Merge tag 'm68k-for-v5.20-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / locking / rwsem.c
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells (dhowells@redhat.com).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8  * and Michel Lespinasse <walken@google.com>
9  *
10  * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11  * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <longman@redhat.com> and
15  * Peter Zijlstra <peterz@infradead.org>.
16  */
17
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34
35 /*
36  * The least significant 2 bits of the owner value has the following
37  * meanings when set.
38  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
39  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40  *
41  * When the rwsem is reader-owned and a spinning writer has timed out,
42  * the nonspinnable bit will be set to disable optimistic spinning.
43
44  * When a writer acquires a rwsem, it puts its task_struct pointer
45  * into the owner field. It is cleared after an unlock.
46  *
47  * When a reader acquires a rwsem, it will also puts its task_struct
48  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49  * On unlock, the owner field will largely be left untouched. So
50  * for a free or reader-owned rwsem, the owner value may contain
51  * information about the last reader that acquires the rwsem.
52  *
53  * That information may be helpful in debugging cases where the system
54  * seems to hang on a reader owned rwsem especially if only one reader
55  * is involved. Ideally we would like to track all the readers that own
56  * a rwsem, but the overhead is simply too big.
57  *
58  * A fast path reader optimistic lock stealing is supported when the rwsem
59  * is previously owned by a writer and the following conditions are met:
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED      (1UL << 0)
64 #define RWSEM_NONSPINNABLE      (1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK  (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)   do {                    \
69         if (!debug_locks_silent &&                              \
70             WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71                 #c, atomic_long_read(&(sem)->count),            \
72                 (unsigned long) sem->magic,                     \
73                 atomic_long_read(&(sem)->owner), (long)current, \
74                 list_empty(&(sem)->wait_list) ? "" : "not "))   \
75                         debug_locks_off();                      \
76         } while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers             -- set, clear
110  * 2) rwsem_try_write_lock() for writers        -- set, clear
111  * 3) rwsem_del_waiter()                        -- clear
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED     (1UL << 0)
118 #define RWSEM_FLAG_WAITERS      (1UL << 1)
119 #define RWSEM_FLAG_HANDOFF      (1UL << 2)
120 #define RWSEM_FLAG_READFAIL     (1UL << (BITS_PER_LONG - 1))
121
122 #define RWSEM_READER_SHIFT      8
123 #define RWSEM_READER_BIAS       (1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK       (~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK       RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK         (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK  (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128                                  RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  */
137 static inline void rwsem_set_owner(struct rw_semaphore *sem)
138 {
139         atomic_long_set(&sem->owner, (long)current);
140 }
141
142 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
143 {
144         atomic_long_set(&sem->owner, 0);
145 }
146
147 /*
148  * Test the flags in the owner field.
149  */
150 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
151 {
152         return atomic_long_read(&sem->owner) & flags;
153 }
154
155 /*
156  * The task_struct pointer of the last owning reader will be left in
157  * the owner field.
158  *
159  * Note that the owner value just indicates the task has owned the rwsem
160  * previously, it may not be the real owner or one of the real owners
161  * anymore when that field is examined, so take it with a grain of salt.
162  *
163  * The reader non-spinnable bit is preserved.
164  */
165 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
166                                             struct task_struct *owner)
167 {
168         unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
169                 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
170
171         atomic_long_set(&sem->owner, val);
172 }
173
174 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
175 {
176         __rwsem_set_reader_owned(sem, current);
177 }
178
179 /*
180  * Return true if the rwsem is owned by a reader.
181  */
182 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
183 {
184 #ifdef CONFIG_DEBUG_RWSEMS
185         /*
186          * Check the count to see if it is write-locked.
187          */
188         long count = atomic_long_read(&sem->count);
189
190         if (count & RWSEM_WRITER_MASK)
191                 return false;
192 #endif
193         return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
194 }
195
196 #ifdef CONFIG_DEBUG_RWSEMS
197 /*
198  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
199  * is a task pointer in owner of a reader-owned rwsem, it will be the
200  * real owner or one of the real owners. The only exception is when the
201  * unlock is done by up_read_non_owner().
202  */
203 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
204 {
205         unsigned long val = atomic_long_read(&sem->owner);
206
207         while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
208                 if (atomic_long_try_cmpxchg(&sem->owner, &val,
209                                             val & RWSEM_OWNER_FLAGS_MASK))
210                         return;
211         }
212 }
213 #else
214 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
215 {
216 }
217 #endif
218
219 /*
220  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
221  * remains set. Otherwise, the operation will be aborted.
222  */
223 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
224 {
225         unsigned long owner = atomic_long_read(&sem->owner);
226
227         do {
228                 if (!(owner & RWSEM_READER_OWNED))
229                         break;
230                 if (owner & RWSEM_NONSPINNABLE)
231                         break;
232         } while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
233                                           owner | RWSEM_NONSPINNABLE));
234 }
235
236 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
237 {
238         *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
239
240         if (WARN_ON_ONCE(*cntp < 0))
241                 rwsem_set_nonspinnable(sem);
242
243         if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
244                 rwsem_set_reader_owned(sem);
245                 return true;
246         }
247
248         return false;
249 }
250
251 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
252 {
253         long tmp = RWSEM_UNLOCKED_VALUE;
254
255         if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
256                 rwsem_set_owner(sem);
257                 return true;
258         }
259
260         return false;
261 }
262
263 /*
264  * Return just the real task structure pointer of the owner
265  */
266 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
267 {
268         return (struct task_struct *)
269                 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
270 }
271
272 /*
273  * Return the real task structure pointer of the owner and the embedded
274  * flags in the owner. pflags must be non-NULL.
275  */
276 static inline struct task_struct *
277 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
278 {
279         unsigned long owner = atomic_long_read(&sem->owner);
280
281         *pflags = owner & RWSEM_OWNER_FLAGS_MASK;
282         return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
283 }
284
285 /*
286  * Guide to the rw_semaphore's count field.
287  *
288  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
289  * by a writer.
290  *
291  * The lock is owned by readers when
292  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
293  * (2) some of the reader bits are set in count, and
294  * (3) the owner field has RWSEM_READ_OWNED bit set.
