ca93e5d7b026e5bc2ac202e4a6b518f6ccce5fc7
[linux-2.6-microblaze.git] / kernel / locking / rtmutex.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  *
12  *  See Documentation/locking/rt-mutex-design.rst for details.
13  */
14 #include <linux/spinlock.h>
15 #include <linux/export.h>
16 #include <linux/sched/signal.h>
17 #include <linux/sched/rt.h>
18 #include <linux/sched/deadline.h>
19 #include <linux/sched/wake_q.h>
20 #include <linux/sched/debug.h>
21 #include <linux/timer.h>
22
23 #include "rtmutex_common.h"
24
25 /*
26  * lock->owner state tracking:
27  *
28  * lock->owner holds the task_struct pointer of the owner. Bit 0
29  * is used to keep track of the "lock has waiters" state.
30  *
31  * owner        bit0
32  * NULL         0       lock is free (fast acquire possible)
33  * NULL         1       lock is free and has waiters and the top waiter
34  *                              is going to take the lock*
35  * taskpointer  0       lock is held (fast release possible)
36  * taskpointer  1       lock is held and has waiters**
37  *
38  * The fast atomic compare exchange based acquire and release is only
39  * possible when bit 0 of lock->owner is 0.
40  *
41  * (*) It also can be a transitional state when grabbing the lock
42  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
43  * we need to set the bit0 before looking at the lock, and the owner may be
44  * NULL in this small time, hence this can be a transitional state.
45  *
46  * (**) There is a small time when bit 0 is set but there are no
47  * waiters. This can happen when grabbing the lock in the slow path.
48  * To prevent a cmpxchg of the owner releasing the lock, we need to
49  * set this bit before looking at the lock.
50  */
51
52 static void
53 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
54 {
55         unsigned long val = (unsigned long)owner;
56
57         if (rt_mutex_has_waiters(lock))
58                 val |= RT_MUTEX_HAS_WAITERS;
59
60         WRITE_ONCE(lock->owner, (struct task_struct *)val);
61 }
62
63 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
64 {
65         lock->owner = (struct task_struct *)
66                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
67 }
68
69 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
70 {
71         unsigned long owner, *p = (unsigned long *) &lock->owner;
72
73         if (rt_mutex_has_waiters(lock))
74                 return;
75
76         /*
77          * The rbtree has no waiters enqueued, now make sure that the
78          * lock->owner still has the waiters bit set, otherwise the
79          * following can happen:
80          *
81          * CPU 0        CPU 1           CPU2
82          * l->owner=T1
83          *              rt_mutex_lock(l)
84          *              lock(l->lock)
85          *              l->owner = T1 | HAS_WAITERS;
86          *              enqueue(T2)
87          *              boost()
88          *                unlock(l->lock)
89          *              block()
90          *
91          *                              rt_mutex_lock(l)
92          *                              lock(l->lock)
93          *                              l->owner = T1 | HAS_WAITERS;
94          *                              enqueue(T3)
95          *                              boost()
96          *                                unlock(l->lock)
97          *                              block()
98          *              signal(->T2)    signal(->T3)
99          *              lock(l->lock)
100          *              dequeue(T2)
101          *              deboost()
102          *                unlock(l->lock)
103          *                              lock(l->lock)
104          *                              dequeue(T3)
105          *                               ==> wait list is empty
106          *                              deboost()
107          *                               unlock(l->lock)
108          *              lock(l->lock)
109          *              fixup_rt_mutex_waiters()
110          *                if (wait_list_empty(l) {
111          *                  l->owner = owner
112          *                  owner = l->owner & ~HAS_WAITERS;
113          *                    ==> l->owner = T1
114          *                }
115          *                              lock(l->lock)
116          * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
117          *                                if (wait_list_empty(l) {
118          *                                  owner = l->owner & ~HAS_WAITERS;
119          * cmpxchg(l->owner, T1, NULL)
120          *  ===> Success (l->owner = NULL)
121          *
122          *                                  l->owner = owner
123          *                                    ==> l->owner = T1
124          *                                }
125          *
126          * With the check for the waiter bit in place T3 on CPU2 will not
127          * overwrite. All tasks fiddling with the waiters bit are
128          * serialized by l->lock, so nothing else can modify the waiters
129          * bit. If the bit is set then nothing can change l->owner either
130          * so the simple RMW is safe. The cmpxchg() will simply fail if it
131          * happens in the middle of the RMW because the waiters bit is
132          * still set.
