Merge tag 'trace-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux...
[linux-2.6-microblaze.git] / kernel / locking / rtmutex.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  *
12  *  See Documentation/locking/rt-mutex-design.rst for details.
13  */
14 #include <linux/spinlock.h>
15 #include <linux/export.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/rt.h>
18 #include <linux/sched/deadline.h>
19 #include <linux/sched/wake_q.h>
20 #include <linux/sched/debug.h>
21 #include <linux/timer.h>
22
23 #include "rtmutex_common.h"
24
25 /*
26  * lock->owner state tracking:
27  *
28  * lock->owner holds the task_struct pointer of the owner. Bit 0
29  * is used to keep track of the "lock has waiters" state.
30  *
31  * owner        bit0
32  * NULL         0       lock is free (fast acquire possible)
33  * NULL         1       lock is free and has waiters and the top waiter
34  *                              is going to take the lock*
35  * taskpointer  0       lock is held (fast release possible)
36  * taskpointer  1       lock is held and has waiters**
37  *
38  * The fast atomic compare exchange based acquire and release is only
39  * possible when bit 0 of lock->owner is 0.
40  *
41  * (*) It also can be a transitional state when grabbing the lock
42  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43  * we need to set the bit0 before looking at the lock, and the owner may be
44  * NULL in this small time, hence this can be a transitional state.
45  *
46  * (**) There is a small time when bit 0 is set but there are no
47  * waiters. This can happen when grabbing the lock in the slow path.
48  * To prevent a cmpxchg of the owner releasing the lock, we need to
49  * set this bit before looking at the lock.
50  */
51
52 static void
53 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54 {
55         unsigned long val = (unsigned long)owner;
56
57         if (rt_mutex_has_waiters(lock))
58                 val |= RT_MUTEX_HAS_WAITERS;
59
60         lock->owner = (struct task_struct *)val;
61 }
62
63 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64 {
65         lock->owner = (struct task_struct *)
66                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67 }
68
69 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70 {
71         unsigned long owner, *p = (unsigned long *) &lock->owner;
72
73         if (rt_mutex_has_waiters(lock))
74                 return;
75
76         /*
77          * The rbtree has no waiters enqueued, now make sure that the
78          * lock->owner still has the waiters bit set, otherwise the
79          * following can happen:
80          *
81          * CPU 0        CPU 1           CPU2
82          * l->owner=T1
83          *              rt_mutex_lock(l)
84          *              lock(l->lock)
85          *              l->owner = T1 | HAS_WAITERS;
86          *              enqueue(T2)
87          *              boost()
88          *                unlock(l->lock)
89          *              block()
90          *
91          *                              rt_mutex_lock(l)
92          *                              lock(l->lock)
93          *                              l->owner = T1 | HAS_WAITERS;
94          *                              enqueue(T3)
95          *                              boost()
96          *                                unlock(l->lock)
97          *                              block()
98          *              signal(->T2)    signal(->T3)
99          *              lock(l->lock)
100          *              dequeue(T2)
101          *              deboost()
102          *                unlock(l->lock)
103          *                              lock(l->lock)
104          *                              dequeue(T3)
105          *                               ==> wait list is empty
106          *                              deboost()
107          *                               unlock(l->lock)
108          *              lock(l->lock)
109          *              fixup_rt_mutex_waiters()
110          *                if (wait_list_empty(l) {
111          *                  l->owner = owner
112          *                  owner = l->owner & ~HAS_WAITERS;
113          *                    ==> l->owner = T1
114          *                }
115          *                              lock(l->lock)
116          * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
117          *                                if (wait_list_empty(l) {
118          *                                  owner = l->owner & ~HAS_WAITERS;
119          * cmpxchg(l->owner, T1, NULL)
120          *  ===> Success (l->owner = NULL)
121          *
122          *                                  l->owner = owner
123          *                                    ==> l->owner = T1
124          *                                }
125          *
126          * With the check for the waiter bit in place T3 on CPU2 will not
127          * overwrite. All tasks fiddling with the waiters bit are
128          * serialized by l->lock, so nothing else can modify the waiters
129          * bit. If the bit is set then nothing can change l->owner either
130          * so the simple RMW is safe. The cmpxchg() will simply fail if it
131          * happens in the middle of the RMW because the waiters bit is
132          * still set.
133          */
134         owner = READ_ONCE(*p);
135         if (owner & RT_MUTEX_HAS_WAITERS)
136                 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137 }
138
139 /*
140  * We can speed up the acquire/release, if there's no debugging state to be
141  * set up.
142  */
143 #ifndef CONFIG_DEBUG_RT_MUTEXES
144 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
146 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
147
148 /*
149  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
150  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
151  * relaxed semantics suffice.
152  */
153 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
154 {
155         unsigned long owner, *p = (unsigned long *) &lock->owner;
156
157         do {
158                 owner = *p;
159         } while (cmpxchg_relaxed(p, owner,
160                                  owner | RT_MUTEX_HAS_WAITERS) != owner);
161 }
162
163 /*
164  * Safe fastpath aware unlock:
165  * 1) Clear the waiters bit
166  * 2) Drop lock->wait_lock
167  * 3) Try to unlock the lock with cmpxchg
168  */
169 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
170                                         unsigned long flags)
171         __releases(lock->wait_lock)
172 {
173         struct task_struct *owner = rt_mutex_owner(lock);
174
175         clear_rt_mutex_waiters(lock);
176         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
177         /*
178          * If a new waiter comes in between the unlock and the cmpxchg
179          * we have two situations:
180          *
181          * unlock(wait_lock);
182          *                                      lock(wait_lock);
183          * cmpxchg(p, owner, 0) == owner
184          *                                      mark_rt_mutex_waiters(lock);
185          *                                      acquire(lock);
186          * or:
187          *
188          * unlock(wait_lock);
189          *                                      lock(wait_lock);
190          *                                      mark_rt_mutex_waiters(lock);
191          *
192          * cmpxchg(p, owner, 0) != owner
193          *                                      enqueue_waiter();
194          *                                      unlock(wait_lock);
195          * lock(wait_lock);
196          * wake waiter();
197          * unlock(wait_lock);
198          *                                      lock(wait_lock);
199          *                                      acquire(lock);
200          */
201         return rt_mutex_cmpxchg_release(lock, owner, NULL);
202 }
203
204 #else
205 # define rt_mutex_cmpxchg_relaxed(l,c,n)        (0)
206 # define rt_mutex_cmpxchg_acquire(l,c,n)        (0)
207 # define rt_mutex_cmpxchg_release(l,c,n)        (0)
208
209 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
210 {
211         lock->owner = (struct task_struct *)
212                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
213 }
214
215 /*
216  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
217  */
218 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
219                                         unsigned long flags)
220         __releases(lock->wait_lock)
221 {
222         lock->owner = NULL;
223         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
224         return true;
225 }
226 #endif
227
228 /*
229  * Only use with rt_mutex_waiter_{less,equal}()
230  */
231 #define task_to_waiter(p)       \
232         &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
233
234 static inline int
235 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
236                      struct rt_mutex_waiter *right)
237 {
238         if (left->prio < right->prio)
239                 return 1;
240
241         /*
242          * If both waiters have dl_prio(), we check the deadlines of the
243          * associated tasks.
244          * If left waiter has a dl_prio(), and we didn't return 1 above,
245          * then right waiter has a dl_prio() too.