295  *
296  * Having some reader bits set is not enough to guarantee a readers owned
297  * lock as the readers may be in the process of backing out from the count
298  * and a writer has just released the lock. So another writer may steal
299  * the lock immediately after that.
300  */
301
302 /*
303  * Initialize an rwsem:
304  */
305 void __init_rwsem(struct rw_semaphore *sem, const char *name,
306                   struct lock_class_key *key)
307 {
308 #ifdef CONFIG_DEBUG_LOCK_ALLOC
309         /*
310          * Make sure we are not reinitializing a held semaphore:
311          */
312         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
313         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
314 #endif
315 #ifdef CONFIG_DEBUG_RWSEMS
316         sem->magic = sem;
317 #endif
318         atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
319         raw_spin_lock_init(&sem->wait_lock);
320         INIT_LIST_HEAD(&sem->wait_list);
321         atomic_long_set(&sem->owner, 0L);
322 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
323         osq_lock_init(&sem->osq);
324 #endif
325 }
326 EXPORT_SYMBOL(__init_rwsem);
327
328 enum rwsem_waiter_type {
329         RWSEM_WAITING_FOR_WRITE,
330         RWSEM_WAITING_FOR_READ
331 };
332
333 struct rwsem_waiter {
334         struct list_head list;
335         struct task_struct *task;
336         enum rwsem_waiter_type type;
337         unsigned long timeout;
338         bool handoff_set;
339 };
340 #define rwsem_first_waiter(sem) \
341         list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
342
343 enum rwsem_wake_type {
344         RWSEM_WAKE_ANY,         /* Wake whatever's at head of wait list */
345         RWSEM_WAKE_READERS,     /* Wake readers only */
346         RWSEM_WAKE_READ_OWNED   /* Waker thread holds the read lock */
347 };
348
349 /*
350  * The typical HZ value is either 250 or 1000. So set the minimum waiting
351  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
352  * queue before initiating the handoff protocol.
353  */
354 #define RWSEM_WAIT_TIMEOUT      DIV_ROUND_UP(HZ, 250)
355
356 /*
357  * Magic number to batch-wakeup waiting readers, even when writers are
358  * also present in the queue. This both limits the amount of work the
359  * waking thread must do and also prevents any potential counter overflow,
360  * however unlikely.
361  */
362 #define MAX_READERS_WAKEUP      0x100
363
364 static inline void
365 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
366 {
367         lockdep_assert_held(&sem->wait_lock);
368         list_add_tail(&waiter->list, &sem->wait_list);
369         /* caller will set RWSEM_FLAG_WAITERS */
370 }
371
372 /*
373  * Remove a waiter from the wait_list and clear flags.
374  *
375  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
376  * this function. Modify with care.
377  *
378  * Return: true if wait_list isn't empty and false otherwise
379  */
380 static inline bool
381 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
382 {
383         lockdep_assert_held(&sem->wait_lock);
384         list_del(&waiter->list);
385         if (likely(!list_empty(&sem->wait_list)))
386                 return true;
387
388         atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
389         return false;
390 }
391
392 /*
393  * handle the lock release when processes blocked on it that can now run
394  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
395  *   have been set.
396  * - there must be someone on the queue
397  * - the wait_lock must be held by the caller
398  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
399  *   to actually wakeup the blocked task(s) and drop the reference count,
400  *   preferably when the wait_lock is released
401  * - woken process blocks are discarded from the list after having task zeroed
402  * - writers are only marked woken if downgrading is false
403  *
404  * Implies rwsem_del_waiter() for all woken readers.
405  */
406 static void rwsem_mark_wake(struct rw_semaphore *sem,
407                             enum rwsem_wake_type wake_type,
408                             struct wake_q_head *wake_q)
409 {
410         struct rwsem_waiter *waiter, *tmp;
411         long oldcount, woken = 0, adjustment = 0;
412         struct list_head wlist;
413
414         lockdep_assert_held(&sem->wait_lock);
415
416         /*
417          * Take a peek at the queue head waiter such that we can determine
418          * the wakeup(s) to perform.
419          */
420         waiter = rwsem_first_waiter(sem);
421
422         if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
423                 if (wake_type == RWSEM_WAKE_ANY) {
424                         /*
425                          * Mark writer at the front of the queue for wakeup.
426                          * Until the task is actually later awoken later by
427                          * the caller, other writers are able to steal it.
428                          * Readers, on the other hand, will block as they
429                          * will notice the queued writer.
430                          */
431                         wake_q_add(wake_q, waiter->task);
432                         lockevent_inc(rwsem_wake_writer);
433                 }
434
435                 return;
436         }
437
438         /*
439          * No reader wakeup if there are too many of them already.
440          */
441         if (unlikely(atomic_long_read(&sem->count) < 0))
442                 return;
443
444         /*
445          * Writers might steal the lock before we grant it to the next reader.
446          * We prefer to do the first reader grant before counting readers
447          * so we can bail out early if a writer stole the lock.
448          */
449         if (wake_type != RWSEM_WAKE_READ_OWNED) {
450                 struct task_struct *owner;
451
452                 adjustment = RWSEM_READER_BIAS;
453                 oldcount = atomic_long_fetch_add(adjustment, &sem->count);
454                 if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
455                         /*
456                          * When we've been waiting "too" long (for writers
457                          * to give up the lock), request a HANDOFF to
458                          * force the issue.
459                          */
460                         if (time_after(jiffies, waiter->timeout)) {
461                                 if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
462                                         adjustment -= RWSEM_FLAG_HANDOFF;
463                                         lockevent_inc(rwsem_rlock_handoff);
464                                 }
465                                 waiter->handoff_set = true;
466                         }
467
468                         atomic_long_add(-adjustment, &sem->count);
469                         return;
470                 }
471                 /*
472                  * Set it to reader-owned to give spinners an early
473                  * indication that readers now have the lock.
474                  * The reader nonspinnable bit seen at slowpath entry of
475                  * the reader is copied over.