133          */
134         owner = READ_ONCE(*p);
135         if (owner & RT_MUTEX_HAS_WAITERS)
136                 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
137 }
138
139 /*
140  * We can speed up the acquire/release, if there's no debugging state to be
141  * set up.
142  */
143 #ifndef CONFIG_DEBUG_RT_MUTEXES
144 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
145 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
146
147 /*
148  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
149  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
150  * relaxed semantics suffice.
151  */
152 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
153 {
154         unsigned long owner, *p = (unsigned long *) &lock->owner;
155
156         do {
157                 owner = *p;
158         } while (cmpxchg_relaxed(p, owner,
159                                  owner | RT_MUTEX_HAS_WAITERS) != owner);
160 }
161
162 /*
163  * Safe fastpath aware unlock:
164  * 1) Clear the waiters bit
165  * 2) Drop lock->wait_lock
166  * 3) Try to unlock the lock with cmpxchg
167  */
168 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
169                                         unsigned long flags)
170         __releases(lock->wait_lock)
171 {
172         struct task_struct *owner = rt_mutex_owner(lock);
173
174         clear_rt_mutex_waiters(lock);
175         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
176         /*
177          * If a new waiter comes in between the unlock and the cmpxchg
178          * we have two situations:
179          *
180          * unlock(wait_lock);
181          *                                      lock(wait_lock);
182          * cmpxchg(p, owner, 0) == owner
183          *                                      mark_rt_mutex_waiters(lock);
184          *                                      acquire(lock);
185          * or:
186          *
187          * unlock(wait_lock);
188          *                                      lock(wait_lock);
189          *                                      mark_rt_mutex_waiters(lock);
190          *
191          * cmpxchg(p, owner, 0) != owner
192          *                                      enqueue_waiter();
193          *                                      unlock(wait_lock);
194          * lock(wait_lock);
195          * wake waiter();
196          * unlock(wait_lock);
197          *                                      lock(wait_lock);
198          *                                      acquire(lock);
199          */
200         return rt_mutex_cmpxchg_release(lock, owner, NULL);
201 }
202
203 #else
204 # define rt_mutex_cmpxchg_acquire(l,c,n)        (0)
205 # define rt_mutex_cmpxchg_release(l,c,n)        (0)
206
207 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
208 {
209         lock->owner = (struct task_struct *)
210                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
211 }
212
213 /*
214  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
215  */
216 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
217                                         unsigned long flags)
218         __releases(lock->wait_lock)
219 {
220         lock->owner = NULL;
221         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
222         return true;
223 }
224 #endif
225
226 /*
227  * Only use with rt_mutex_waiter_{less,equal}()
228  */
229 #define task_to_waiter(p)       \
230         &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
231
232 static inline int
233 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
234                      struct rt_mutex_waiter *right)
235 {
236         if (left->prio < right->prio)
237                 return 1;
238
239         /*
240          * If both waiters have dl_prio(), we check the deadlines of the
241          * associated tasks.
242          * If left waiter has a dl_prio(), and we didn't return 1 above,
243          * then right waiter has a dl_prio() too.
244          */
245         if (dl_prio(left->prio))
246                 return dl_time_before(left->deadline, right->deadline);
247
248         return 0;
249 }
250
251 static inline int
252 rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
253                       struct rt_mutex_waiter *right)
254 {
255         if (left->prio != right->prio)
256                 return 0;
257
258         /*
259          * If both waiters have dl_prio(), we check the deadlines of the
260          * associated tasks.
261          * If left waiter has a dl_prio(), and we didn't return 0 above,
262          * then right waiter has a dl_prio() too.