246          */
247         if (dl_prio(left->prio))
248                 return dl_time_before(left->deadline, right->deadline);
249
250         return 0;
251 }
252
253 static inline int
254 rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
255                       struct rt_mutex_waiter *right)
256 {
257         if (left->prio != right->prio)
258                 return 0;
259
260         /*
261          * If both waiters have dl_prio(), we check the deadlines of the
262          * associated tasks.
263          * If left waiter has a dl_prio(), and we didn't return 0 above,
264          * then right waiter has a dl_prio() too.
265          */
266         if (dl_prio(left->prio))
267                 return left->deadline == right->deadline;
268
269         return 1;
270 }
271
272 static void
273 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
274 {
275         struct rb_node **link = &lock->waiters.rb_root.rb_node;
276         struct rb_node *parent = NULL;
277         struct rt_mutex_waiter *entry;
278         bool leftmost = true;
279
280         while (*link) {
281                 parent = *link;
282                 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
283                 if (rt_mutex_waiter_less(waiter, entry)) {
284                         link = &parent->rb_left;
285                 } else {
286                         link = &parent->rb_right;
287                         leftmost = false;
288                 }
289         }
290
291         rb_link_node(&waiter->tree_entry, parent, link);
292         rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
293 }
294
295 static void
296 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
297 {
298         if (RB_EMPTY_NODE(&waiter->tree_entry))
299                 return;
300
301         rb_erase_cached(&waiter->tree_entry, &lock->waiters);
302         RB_CLEAR_NODE(&waiter->tree_entry);
303 }
304
305 static void
306 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
307 {
308         struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
309         struct rb_node *parent = NULL;
310         struct rt_mutex_waiter *entry;
311         bool leftmost = true;
312
313         while (*link) {
314                 parent = *link;
315                 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
316                 if (rt_mutex_waiter_less(waiter, entry)) {
317                         link = &parent->rb_left;
318                 } else {
319                         link = &parent->rb_right;
320                         leftmost = false;
321                 }
322         }
323
324         rb_link_node(&waiter->pi_tree_entry, parent, link);
325         rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
326 }
327
328 static void
329 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
330 {
331         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
332                 return;
333
334         rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
335         RB_CLEAR_NODE(&waiter->pi_tree_entry);
336 }
337
338 static void rt_mutex_adjust_prio(struct task_struct *p)
339 {
340         struct task_struct *pi_task = NULL;
341
342         lockdep_assert_held(&p->pi_lock);
343
344         if (task_has_pi_waiters(p))
345                 pi_task = task_top_pi_waiter(p)->task;
346
347         rt_mutex_setprio(p, pi_task);
348 }
349
350 /*
351  * Deadlock detection is conditional:
352  *
353  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
354  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
355  *
356  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
357  * conducted independent of the detect argument.
358  *
359  * If the waiter argument is NULL this indicates the deboost path and
360  * deadlock detection is disabled independent of the detect argument
361  * and the config settings.
362  */
363 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
364                                           enum rtmutex_chainwalk chwalk)
365 {
366         /*
367          * This is just a wrapper function for the following call,
368          * because debug_rt_mutex_detect_deadlock() smells like a magic
369          * debug feature and I wanted to keep the cond function in the
370          * main source file along with the comments instead of having
371          * two of the same in the headers.
372          */
373         return debug_rt_mutex_detect_deadlock(waiter, chwalk);
374 }
375
376 /*
377  * Max number of times we'll walk the boosting chain:
378  */
379 int max_lock_depth = 1024;
380
381 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
382 {
383         return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
384 }
385
386 /*
387  * Adjust the priority chain. Also used for deadlock detection.
388  * Decreases task's usage by one - may thus free the task.
389  *
390  * @task:       the task owning the mutex (owner) for which a chain walk is
391  *              probably needed
392  * @chwalk:     do we have to carry out deadlock detection?
393  * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
394  *              things for a task that has just got its priority adjusted, and
395  *              is waiting on a mutex)
396  * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
397  *              we dropped its pi_lock. Is never dereferenced, only used for
398  *              comparison to detect lock chain changes.
399  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
400  *              its priority to the mutex owner (can be NULL in the case
401  *              depicted above or if the top waiter is gone away and we are
402  *              actually deboosting the owner)
403  * @top_task:   the current top waiter
404  *
405  * Returns 0 or -EDEADLK.
406  *
407  * Chain walk basics and protection scope
408  *
409  * [R] refcount on task
410  * [P] task->pi_lock held
411  * [L] rtmutex->wait_lock held
412  *
413  * Step Description                             Protected by
414  *      function arguments:
415  *      @task                                   [R]
416  *      @orig_lock if != NULL                   @top_task is blocked on it
417  *      @next_lock                              Unprotected. Cannot be
418  *                                              dereferenced. Only used for
419  *                                              comparison.
420  *      @orig_waiter if != NULL                 @top_task is blocked on it
421  *      @top_task                               current, or in case of proxy
422  *                                              locking protected by calling
423  *                                              code
424  *      again:
425  *        loop_sanity_check();
426  *      retry:
427  * [1]    lock(task->pi_lock);                  [R] acquire [P]
428  * [2]    waiter = task->pi_blocked_on;         [P]
429  * [3]    check_exit_conditions_1();            [P]
430  * [4]    lock = waiter->lock;                  [P]
431  * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
432  *          unlock(task->pi_lock);              release [P]
433  *          goto retry;
434  *        }
435  * [6]    check_exit_conditions_2();            [P] + [L]
436  * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
437  * [8]    unlock(task->pi_lock);                release [P]
438  *        put_task_struct(task);                release [R]
439  * [9]    check_exit_conditions_3();            [L]
440  * [10]   task = owner(lock);                   [L]
441  *        get_task_struct(task);                [L] acquire [R]
442  *        lock(task->pi_lock);                  [L] acquire [P]
443  * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
444  * [12]   check_exit_conditions_4();            [P] + [L]
445  * [13]   unlock(task->pi_lock);                release [P]
446  *        unlock(lock->wait_lock);              release [L]
447  *        goto again;
448  */
449 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
450                                       enum rtmutex_chainwalk chwalk,
451                                       struct rt_mutex *orig_lock,
452                                       struct rt_mutex *next_lock,
453                                       struct rt_mutex_waiter *orig_waiter,
454                                       struct task_struct *top_task)
455 {
456         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
457         struct rt_mutex_waiter *prerequeue_top_waiter;
458         int ret = 0, depth = 0;
459         struct rt_mutex *lock;
460         bool detect_deadlock;
461         bool requeue = true;
462
463         detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
464
465         /*
466          * The (de)boosting is a step by step approach with a lot of
467          * pitfalls. We want this to be preemptible and we want hold a
468          * maximum of two locks per step. So we have to check
469          * carefully whether things change under us.
470          */
471  again:
472         /*
473          * We limit the lock chain length for each invocation.
474          */
475         if (++depth > max_lock_depth) {
476                 static int prev_max;
477
478                 /*
479                  * Print this only once. If the admin changes the limit,
480                  * print a new message when reaching the limit again.
