 = hib_wait_io(&hb);
561         stop = ktime_get();
562         if (!ret)
563                 ret = err2;
564         if (!ret)
565                 pr_info("Image saving done\n");
566         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
567         return ret;
568 }
569
570 /**
571  * Structure used for CRC32.
572  */
573 struct crc_data {
574         struct task_struct *thr;                  /* thread */
575         atomic_t ready;                           /* ready to start flag */
576         atomic_t stop;                            /* ready to stop flag */
577         unsigned run_threads;                     /* nr current threads */
578         wait_queue_head_t go;                     /* start crc update */
579         wait_queue_head_t done;                   /* crc update done */
580         u32 *crc32;                               /* points to handle's crc32 */
581         size_t *unc_len[LZO_THREADS];             /* uncompressed lengths */
582         unsigned char *unc[LZO_THREADS];          /* uncompressed data */
583 };
584
585 /**
586  * CRC32 update function that runs in its own thread.
587  */
588 static int crc32_threadfn(void *data)
589 {
590         struct crc_data *d = data;
591         unsigned i;
592
593         while (1) {
594                 wait_event(d->go, atomic_read(&d->ready) ||
595                                   kthread_should_stop());
596                 if (kthread_should_stop()) {
597                         d->thr = NULL;
598                         atomic_set(&d->stop, 1);
599                         wake_up(&d->done);
600                         break;
601                 }
602                 atomic_set(&d->ready, 0);
603
604                 for (i = 0; i < d->run_threads; i++)
605                         *d->crc32 = crc32_le(*d->crc32,
606                                              d->unc[i], *d->unc_len[i]);
607                 atomic_set(&d->stop, 1);
608                 wake_up(&d->done);
609         }
610         return 0;
611 }
612 /**
613  * Structure used for LZO data compression.
614  */
615 struct cmp_data {
616         struct task_struct *thr;                  /* thread */
617         atomic_t ready;                           /* ready to start flag */
618         atomic_t stop;                            /* ready to stop flag */
619         int ret;                                  /* return code */
620         wait_queue_head_t go;                     /* start compression */
621         wait_queue_head_t done;                   /* compression done */
622         size_t unc_len;                           /* uncompressed length */
623         size_t cmp_len;                           /* compressed length */
624         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
625         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
626         unsigned char wrk[LZO1X_1_MEM_COMPRESS];  /* compression workspace */
627 };
628
629 /**
630  * Compression function that runs in its own thread.
631  */
632 static int lzo_compress_threadfn(void *data)
633 {
634         struct cmp_data *d = data;
635
636         while (1) {
637                 wait_event(d->go, atomic_read(&d->ready) ||
638                                   kthread_should_stop());
639                 if (kthread_should_stop()) {
640                         d->thr = NULL;
641                         d->ret = -1;
642                         atomic_set(&d->stop, 1);
643                         wake_up(&d->done);
644                         break;
645                 }
646                 atomic_set(&d->ready, 0);
647
648                 d->ret = lzo1x_1_compress(d->unc, d->unc_len,
649                                           d->cmp + LZO_HEADER, &d->cmp_len,
650                                           d->wrk);
651                 atomic_set(&d->stop, 1);
652                 wake_up(&d->done);
653         }
654         return 0;
655 }
656
657 /**
658  * save_image_lzo - Save the suspend image data compressed with LZO.
659  * @handle: Swap map handle to use for saving the image.
660  * @snapshot: Image to read data from.
661  * @nr_to_write: Number of pages to save.
662  */
663 static int save_image_lzo(struct swap_map_handle *handle,
664                           struct snapshot_handle *snapshot,
665                           unsigned int nr_to_write)
666 {
667         unsigned int m;
668         int ret = 0;
669         int nr_pages;
670         int err2;
671         struct hib_bio_batch hb;
672         ktime_t start;
673         ktime_t stop;
674         size_t off;
675         unsigned thr, run_threads, nr_threads;
676         unsigned char *page = NULL;
677         struct cmp_data *data = NULL;
678         struct crc_data *crc = NULL;
679
680         hib_init_batch(&hb);
681
682         /*
683          * We'll limit the number of threads for compression to limit memory
684          * footprint.