263          */
264         if (dl_prio(left->prio))
265                 return left->deadline == right->deadline;
266
267         return 1;
268 }
269
270 #define __node_2_waiter(node) \
271         rb_entry((node), struct rt_mutex_waiter, tree_entry)
272
273 static inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
274 {
275         return rt_mutex_waiter_less(__node_2_waiter(a), __node_2_waiter(b));
276 }
277
278 static void
279 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
280 {
281         rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
282 }
283
284 static void
285 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
286 {
287         if (RB_EMPTY_NODE(&waiter->tree_entry))
288                 return;
289
290         rb_erase_cached(&waiter->tree_entry, &lock->waiters);
291         RB_CLEAR_NODE(&waiter->tree_entry);
292 }
293
294 #define __node_2_pi_waiter(node) \
295         rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
296
297 static inline bool __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
298 {
299         return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
300 }
301
302 static void
303 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
304 {
305         rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
306 }
307
308 static void
309 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
310 {
311         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
312                 return;
313
314         rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
315         RB_CLEAR_NODE(&waiter->pi_tree_entry);
316 }
317
318 static void rt_mutex_adjust_prio(struct task_struct *p)
319 {
320         struct task_struct *pi_task = NULL;
321
322         lockdep_assert_held(&p->pi_lock);
323
324         if (task_has_pi_waiters(p))
325                 pi_task = task_top_pi_waiter(p)->task;
326
327         rt_mutex_setprio(p, pi_task);
328 }
329
330 /*
331  * Deadlock detection is conditional:
332  *
333  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
334  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
335  *
336  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
337  * conducted independent of the detect argument.
338  *
339  * If the waiter argument is NULL this indicates the deboost path and
340  * deadlock detection is disabled independent of the detect argument
341  * and the config settings.
342  */
343 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
344                                           enum rtmutex_chainwalk chwalk)
345 {
346         /*
347          * This is just a wrapper function for the following call,
348          * because debug_rt_mutex_detect_deadlock() smells like a magic
349          * debug feature and I wanted to keep the cond function in the
350          * main source file along with the comments instead of having
351          * two of the same in the headers.
352          */
353         return debug_rt_mutex_detect_deadlock(waiter, chwalk);
354 }
355
356 /*
357  * Max number of times we'll walk the boosting chain:
358  */
359 int max_lock_depth = 1024;
360
361 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
362 {
363         return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
364 }
365
366 /*
367  * Adjust the priority chain. Also used for deadlock detection.
368  * Decreases task's usage by one - may thus free the task.
369  *
370  * @task:       the task owning the mutex (owner) for which a chain walk is
371  *              probably needed
372  * @chwalk:     do we have to carry out deadlock detection?
373  * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
374  *              things for a task that has just got its priority adjusted, and
375  *              is waiting on a mutex)
376  * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
377  *              we dropped its pi_lock. Is never dereferenced, only used for
378  *              comparison to detect lock chain changes.
379  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
380  *              its priority to the mutex owner (can be NULL in the case
381  *              depicted above or if the top waiter is gone away and we are
382  *              actually deboosting the owner)
383  * @top_task:   the current top waiter
384  *
385  * Returns 0 or -EDEADLK.
386  *
387  * Chain walk basics and protection scope
388  *
389  * [R] refcount on task
390  * [P] task->pi_lock held
391  * [L] rtmutex->wait_lock held
392  *
393  * Step Description                             Protected by
394  *      function arguments:
395  *      @task                                   [R]
396  *      @orig_lock if != NULL                   @top_task is blocked on it
397  *      @next_lock                              Unprotected. Cannot be
398  *                                              dereferenced. Only used for
399  *                                              comparison.
400  *      @orig_waiter if != NULL                 @top_task is blocked on it
401  *      @top_task                               current, or in case of proxy
402  *                                              locking protected by calling
403  *                                              code
404  *      again:
405  *        loop_sanity_check();
406  *      retry:
407  * [1]    lock(task->pi_lock);                  [R] acquire [P]
408  * [2]    waiter = task->pi_blocked_on;         [P]
409  * [3]    check_exit_conditions_1();            [P]
410  * [4]    lock = waiter->lock;                  [P]
411  * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
412  *          unlock(task->pi_lock);              release [P]
413  *          goto retry;
414  *        }
415  * [6]    check_exit_conditions_2();            [P] + [L]
416  * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
417  * [8]    unlock(task->pi_lock);                release [P]
418  *        put_task_struct(task);                release [R]
419  * [9]    check_exit_conditions_3();            [L]
420  * [10]   task = owner(lock);                   [L]
421  *        get_task_struct(task);                [L] acquire [R]
422  *        lock(task->pi_lock);                  [L] acquire [P]
423  * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
424  * [12]   check_exit_conditions_4();            [P] + [L]
425  * [13]   unlock(task->pi_lock);                release [P]
426  *        unlock(lock->wait_lock);              release [L]
427  *        goto again;
428  */
429 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
430                                       enum rtmutex_chainwalk chwalk,
431                                       struct rt_mutex *orig_lock,
432                                       struct rt_mutex *next_lock,
433                                       struct rt_mutex_waiter *orig_waiter,
434                                       struct task_struct *top_task)
435 {
436         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
437         struct rt_mutex_waiter *prerequeue_top_waiter;
438         int ret = 0, depth = 0;
439         struct rt_mutex *lock;
440         bool detect_deadlock;
441         bool requeue = true;
442
443         detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
444
445         /*
446          * The (de)boosting is a step by step approach with a lot of
447          * pitfalls. We want this to be preemptible and we want hold a
448          * maximum of two locks per step. So we have to check
449          * carefully whether things change under us.