481                  */
482                 if (prev_max != max_lock_depth) {
483                         prev_max = max_lock_depth;
484                         printk(KERN_WARNING "Maximum lock depth %d reached "
485                                "task: %s (%d)\n", max_lock_depth,
486                                top_task->comm, task_pid_nr(top_task));
487                 }
488                 put_task_struct(task);
489
490                 return -EDEADLK;
491         }
492
493         /*
494          * We are fully preemptible here and only hold the refcount on
495          * @task. So everything can have changed under us since the
496          * caller or our own code below (goto retry/again) dropped all
497          * locks.
498          */
499  retry:
500         /*
501          * [1] Task cannot go away as we did a get_task() before !
502          */
503         raw_spin_lock_irq(&task->pi_lock);
504
505         /*
506          * [2] Get the waiter on which @task is blocked on.
507          */
508         waiter = task->pi_blocked_on;
509
510         /*
511          * [3] check_exit_conditions_1() protected by task->pi_lock.
512          */
513
514         /*
515          * Check whether the end of the boosting chain has been
516          * reached or the state of the chain has changed while we
517          * dropped the locks.
518          */
519         if (!waiter)
520                 goto out_unlock_pi;
521
522         /*
523          * Check the orig_waiter state. After we dropped the locks,
524          * the previous owner of the lock might have released the lock.
525          */
526         if (orig_waiter && !rt_mutex_owner(orig_lock))
527                 goto out_unlock_pi;
528
529         /*
530          * We dropped all locks after taking a refcount on @task, so
531          * the task might have moved on in the lock chain or even left
532          * the chain completely and blocks now on an unrelated lock or
533          * on @orig_lock.
534          *
535          * We stored the lock on which @task was blocked in @next_lock,
536          * so we can detect the chain change.
537          */
538         if (next_lock != waiter->lock)
539                 goto out_unlock_pi;
540
541         /*
542          * Drop out, when the task has no waiters. Note,
543          * top_waiter can be NULL, when we are in the deboosting
544          * mode!
545          */
546         if (top_waiter) {
547                 if (!task_has_pi_waiters(task))
548                         goto out_unlock_pi;
549                 /*
550                  * If deadlock detection is off, we stop here if we
551                  * are not the top pi waiter of the task. If deadlock
552                  * detection is enabled we continue, but stop the
553                  * requeueing in the chain walk.
554                  */
555                 if (top_waiter != task_top_pi_waiter(task)) {
556                         if (!detect_deadlock)
557                                 goto out_unlock_pi;
558                         else
559                                 requeue = false;
560                 }
561         }
562
563         /*
564          * If the waiter priority is the same as the task priority
565          * then there is no further priority adjustment necessary.  If
566          * deadlock detection is off, we stop the chain walk. If its
567          * enabled we continue, but stop the requeueing in the chain
568          * walk.
569          */
570         if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
571                 if (!detect_deadlock)
572                         goto out_unlock_pi;
573                 else
574                         requeue = false;
575         }
576
577         /*
578          * [4] Get the next lock
579          */
580         lock = waiter->lock;
581         /*
582          * [5] We need to trylock here as we are holding task->pi_lock,
583          * which is the reverse lock order versus the other rtmutex
584          * operations.
585          */
586         if (!raw_spin_trylock(&lock->wait_lock)) {
587                 raw_spin_unlock_irq(&task->pi_lock);
588                 cpu_relax();
589                 goto retry;
590         }
591
592         /*
593          * [6] check_exit_conditions_2() protected by task->pi_lock and
594          * lock->wait_lock.
595          *
596          * Deadlock detection. If the lock is the same as the original
597          * lock which caused us to walk the lock chain or if the
598          * current lock is owned by the task which initiated the chain
599          * walk, we detected a deadlock.
600          */
601         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
602                 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
603                 raw_spin_unlock(&lock->wait_lock);
604                 ret = -EDEADLK;
605                 goto out_unlock_pi;
606         }
607
608         /*
609          * If we just follow the lock chain for deadlock detection, no
610          * need to do all the requeue operations. To avoid a truckload
611          * of conditionals around the various places below, just do the
612          * minimum chain walk checks.
613          */
614         if (!requeue) {
615                 /*
616                  * No requeue[7] here. Just release @task [8]
617                  */
618                 raw_spin_unlock(&task->pi_lock);
619                 put_task_struct(task);
620
621                 /*
622                  * [9] check_exit_conditions_3 protected by lock->wait_lock.
623                  * If there is no owner of the lock, end of chain.
624                  */
625                 if (!rt_mutex_owner(lock)) {
626                         raw_spin_unlock_irq(&lock->wait_lock);
627                         return 0;
628                 }
629
630                 /* [10] Grab the next task, i.e. owner of @lock */
631                 task = rt_mutex_owner(lock);
632                 get_task_struct(task);
633                 raw_spin_lock(&task->pi_lock);
634
635                 /*
636                  * No requeue [11] here. We just do deadlock detection.
637                  *
638                  * [12] Store whether owner is blocked
639                  * itself. Decision is made after dropping the locks
640                  */
641                 next_lock = task_blocked_on_lock(task);
642                 /*
643                  * Get the top waiter for the next iteration
644                  */
645                 top_waiter = rt_mutex_top_waiter(lock);
646
647                 /* [13] Drop locks */
648                 raw_spin_unlock(&task->pi_lock);
649                 raw_spin_unlock_irq(&lock->wait_lock);
650
651                 /* If owner is not blocked, end of chain. */
652                 if (!next_lock)
653                         goto out_put_task;
654                 goto again;
655         }
656
657         /*
658          * Store the current top waiter before doing the requeue
659          * operation on @lock. We need it for the boost/deboost
660          * decision below.
661          */
662         prerequeue_top_waiter = rt_mutex_top_waiter(lock);
663
664         /* [7] Requeue the waiter in the lock waiter tree. */
665         rt_mutex_dequeue(lock, waiter);
666
667         /*
668          * Update the waiter prio fields now that we're dequeued.
669          *
670          * These values can have changed through either:
671          *
672          *   sys_sched_set_scheduler() / sys_sched_setattr()
673          *
674          * or
675          *
676          *   DL CBS enforcement advancing the effective deadline.
677          *
678          * Even though pi_waiters also uses these fields, and that tree is only
679          * updated in [11], we can do this here, since we hold [L], which
680          * serializes all pi_waiters access and rb_erase() does not care about
681          * the values of the node being removed.
682          */
683         waiter->prio = task->prio;
684         waiter->deadline = task->dl.deadline;
685
686         rt_mutex_enqueue(lock, waiter);
687
688         /* [8] Release the task */
689         raw_spin_unlock(&task->pi_lock);
690         put_task_struct(task);
691
692         /*
693          * [9] check_exit_conditions_3 protected by lock->wait_lock.
694          *
695          * We must abort the chain walk if there is no lock owner even
696          * in the dead lock detection case, as we have nothing to
697          * follow here. This is the end of the chain we are walking.
698          */
699         if (!rt_mutex_owner(lock)) {
700                 /*
701                  * If the requeue [7] above changed the top waiter,
702                  * then we need to wake the new top waiter up to try
703                  * to get the lock.
704                  */
705                 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
706                         wake_up_process(rt_mutex_top_waiter(lock)->task);
707                 raw_spin_unlock_irq(&lock->wait_lock);
708                 return 0;
709         }
710
711         /* [10] Grab the next task, i.e. the owner of @lock */
712         task = rt_mutex_owner(lock);
713         get_task_struct(task);
714         raw_spin_lock(&task->pi_lock);
715
716         /* [11] requeue the pi waiters if necessary */
717         if (waiter == rt_mutex_top_waiter(lock)) {
718                 /*
719                  * The waiter became the new top (highest priority)
720                  * waiter on the lock. Replace the previous top waiter
721                  * in the owner tasks pi waiters tree with this waiter
722                  * and adjust the priority of the owner.