685          */
686         nr_threads = num_online_cpus() - 1;
687         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
688
689         page = (void *)__get_free_page(GFP_NOIO | __GFP_HIGH);
690         if (!page) {
691                 pr_err("Failed to allocate LZO page\n");
692                 ret = -ENOMEM;
693                 goto out_clean;
694         }
695
696         data = vmalloc(array_size(nr_threads, sizeof(*data)));
697         if (!data) {
698                 pr_err("Failed to allocate LZO data\n");
699                 ret = -ENOMEM;
700                 goto out_clean;
701         }
702         for (thr = 0; thr < nr_threads; thr++)
703                 memset(&data[thr], 0, offsetof(struct cmp_data, go));
704
705         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
706         if (!crc) {
707                 pr_err("Failed to allocate crc\n");
708                 ret = -ENOMEM;
709                 goto out_clean;
710         }
711         memset(crc, 0, offsetof(struct crc_data, go));
712
713         /*
714          * Start the compression threads.
715          */
716         for (thr = 0; thr < nr_threads; thr++) {
717                 init_waitqueue_head(&data[thr].go);
718                 init_waitqueue_head(&data[thr].done);
719
720                 data[thr].thr = kthread_run(lzo_compress_threadfn,
721                                             &data[thr],
722                                             "image_compress/%u", thr);
723                 if (IS_ERR(data[thr].thr)) {
724                         data[thr].thr = NULL;
725                         pr_err("Cannot start compression threads\n");
726                         ret = -ENOMEM;
727                         goto out_clean;
728                 }
729         }
730
731         /*
732          * Start the CRC32 thread.
733          */
734         init_waitqueue_head(&crc->go);
735         init_waitqueue_head(&crc->done);
736
737         handle->crc32 = 0;
738         crc->crc32 = &handle->crc32;
739         for (thr = 0; thr < nr_threads; thr++) {
740                 crc->unc[thr] = data[thr].unc;
741                 crc->unc_len[thr] = &data[thr].unc_len;
742         }
743
744         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
745         if (IS_ERR(crc->thr)) {
746                 crc->thr = NULL;
747                 pr_err("Cannot start CRC32 thread\n");
748                 ret = -ENOMEM;
749                 goto out_clean;
750         }
751
752         /*
753          * Adjust the number of required free pages after all allocations have
754          * been done. We don't want to run out of pages when writing.
755          */
756         handle->reqd_free_pages = reqd_free_pages();
757
758         pr_info("Using %u thread(s) for compression\n", nr_threads);
759         pr_info("Compressing and saving image data (%u pages)...\n",
760                 nr_to_write);
761         m = nr_to_write / 10;
762         if (!m)
763                 m = 1;
764         nr_pages = 0;
765         start = ktime_get();
766         for (;;) {
767                 for (thr = 0; thr < nr_threads; thr++) {
768                         for (off = 0; off < LZO_UNC_SIZE; off += PAGE_SIZE) {
769                                 ret = snapshot_read_next(snapshot);
770                                 if (ret < 0)
771                                         goto out_finish;
772
773                                 if (!ret)
774                                         break;
775
776                                 memcpy(data[thr].unc + off,
777                                        data_of(*snapshot), PAGE_SIZE);
778
779                                 if (!(nr_pages % m))
780                                         pr_info("Image saving progress: %3d%%\n",
781                                                 nr_pages / m * 10);
782                                 nr_pages++;
783                         }
784                         if (!off)
785                                 break;
786
787                         data[thr].unc_len = off;
788
789                         atomic_set(&data[thr].ready, 1);
790                         wake_up(&data[thr].go);
791                 }
792
793                 if (!thr)
794                         break;
795
796                 crc->run_threads = thr;
797                 atomic_set(&crc->ready, 1);
798                 wake_up(&crc->go);
799
800                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
801                         wait_event(data[thr].done,
802                                    atomic_read(&data[thr].stop));
803                         atomic_set(&data[thr].stop, 0);
804
805                         ret = data[thr].ret;
806
807                         if (ret < 0) {
808                                 pr_err("LZO compression failed\n");
809                                 goto out_finish;
810                         }
811
812                         if (unlikely(!data[thr].cmp_len ||
813                                      data[thr].cmp_len >
814                                      lzo1x_worst_compress(data[thr].unc_len))) {
815                                 pr_err("Invalid LZO compressed length\n");
816                                 ret = -1;
817                                 goto out_finish;
818                         }
819
820                         *(size_t *)data[thr].cmp = data[thr].cmp_len;
821
822                         /*
823                          * Given we are writing one page at a time to disk, we
824                          * copy that much from the buffer, although the last
825                          * bit will likely be smaller than full page. This is
826                          * OK - we saved the length of the compressed data, so
827                          * any garbage at the end will be discarded when we
828                          * read it.