450          */
451  again:
452         /*
453          * We limit the lock chain length for each invocation.
454          */
455         if (++depth > max_lock_depth) {
456                 static int prev_max;
457
458                 /*
459                  * Print this only once. If the admin changes the limit,
460                  * print a new message when reaching the limit again.
461                  */
462                 if (prev_max != max_lock_depth) {
463                         prev_max = max_lock_depth;
464                         printk(KERN_WARNING "Maximum lock depth %d reached "
465                                "task: %s (%d)\n", max_lock_depth,
466                                top_task->comm, task_pid_nr(top_task));
467                 }
468                 put_task_struct(task);
469
470                 return -EDEADLK;
471         }
472
473         /*
474          * We are fully preemptible here and only hold the refcount on
475          * @task. So everything can have changed under us since the
476          * caller or our own code below (goto retry/again) dropped all
477          * locks.
478          */
479  retry:
480         /*
481          * [1] Task cannot go away as we did a get_task() before !
482          */
483         raw_spin_lock_irq(&task->pi_lock);
484
485         /*
486          * [2] Get the waiter on which @task is blocked on.
487          */
488         waiter = task->pi_blocked_on;
489
490         /*
491          * [3] check_exit_conditions_1() protected by task->pi_lock.
492          */
493
494         /*
495          * Check whether the end of the boosting chain has been
496          * reached or the state of the chain has changed while we
497          * dropped the locks.
498          */
499         if (!waiter)
500                 goto out_unlock_pi;
501
502         /*
503          * Check the orig_waiter state. After we dropped the locks,
504          * the previous owner of the lock might have released the lock.
505          */
506         if (orig_waiter && !rt_mutex_owner(orig_lock))
507                 goto out_unlock_pi;
508
509         /*
510          * We dropped all locks after taking a refcount on @task, so
511          * the task might have moved on in the lock chain or even left
512          * the chain completely and blocks now on an unrelated lock or
513          * on @orig_lock.
514          *
515          * We stored the lock on which @task was blocked in @next_lock,
516          * so we can detect the chain change.
517          */
518         if (next_lock != waiter->lock)
519                 goto out_unlock_pi;
520
521         /*
522          * Drop out, when the task has no waiters. Note,
523          * top_waiter can be NULL, when we are in the deboosting
524          * mode!
525          */
526         if (top_waiter) {
527                 if (!task_has_pi_waiters(task))
528                         goto out_unlock_pi;
529                 /*
530                  * If deadlock detection is off, we stop here if we
531                  * are not the top pi waiter of the task. If deadlock
532                  * detection is enabled we continue, but stop the
533                  * requeueing in the chain walk.
534                  */
535                 if (top_waiter != task_top_pi_waiter(task)) {
536                         if (!detect_deadlock)
537                                 goto out_unlock_pi;
538                         else
539                                 requeue = false;
540                 }
541         }
542
543         /*
544          * If the waiter priority is the same as the task priority
545          * then there is no further priority adjustment necessary.  If
546          * deadlock detection is off, we stop the chain walk. If its
547          * enabled we continue, but stop the requeueing in the chain
548          * walk.
549          */
550         if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
551                 if (!detect_deadlock)
552                         goto out_unlock_pi;
553                 else
554                         requeue = false;
555         }
556
557         /*
558          * [4] Get the next lock
559          */
560         lock = waiter->lock;
561         /*
562          * [5] We need to trylock here as we are holding task->pi_lock,
563          * which is the reverse lock order versus the other rtmutex
564          * operations.
565          */
566         if (!raw_spin_trylock(&lock->wait_lock)) {
567                 raw_spin_unlock_irq(&task->pi_lock);
568                 cpu_relax();
569                 goto retry;
570         }
571
572         /*
573          * [6] check_exit_conditions_2() protected by task->pi_lock and
574          * lock->wait_lock.