723                  */
724                 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
725                 rt_mutex_enqueue_pi(task, waiter);
726                 rt_mutex_adjust_prio(task);
727
728         } else if (prerequeue_top_waiter == waiter) {
729                 /*
730                  * The waiter was the top waiter on the lock, but is
731                  * no longer the top prority waiter. Replace waiter in
732                  * the owner tasks pi waiters tree with the new top
733                  * (highest priority) waiter and adjust the priority
734                  * of the owner.
735                  * The new top waiter is stored in @waiter so that
736                  * @waiter == @top_waiter evaluates to true below and
737                  * we continue to deboost the rest of the chain.
738                  */
739                 rt_mutex_dequeue_pi(task, waiter);
740                 waiter = rt_mutex_top_waiter(lock);
741                 rt_mutex_enqueue_pi(task, waiter);
742                 rt_mutex_adjust_prio(task);
743         } else {
744                 /*
745                  * Nothing changed. No need to do any priority
746                  * adjustment.
747                  */
748         }
749
750         /*
751          * [12] check_exit_conditions_4() protected by task->pi_lock
752          * and lock->wait_lock. The actual decisions are made after we
753          * dropped the locks.
754          *
755          * Check whether the task which owns the current lock is pi
756          * blocked itself. If yes we store a pointer to the lock for
757          * the lock chain change detection above. After we dropped
758          * task->pi_lock next_lock cannot be dereferenced anymore.
759          */
760         next_lock = task_blocked_on_lock(task);
761         /*
762          * Store the top waiter of @lock for the end of chain walk
763          * decision below.
764          */
765         top_waiter = rt_mutex_top_waiter(lock);
766
767         /* [13] Drop the locks */
768         raw_spin_unlock(&task->pi_lock);
769         raw_spin_unlock_irq(&lock->wait_lock);
770
771         /*
772          * Make the actual exit decisions [12], based on the stored
773          * values.
774          *
775          * We reached the end of the lock chain. Stop right here. No
776          * point to go back just to figure that out.
777          */
778         if (!next_lock)
779                 goto out_put_task;
780
781         /*
782          * If the current waiter is not the top waiter on the lock,
783          * then we can stop the chain walk here if we are not in full
784          * deadlock detection mode.
785          */
786         if (!detect_deadlock && waiter != top_waiter)
787                 goto out_put_task;
788
789         goto again;
790
791  out_unlock_pi:
792         raw_spin_unlock_irq(&task->pi_lock);
793  out_put_task:
794         put_task_struct(task);
795
796         return ret;
797 }
798
799 /*
800  * Try to take an rt-mutex
801  *
802  * Must be called with lock->wait_lock held and interrupts disabled
803  *
804  * @lock:   The lock to be acquired.
805  * @task:   The task which wants to acquire the lock
806  * @waiter: The waiter that is queued to the lock's wait tree if the
807  *          callsite called task_blocked_on_lock(), otherwise NULL
808  */
809 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
810                                 struct rt_mutex_waiter *waiter)
811 {
812         lockdep_assert_held(&lock->wait_lock);
813
814         /*
815          * Before testing whether we can acquire @lock, we set the
816          * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
817          * other tasks which try to modify @lock into the slow path
818          * and they serialize on @lock->wait_lock.
819          *
820          * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
821          * as explained at the top of this file if and only if:
822          *
823          * - There is a lock owner. The caller must fixup the
824          *   transient state if it does a trylock or leaves the lock
825          *   function due to a signal or timeout.
826          *
827          * - @task acquires the lock and there are no other
828          *   waiters. This is undone in rt_mutex_set_owner(@task) at
829          *   the end of this function.
830          */
831         mark_rt_mutex_waiters(lock);
832
833         /*
834          * If @lock has an owner, give up.
835          */
836         if (rt_mutex_owner(lock))
837                 return 0;
838
839         /*
840          * If @waiter != NULL, @task has already enqueued the waiter
841          * into @lock waiter tree. If @waiter == NULL then this is a
842          * trylock attempt.
843          */
844         if (waiter) {
845                 /*
846                  * If waiter is not the highest priority waiter of
847                  * @lock, give up.
848                  */
849                 if (waiter != rt_mutex_top_waiter(lock))
850                         return 0;
851
852                 /*
853                  * We can acquire the lock. Remove the waiter from the
854                  * lock waiters tree.
855                  */
856                 rt_mutex_dequeue(lock, waiter);
857
858         } else {
859                 /*
860                  * If the lock has waiters already we check whether @task is
861                  * eligible to take over the lock.
862                  *
863                  * If there are no other waiters, @task can acquire
864                  * the lock.  @task->pi_blocked_on is NULL, so it does
865                  * not need to be dequeued.
866                  */
867                 if (rt_mutex_has_waiters(lock)) {
868                         /*
869                          * If @task->prio is greater than or equal to
870                          * the top waiter priority (kernel view),
871                          * @task lost.
872                          */
873                         if (!rt_mutex_waiter_less(task_to_waiter(task),
874                                                   rt_mutex_top_waiter(lock)))
875                                 return 0;
876
877                         /*
878                          * The current top waiter stays enqueued. We
879                          * don't have to change anything in the lock
880                          * waiters order.
881                          */
882                 } else {
883                         /*
884                          * No waiters. Take the lock without the
885                          * pi_lock dance.@task->pi_blocked_on is NULL
886                          * and we have no waiters to enqueue in @task
887                          * pi waiters tree.
888                          */
889                         goto takeit;
890                 }
891         }
892
893         /*
894          * Clear @task->pi_blocked_on. Requires protection by
895          * @task->pi_lock. Redundant operation for the @waiter == NULL
896          * case, but conditionals are more expensive than a redundant
897          * store.
898          */
899         raw_spin_lock(&task->pi_lock);
900         task->pi_blocked_on = NULL;
901         /*
902          * Finish the lock acquisition. @task is the new owner. If
903          * other waiters exist we have to insert the highest priority
904          * waiter into @task->pi_waiters tree.
905          */
906         if (rt_mutex_has_waiters(lock))
907                 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
908         raw_spin_unlock(&task->pi_lock);
909
910 takeit:
911         /* We got the lock. */
912         debug_rt_mutex_lock(lock);
913
914         /*
915          * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
916          * are still waiters or clears it.
917          */
918         rt_mutex_set_owner(lock, task);
919
920         return 1;
921 }
922
923 /*
924  * Task blocks on lock.
925  *
926  * Prepare waiter and propagate pi chain
927  *
928  * This must be called with lock->wait_lock held and interrupts disabled
929  */
930 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
931                                    struct rt_mutex_waiter *waiter,
932                                    struct task_struct *task,
933                                    enum rtmutex_chainwalk chwalk)
934 {
935         struct task_struct *owner = rt_mutex_owner(lock);
936         struct rt_mutex_waiter *top_waiter = waiter;
937         struct rt_mutex *next_lock;
938         int chain_walk = 0, res;
939
940         lockdep_assert_held(&lock->wait_lock);
941
942         /*
943          * Early deadlock detection. We really don't want the task to
944          * enqueue on itself just to untangle the mess later. It's not
945          * only an optimization. We drop the locks, so another waiter
946          * can come in before the chain walk detects the deadlock. So
947          * the other will detect the deadlock and return -EDEADLOCK,
948          * which is wrong, as the other waiter is not in a deadlock
949          * situation.