476                  */
477                 owner = waiter->task;
478                 __rwsem_set_reader_owned(sem, owner);
479         }
480
481         /*
482          * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
483          * queue. We know that the woken will be at least 1 as we accounted
484          * for above. Note we increment the 'active part' of the count by the
485          * number of readers before waking any processes up.
486          *
487          * This is an adaptation of the phase-fair R/W locks where at the
488          * reader phase (first waiter is a reader), all readers are eligible
489          * to acquire the lock at the same time irrespective of their order
490          * in the queue. The writers acquire the lock according to their
491          * order in the queue.
492          *
493          * We have to do wakeup in 2 passes to prevent the possibility that
494          * the reader count may be decremented before it is incremented. It
495          * is because the to-be-woken waiter may not have slept yet. So it
496          * may see waiter->task got cleared, finish its critical section and
497          * do an unlock before the reader count increment.
498          *
499          * 1) Collect the read-waiters in a separate list, count them and
500          *    fully increment the reader count in rwsem.
501          * 2) For each waiters in the new list, clear waiter->task and
502          *    put them into wake_q to be woken up later.
503          */
504         INIT_LIST_HEAD(&wlist);
505         list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
506                 if (waiter->type == RWSEM_WAITING_FOR_WRITE)
507                         continue;
508
509                 woken++;
510                 list_move_tail(&waiter->list, &wlist);
511
512                 /*
513                  * Limit # of readers that can be woken up per wakeup call.
514                  */
515                 if (unlikely(woken >= MAX_READERS_WAKEUP))
516                         break;
517         }
518
519         adjustment = woken * RWSEM_READER_BIAS - adjustment;
520         lockevent_cond_inc(rwsem_wake_reader, woken);
521
522         oldcount = atomic_long_read(&sem->count);
523         if (list_empty(&sem->wait_list)) {
524                 /*
525                  * Combined with list_move_tail() above, this implies
526                  * rwsem_del_waiter().
527                  */
528                 adjustment -= RWSEM_FLAG_WAITERS;
529                 if (oldcount & RWSEM_FLAG_HANDOFF)
530                         adjustment -= RWSEM_FLAG_HANDOFF;
531         } else if (woken) {
532                 /*
533                  * When we've woken a reader, we no longer need to force
534                  * writers to give up the lock and we can clear HANDOFF.
535                  */
536                 if (oldcount & RWSEM_FLAG_HANDOFF)
537                         adjustment -= RWSEM_FLAG_HANDOFF;
538         }
539
540         if (adjustment)
541                 atomic_long_add(adjustment, &sem->count);
542
543         /* 2nd pass */
544         list_for_each_entry_safe(waiter, tmp, &wlist, list) {
545                 struct task_struct *tsk;
546
547                 tsk = waiter->task;
548                 get_task_struct(tsk);
549
550                 /*
551                  * Ensure calling get_task_struct() before setting the reader
552                  * waiter to nil such that rwsem_down_read_slowpath() cannot
553                  * race with do_exit() by always holding a reference count
554                  * to the task to wakeup.
555                  */
556                 smp_store_release(&waiter->task, NULL);
557                 /*
558                  * Ensure issuing the wakeup (either by us or someone else)
559                  * after setting the reader waiter to nil.
560                  */
561                 wake_q_add_safe(wake_q, tsk);
562         }
563 }
564
565 /*
566  * Remove a waiter and try to wake up other waiters in the wait queue
567  * This function is called from the out_nolock path of both the reader and
568  * writer slowpaths with wait_lock held. It releases the wait_lock and
569  * optionally wake up waiters before it returns.
570  */
571 static inline void
572 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
573                       struct wake_q_head *wake_q)
574                       __releases(&sem->wait_lock)
575 {
576         bool first = rwsem_first_waiter(sem) == waiter;
577
578         wake_q_init(wake_q);
579
580         /*
581          * If the wait_list isn't empty and the waiter to be deleted is
582          * the first waiter, we wake up the remaining waiters as they may
583          * be eligible to acquire or spin on the lock.
584          */
585         if (rwsem_del_waiter(sem, waiter) && first)
586                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
587         raw_spin_unlock_irq(&sem->wait_lock);
588         if (!wake_q_empty(wake_q))
589                 wake_up_q(wake_q);
590 }
591
592 /*
593  * This function must be called with the sem->wait_lock held to prevent
594  * race conditions between checking the rwsem wait list and setting the
595  * sem->count accordingly.
596  *
597  * Implies rwsem_del_waiter() on success.
598  */
599 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
600                                         struct rwsem_waiter *waiter)
601 {
602         struct rwsem_waiter *first = rwsem_first_waiter(sem);
603         long count, new;
604
605         lockdep_assert_held(&sem->wait_lock);
606
607         count = atomic_long_read(&sem->count);
608         do {
609                 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
610
611                 if (has_handoff) {
612                         /*
613                          * Honor handoff bit and yield only when the first
614                          * waiter is the one that set it. Otherwisee, we
615                          * still try to acquire the rwsem.
616                          */
617                         if (first->handoff_set && (waiter != first))
618                                 return false;
619
620                         /*
621                          * First waiter can inherit a previously set handoff
622                          * bit and spin on rwsem if lock acquisition fails.
623                          */
624                         if (waiter == first)
625                                 waiter->handoff_set = true;
626                 }
627
628                 new = count;
629
630                 if (count & RWSEM_LOCK_MASK) {
631                         if (has_handoff || (!rt_task(waiter->task) &&
632                                             !time_after(jiffies, waiter->timeout)))
633                                 return false;
634
635                         new |= RWSEM_FLAG_HANDOFF;
636                 } else {
637                         new |= RWSEM_WRITER_LOCKED;
638                         new &= ~RWSEM_FLAG_HANDOFF;
639
640                         if (list_is_singular(&sem->wait_list))
641                                 new &= ~RWSEM_FLAG_WAITERS;
642                 }
643         } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
644
645         /*
646          * We have either acquired the lock with handoff bit cleared or
647          * set the handoff bit.
648          */
649         if (new & RWSEM_FLAG_HANDOFF) {
650                 waiter->handoff_set = true;
651                 lockevent_inc(rwsem_wlock_handoff);
652                 return false;
653         }
654
655         /*
656          * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
657          * success.