829                          */
830                         for (off = 0;
831                              off < LZO_HEADER + data[thr].cmp_len;
832                              off += PAGE_SIZE) {
833                                 memcpy(page, data[thr].cmp + off, PAGE_SIZE);
834
835                                 ret = swap_write_page(handle, page, &hb);
836                                 if (ret)
837                                         goto out_finish;
838                         }
839                 }
840
841                 wait_event(crc->done, atomic_read(&crc->stop));
842                 atomic_set(&crc->stop, 0);
843         }
844
845 out_finish:
846         err2 = hib_wait_io(&hb);
847         stop = ktime_get();
848         if (!ret)
849                 ret = err2;
850         if (!ret)
851                 pr_info("Image saving done\n");
852         swsusp_show_speed(start, stop, nr_to_write, "Wrote");
853 out_clean:
854         if (crc) {
855                 if (crc->thr)
856                         kthread_stop(crc->thr);
857                 kfree(crc);
858         }
859         if (data) {
860                 for (thr = 0; thr < nr_threads; thr++)
861                         if (data[thr].thr)
862                                 kthread_stop(data[thr].thr);
863                 vfree(data);
864         }
865         if (page) free_page((unsigned long)page);
866
867         return ret;
868 }
869
870 /**
871  *      enough_swap - Make sure we have enough swap to save the image.
872  *
873  *      Returns TRUE or FALSE after checking the total amount of swap
874  *      space avaiable from the resume partition.
875  */
876
877 static int enough_swap(unsigned int nr_pages)
878 {
879         unsigned int free_swap = count_swap_pages(root_swap, 1);
880         unsigned int required;
881
882         pr_debug("Free swap pages: %u\n", free_swap);
883
884         required = PAGES_FOR_IO + nr_pages;
885         return free_swap > required;
886 }
887
888 /**
889  *      swsusp_write - Write entire image and metadata.
890  *      @flags: flags to pass to the "boot" kernel in the image header
891  *
892  *      It is important _NOT_ to umount filesystems at this point. We want
893  *      them synced (in case something goes wrong) but we DO not want to mark
894  *      filesystem clean: it is not. (And it does not matter, if we resume
895  *      correctly, we'll mark system clean, anyway.)
896  */
897
898 int swsusp_write(unsigned int flags)
899 {
900         struct swap_map_handle handle;
901         struct snapshot_handle snapshot;
902         struct swsusp_info *header;
903         unsigned long pages;
904         int error;
905
906         pages = snapshot_get_image_size();
907         error = get_swap_writer(&handle);
908         if (error) {
909                 pr_err("Cannot get swap writer\n");
910                 return error;
911         }
912         if (flags & SF_NOCOMPRESS_MODE) {
913                 if (!enough_swap(pages)) {
914                         pr_err("Not enough free swap\n");
915                         error = -ENOSPC;
916                         goto out_finish;
917                 }
918         }
919         memset(&snapshot, 0, sizeof(struct snapshot_handle));
920         error = snapshot_read_next(&snapshot);
921         if (error < (int)PAGE_SIZE) {
922                 if (error >= 0)
923                         error = -EFAULT;
924
925                 goto out_finish;
926         }
927         header = (struct swsusp_info *)data_of(snapshot);
928         error = swap_write_page(&handle, header, NULL);
929         if (!error) {
930                 error = (flags & SF_NOCOMPRESS_MODE) ?