950          */
951         if (owner == task)
952                 return -EDEADLK;
953
954         raw_spin_lock(&task->pi_lock);
955         waiter->task = task;
956         waiter->lock = lock;
957         waiter->prio = task->prio;
958         waiter->deadline = task->dl.deadline;
959
960         /* Get the top priority waiter on the lock */
961         if (rt_mutex_has_waiters(lock))
962                 top_waiter = rt_mutex_top_waiter(lock);
963         rt_mutex_enqueue(lock, waiter);
964
965         task->pi_blocked_on = waiter;
966
967         raw_spin_unlock(&task->pi_lock);
968
969         if (!owner)
970                 return 0;
971
972         raw_spin_lock(&owner->pi_lock);
973         if (waiter == rt_mutex_top_waiter(lock)) {
974                 rt_mutex_dequeue_pi(owner, top_waiter);
975                 rt_mutex_enqueue_pi(owner, waiter);
976
977                 rt_mutex_adjust_prio(owner);
978                 if (owner->pi_blocked_on)
979                         chain_walk = 1;
980         } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
981                 chain_walk = 1;
982         }
983
984         /* Store the lock on which owner is blocked or NULL */
985         next_lock = task_blocked_on_lock(owner);
986
987         raw_spin_unlock(&owner->pi_lock);
988         /*
989          * Even if full deadlock detection is on, if the owner is not
990          * blocked itself, we can avoid finding this out in the chain
991          * walk.
992          */
993         if (!chain_walk || !next_lock)
994                 return 0;
995
996         /*
997          * The owner can't disappear while holding a lock,
998          * so the owner struct is protected by wait_lock.
999          * Gets dropped in rt_mutex_adjust_prio_chain()!
1000          */
1001         get_task_struct(owner);
1002
1003         raw_spin_unlock_irq(&lock->wait_lock);
1004
1005         res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1006                                          next_lock, waiter, task);
1007
1008         raw_spin_lock_irq(&lock->wait_lock);
1009
1010         return res;
1011 }
1012
1013 /*
1014  * Remove the top waiter from the current tasks pi waiter tree and
1015  * queue it up.
1016  *
1017  * Called with lock->wait_lock held and interrupts disabled.
1018  */
1019 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1020                                     struct rt_mutex *lock)
1021 {
1022         struct rt_mutex_waiter *waiter;
1023
1024         raw_spin_lock(&current->pi_lock);
1025
1026         waiter = rt_mutex_top_waiter(lock);
1027
1028         /*
1029          * Remove it from current->pi_waiters and deboost.
1030          *
1031          * We must in fact deboost here in order to ensure we call
1032          * rt_mutex_setprio() to update p->pi_top_task before the
1033          * task unblocks.
1034          */
1035         rt_mutex_dequeue_pi(current, waiter);
1036         rt_mutex_adjust_prio(current);
1037
1038         /*
1039          * As we are waking up the top waiter, and the waiter stays
1040          * queued on the lock until it gets the lock, this lock
1041          * obviously has waiters. Just set the bit here and this has
1042          * the added benefit of forcing all new tasks into the
1043          * slow path making sure no task of lower priority than
1044          * the top waiter can steal this lock.
1045          */
1046         lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1047
1048         /*
1049          * We deboosted before waking the top waiter task such that we don't
1050          * run two tasks with the 'same' priority (and ensure the
1051          * p->pi_top_task pointer points to a blocked task). This however can
1052          * lead to priority inversion if we would get preempted after the
1053          * deboost but before waking our donor task, hence the preempt_disable()
1054          * before unlock.
1055          *
1056          * Pairs with preempt_enable() in rt_mutex_postunlock();
1057          */
1058         preempt_disable();
1059         wake_q_add(wake_q, waiter->task);
1060         raw_spin_unlock(&current->pi_lock);
1061 }
1062
1063 /*
1064  * Remove a waiter from a lock and give up
1065  *
1066  * Must be called with lock->wait_lock held and interrupts disabled. I must
1067  * have just failed to try_to_take_rt_mutex().
1068  */
1069 static void remove_waiter(struct rt_mutex *lock,
1070                           struct rt_mutex_waiter *waiter)
1071 {
1072         bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1073         struct task_struct *owner = rt_mutex_owner(lock);
1074         struct rt_mutex *next_lock;
1075
1076         lockdep_assert_held(&lock->wait_lock);
1077
1078         raw_spin_lock(&current->pi_lock);
1079         rt_mutex_dequeue(lock, waiter);
1080         current->pi_blocked_on = NULL;
1081         raw_spin_unlock(&current->pi_lock);
1082
1083         /*
1084          * Only update priority if the waiter was the highest priority
1085          * waiter of the lock and there is an owner to update.
1086          */
1087         if (!owner || !is_top_waiter)
1088                 return;
1089
1090         raw_spin_lock(&owner->pi_lock);
1091
1092         rt_mutex_dequeue_pi(owner, waiter);
1093
1094         if (rt_mutex_has_waiters(lock))
1095                 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1096
1097         rt_mutex_adjust_prio(owner);
1098
1099         /* Store the lock on which owner is blocked or NULL */
1100         next_lock = task_blocked_on_lock(owner);
1101
1102         raw_spin_unlock(&owner->pi_lock);
1103
1104         /*
1105          * Don't walk the chain, if the owner task is not blocked
1106          * itself.
1107          */
1108         if (!next_lock)
1109                 return;
1110
1111         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1112         get_task_struct(owner);
1113
1114         raw_spin_unlock_irq(&lock->wait_lock);
1115
1116         rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1117                                    next_lock, NULL, current);
1118
1119         raw_spin_lock_irq(&lock->wait_lock);
1120 }
1121
1122 /*
1123  * Recheck the pi chain, in case we got a priority setting
1124  *
1125  * Called from sched_setscheduler
1126  */
1127 void rt_mutex_adjust_pi(struct task_struct *task)
1128 {
1129         struct rt_mutex_waiter *waiter;
1130         struct rt_mutex *next_lock;
1131         unsigned long flags;
1132
1133         raw_spin_lock_irqsave(&task->pi_lock, flags);
1134
1135         waiter = task->pi_blocked_on;
1136         if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1137                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1138                 return;
1139         }
1140         next_lock = waiter->lock;
1141         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1142
1143         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1144         get_task_struct(task);
1145
1146         rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1147                                    next_lock, NULL, task);
1148 }
1149
1150 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1151 {
1152         debug_rt_mutex_init_waiter(waiter);
1153         RB_CLEAR_NODE(&waiter->pi_tree_entry);
1154         RB_CLEAR_NODE(&waiter->tree_entry);
1155         waiter->task = NULL;
1156 }
1157
1158 /**
1159  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1160  * @lock:                the rt_mutex to take
1161  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1162  *                       or TASK_UNINTERRUPTIBLE)
1163  * @timeout:             the pre-initialized and started timer, or NULL for none
1164  * @waiter:              the pre-initialized rt_mutex_waiter
1165  *
1166  * Must be called with lock->wait_lock held and interrupts disabled
1167  */
1168 static int __sched
1169 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1170                     struct hrtimer_sleeper *timeout,
1171                     struct rt_mutex_waiter *waiter)
1172 {
1173         int ret = 0;
1174
1175         for (;;) {
1176                 /* Try to acquire the lock: */
1177                 if (try_to_take_rt_mutex(lock, current, waiter))
1178                         break;
1179
1180                 /*
1181                  * TASK_INTERRUPTIBLE checks for signals and
1182                  * timeout. Ignored otherwise.