658          */
659         list_del(&waiter->list);
660         rwsem_set_owner(sem);
661         return true;
662 }
663
664 /*
665  * The rwsem_spin_on_owner() function returns the following 4 values
666  * depending on the lock owner state.
667  *   OWNER_NULL  : owner is currently NULL
668  *   OWNER_WRITER: when owner changes and is a writer
669  *   OWNER_READER: when owner changes and the new owner may be a reader.
670  *   OWNER_NONSPINNABLE:
671  *                 when optimistic spinning has to stop because either the
672  *                 owner stops running, is unknown, or its timeslice has
673  *                 been used up.
674  */
675 enum owner_state {
676         OWNER_NULL              = 1 << 0,
677         OWNER_WRITER            = 1 << 1,
678         OWNER_READER            = 1 << 2,
679         OWNER_NONSPINNABLE      = 1 << 3,
680 };
681
682 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
683 /*
684  * Try to acquire write lock before the writer has been put on wait queue.
685  */
686 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
687 {
688         long count = atomic_long_read(&sem->count);
689
690         while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
691                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
692                                         count | RWSEM_WRITER_LOCKED)) {
693                         rwsem_set_owner(sem);
694                         lockevent_inc(rwsem_opt_lock);
695                         return true;
696                 }
697         }
698         return false;
699 }
700
701 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
702 {
703         struct task_struct *owner;
704         unsigned long flags;
705         bool ret = true;
706
707         if (need_resched()) {
708                 lockevent_inc(rwsem_opt_fail);
709                 return false;
710         }
711
712         preempt_disable();
713         /*
714          * Disable preemption is equal to the RCU read-side crital section,
715          * thus the task_strcut structure won't go away.
716          */
717         owner = rwsem_owner_flags(sem, &flags);
718         /*
719          * Don't check the read-owner as the entry may be stale.
720          */
721         if ((flags & RWSEM_NONSPINNABLE) ||
722             (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
723                 ret = false;
724         preempt_enable();
725
726         lockevent_cond_inc(rwsem_opt_fail, !ret);
727         return ret;
728 }
729
730 #define OWNER_SPINNABLE         (OWNER_NULL | OWNER_WRITER | OWNER_READER)
731
732 static inline enum owner_state
733 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
734 {
735         if (flags & RWSEM_NONSPINNABLE)
736                 return OWNER_NONSPINNABLE;
737
738         if (flags & RWSEM_READER_OWNED)
739                 return OWNER_READER;
740
741         return owner ? OWNER_WRITER : OWNER_NULL;
742 }
743
744 static noinline enum owner_state
745 rwsem_spin_on_owner(struct rw_semaphore *sem)
746 {
747         struct task_struct *new, *owner;
748         unsigned long flags, new_flags;
749         enum owner_state state;
750
751         lockdep_assert_preemption_disabled();
752
753         owner = rwsem_owner_flags(sem, &flags);
754         state = rwsem_owner_state(owner, flags);
755         if (state != OWNER_WRITER)
756                 return state;
757
758         for (;;) {
759                 /*
760                  * When a waiting writer set the handoff flag, it may spin
761                  * on the owner as well. Once that writer acquires the lock,
762                  * we can spin on it. So we don't need to quit even when the
763                  * handoff bit is set.
764                  */
765                 new = rwsem_owner_flags(sem, &new_flags);
766                 if ((new != owner) || (new_flags != flags)) {
767                         state = rwsem_owner_state(new, new_flags);
768                         break;
769                 }
770
771                 /*
772                  * Ensure we emit the owner->on_cpu, dereference _after_
773                  * checking sem->owner still matches owner, if that fails,
774                  * owner might point to free()d memory, if it still matches,
775                  * our spinning context already disabled preemption which is
776                  * equal to RCU read-side crital section ensures the memory
777                  * stays valid.
778                  */
779                 barrier();
780
781                 if (need_resched() || !owner_on_cpu(owner)) {
782                         state = OWNER_NONSPINNABLE;
783                         break;
784                 }
785
786                 cpu_relax();
787         }
788
789         return state;
790 }
791
792 /*
793  * Calculate reader-owned rwsem spinning threshold for writer
794  *
795  * The more readers own the rwsem, the longer it will take for them to
796  * wind down and free the rwsem. So the empirical formula used to
797  * determine the actual spinning time limit here is:
798  *
799  *   Spinning threshold = (10 + nr_readers/2)us
800  *
801  * The limit is capped to a maximum of 25us (30 readers). This is just
802  * a heuristic and is subjected to change in the future.
803  */
804 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
805 {
806         long count = atomic_long_read(&sem->count);
807         int readers = count >> RWSEM_READER_SHIFT;
808         u64 delta;
809
810         if (readers > 30)
811                 readers = 30;
812         delta = (20 + readers) * NSEC_PER_USEC / 2;
813
814         return sched_clock() + delta;
815 }
816
817 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
818 {
819         bool taken = false;
820         int prev_owner_state = OWNER_NULL;
821         int loop = 0;
822         u64 rspin_threshold = 0;
823
824         preempt_disable();
825
826         /* sem->wait_lock should not be held when doing optimistic spinning */
827         if (!osq_lock(&sem->osq))
828                 goto done;
829
830         /*
831          * Optimistically spin on the owner field and attempt to acquire the
832          * lock whenever the owner changes. Spinning will be stopped when:
833          *  1) the owning writer isn't running; or
834          *  2) readers own the lock and spinning time has exceeded limit.
835          */
836         for (;;) {
837                 enum owner_state owner_state;
838
839                 owner_state = rwsem_spin_on_owner(sem);
840                 if (!(owner_state & OWNER_SPINNABLE))
841                         break;
842
843                 /*
844                  * Try to acquire the lock
845                  */
846                 taken = rwsem_try_write_lock_unqueued(sem);
847
848                 if (taken)
849                         break;
850
851                 /*
852                  * Time-based reader-owned rwsem optimistic spinning
853                  */
854                 if (owner_state == OWNER_READER) {
855                         /*
856                          * Re-initialize rspin_threshold every time when
857                          * the owner state changes from non-reader to reader.