575          *
576          * Deadlock detection. If the lock is the same as the original
577          * lock which caused us to walk the lock chain or if the
578          * current lock is owned by the task which initiated the chain
579          * walk, we detected a deadlock.
580          */
581         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
582                 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
583                 raw_spin_unlock(&lock->wait_lock);
584                 ret = -EDEADLK;
585                 goto out_unlock_pi;
586         }
587
588         /*
589          * If we just follow the lock chain for deadlock detection, no
590          * need to do all the requeue operations. To avoid a truckload
591          * of conditionals around the various places below, just do the
592          * minimum chain walk checks.
593          */
594         if (!requeue) {
595                 /*
596                  * No requeue[7] here. Just release @task [8]
597                  */
598                 raw_spin_unlock(&task->pi_lock);
599                 put_task_struct(task);
600
601                 /*
602                  * [9] check_exit_conditions_3 protected by lock->wait_lock.
603                  * If there is no owner of the lock, end of chain.
604                  */
605                 if (!rt_mutex_owner(lock)) {
606                         raw_spin_unlock_irq(&lock->wait_lock);
607                         return 0;
608                 }
609
610                 /* [10] Grab the next task, i.e. owner of @lock */
611                 task = get_task_struct(rt_mutex_owner(lock));
612                 raw_spin_lock(&task->pi_lock);
613
614                 /*
615                  * No requeue [11] here. We just do deadlock detection.
616                  *
617                  * [12] Store whether owner is blocked
618                  * itself. Decision is made after dropping the locks
619                  */
620                 next_lock = task_blocked_on_lock(task);
621                 /*
622                  * Get the top waiter for the next iteration
623                  */
624                 top_waiter = rt_mutex_top_waiter(lock);
625
626                 /* [13] Drop locks */
627                 raw_spin_unlock(&task->pi_lock);
628                 raw_spin_unlock_irq(&lock->wait_lock);
629
630                 /* If owner is not blocked, end of chain. */
631                 if (!next_lock)
632                         goto out_put_task;
633                 goto again;
634         }
635
636         /*
637          * Store the current top waiter before doing the requeue
638          * operation on @lock. We need it for the boost/deboost
639          * decision below.
640          */
641         prerequeue_top_waiter = rt_mutex_top_waiter(lock);
642
643         /* [7] Requeue the waiter in the lock waiter tree. */
644         rt_mutex_dequeue(lock, waiter);
645
646         /*
647          * Update the waiter prio fields now that we're dequeued.
648          *
649          * These values can have changed through either:
650          *
651          *   sys_sched_set_scheduler() / sys_sched_setattr()
652          *
653          * or
654          *
655          *   DL CBS enforcement advancing the effective deadline.
656          *
657          * Even though pi_waiters also uses these fields, and that tree is only
658          * updated in [11], we can do this here, since we hold [L], which
659          * serializes all pi_waiters access and rb_erase() does not care about
660          * the values of the node being removed.
661          */
662         waiter->prio = task->prio;
663         waiter->deadline = task->dl.deadline;
664
665         rt_mutex_enqueue(lock, waiter);
666
667         /* [8] Release the task */
668         raw_spin_unlock(&task->pi_lock);
669         put_task_struct(task);
670
671         /*
672          * [9] check_exit_conditions_3 protected by lock->wait_lock.
673          *
674          * We must abort the chain walk if there is no lock owner even
675          * in the dead lock detection case, as we have nothing to
676          * follow here. This is the end of the chain we are walking.
677          */
678         if (!rt_mutex_owner(lock)) {
679                 /*
680                  * If the requeue [7] above changed the top waiter,
681                  * then we need to wake the new top waiter up to try
682                  * to get the lock.
683                  */
684                 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
685                         wake_up_process(rt_mutex_top_waiter(lock)->task);
686                 raw_spin_unlock_irq(&lock->wait_lock);
687                 return 0;
688         }
689
690         /* [10] Grab the next task, i.e. the owner of @lock */
691         task = get_task_struct(rt_mutex_owner(lock));
692         raw_spin_lock(&task->pi_lock);
693
694         /* [11] requeue the pi waiters if necessary */
695         if (waiter == rt_mutex_top_waiter(lock)) {
696                 /*
697                  * The waiter became the new top (highest priority)
698                  * waiter on the lock. Replace the previous top waiter
699                  * in the owner tasks pi waiters tree with this waiter
700                  * and adjust the priority of the owner.