1183                  */
1184                 if (likely(state == TASK_INTERRUPTIBLE)) {
1185                         /* Signal pending? */
1186                         if (signal_pending(current))
1187                                 ret = -EINTR;
1188                         if (timeout && !timeout->task)
1189                                 ret = -ETIMEDOUT;
1190                         if (ret)
1191                                 break;
1192                 }
1193
1194                 raw_spin_unlock_irq(&lock->wait_lock);
1195
1196                 debug_rt_mutex_print_deadlock(waiter);
1197
1198                 schedule();
1199
1200                 raw_spin_lock_irq(&lock->wait_lock);
1201                 set_current_state(state);
1202         }
1203
1204         __set_current_state(TASK_RUNNING);
1205         return ret;
1206 }
1207
1208 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1209                                      struct rt_mutex_waiter *w)
1210 {
1211         /*
1212          * If the result is not -EDEADLOCK or the caller requested
1213          * deadlock detection, nothing to do here.
1214          */
1215         if (res != -EDEADLOCK || detect_deadlock)
1216                 return;
1217
1218         /*
1219          * Yell lowdly and stop the task right here.
1220          */
1221         rt_mutex_print_deadlock(w);
1222         while (1) {
1223                 set_current_state(TASK_INTERRUPTIBLE);
1224                 schedule();
1225         }
1226 }
1227
1228 /*
1229  * Slow path lock function:
1230  */
1231 static int __sched
1232 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1233                   struct hrtimer_sleeper *timeout,
1234                   enum rtmutex_chainwalk chwalk)
1235 {
1236         struct rt_mutex_waiter waiter;
1237         unsigned long flags;
1238         int ret = 0;
1239
1240         rt_mutex_init_waiter(&waiter);
1241
1242         /*
1243          * Technically we could use raw_spin_[un]lock_irq() here, but this can
1244          * be called in early boot if the cmpxchg() fast path is disabled
1245          * (debug, no architecture support). In this case we will acquire the
1246          * rtmutex with lock->wait_lock held. But we cannot unconditionally
1247          * enable interrupts in that early boot case. So we need to use the
1248          * irqsave/restore variants.
1249          */
1250         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1251
1252         /* Try to acquire the lock again: */
1253         if (try_to_take_rt_mutex(lock, current, NULL)) {
1254                 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1255                 return 0;
1256         }
1257
1258         set_current_state(state);
1259
1260         /* Setup the timer, when timeout != NULL */
1261         if (unlikely(timeout))
1262                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1263
1264         ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1265
1266         if (likely(!ret))
1267                 /* sleep on the mutex */
1268                 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1269
1270         if (unlikely(ret)) {
1271                 __set_current_state(TASK_RUNNING);
1272                 remove_waiter(lock, &waiter);
1273                 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1274         }
1275
1276         /*
1277          * try_to_take_rt_mutex() sets the waiter bit
1278          * unconditionally. We might have to fix that up.
1279          */
1280         fixup_rt_mutex_waiters(lock);
1281
1282         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1283
1284         /* Remove pending timer: */
1285         if (unlikely(timeout))
1286                 hrtimer_cancel(&timeout->timer);
1287
1288         debug_rt_mutex_free_waiter(&waiter);
1289
1290         return ret;
1291 }
1292
1293 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1294 {
1295         int ret = try_to_take_rt_mutex(lock, current, NULL);
1296
1297         /*
1298          * try_to_take_rt_mutex() sets the lock waiters bit
1299          * unconditionally. Clean this up.
1300          */
1301         fixup_rt_mutex_waiters(lock);
1302
1303         return ret;
1304 }
1305
1306 /*
1307  * Slow path try-lock function:
1308  */
1309 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1310 {
1311         unsigned long flags;
1312         int ret;
1313
1314         /*
1315          * If the lock already has an owner we fail to get the lock.
1316          * This can be done without taking the @lock->wait_lock as
1317          * it is only being read, and this is a trylock anyway.
1318          */
1319         if (rt_mutex_owner(lock))
1320                 return 0;
1321
1322         /*
1323          * The mutex has currently no owner. Lock the wait lock and try to
1324          * acquire the lock. We use irqsave here to support early boot calls.
1325          */
1326         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1327
1328         ret = __rt_mutex_slowtrylock(lock);
1329
1330         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1331
1332         return ret;
1333 }
1334
1335 /*
1336  * Slow path to release a rt-mutex.
1337  *
1338  * Return whether the current task needs to call rt_mutex_postunlock().
1339  */
1340 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1341                                         struct wake_q_head *wake_q)
1342 {
1343         unsigned long flags;
1344
1345         /* irqsave required to support early boot calls */
1346         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1347
1348         debug_rt_mutex_unlock(lock);
1349
1350         /*
1351          * We must be careful here if the fast path is enabled. If we
1352          * have no waiters queued we cannot set owner to NULL here
1353          * because of:
1354          *
1355          * foo->lock->owner = NULL;
1356          *                      rtmutex_lock(foo->lock);   <- fast path
1357          *                      free = atomic_dec_and_test(foo->refcnt);
1358          *                      rtmutex_unlock(foo->lock); <- fast path
1359          *                      if (free)
1360          *                              kfree(foo);
1361          * raw_spin_unlock(foo->lock->wait_lock);
1362          *
1363          * So for the fastpath enabled kernel:
1364          *
1365          * Nothing can set the waiters bit as long as we hold
1366          * lock->wait_lock. So we do the following sequence:
1367          *
1368          *      owner = rt_mutex_owner(lock);
1369          *      clear_rt_mutex_waiters(lock);
1370          *      raw_spin_unlock(&lock->wait_lock);
1371          *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1372          *              return;
1373          *      goto retry;
1374          *
1375          * The fastpath disabled variant is simple as all access to
1376          * lock->owner is serialized by lock->wait_lock:
1377          *
1378          *      lock->owner = NULL;
1379          *      raw_spin_unlock(&lock->wait_lock);
1380          */
1381         while (!rt_mutex_has_waiters(lock)) {
1382                 /* Drops lock->wait_lock ! */
1383                 if (unlock_rt_mutex_safe(lock, flags) == true)
1384                         return false;
1385                 /* Relock the rtmutex and try again */
1386                 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1387         }
1388
1389         /*
1390          * The wakeup next waiter path does not suffer from the above
1391          * race. See the comments there.
1392          *
1393          * Queue the next waiter for wakeup once we release the wait_lock.
1394          */
1395         mark_wakeup_next_waiter(wake_q, lock);
1396         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1397
1398         return true; /* call rt_mutex_postunlock() */
1399 }
1400
1401 /*
1402  * debug aware fast / slowpath lock,trylock,unlock
1403  *
1404  * The atomic acquire/release ops are compiled away, when either the
1405  * architecture does not support cmpxchg or when debugging is enabled.
