Merge tag 'block-5.17-2022-01-28' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / kernel / pid_namespace.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Pid namespaces
4  *
5  * Authors:
6  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
7  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
8  *     Many thanks to Oleg Nesterov for comments and help
9  *
10  */
11
12 #include <linux/pid.h>
13 #include <linux/pid_namespace.h>
14 #include <linux/user_namespace.h>
15 #include <linux/syscalls.h>
16 #include <linux/cred.h>
17 #include <linux/err.h>
18 #include <linux/acct.h>
19 #include <linux/slab.h>
20 #include <linux/proc_ns.h>
21 #include <linux/reboot.h>
22 #include <linux/export.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/signal.h>
25 #include <linux/idr.h>
26
27 static DEFINE_MUTEX(pid_caches_mutex);
28 static struct kmem_cache *pid_ns_cachep;
29 /* Write once array, filled from the beginning. */
30 static struct kmem_cache *pid_cache[MAX_PID_NS_LEVEL];
31
32 /*
33  * creates the kmem cache to allocate pids from.
34  * @level: pid namespace level
35  */
36
37 static struct kmem_cache *create_pid_cachep(unsigned int level)
38 {
39         /* Level 0 is init_pid_ns.pid_cachep */
40         struct kmem_cache **pkc = &pid_cache[level - 1];
41         struct kmem_cache *kc;
42         char name[4 + 10 + 1];
43         unsigned int len;
44
45         kc = READ_ONCE(*pkc);
46         if (kc)
47                 return kc;
48
49         snprintf(name, sizeof(name), "pid_%u", level + 1);
50         len = sizeof(struct pid) + level * sizeof(struct upid);
51         mutex_lock(&pid_caches_mutex);
52         /* Name collision forces to do allocation under mutex. */
53         if (!*pkc)
54                 *pkc = kmem_cache_create(name, len, 0,
55                                          SLAB_HWCACHE_ALIGN | SLAB_ACCOUNT, 0);
56         mutex_unlock(&pid_caches_mutex);
57         /* current can fail, but someone else can succeed. */
58         return READ_ONCE(*pkc);
59 }
60
61 static struct ucounts *inc_pid_namespaces(struct user_namespace *ns)
62 {
63         return inc_ucount(ns, current_euid(), UCOUNT_PID_NAMESPACES);
64 }
65
66 static void dec_pid_namespaces(struct ucounts *ucounts)
67 {
68         dec_ucount(ucounts, UCOUNT_PID_NAMESPACES);
69 }
70
71 static struct pid_namespace *create_pid_namespace(struct user_namespace *user_ns,
72         struct pid_namespace *parent_pid_ns)
73 {
74         struct pid_namespace *ns;
75         unsigned int level = parent_pid_ns->level + 1;
76         struct ucounts *ucounts;
77         int err;
78
79         err = -EINVAL;
80         if (!in_userns(parent_pid_ns->user_ns, user_ns))
81                 goto out;
82
83         err = -ENOSPC;
84         if (level > MAX_PID_NS_LEVEL)
85                 goto out;
86         ucounts = inc_pid_namespaces(user_ns);
87         if (!ucounts)
88                 goto out;
89
90         err = -ENOMEM;
91         ns = kmem_cache_zalloc(pid_ns_cachep, GFP_KERNEL);
92         if (ns == NULL)
93                 goto out_dec;
94
95         idr_init(&ns->idr);
96
97         ns->pid_cachep = create_pid_cachep(level);
98         if (ns->pid_cachep == NULL)
99                 goto out_free_idr;
100
101         err = ns_alloc_inum(&ns->ns);
102         if (err)
103                 goto out_free_idr;
104         ns->ns.ops = &pidns_operations;
105
106         refcount_set(&ns->ns.count, 1);
107         ns->level = level;
108         ns->parent = get_pid_ns(parent_pid_ns);
109         ns->user_ns = get_user_ns(user_ns);
110         ns->ucounts = ucounts;
111         ns->pid_allocated = PIDNS_ADDING;
112
113         return ns;
114
115 out_free_idr:
116         idr_destroy(&ns->idr);
117         kmem_cache_free(pid_ns_cachep, ns);
118 out_dec:
119         dec_pid_namespaces(ucounts);
120 out:
121         return ERR_PTR(err);
122 }