858                          * This allows a writer to steal the lock in between
859                          * 2 reader phases and have the threshold reset at
860                          * the beginning of the 2nd reader phase.
861                          */
862                         if (prev_owner_state != OWNER_READER) {
863                                 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
864                                         break;
865                                 rspin_threshold = rwsem_rspin_threshold(sem);
866                                 loop = 0;
867                         }
868
869                         /*
870                          * Check time threshold once every 16 iterations to
871                          * avoid calling sched_clock() too frequently so
872                          * as to reduce the average latency between the times
873                          * when the lock becomes free and when the spinner
874                          * is ready to do a trylock.
875                          */
876                         else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
877                                 rwsem_set_nonspinnable(sem);
878                                 lockevent_inc(rwsem_opt_nospin);
879                                 break;
880                         }
881                 }
882
883                 /*
884                  * An RT task cannot do optimistic spinning if it cannot
885                  * be sure the lock holder is running or live-lock may
886                  * happen if the current task and the lock holder happen
887                  * to run in the same CPU. However, aborting optimistic
888                  * spinning while a NULL owner is detected may miss some
889                  * opportunity where spinning can continue without causing
890                  * problem.
891                  *
892                  * There are 2 possible cases where an RT task may be able
893                  * to continue spinning.
894                  *
895                  * 1) The lock owner is in the process of releasing the
896                  *    lock, sem->owner is cleared but the lock has not
897                  *    been released yet.
898                  * 2) The lock was free and owner cleared, but another
899                  *    task just comes in and acquire the lock before
900                  *    we try to get it. The new owner may be a spinnable
901                  *    writer.
902                  *
903                  * To take advantage of two scenarios listed above, the RT
904                  * task is made to retry one more time to see if it can
905                  * acquire the lock or continue spinning on the new owning
906                  * writer. Of course, if the time lag is long enough or the
907                  * new owner is not a writer or spinnable, the RT task will
908                  * quit spinning.
909                  *
910                  * If the owner is a writer, the need_resched() check is
911                  * done inside rwsem_spin_on_owner(). If the owner is not
912                  * a writer, need_resched() check needs to be done here.
913                  */
914                 if (owner_state != OWNER_WRITER) {
915                         if (need_resched())
916                                 break;
917                         if (rt_task(current) &&
918                            (prev_owner_state != OWNER_WRITER))
919                                 break;
920                 }
921                 prev_owner_state = owner_state;
922
923                 /*
924                  * The cpu_relax() call is a compiler barrier which forces
925                  * everything in this loop to be re-loaded. We don't need
926                  * memory barriers as we'll eventually observe the right
927                  * values at the cost of a few extra spins.
928                  */
929                 cpu_relax();
930         }
931         osq_unlock(&sem->osq);
932 done:
933         preempt_enable();
934         lockevent_cond_inc(rwsem_opt_fail, !taken);
935         return taken;
936 }
937
938 /*
939  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
940  * only be called when the reader count reaches 0.
941  */
942 static inline void clear_nonspinnable(struct rw_semaphore *sem)
943 {
944         if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
945                 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
946 }
947
948 #else
949 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
950 {
951         return false;
952 }
953
954 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
955 {
956         return false;
957 }
958
959 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
960
961 static inline enum owner_state
962 rwsem_spin_on_owner(struct rw_semaphore *sem)
963 {
964         return OWNER_NONSPINNABLE;
965 }
966 #endif
967
968 /*
969  * Prepare to wake up waiter(s) in the wait queue by putting them into the
970  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
971  * reader-owned, wake up read lock waiters in queue front or wake up any
972  * front waiter otherwise.
973
974  * This is being called from both reader and writer slow paths.
975  */
976 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
977                                           struct wake_q_head *wake_q)
978 {
979         enum rwsem_wake_type wake_type;
980
981         if (count & RWSEM_WRITER_MASK)
982                 return;
983
984         if (count & RWSEM_READER_MASK) {
985                 wake_type = RWSEM_WAKE_READERS;
986         } else {
987                 wake_type = RWSEM_WAKE_ANY;
988                 clear_nonspinnable(sem);
989         }
990         rwsem_mark_wake(sem, wake_type, wake_q);
991 }
992
993 /*
994  * Wait for the read lock to be granted
995  */
996 static struct rw_semaphore __sched *
997 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
998 {
999         long adjustment = -RWSEM_READER_BIAS;
1000         long rcnt = (count >> RWSEM_READER_SHIFT);
1001         struct rwsem_waiter waiter;
1002         DEFINE_WAKE_Q(wake_q);
1003
1004         /*
1005          * To prevent a constant stream of readers from starving a sleeping
1006          * waiter, don't attempt optimistic lock stealing if the lock is
1007          * currently owned by readers.
1008          */
1009         if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1010             (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1011                 goto queue;
1012
1013         /*
1014          * Reader optimistic lock stealing.
1015          */
1016         if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1017                 rwsem_set_reader_owned(sem);
1018                 lockevent_inc(rwsem_rlock_steal);
1019
1020                 /*
1021                  * Wake up other readers in the wait queue if it is
1022                  * the first reader.
1023                  */
1024                 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1025                         raw_spin_lock_irq(&sem->wait_lock);
1026                         if (!list_empty(&sem->wait_list))
1027                                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1028                                                 &wake_q);
1029                         raw_spin_unlock_irq(&sem->wait_lock);
1030                         wake_up_q(&wake_q);
1031                 }
1032                 return sem;
1033         }
1034
1035 queue:
1036         waiter.task = current;
1037         waiter.type = RWSEM_WAITING_FOR_READ;
1038         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1039         waiter.handoff_set = false;
1040
1041         raw_spin_lock_irq(&sem->wait_lock);
1042         if (list_empty(&sem->wait_list)) {
1043                 /*
1044                  * In case the wait queue is empty and the lock isn't owned
1045                  * by a writer, this reader can exit the slowpath and return
1046                  * immediately as its RWSEM_READER_BIAS has already been set
1047                  * in the count.