1406  */
1407 static inline int
1408 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1409                   int (*slowfn)(struct rt_mutex *lock, int state,
1410                                 struct hrtimer_sleeper *timeout,
1411                                 enum rtmutex_chainwalk chwalk))
1412 {
1413         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1414                 return 0;
1415
1416         return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1417 }
1418
1419 static inline int
1420 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1421                         struct hrtimer_sleeper *timeout,
1422                         enum rtmutex_chainwalk chwalk,
1423                         int (*slowfn)(struct rt_mutex *lock, int state,
1424                                       struct hrtimer_sleeper *timeout,
1425                                       enum rtmutex_chainwalk chwalk))
1426 {
1427         if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1428             likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1429                 return 0;
1430
1431         return slowfn(lock, state, timeout, chwalk);
1432 }
1433
1434 static inline int
1435 rt_mutex_fasttrylock(struct rt_mutex *lock,
1436                      int (*slowfn)(struct rt_mutex *lock))
1437 {
1438         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1439                 return 1;
1440
1441         return slowfn(lock);
1442 }
1443
1444 /*
1445  * Performs the wakeup of the the top-waiter and re-enables preemption.
1446  */
1447 void rt_mutex_postunlock(struct wake_q_head *wake_q)
1448 {
1449         wake_up_q(wake_q);
1450
1451         /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1452         preempt_enable();
1453 }
1454
1455 static inline void
1456 rt_mutex_fastunlock(struct rt_mutex *lock,
1457                     bool (*slowfn)(struct rt_mutex *lock,
1458                                    struct wake_q_head *wqh))
1459 {
1460         DEFINE_WAKE_Q(wake_q);
1461
1462         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1463                 return;
1464
1465         if (slowfn(lock, &wake_q))
1466                 rt_mutex_postunlock(&wake_q);
1467 }
1468
1469 static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1470 {
1471         might_sleep();
1472
1473         mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1474         rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1475 }
1476
1477 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1478 /**
1479  * rt_mutex_lock_nested - lock a rt_mutex
1480  *
1481  * @lock: the rt_mutex to be locked
1482  * @subclass: the lockdep subclass
1483  */
1484 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1485 {
1486         __rt_mutex_lock(lock, subclass);
1487 }
1488 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1489
1490 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
1491
1492 /**
1493  * rt_mutex_lock - lock a rt_mutex
1494  *
1495  * @lock: the rt_mutex to be locked
1496  */
1497 void __sched rt_mutex_lock(struct rt_mutex *lock)
1498 {
1499         __rt_mutex_lock(lock, 0);
1500 }
1501 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1502 #endif
1503
1504 /**
1505  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1506  *
1507  * @lock:               the rt_mutex to be locked
1508  *
1509  * Returns:
1510  *  0           on success
1511  * -EINTR       when interrupted by a signal
1512  */
1513 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1514 {
1515         int ret;
1516
1517         might_sleep();
1518
1519         mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1520         ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1521         if (ret)
1522                 mutex_release(&lock->dep_map, 1, _RET_IP_);
1523
1524         return ret;
1525 }
1526 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1527
1528 /*
1529  * Futex variant, must not use fastpath.
1530  */
1531 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1532 {
1533         return rt_mutex_slowtrylock(lock);
1534 }
1535
1536 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1537 {
1538         return __rt_mutex_slowtrylock(lock);
1539 }
1540
1541 /**
1542  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1543  *                      the timeout structure is provided
1544  *                      by the caller
1545  *
1546  * @lock:               the rt_mutex to be locked
1547  * @timeout:            timeout structure or NULL (no timeout)
1548  *
1549  * Returns:
1550  *  0           on success
1551  * -EINTR       when interrupted by a signal
1552  * -ETIMEDOUT   when the timeout expired
1553  */
1554 int
1555 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1556 {
1557         int ret;
1558
1559         might_sleep();
1560
1561         mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1562         ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1563                                        RT_MUTEX_MIN_CHAINWALK,
1564                                        rt_mutex_slowlock);
1565         if (ret)
1566                 mutex_release(&lock->dep_map, 1, _RET_IP_);
1567
1568         return ret;
1569 }
1570 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1571
1572 /**
1573  * rt_mutex_trylock - try to lock a rt_mutex
1574  *
1575  * @lock:       the rt_mutex to be locked
1576  *
1577  * This function can only be called in thread context. It's safe to
1578  * call it from atomic regions, but not from hard interrupt or soft
1579  * interrupt context.
1580  *
1581  * Returns 1 on success and 0 on contention
1582  */
1583 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1584 {
1585         int ret;
1586
1587         if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1588                 return 0;
1589
1590         ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1591         if (ret)
1592                 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1593
1594         return ret;
1595 }
1596 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1597
1598 /**
1599  * rt_mutex_unlock - unlock a rt_mutex
1600  *
1601  * @lock: the rt_mutex to be unlocked
1602  */
1603 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1604 {
1605         mutex_release(&lock->dep_map, 1, _RET_IP_);
1606         rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1607 }
1608 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1609
1610 /**
1611  * Futex variant, that since futex variants do not use the fast-path, can be
1612  * simple and will not need to retry.
1613  */
1614 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1615                                     struct wake_q_head *wake_q)
1616 {
1617         lockdep_assert_held(&lock->wait_lock);
1618
1619         debug_rt_mutex_unlock(lock);
1620
1621         if (!rt_mutex_has_waiters(lock)) {
1622                 lock->owner = NULL;
1623                 return false; /* done */
1624         }
1625
1626         /*
1627          * We've already deboosted, mark_wakeup_next_waiter() will
1628          * retain preempt_disabled when we drop the wait_lock, to
1629          * avoid inversion prior to the wakeup.  preempt_disable()
1630          * therein pairs with rt_mutex_postunlock().
1631          */
1632         mark_wakeup_next_waiter(wake_q, lock);
1633
1634         return true; /* call postunlock() */
1635 }
1636
1637 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1638 {
1639         DEFINE_WAKE_Q(wake_q);
1640         unsigned long flags;
1641         bool postunlock;
1642
1643         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1644         postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1645         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1646
1647         if (postunlock)
1648                 rt_mutex_postunlock(&wake_q);
1649 }
1650
1651 /**
1652  * rt_mutex_destroy - mark a mutex unusable
1653  * @lock: the mutex to be destroyed
1654  *
1655  * This function marks the mutex uninitialized, and any subsequent
1656  * use of the mutex is forbidden. The mutex must not be locked when
1657  * this function is called.
1658  */
1659 void rt_mutex_destroy(struct rt_mutex *lock)
1660 {
1661         WARN_ON(rt_mutex_is_locked(lock));
1662 #ifdef CONFIG_DEBUG_RT_MUTEXES
1663         lock->magic = NULL;
1664 #endif
1665 }
1666 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1667
1668 /**
1669  * __rt_mutex_init - initialize the rt lock
1670  *
1671  * @lock: the rt lock to be initialized
1672  *
1673  * Initialize the rt lock to unlocked state.