931                         save_image(&handle, &snapshot, pages - 1) :
932                         save_image_lzo(&handle, &snapshot, pages - 1);
933         }
934 out_finish:
935         error = swap_writer_finish(&handle, flags, error);
936         return error;
937 }
938
939 /**
940  *      The following functions allow us to read data using a swap map
941  *      in a file-alike way
942  */
943
944 static void release_swap_reader(struct swap_map_handle *handle)
945 {
946         struct swap_map_page_list *tmp;
947
948         while (handle->maps) {
949                 if (handle->maps->map)
950                         free_page((unsigned long)handle->maps->map);
951                 tmp = handle->maps;
952                 handle->maps = handle->maps->next;
953                 kfree(tmp);
954         }
955         handle->cur = NULL;
956 }
957
958 static int get_swap_reader(struct swap_map_handle *handle,
959                 unsigned int *flags_p)
960 {
961         int error;
962         struct swap_map_page_list *tmp, *last;
963         sector_t offset;
964
965         *flags_p = swsusp_header->flags;
966
967         if (!swsusp_header->image) /* how can this happen? */
968                 return -EINVAL;
969
970         handle->cur = NULL;
971         last = handle->maps = NULL;
972         offset = swsusp_header->image;
973         while (offset) {
974                 tmp = kzalloc(sizeof(*handle->maps), GFP_KERNEL);
975                 if (!tmp) {
976                         release_swap_reader(handle);
977                         return -ENOMEM;
978                 }
979                 if (!handle->maps)
980                         handle->maps = tmp;
981                 if (last)
982                         last->next = tmp;
983                 last = tmp;
984
985                 tmp->map = (struct swap_map_page *)
986                            __get_free_page(GFP_NOIO | __GFP_HIGH);
987                 if (!tmp->map) {
988                         release_swap_reader(handle);
989                         return -ENOMEM;
990                 }
991
992                 error = hib_submit_io(REQ_OP_READ, 0, offset, tmp->map, NULL);
993                 if (error) {
994                         release_swap_reader(handle);
995                         return error;
996                 }
997                 offset = tmp->map->next_swap;
998         }
999         handle->k = 0;
1000         handle->cur = handle->maps->map;
1001         return 0;
1002 }
1003
1004 static int swap_read_page(struct swap_map_handle *handle, void *buf,
1005                 struct hib_bio_batch *hb)
1006 {
1007         sector_t offset;
1008         int error;
1009         struct swap_map_page_list *tmp;
1010
1011         if (!handle->cur)
1012                 return -EINVAL;
1013         offset = handle->cur->entries[handle->k];
1014         if (!offset)
1015                 return -EFAULT;
1016         error = hib_submit_io(REQ_OP_READ, 0, offset, buf, hb);
1017         if (error)
1018                 return error;
1019         if (++handle->k >= MAP_PAGE_ENTRIES) {
1020                 handle->k = 0;
1021                 free_page((unsigned long)handle->maps->map);
1022                 tmp = handle->maps;
1023                 handle->maps = handle->maps->next;
1024                 kfree(tmp);
1025                 if (!handle->maps)
1026                         release_swap_reader(handle);
1027                 else
1028                         handle->cur = handle->maps->map;
1029         }
1030         return error;
1031 }
1032
1033 static int swap_reader_finish(struct swap_map_handle *handle)
1034 {
1035         release_swap_reader(handle);
1036
1037         return 0;
1038 }
1039
1040 /**
1041  *      load_image - load the image using the swap map handle
1042  *      @handle and the snapshot handle @snapshot
1043  *      (assume there are @nr_pages pages to load)
1044  */
1045
1046 static int load_image(struct swap_map_handle *handle,
1047                       struct snapshot_handle *snapshot,
1048                       unsigned int nr_to_read)
1049 {
1050         unsigned int m;
1051         int ret = 0;
1052         ktime_t start;
1053         ktime_t stop;
1054         struct hib_bio_batch hb;
1055         int err2;
1056         unsigned nr_pages;
1057
1058         hib_init_batch(&hb);
1059
1060         clean_pages_on_read = true;
1061         pr_info("Loading image data pages (%u pages)...\n", nr_to_read);
1062         m = nr_to_read / 10;
1063         if (!m)
1064                 m = 1;
1065         nr_pages = 0;
1066         start = ktime_get();
1067         for ( ; ; ) {
1068                 ret = snapshot_write_next(snapshot);
1069                 if (ret <= 0)
1070                         break;
1071                 ret = swap_read_page(handle, data_of(*snapshot), &hb);
1072                 if (ret)
1073                         break;
1074                 if (snapshot->sync_read)
1075                         ret = hib_wait_io(&hb);
1076                 if (ret)
1077                         break;
1078                 if (!(nr_pages % m))
1079                         pr_info("Image loading progress: %3d%%\n",
1080                                 nr_pages / m * 10);
1081                 nr_pages++;
1082         }
1083         err2 = hib_wait_io(&hb);
1084         stop = ktime_get();
1085         if (!ret)
1086                 ret = err2;
1087         if (!ret) {
1088                 pr_info("Image loading done\n");
1089                 snapshot_write_finalize(snapshot);
1090                 if (!snapshot_image_loaded(snapshot))
1091                         ret = -ENODATA;
1092         }
1093         swsusp_show_speed(start, stop, nr_to_read, "Read");
1094         return ret;
1095 }
1096
1097 /**
1098  * Structure used for LZO data decompression.