123
124 static void delayed_free_pidns(struct rcu_head *p)
125 {
126         struct pid_namespace *ns = container_of(p, struct pid_namespace, rcu);
127
128         dec_pid_namespaces(ns->ucounts);
129         put_user_ns(ns->user_ns);
130
131         kmem_cache_free(pid_ns_cachep, ns);
132 }
133
134 static void destroy_pid_namespace(struct pid_namespace *ns)
135 {
136         ns_free_inum(&ns->ns);
137
138         idr_destroy(&ns->idr);
139         call_rcu(&ns->rcu, delayed_free_pidns);
140 }
141
142 struct pid_namespace *copy_pid_ns(unsigned long flags,
143         struct user_namespace *user_ns, struct pid_namespace *old_ns)
144 {
145         if (!(flags & CLONE_NEWPID))
146                 return get_pid_ns(old_ns);
147         if (task_active_pid_ns(current) != old_ns)
148                 return ERR_PTR(-EINVAL);
149         return create_pid_namespace(user_ns, old_ns);
150 }
151
152 void put_pid_ns(struct pid_namespace *ns)
153 {
154         struct pid_namespace *parent;
155
156         while (ns != &init_pid_ns) {
157                 parent = ns->parent;
158                 if (!refcount_dec_and_test(&ns->ns.count))
159                         break;
160                 destroy_pid_namespace(ns);
161                 ns = parent;
162         }
163 }
164 EXPORT_SYMBOL_GPL(put_pid_ns);
165
166 void zap_pid_ns_processes(struct pid_namespace *pid_ns)
167 {
168         int nr;
169         int rc;
170         struct task_struct *task, *me = current;
171         int init_pids = thread_group_leader(me) ? 1 : 2;
172         struct pid *pid;
173
174         /* Don't allow any more processes into the pid namespace */
175         disable_pid_allocation(pid_ns);
176
177         /*
178          * Ignore SIGCHLD causing any terminated children to autoreap.
179          * This speeds up the namespace shutdown, plus see the comment
180          * below.
181          */
182         spin_lock_irq(&me->sighand->siglock);
183         me->sighand->action[SIGCHLD - 1].sa.sa_handler = SIG_IGN;
184         spin_unlock_irq(&me->sighand->siglock);
185
186         /*
187          * The last thread in the cgroup-init thread group is terminating.
188          * Find remaining pid_ts in the namespace, signal and wait for them
189          * to exit.
190          *
191          * Note:  This signals each threads in the namespace - even those that
192          *        belong to the same thread group, To avoid this, we would have
193          *        to walk the entire tasklist looking a processes in this
194          *        namespace, but that could be unnecessarily expensive if the
195          *        pid namespace has just a few processes. Or we need to
196          *        maintain a tasklist for each pid namespace.
197          *
198          */
199         rcu_read_lock();
200         read_lock(&tasklist_lock);
201         nr = 2;
202         idr_for_each_entry_continue(&pid_ns->idr, pid, nr) {
203                 task = pid_task(pid, PIDTYPE_PID);
204                 if (task && !__fatal_signal_pending(task))
205                         group_send_sig_info(SIGKILL, SEND_SIG_PRIV, task, PIDTYPE_MAX);
206         }
207         read_unlock(&tasklist_lock);
208         rcu_read_unlock();
209
210         /*
211          * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
212          * kernel_wait4() will also block until our children traced from the
213          * parent namespace are detached and become EXIT_DEAD.
214          */
215         do {
216                 clear_thread_flag(TIF_SIGPENDING);
217                 rc = kernel_wait4(-1, NULL, __WALL, NULL);
218         } while (rc != -ECHILD);
219
220         /*
221          * kernel_wait4() misses EXIT_DEAD children, and EXIT_ZOMBIE
222          * process whose parents processes are outside of the pid
223          * namespace.  Such processes are created with setns()+fork().