1674  *
1675  * Initializing of a locked rt lock is not allowed
1676  */
1677 void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1678                      struct lock_class_key *key)
1679 {
1680         lock->owner = NULL;
1681         raw_spin_lock_init(&lock->wait_lock);
1682         lock->waiters = RB_ROOT_CACHED;
1683
1684         if (name && key)
1685                 debug_rt_mutex_init(lock, name, key);
1686 }
1687 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1688
1689 /**
1690  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1691  *                              proxy owner
1692  *
1693  * @lock:       the rt_mutex to be locked
1694  * @proxy_owner:the task to set as owner
1695  *
1696  * No locking. Caller has to do serializing itself
1697  *
1698  * Special API call for PI-futex support. This initializes the rtmutex and
1699  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1700  * possible at this point because the pi_state which contains the rtmutex
1701  * is not yet visible to other tasks.
1702  */
1703 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1704                                 struct task_struct *proxy_owner)
1705 {
1706         __rt_mutex_init(lock, NULL, NULL);
1707         debug_rt_mutex_proxy_lock(lock, proxy_owner);
1708         rt_mutex_set_owner(lock, proxy_owner);
1709 }
1710
1711 /**
1712  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1713  *
1714  * @lock:       the rt_mutex to be locked
1715  *
1716  * No locking. Caller has to do serializing itself
1717  *
1718  * Special API call for PI-futex support. This merrily cleans up the rtmutex
1719  * (debugging) state. Concurrent operations on this rt_mutex are not
1720  * possible because it belongs to the pi_state which is about to be freed
1721  * and it is not longer visible to other tasks.
1722  */
1723 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1724                            struct task_struct *proxy_owner)
1725 {
1726         debug_rt_mutex_proxy_unlock(lock);
1727         rt_mutex_set_owner(lock, NULL);
1728 }
1729
1730 /**
1731  * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1732  * @lock:               the rt_mutex to take
1733  * @waiter:             the pre-initialized rt_mutex_waiter
1734  * @task:               the task to prepare
1735  *
1736  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1737  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1738  *
1739  * NOTE: does _NOT_ remove the @waiter on failure; must either call
1740  * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1741  *
1742  * Returns:
1743  *  0 - task blocked on lock
1744  *  1 - acquired the lock for task, caller should wake it up
1745  * <0 - error
1746  *
1747  * Special API call for PI-futex support.
1748  */
1749 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1750                               struct rt_mutex_waiter *waiter,
1751                               struct task_struct *task)
1752 {
1753         int ret;
1754
1755         lockdep_assert_held(&lock->wait_lock);
1756
1757         if (try_to_take_rt_mutex(lock, task, NULL))
1758                 return 1;
1759
1760         /* We enforce deadlock detection for futexes */
1761         ret = task_blocks_on_rt_mutex(lock, waiter, task,
1762                                       RT_MUTEX_FULL_CHAINWALK);
1763
1764         if (ret && !rt_mutex_owner(lock)) {
1765                 /*
1766                  * Reset the return value. We might have
1767                  * returned with -EDEADLK and the owner
1768                  * released the lock while we were walking the
1769                  * pi chain.  Let the waiter sort it out.
1770                  */
1771                 ret = 0;
1772         }
1773
1774         debug_rt_mutex_print_deadlock(waiter);
1775
1776         return ret;
1777 }
1778
1779 /**
1780  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1781  * @lock:               the rt_mutex to take
1782  * @waiter:             the pre-initialized rt_mutex_waiter
1783  * @task:               the task to prepare
1784  *
1785  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1786  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1787  *
1788  * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1789  * on failure.
1790  *
1791  * Returns:
1792  *  0 - task blocked on lock
1793  *  1 - acquired the lock for task, caller should wake it up
1794  * <0 - error
1795  *
1796  * Special API call for PI-futex support.
1797  */
1798 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1799                               struct rt_mutex_waiter *waiter,
1800                               struct task_struct *task)
1801 {
1802         int ret;
1803
1804         raw_spin_lock_irq(&lock->wait_lock);
1805         ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1806         if (unlikely(ret))
1807                 remove_waiter(lock, waiter);
1808         raw_spin_unlock_irq(&lock->wait_lock);
1809
1810         return ret;
1811 }
1812
1813 /**
1814  * rt_mutex_next_owner - return the next owner of the lock
1815  *
1816  * @lock: the rt lock query
1817  *
1818  * Returns the next owner of the lock or NULL
1819  *
1820  * Caller has to serialize against other accessors to the lock
1821  * itself.
1822  *
1823  * Special API call for PI-futex support
1824  */
1825 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1826 {
1827         if (!rt_mutex_has_waiters(lock))
1828                 return NULL;
1829
1830         return rt_mutex_top_waiter(lock)->task;
1831 }
1832
1833 /**
1834  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1835  * @lock:               the rt_mutex we were woken on
1836  * @to:                 the timeout, null if none. hrtimer should already have
1837  *                      been started.
1838  * @waiter:             the pre-initialized rt_mutex_waiter
1839  *
1840  * Wait for the the lock acquisition started on our behalf by
1841  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1842  * rt_mutex_cleanup_proxy_lock().
1843  *
1844  * Returns:
1845  *  0 - success
1846  * <0 - error, one of -EINTR, -ETIMEDOUT
1847  *
1848  * Special API call for PI-futex support
1849  */
1850 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1851                                struct hrtimer_sleeper *to,
1852                                struct rt_mutex_waiter *waiter)
1853 {
1854         int ret;
1855
1856         raw_spin_lock_irq(&lock->wait_lock);
1857         /* sleep on the mutex */
1858         set_current_state(TASK_INTERRUPTIBLE);
1859         ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1860         /*
1861          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1862          * have to fix that up.
1863          */
1864         fixup_rt_mutex_waiters(lock);
1865         raw_spin_unlock_irq(&lock->wait_lock);
1866
1867         return ret;
1868 }
1869
1870 /**
1871  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1872  * @lock:               the rt_mutex we were woken on
1873  * @waiter:             the pre-initialized rt_mutex_waiter
1874  *
1875  * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1876  * rt_mutex_wait_proxy_lock().
1877  *
1878  * Unless we acquired the lock; we're still enqueued on the wait-list and can
1879  * in fact still be granted ownership until we're removed. Therefore we can
1880  * find we are in fact the owner and must disregard the
1881  * rt_mutex_wait_proxy_lock() failure.
1882  *
1883  * Returns:
1884  *  true  - did the cleanup, we done.
1885  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1886  *          caller should disregards its return value.
1887  *
1888  * Special API call for PI-futex support
1889  */
1890 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1891                                  struct rt_mutex_waiter *waiter)
1892 {
1893         bool cleanup = false;
1894
1895         raw_spin_lock_irq(&lock->wait_lock);
1896         /*
1897          * Do an unconditional try-lock, this deals with the lock stealing
1898          * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1899          * sets a NULL owner.
1900          *
1901          * We're not interested in the return value, because the subsequent
1902          * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1903          * we will own the lock and it will have removed the waiter. If we
1904          * failed the trylock, we're still not owner and we need to remove
1905          * ourselves.
1906          */
1907         try_to_take_rt_mutex(lock, current, waiter);
1908         /*
1909          * Unless we're the owner; we're still enqueued on the wait_list.
1910          * So check if we became owner, if not, take us off the wait_list.
1911          */
1912         if (rt_mutex_owner(lock) != current) {
1913                 remove_waiter(lock, waiter);
1914                 cleanup = true;
1915         }
1916         /*
1917          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1918          * have to fix that up.
1919          */
1920         fixup_rt_mutex_waiters(lock);
1921
1922         raw_spin_unlock_irq(&lock->wait_lock);
1923
1924         return cleanup;
1925 }