1099  */
1100 struct dec_data {
1101         struct task_struct *thr;                  /* thread */
1102         atomic_t ready;                           /* ready to start flag */
1103         atomic_t stop;                            /* ready to stop flag */
1104         int ret;                                  /* return code */
1105         wait_queue_head_t go;                     /* start decompression */
1106         wait_queue_head_t done;                   /* decompression done */
1107         size_t unc_len;                           /* uncompressed length */
1108         size_t cmp_len;                           /* compressed length */
1109         unsigned char unc[LZO_UNC_SIZE];          /* uncompressed buffer */
1110         unsigned char cmp[LZO_CMP_SIZE];          /* compressed buffer */
1111 };
1112
1113 /**
1114  * Deompression function that runs in its own thread.
1115  */
1116 static int lzo_decompress_threadfn(void *data)
1117 {
1118         struct dec_data *d = data;
1119
1120         while (1) {
1121                 wait_event(d->go, atomic_read(&d->ready) ||
1122                                   kthread_should_stop());
1123                 if (kthread_should_stop()) {
1124                         d->thr = NULL;
1125                         d->ret = -1;
1126                         atomic_set(&d->stop, 1);
1127                         wake_up(&d->done);
1128                         break;
1129                 }
1130                 atomic_set(&d->ready, 0);
1131
1132                 d->unc_len = LZO_UNC_SIZE;
1133                 d->ret = lzo1x_decompress_safe(d->cmp + LZO_HEADER, d->cmp_len,
1134                                                d->unc, &d->unc_len);
1135                 if (clean_pages_on_decompress)
1136                         flush_icache_range((unsigned long)d->unc,
1137                                            (unsigned long)d->unc + d->unc_len);
1138
1139                 atomic_set(&d->stop, 1);
1140                 wake_up(&d->done);
1141         }
1142         return 0;
1143 }
1144
1145 /**
1146  * load_image_lzo - Load compressed image data and decompress them with LZO.
1147  * @handle: Swap map handle to use for loading data.
1148  * @snapshot: Image to copy uncompressed data into.
1149  * @nr_to_read: Number of pages to load.
1150  */
1151 static int load_image_lzo(struct swap_map_handle *handle,
1152                           struct snapshot_handle *snapshot,
1153                           unsigned int nr_to_read)
1154 {
1155         unsigned int m;
1156         int ret = 0;
1157         int eof = 0;
1158         struct hib_bio_batch hb;
1159         ktime_t start;
1160         ktime_t stop;
1161         unsigned nr_pages;
1162         size_t off;
1163         unsigned i, thr, run_threads, nr_threads;
1164         unsigned ring = 0, pg = 0, ring_size = 0,
1165                  have = 0, want, need, asked = 0;
1166         unsigned long read_pages = 0;
1167         unsigned char **page = NULL;
1168         struct dec_data *data = NULL;
1169         struct crc_data *crc = NULL;
1170
1171         hib_init_batch(&hb);
1172
1173         /*
1174          * We'll limit the number of threads for decompression to limit memory
1175          * footprint.
1176          */
1177         nr_threads = num_online_cpus() - 1;
1178         nr_threads = clamp_val(nr_threads, 1, LZO_THREADS);
1179
1180         page = vmalloc(array_size(LZO_MAX_RD_PAGES, sizeof(*page)));
1181         if (!page) {
1182                 pr_err("Failed to allocate LZO page\n");
1183                 ret = -ENOMEM;
1184                 goto out_clean;
1185         }
1186
1187         data = vmalloc(array_size(nr_threads, sizeof(*data)));
1188         if (!data) {
1189                 pr_err("Failed to allocate LZO data\n");
1190                 ret = -ENOMEM;
1191                 goto out_clean;
1192         }
1193         for (thr = 0; thr < nr_threads; thr++)
1194                 memset(&data[thr], 0, offsetof(struct dec_data, go));
1195
1196         crc = kmalloc(sizeof(*crc), GFP_KERNEL);
1197         if (!crc) {
1198                 pr_err("Failed to allocate crc\n");
1199                 ret = -ENOMEM;
1200                 goto out_clean;
1201         }
1202         memset(crc, 0, offsetof(struct crc_data, go));
1203
1204         clean_pages_on_decompress = true;
1205
1206         /*
1207          * Start the decompression threads.
1208          */
1209         for (thr = 0; thr < nr_threads; thr++) {
1210                 init_waitqueue_head(&data[thr].go);
1211                 init_waitqueue_head(&data[thr].done);
1212
1213                 data[thr].thr = kthread_run(lzo_decompress_threadfn,
1214                                             &data[thr],
1215                                             "image_decompress/%u", thr);
1216                 if (IS_ERR(data[thr].thr)) {
1217                         data[thr].thr = NULL;
1218                         pr_err("Cannot start decompression threads\n");
1219                         ret = -ENOMEM;
1220                         goto out_clean;
1221                 }
1222         }
1223
1224         /*
1225          * Start the CRC32 thread.