224          *
225          * If those EXIT_ZOMBIE processes are not reaped by their
226          * parents before their parents exit, they will be reparented
227          * to pid_ns->child_reaper.  Thus pidns->child_reaper needs to
228          * stay valid until they all go away.
229          *
230          * The code relies on the pid_ns->child_reaper ignoring
231          * SIGCHILD to cause those EXIT_ZOMBIE processes to be
232          * autoreaped if reparented.
233          *
234          * Semantically it is also desirable to wait for EXIT_ZOMBIE
235          * processes before allowing the child_reaper to be reaped, as
236          * that gives the invariant that when the init process of a
237          * pid namespace is reaped all of the processes in the pid
238          * namespace are gone.
239          *
240          * Once all of the other tasks are gone from the pid_namespace
241          * free_pid() will awaken this task.
242          */
243         for (;;) {
244                 set_current_state(TASK_INTERRUPTIBLE);
245                 if (pid_ns->pid_allocated == init_pids)
246                         break;
247                 schedule();
248         }
249         __set_current_state(TASK_RUNNING);
250
251         if (pid_ns->reboot)
252                 current->signal->group_exit_code = pid_ns->reboot;
253
254         acct_exit_ns(pid_ns);
255         return;
256 }
257
258 #ifdef CONFIG_CHECKPOINT_RESTORE
259 static int pid_ns_ctl_handler(struct ctl_table *table, int write,
260                 void *buffer, size_t *lenp, loff_t *ppos)
261 {
262         struct pid_namespace *pid_ns = task_active_pid_ns(current);
263         struct ctl_table tmp = *table;
264         int ret, next;
265
266         if (write && !checkpoint_restore_ns_capable(pid_ns->user_ns))
267                 return -EPERM;
268
269         /*
270          * Writing directly to ns' last_pid field is OK, since this field
271          * is volatile in a living namespace anyway and a code writing to
272          * it should synchronize its usage with external means.
273          */
274
275         next = idr_get_cursor(&pid_ns->idr) - 1;
276
277         tmp.data = &next;
278         ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
279         if (!ret && write)
280                 idr_set_cursor(&pid_ns->idr, next + 1);
281
282         return ret;
283 }
284
285 extern int pid_max;
286 static struct ctl_table pid_ns_ctl_table[] = {
287         {
288                 .procname = "ns_last_pid",
289                 .maxlen = sizeof(int),
290                 .mode = 0666, /* permissions are checked in the handler */
291                 .proc_handler = pid_ns_ctl_handler,
292                 .extra1 = SYSCTL_ZERO,
293                 .extra2 = &pid_max,
294         },
295         { }
296 };
297 static struct ctl_path kern_path[] = { { .procname = "kernel", }, { } };
298 #endif  /* CONFIG_CHECKPOINT_RESTORE */
299
300 int reboot_pid_ns(struct pid_namespace *pid_ns, int cmd)
301 {
302         if (pid_ns == &init_pid_ns)
303                 return 0;
304
305         switch (cmd) {
306         case LINUX_REBOOT_CMD_RESTART2:
307         case LINUX_REBOOT_CMD_RESTART:
308                 pid_ns->reboot = SIGHUP;
309                 break;
310
311         case LINUX_REBOOT_CMD_POWER_OFF:
312         case LINUX_REBOOT_CMD_HALT:
313                 pid_ns->reboot = SIGINT;
314                 break;
315         default:
316                 return -EINVAL;
317         }
318
319         read_lock(&tasklist_lock);
320         send_sig(SIGKILL, pid_ns->child_reaper, 1);
321         read_unlock(&tasklist_lock);
322
323         do_exit(0);
324
325         /* Not reached */
326         return 0;
327 }
328
329 static inline struct pid_namespace *to_pid_ns(struct ns_common *ns)
330 {
331         return container_of(ns, struct pid_namespace, ns);
332 }
333
334 static struct ns_common *pidns_get(struct task_struct *task)
335 {
336         struct pid_namespace *ns;
337
338         rcu_read_lock();