1048                  */
1049                 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1050                         /* Provide lock ACQUIRE */
1051                         smp_acquire__after_ctrl_dep();
1052                         raw_spin_unlock_irq(&sem->wait_lock);
1053                         rwsem_set_reader_owned(sem);
1054                         lockevent_inc(rwsem_rlock_fast);
1055                         return sem;
1056                 }
1057                 adjustment += RWSEM_FLAG_WAITERS;
1058         }
1059         rwsem_add_waiter(sem, &waiter);
1060
1061         /* we're now waiting on the lock, but no longer actively locking */
1062         count = atomic_long_add_return(adjustment, &sem->count);
1063
1064         rwsem_cond_wake_waiter(sem, count, &wake_q);
1065         raw_spin_unlock_irq(&sem->wait_lock);
1066
1067         if (!wake_q_empty(&wake_q))
1068                 wake_up_q(&wake_q);
1069
1070         trace_contention_begin(sem, LCB_F_READ);
1071
1072         /* wait to be given the lock */
1073         for (;;) {
1074                 set_current_state(state);
1075                 if (!smp_load_acquire(&waiter.task)) {
1076                         /* Matches rwsem_mark_wake()'s smp_store_release(). */
1077                         break;
1078                 }
1079                 if (signal_pending_state(state, current)) {
1080                         raw_spin_lock_irq(&sem->wait_lock);
1081                         if (waiter.task)
1082                                 goto out_nolock;
1083                         raw_spin_unlock_irq(&sem->wait_lock);
1084                         /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1085                         break;
1086                 }
1087                 schedule();
1088                 lockevent_inc(rwsem_sleep_reader);
1089         }
1090
1091         __set_current_state(TASK_RUNNING);
1092         lockevent_inc(rwsem_rlock);
1093         trace_contention_end(sem, 0);
1094         return sem;
1095
1096 out_nolock:
1097         rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1098         __set_current_state(TASK_RUNNING);
1099         lockevent_inc(rwsem_rlock_fail);
1100         trace_contention_end(sem, -EINTR);
1101         return ERR_PTR(-EINTR);
1102 }
1103
1104 /*
1105  * Wait until we successfully acquire the write lock
1106  */
1107 static struct rw_semaphore __sched *
1108 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1109 {
1110         struct rwsem_waiter waiter;
1111         DEFINE_WAKE_Q(wake_q);
1112
1113         /* do optimistic spinning and steal lock if possible */
1114         if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1115                 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1116                 return sem;
1117         }
1118
1119         /*
1120          * Optimistic spinning failed, proceed to the slowpath
1121          * and block until we can acquire the sem.
1122          */
1123         waiter.task = current;
1124         waiter.type = RWSEM_WAITING_FOR_WRITE;
1125         waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1126         waiter.handoff_set = false;
1127
1128         raw_spin_lock_irq(&sem->wait_lock);
1129         rwsem_add_waiter(sem, &waiter);
1130
1131         /* we're now waiting on the lock */
1132         if (rwsem_first_waiter(sem) != &waiter) {
1133                 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1134                                        &wake_q);
1135                 if (!wake_q_empty(&wake_q)) {
1136                         /*
1137                          * We want to minimize wait_lock hold time especially
1138                          * when a large number of readers are to be woken up.
1139                          */
1140                         raw_spin_unlock_irq(&sem->wait_lock);
1141                         wake_up_q(&wake_q);
1142                         raw_spin_lock_irq(&sem->wait_lock);
1143                 }
1144         } else {
1145                 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1146         }
1147
1148         /* wait until we successfully acquire the lock */
1149         set_current_state(state);
1150         trace_contention_begin(sem, LCB_F_WRITE);
1151
1152         for (;;) {
1153                 if (rwsem_try_write_lock(sem, &waiter)) {
1154                         /* rwsem_try_write_lock() implies ACQUIRE on success */
1155                         break;
1156                 }
1157
1158                 raw_spin_unlock_irq(&sem->wait_lock);
1159
1160                 if (signal_pending_state(state, current))
1161                         goto out_nolock;
1162
1163                 /*
1164                  * After setting the handoff bit and failing to acquire
1165                  * the lock, attempt to spin on owner to accelerate lock
1166                  * transfer. If the previous owner is a on-cpu writer and it
1167                  * has just released the lock, OWNER_NULL will be returned.
1168                  * In this case, we attempt to acquire the lock again
1169                  * without sleeping.