1226          */
1227         init_waitqueue_head(&crc->go);
1228         init_waitqueue_head(&crc->done);
1229
1230         handle->crc32 = 0;
1231         crc->crc32 = &handle->crc32;
1232         for (thr = 0; thr < nr_threads; thr++) {
1233                 crc->unc[thr] = data[thr].unc;
1234                 crc->unc_len[thr] = &data[thr].unc_len;
1235         }
1236
1237         crc->thr = kthread_run(crc32_threadfn, crc, "image_crc32");
1238         if (IS_ERR(crc->thr)) {
1239                 crc->thr = NULL;
1240                 pr_err("Cannot start CRC32 thread\n");
1241                 ret = -ENOMEM;
1242                 goto out_clean;
1243         }
1244
1245         /*
1246          * Set the number of pages for read buffering.
1247          * This is complete guesswork, because we'll only know the real
1248          * picture once prepare_image() is called, which is much later on
1249          * during the image load phase. We'll assume the worst case and
1250          * say that none of the image pages are from high memory.
1251          */
1252         if (low_free_pages() > snapshot_get_image_size())
1253                 read_pages = (low_free_pages() - snapshot_get_image_size()) / 2;
1254         read_pages = clamp_val(read_pages, LZO_MIN_RD_PAGES, LZO_MAX_RD_PAGES);
1255
1256         for (i = 0; i < read_pages; i++) {
1257                 page[i] = (void *)__get_free_page(i < LZO_CMP_PAGES ?
1258                                                   GFP_NOIO | __GFP_HIGH :
1259                                                   GFP_NOIO | __GFP_NOWARN |
1260                                                   __GFP_NORETRY);
1261
1262                 if (!page[i]) {
1263                         if (i < LZO_CMP_PAGES) {
1264                                 ring_size = i;
1265                                 pr_err("Failed to allocate LZO pages\n");
1266                                 ret = -ENOMEM;
1267                                 goto out_clean;
1268                         } else {
1269                                 break;
1270                         }
1271                 }
1272         }
1273         want = ring_size = i;
1274
1275         pr_info("Using %u thread(s) for decompression\n", nr_threads);
1276         pr_info("Loading and decompressing image data (%u pages)...\n",
1277                 nr_to_read);
1278         m = nr_to_read / 10;
1279         if (!m)
1280                 m = 1;
1281         nr_pages = 0;
1282         start = ktime_get();
1283
1284         ret = snapshot_write_next(snapshot);
1285         if (ret <= 0)
1286                 goto out_finish;
1287
1288         for(;;) {
1289                 for (i = 0; !eof && i < want; i++) {
1290                         ret = swap_read_page(handle, page[ring], &hb);
1291                         if (ret) {
1292                                 /*
1293                                  * On real read error, finish. On end of data,
1294                                  * set EOF flag and just exit the read loop.
1295                                  */
1296                                 if (handle->cur &&
1297                                     handle->cur->entries[handle->k]) {
1298                                         goto out_finish;
1299                                 } else {
1300                                         eof = 1;
1301                                         break;
1302                                 }
1303                         }
1304                         if (++ring >= ring_size)
1305                                 ring = 0;
1306                 }
1307                 asked += i;
1308                 want -= i;
1309
1310                 /*
1311                  * We are out of data, wait for some more.
1312                  */
1313                 if (!have) {
1314                         if (!asked)
1315                                 break;
1316
1317                         ret = hib_wait_io(&hb);
1318                         if (ret)
1319                                 goto out_finish;
1320                         have += asked;
1321                         asked = 0;
1322                         if (eof)
1323                                 eof = 2;
1324                 }
1325
1326                 if (crc->run_threads) {
1327                         wait_event(crc->done, atomic_read(&crc->stop));
1328                         atomic_set(&crc->stop, 0);
1329                         crc->run_threads = 0;
1330                 }
1331
1332                 for (thr = 0; have && thr < nr_threads; thr++) {
1333                         data[thr].cmp_len = *(size_t *)page[pg];
1334                         if (unlikely(!data[thr].cmp_len ||
1335                                      data[thr].cmp_len >
1336                                      lzo1x_worst_compress(LZO_UNC_SIZE))) {
1337                                 pr_err("Invalid LZO compressed length\n");
1338                                 ret = -1;
1339                                 goto out_finish;
1340                         }
1341
1342                         need = DIV_ROUND_UP(data[thr].cmp_len + LZO_HEADER,
1343                                             PAGE_SIZE);
1344                         if (need > have) {
1345                                 if (eof > 1) {
1346                                         ret = -1;
1347                                         goto out_finish;
1348                                 }
1349                                 break;
1350                         }
1351
1352                         for (off = 0;
1353                              off < LZO_HEADER + data[thr].cmp_len;
1354                              off += PAGE_SIZE) {
1355                                 memcpy(data[thr].cmp + off,
1356                                        page[pg], PAGE_SIZE);
1357                                 have--;
1358                                 want++;
1359                                 if (++pg >= ring_size)
1360                                         pg = 0;
1361                         }
1362
1363                         atomic_set(&data[thr].ready, 1);
1364                         wake_up(&data[thr].go);
1365                 }
1366
1367                 /*
1368                  * Wait for more data while we are decompressing.