339         ns = task_active_pid_ns(task);
340         if (ns)
341                 get_pid_ns(ns);
342         rcu_read_unlock();
343
344         return ns ? &ns->ns : NULL;
345 }
346
347 static struct ns_common *pidns_for_children_get(struct task_struct *task)
348 {
349         struct pid_namespace *ns = NULL;
350
351         task_lock(task);
352         if (task->nsproxy) {
353                 ns = task->nsproxy->pid_ns_for_children;
354                 get_pid_ns(ns);
355         }
356         task_unlock(task);
357
358         if (ns) {
359                 read_lock(&tasklist_lock);
360                 if (!ns->child_reaper) {
361                         put_pid_ns(ns);
362                         ns = NULL;
363                 }
364                 read_unlock(&tasklist_lock);
365         }
366
367         return ns ? &ns->ns : NULL;
368 }
369
370 static void pidns_put(struct ns_common *ns)
371 {
372         put_pid_ns(to_pid_ns(ns));
373 }
374
375 static int pidns_install(struct nsset *nsset, struct ns_common *ns)
376 {
377         struct nsproxy *nsproxy = nsset->nsproxy;
378         struct pid_namespace *active = task_active_pid_ns(current);
379         struct pid_namespace *ancestor, *new = to_pid_ns(ns);
380
381         if (!ns_capable(new->user_ns, CAP_SYS_ADMIN) ||
382             !ns_capable(nsset->cred->user_ns, CAP_SYS_ADMIN))
383                 return -EPERM;
384
385         /*
386          * Only allow entering the current active pid namespace
387          * or a child of the current active pid namespace.
388          *
389          * This is required for fork to return a usable pid value and
390          * this maintains the property that processes and their
391          * children can not escape their current pid namespace.
392          */
393         if (new->level < active->level)
394                 return -EINVAL;
395
396         ancestor = new;
397         while (ancestor->level > active->level)
398                 ancestor = ancestor->parent;
399         if (ancestor != active)
400                 return -EINVAL;
401
402         put_pid_ns(nsproxy->pid_ns_for_children);
403         nsproxy->pid_ns_for_children = get_pid_ns(new);
404         return 0;
405 }
406
407 static struct ns_common *pidns_get_parent(struct ns_common *ns)
408 {
409         struct pid_namespace *active = task_active_pid_ns(current);
410         struct pid_namespace *pid_ns, *p;
411
412         /* See if the parent is in the current namespace */
413         pid_ns = p = to_pid_ns(ns)->parent;
414         for (;;) {
415                 if (!p)
416                         return ERR_PTR(-EPERM);
417                 if (p == active)
418                         break;
419                 p = p->parent;
420         }
421
422         return &get_pid_ns(pid_ns)->ns;
423 }
424
425 static struct user_namespace *pidns_owner(struct ns_common *ns)
426 {
427         return to_pid_ns(ns)->user_ns;
428 }
429
430 const struct proc_ns_operations pidns_operations = {
431         .name           = "pid",
432         .type           = CLONE_NEWPID,
433         .get            = pidns_get,
434         .put            = pidns_put,
435         .install        = pidns_install,
436         .owner          = pidns_owner,
437         .get_parent     = pidns_get_parent,
438 };
439
440 const struct proc_ns_operations pidns_for_children_operations = {
441         .name           = "pid_for_children",
442         .real_ns_name   = "pid",
443         .type           = CLONE_NEWPID,
444         .get            = pidns_for_children_get,
445         .put            = pidns_put,
446         .install        = pidns_install,
447         .owner          = pidns_owner,
448         .get_parent     = pidns_get_parent,
449 };
450
451 static __init int pid_namespaces_init(void)
452 {
453         pid_ns_cachep = KMEM_CACHE(pid_namespace, SLAB_PANIC | SLAB_ACCOUNT);
454
455 #ifdef CONFIG_CHECKPOINT_RESTORE
456         register_sysctl_paths(kern_path, pid_ns_ctl_table);
457 #endif
458         return 0;
459 }
460
461 __initcall(pid_namespaces_init);