1170                  */
1171                 if (waiter.handoff_set) {
1172                         enum owner_state owner_state;
1173
1174                         preempt_disable();
1175                         owner_state = rwsem_spin_on_owner(sem);
1176                         preempt_enable();
1177
1178                         if (owner_state == OWNER_NULL)
1179                                 goto trylock_again;
1180                 }
1181
1182                 schedule();
1183                 lockevent_inc(rwsem_sleep_writer);
1184                 set_current_state(state);
1185 trylock_again:
1186                 raw_spin_lock_irq(&sem->wait_lock);
1187         }
1188         __set_current_state(TASK_RUNNING);
1189         raw_spin_unlock_irq(&sem->wait_lock);
1190         lockevent_inc(rwsem_wlock);
1191         trace_contention_end(sem, 0);
1192         return sem;
1193
1194 out_nolock:
1195         __set_current_state(TASK_RUNNING);
1196         raw_spin_lock_irq(&sem->wait_lock);
1197         rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1198         lockevent_inc(rwsem_wlock_fail);
1199         trace_contention_end(sem, -EINTR);
1200         return ERR_PTR(-EINTR);
1201 }
1202
1203 /*
1204  * handle waking up a waiter on the semaphore
1205  * - up_read/up_write has decremented the active part of count if we come here
1206  */
1207 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1208 {
1209         unsigned long flags;
1210         DEFINE_WAKE_Q(wake_q);
1211
1212         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1213
1214         if (!list_empty(&sem->wait_list))
1215                 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1216
1217         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1218         wake_up_q(&wake_q);
1219
1220         return sem;
1221 }
1222
1223 /*
1224  * downgrade a write lock into a read lock
1225  * - caller incremented waiting part of count and discovered it still negative
1226  * - just wake up any readers at the front of the queue
1227  */
1228 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1229 {
1230         unsigned long flags;
1231         DEFINE_WAKE_Q(wake_q);
1232
1233         raw_spin_lock_irqsave(&sem->wait_lock, flags);
1234
1235         if (!list_empty(&sem->wait_list))
1236                 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1237
1238         raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1239         wake_up_q(&wake_q);
1240
1241         return sem;
1242 }
1243
1244 /*
1245  * lock for reading
1246  */
1247 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1248 {
1249         long count;
1250
1251         if (!rwsem_read_trylock(sem, &count)) {
1252                 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1253                         return -EINTR;
1254                 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1255         }
1256         return 0;
1257 }
1258
1259 static inline void __down_read(struct rw_semaphore *sem)
1260 {
1261         __down_read_common(sem, TASK_UNINTERRUPTIBLE);
1262 }
1263
1264 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1265 {
1266         return __down_read_common(sem, TASK_INTERRUPTIBLE);
1267 }
1268
1269 static inline int __down_read_killable(struct rw_semaphore *sem)
1270 {
1271         return __down_read_common(sem, TASK_KILLABLE);
1272 }
1273
1274 static inline int __down_read_trylock(struct rw_semaphore *sem)
1275 {
1276         long tmp;
1277
1278         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1279
1280         tmp = atomic_long_read(&sem->count);
1281         while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1282                 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1283                                                     tmp + RWSEM_READER_BIAS)) {
1284                         rwsem_set_reader_owned(sem);
1285                         return 1;
1286                 }
1287         }
1288         return 0;
1289 }
1290
1291 /*
1292  * lock for writing
1293  */
1294 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1295 {
1296         if (unlikely(!rwsem_write_trylock(sem))) {
1297                 if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1298                         return -EINTR;
1299         }
1300
1301         return 0;
1302 }
1303
1304 static inline void __down_write(struct rw_semaphore *sem)
1305 {
1306         __down_write_common(sem, TASK_UNINTERRUPTIBLE);
1307 }
1308
1309 static inline int __down_write_killable(struct rw_semaphore *sem)
1310 {
1311         return __down_write_common(sem, TASK_KILLABLE);
1312 }
1313
1314 static inline int __down_write_trylock(struct rw_semaphore *sem)
1315 {
1316         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1317         return rwsem_write_trylock(sem);
1318 }
1319
1320 /*
1321  * unlock after reading
1322  */
1323 static inline void __up_read(struct rw_semaphore *sem)
1324 {
1325         long tmp;
1326
1327         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1328         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1329
1330         rwsem_clear_reader_owned(sem);
1331         tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1332         DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1333         if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1334                       RWSEM_FLAG_WAITERS)) {
1335                 clear_nonspinnable(sem);
1336                 rwsem_wake(sem);
1337         }
1338 }
1339
1340 /*
1341  * unlock after writing
1342  */
1343 static inline void __up_write(struct rw_semaphore *sem)
1344 {
1345         long tmp;
1346
1347         DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1348         /*
1349          * sem->owner may differ from current if the ownership is transferred
1350          * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1351          */
1352         DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1353                             !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1354
1355         rwsem_clear_owner(sem);
1356         tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1357         if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1358                 rwsem_wake(sem);
1359 }
1360
1361 /*
1362  * downgrade write lock to read lock
1363  */
1364 static inline void __downgrade_write(struct rw_semaphore *sem)
1365 {
1366         long tmp;
1367
1368         /*
1369          * When downgrading from exclusive to shared ownership,
1370          * anything inside the write-locked region cannot leak
1371          * into the read side. In contrast, anything in the
1372          * read-locked region is ok to be re-ordered into the
1373          * write side. As such, rely on RELEASE semantics.
1374          */
1375         DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1376         tmp = atomic_long_fetch_add_release(
1377                 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1378         rwsem_set_reader_owned(sem);
1379         if (tmp & RWSEM_FLAG_WAITERS)
1380                 rwsem_downgrade_wake(sem);
1381 }
1382
1383 #else /* !CONFIG_PREEMPT_RT */
1384
1385 #define RT_MUTEX_BUILD_MUTEX
1386 #include "rtmutex.c"
1387
1388 #define rwbase_set_and_save_current_state(state)        \
1389         set_current_state(state)
1390
1391 #define rwbase_restore_current_state()                  \
1392         __set_current_state(TASK_RUNNING)
1393
1394 #define rwbase_rtmutex_lock_state(rtm, state)           \
1395         __rt_mutex_lock(rtm, state)
1396
1397 #define rwbase_rtmutex_slowlock_locked(rtm, state)      \
1398         __rt_mutex_slowlock_locked(rtm, NULL, state)
1399
1400 #define rwbase_rtmutex_unlock(rtm)                      \
1401         __rt_mutex_unlock(rtm)
1402
1403 #define rwbase_rtmutex_trylock(rtm)                     \
1404         __rt_mutex_trylock(rtm)
1405
1406 #define rwbase_signal_pending_state(state, current)     \
1407         signal_pending_state(state, current)
1408
1409 #define rwbase_schedule()                               \
1410         schedule()
1411
1412 #include "rwbase_rt.c"