1369                  */
1370                 if (have < LZO_CMP_PAGES && asked) {
1371                         ret = hib_wait_io(&hb);
1372                         if (ret)
1373                                 goto out_finish;
1374                         have += asked;
1375                         asked = 0;
1376                         if (eof)
1377                                 eof = 2;
1378                 }
1379
1380                 for (run_threads = thr, thr = 0; thr < run_threads; thr++) {
1381                         wait_event(data[thr].done,
1382                                    atomic_read(&data[thr].stop));
1383                         atomic_set(&data[thr].stop, 0);
1384
1385                         ret = data[thr].ret;
1386
1387                         if (ret < 0) {
1388                                 pr_err("LZO decompression failed\n");
1389                                 goto out_finish;
1390                         }
1391
1392                         if (unlikely(!data[thr].unc_len ||
1393                                      data[thr].unc_len > LZO_UNC_SIZE ||
1394                                      data[thr].unc_len & (PAGE_SIZE - 1))) {
1395                                 pr_err("Invalid LZO uncompressed length\n");
1396                                 ret = -1;
1397                                 goto out_finish;
1398                         }
1399
1400                         for (off = 0;
1401                              off < data[thr].unc_len; off += PAGE_SIZE) {
1402                                 memcpy(data_of(*snapshot),
1403                                        data[thr].unc + off, PAGE_SIZE);
1404
1405                                 if (!(nr_pages % m))
1406                                         pr_info("Image loading progress: %3d%%\n",
1407                                                 nr_pages / m * 10);
1408                                 nr_pages++;
1409
1410                                 ret = snapshot_write_next(snapshot);
1411                                 if (ret <= 0) {
1412                                         crc->run_threads = thr + 1;
1413                                         atomic_set(&crc->ready, 1);
1414                                         wake_up(&crc->go);
1415                                         goto out_finish;
1416                                 }
1417                         }
1418                 }
1419
1420                 crc->run_threads = thr;
1421                 atomic_set(&crc->ready, 1);
1422                 wake_up(&crc->go);
1423         }
1424
1425 out_finish:
1426         if (crc->run_threads) {
1427                 wait_event(crc->done, atomic_read(&crc->stop));
1428                 atomic_set(&crc->stop, 0);
1429         }
1430         stop = ktime_get();
1431         if (!ret) {
1432                 pr_info("Image loading done\n");
1433                 snapshot_write_finalize(snapshot);
1434                 if (!snapshot_image_loaded(snapshot))
1435                         ret = -ENODATA;
1436                 if (!ret) {
1437                         if (swsusp_header->flags & SF_CRC32_MODE) {
1438                                 if(handle->crc32 != swsusp_header->crc32) {
1439                                         pr_err("Invalid image CRC32!\n");
1440                                         ret = -ENODATA;
1441                                 }
1442                         }
1443                 }
1444         }
1445         swsusp_show_speed(start, stop, nr_to_read, "Read");
1446 out_clean:
1447         for (i = 0; i < ring_size; i++)
1448                 free_page((unsigned long)page[i]);
1449         if (crc) {
1450                 if (crc->thr)
1451                         kthread_stop(crc->thr);
1452                 kfree(crc);
1453         }
1454         if (data) {
1455                 for (thr = 0; thr < nr_threads; thr++)
1456                         if (data[thr].thr)
1457                                 kthread_stop(data[thr].thr);
1458                 vfree(data);
1459         }
1460         vfree(page);
1461
1462         return ret;
1463 }
1464
1465 /**
1466  *      swsusp_read - read the hibernation image.
1467  *      @flags_p: flags passed by the "frozen" kernel in the image header should
1468  *                be written into this memory location
1469  */
1470
1471 int swsusp_read(unsigned int *flags_p)
1472 {
1473         int error;
1474         struct swap_map_handle handle;
1475         struct snapshot_handle snapshot;
1476         struct swsusp_info *header;
1477
1478         memset(&snapshot, 0, sizeof(struct snapshot_handle));
1479         error = snapshot_write_next(&snapshot);
1480         if (error < (int)PAGE_SIZE)
1481                 return error < 0 ? error : -EFAULT;
1482         header = (struct swsusp_info *)data_of(snapshot);
1483         error = get_swap_reader(&handle, flags_p);
1484         if (error)
1485                 goto end;
1486         if (!error)
1487                 error = swap_read_page(&handle, header, NULL);
1488         if (!error) {
1489                 error = (*flags_p & SF_NOCOMPRESS_MODE) ?
1490                         load_image(&handle, &snapshot, header->pages - 1) :
1491                         load_image_lzo(&handle, &snapshot, header->pages - 1);
1492         }
1493         swap_reader_finish(&handle);
1494 end:
1495         if (!error)
1496                 pr_debug("Image successfully loaded\n");
1497         else
1498                 pr_debug("Error %d resuming\n", error);
1499         return error;
1500 }
1501
1502 /**
1503  *      swsusp_check - Check for swsusp signature in the resume device
1504  */
1505
1506 int swsusp_check(void)
1507 {
1508         int error;
1509
1510         hib_resume_bdev = blkdev_get_by_dev(swsusp_resume_device,
1511                                             FMODE_READ, NULL);
1512         if (!IS_ERR(hib_resume_bdev)) {
1513                 set_blocksize(hib_resume_bdev, PAGE_SIZE);
1514                 clear_page(swsusp_header);
1515                 error = hib_submit_io(REQ_OP_READ, 0,
1516                                         swsusp_resume_block,
1517                                         swsusp_header, NULL);
1518                 if (error)
1519                         goto put;
1520
1521                 if (!memcmp(HIBERNATE_SIG, swsusp_header->sig, 10)) {
1522                         memcpy(swsusp_header->sig, swsusp_header->orig_sig, 10);
1523                         /* Reset swap signature now */
1524                         error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1525                                                 swsusp_resume_block,
1526                                                 swsusp_header, NULL);
1527                 } else {
1528                         error = -EINVAL;
1529                 }
1530
1531 put:
1532                 if (error)
1533                         blkdev_put(hib_resume_bdev, FMODE_READ);
1534                 else
1535                         pr_debug("Image signature found, resuming\n");
1536         } else {
1537                 error = PTR_ERR(hib_resume_bdev);
1538         }
1539
1540         if (error)
1541                 pr_debug("Image not found (code %d)\n", error);
1542
1543         return error;
1544 }
1545
1546 /**
1547  *      swsusp_close - close swap device.
1548  */
1549
1550 void swsusp_close(fmode_t mode)
1551 {
1552         if (IS_ERR(hib_resume_bdev)) {
1553                 pr_debug("Image device not initialised\n");
1554                 return;
1555         }
1556
1557         blkdev_put(hib_resume_bdev, mode);
1558 }
1559
1560 /**
1561  *      swsusp_unmark - Unmark swsusp signature in the resume device
1562  */
1563
1564 #ifdef CONFIG_SUSPEND
1565 int swsusp_unmark(void)
1566 {
1567         int error;
1568
1569         hib_submit_io(REQ_OP_READ, 0, swsusp_resume_block,
1570                       swsusp_header, NULL);
1571         if (!memcmp(HIBERNATE_SIG,swsusp_header->sig, 10)) {
1572                 memcpy(swsusp_header->sig,swsusp_header->orig_sig, 10);
1573                 error = hib_submit_io(REQ_OP_WRITE, REQ_SYNC,
1574                                         swsusp_resume_block,
1575                                         swsusp_header, NULL);
1576         } else {
1577                 pr_err("Cannot find swsusp signature!\n");
1578                 error = -ENODEV;
1579         }
1580
1581         /*
1582          * We just returned from suspend, we don't need the image any more.
1583          */
1584         free_all_swap_pages(root_swap);
1585
1586         return error;
1587 }
1588 #endif
1589
1590 static int __init swsusp_header_init(void)
1591 {
1592         swsusp_header = (struct swsusp_header*) __get_free_page(GFP_KERNEL);
1593         if (!swsusp_header)
1594                 panic("Could not allocate memory for swsusp_header\n");
1595         return 0;
1596 }
1597
1598 core_initcall(swsusp_header_init);