1413
1414 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1415                   struct lock_class_key *key)
1416 {
1417         init_rwbase_rt(&(sem)->rwbase);
1418
1419 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1420         debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1421         lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1422 #endif
1423 }
1424 EXPORT_SYMBOL(__init_rwsem);
1425
1426 static inline void __down_read(struct rw_semaphore *sem)
1427 {
1428         rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1429 }
1430
1431 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1432 {
1433         return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1434 }
1435
1436 static inline int __down_read_killable(struct rw_semaphore *sem)
1437 {
1438         return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1439 }
1440
1441 static inline int __down_read_trylock(struct rw_semaphore *sem)
1442 {
1443         return rwbase_read_trylock(&sem->rwbase);
1444 }
1445
1446 static inline void __up_read(struct rw_semaphore *sem)
1447 {
1448         rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1449 }
1450
1451 static inline void __sched __down_write(struct rw_semaphore *sem)
1452 {
1453         rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1454 }
1455
1456 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1457 {
1458         return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1459 }
1460
1461 static inline int __down_write_trylock(struct rw_semaphore *sem)
1462 {
1463         return rwbase_write_trylock(&sem->rwbase);
1464 }
1465
1466 static inline void __up_write(struct rw_semaphore *sem)
1467 {
1468         rwbase_write_unlock(&sem->rwbase);
1469 }
1470
1471 static inline void __downgrade_write(struct rw_semaphore *sem)
1472 {
1473         rwbase_write_downgrade(&sem->rwbase);
1474 }
1475
1476 /* Debug stubs for the common API */
1477 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1478
1479 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1480                                             struct task_struct *owner)
1481 {
1482 }
1483
1484 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1485 {
1486         int count = atomic_read(&sem->rwbase.readers);
1487
1488         return count < 0 && count != READER_BIAS;
1489 }
1490
1491 #endif /* CONFIG_PREEMPT_RT */
1492
1493 /*
1494  * lock for reading
1495  */
1496 void __sched down_read(struct rw_semaphore *sem)
1497 {
1498         might_sleep();
1499         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1500
1501         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1502 }
1503 EXPORT_SYMBOL(down_read);
1504
1505 int __sched down_read_interruptible(struct rw_semaphore *sem)
1506 {
1507         might_sleep();
1508         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1509
1510         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1511                 rwsem_release(&sem->dep_map, _RET_IP_);
1512                 return -EINTR;
1513         }
1514
1515         return 0;
1516 }
1517 EXPORT_SYMBOL(down_read_interruptible);
1518
1519 int __sched down_read_killable(struct rw_semaphore *sem)
1520 {
1521         might_sleep();
1522         rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1523
1524         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1525                 rwsem_release(&sem->dep_map, _RET_IP_);
1526                 return -EINTR;
1527         }
1528
1529         return 0;
1530 }
1531 EXPORT_SYMBOL(down_read_killable);
1532
1533 /*
1534  * trylock for reading -- returns 1 if successful, 0 if contention
1535  */
1536 int down_read_trylock(struct rw_semaphore *sem)
1537 {
1538         int ret = __down_read_trylock(sem);
1539
1540         if (ret == 1)
1541                 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1542         return ret;
1543 }
1544 EXPORT_SYMBOL(down_read_trylock);
1545
1546 /*
1547  * lock for writing
1548  */
1549 void __sched down_write(struct rw_semaphore *sem)
1550 {
1551         might_sleep();
1552         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1553         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1554 }
1555 EXPORT_SYMBOL(down_write);
1556
1557 /*
1558  * lock for writing
1559  */
1560 int __sched down_write_killable(struct rw_semaphore *sem)
1561 {
1562         might_sleep();
1563         rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1564
1565         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1566                                   __down_write_killable)) {
1567                 rwsem_release(&sem->dep_map, _RET_IP_);
1568                 return -EINTR;
1569         }
1570
1571         return 0;
1572 }
1573 EXPORT_SYMBOL(down_write_killable);
1574
1575 /*
1576  * trylock for writing -- returns 1 if successful, 0 if contention
1577  */
1578 int down_write_trylock(struct rw_semaphore *sem)
1579 {
1580         int ret = __down_write_trylock(sem);
1581
1582         if (ret == 1)
1583                 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1584
1585         return ret;
1586 }
1587 EXPORT_SYMBOL(down_write_trylock);
1588
1589 /*
1590  * release a read lock
1591  */
1592 void up_read(struct rw_semaphore *sem)
1593 {
1594         rwsem_release(&sem->dep_map, _RET_IP_);
1595         __up_read(sem);
1596 }
1597 EXPORT_SYMBOL(up_read);
1598
1599 /*
1600  * release a write lock
1601  */
1602 void up_write(struct rw_semaphore *sem)
1603 {
1604         rwsem_release(&sem->dep_map, _RET_IP_);
1605         __up_write(sem);
1606 }
1607 EXPORT_SYMBOL(up_write);
1608
1609 /*
1610  * downgrade write lock to read lock
1611  */
1612 void downgrade_write(struct rw_semaphore *sem)
1613 {
1614         lock_downgrade(&sem->dep_map, _RET_IP_);
1615         __downgrade_write(sem);
1616 }
1617 EXPORT_SYMBOL(downgrade_write);
1618
1619 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1620
1621 void down_read_nested(struct rw_semaphore *sem, int subclass)
1622 {
1623         might_sleep();
1624         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1625         LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1626 }
1627 EXPORT_SYMBOL(down_read_nested);
1628
1629 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1630 {
1631         might_sleep();
1632         rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1633
1634         if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1635                 rwsem_release(&sem->dep_map, _RET_IP_);
1636                 return -EINTR;
1637         }
1638
1639         return 0;
1640 }
1641 EXPORT_SYMBOL(down_read_killable_nested);
1642
1643 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1644 {
1645         might_sleep();
1646         rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1647         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1648 }
1649 EXPORT_SYMBOL(_down_write_nest_lock);
1650
1651 void down_read_non_owner(struct rw_semaphore *sem)
1652 {
1653         might_sleep();
1654         __down_read(sem);
1655         __rwsem_set_reader_owned(sem, NULL);
1656 }
1657 EXPORT_SYMBOL(down_read_non_owner);
1658
1659 void down_write_nested(struct rw_semaphore *sem, int subclass)
1660 {
1661         might_sleep();
1662         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1663         LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1664 }
1665 EXPORT_SYMBOL(down_write_nested);
1666
1667 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1668 {
1669         might_sleep();
1670         rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1671
1672         if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1673                                   __down_write_killable)) {
1674                 rwsem_release(&sem->dep_map, _RET_IP_);
1675                 return -EINTR;
1676         }
1677
1678         return 0;
1679 }
1680 EXPORT_SYMBOL(down_write_killable_nested);
1681
1682 void up_read_non_owner(struct rw_semaphore *sem)
1683 {
1684         DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1685         __up_read(sem);
1686 }
1687 EXPORT_SYMBOL(up_read_non_owner);
1688
1689 #endif