701                  */
702                 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
703                 rt_mutex_enqueue_pi(task, waiter);
704                 rt_mutex_adjust_prio(task);
705
706         } else if (prerequeue_top_waiter == waiter) {
707                 /*
708                  * The waiter was the top waiter on the lock, but is
709                  * no longer the top priority waiter. Replace waiter in
710                  * the owner tasks pi waiters tree with the new top
711                  * (highest priority) waiter and adjust the priority
712                  * of the owner.
713                  * The new top waiter is stored in @waiter so that
714                  * @waiter == @top_waiter evaluates to true below and
715                  * we continue to deboost the rest of the chain.
716                  */
717                 rt_mutex_dequeue_pi(task, waiter);
718                 waiter = rt_mutex_top_waiter(lock);
719                 rt_mutex_enqueue_pi(task, waiter);
720                 rt_mutex_adjust_prio(task);
721         } else {
722                 /*
723                  * Nothing changed. No need to do any priority
724                  * adjustment.
725                  */
726         }
727
728         /*
729          * [12] check_exit_conditions_4() protected by task->pi_lock
730          * and lock->wait_lock. The actual decisions are made after we
731          * dropped the locks.
732          *
733          * Check whether the task which owns the current lock is pi
734          * blocked itself. If yes we store a pointer to the lock for
735          * the lock chain change detection above. After we dropped
736          * task->pi_lock next_lock cannot be dereferenced anymore.
737          */
738         next_lock = task_blocked_on_lock(task);
739         /*
740          * Store the top waiter of @lock for the end of chain walk
741          * decision below.
742          */
743         top_waiter = rt_mutex_top_waiter(lock);
744
745         /* [13] Drop the locks */
746         raw_spin_unlock(&task->pi_lock);
747         raw_spin_unlock_irq(&lock->wait_lock);
748
749         /*
750          * Make the actual exit decisions [12], based on the stored
751          * values.
752          *
753          * We reached the end of the lock chain. Stop right here. No
754          * point to go back just to figure that out.
755          */
756         if (!next_lock)
757                 goto out_put_task;
758
759         /*
760          * If the current waiter is not the top waiter on the lock,
761          * then we can stop the chain walk here if we are not in full
762          * deadlock detection mode.
763          */
764         if (!detect_deadlock && waiter != top_waiter)
765                 goto out_put_task;
766
767         goto again;
768
769  out_unlock_pi:
770         raw_spin_unlock_irq(&task->pi_lock);
771  out_put_task:
772         put_task_struct(task);
773
774         return ret;
775 }
776
777 /*
778  * Try to take an rt-mutex
779  *
780  * Must be called with lock->wait_lock held and interrupts disabled
781  *
782  * @lock:   The lock to be acquired.
783  * @task:   The task which wants to acquire the lock
784  * @waiter: The waiter that is queued to the lock's wait tree if the
785  *          callsite called task_blocked_on_lock(), otherwise NULL
786  */
787 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
788                                 struct rt_mutex_waiter *waiter)
789 {
790         lockdep_assert_held(&lock->wait_lock);
791
792         /*
793          * Before testing whether we can acquire @lock, we set the
794          * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
795          * other tasks which try to modify @lock into the slow path
796          * and they serialize on @lock->wait_lock.
797          *
798          * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
799          * as explained at the top of this file if and only if:
800          *
801          * - There is a lock owner. The caller must fixup the
802          *   transient state if it does a trylock or leaves the lock
803          *   function due to a signal or timeout.
804          *
805          * - @task acquires the lock and there are no other
806          *   waiters. This is undone in rt_mutex_set_owner(@task) at
807          *   the end of this function.
808          */
809         mark_rt_mutex_waiters(lock);
810
811         /*
812          * If @lock has an owner, give up.
813          */
814         if (rt_mutex_owner(lock))
815                 return 0;
816
817         /*
818          * If @waiter != NULL, @task has already enqueued the waiter
819          * into @lock waiter tree. If @waiter == NULL then this is a
820          * trylock attempt.
821          */
822         if (waiter) {
823                 /*
824                  * If waiter is not the highest priority waiter of
825                  * @lock, give up.
826                  */
827                 if (waiter != rt_mutex_top_waiter(lock))
828                         return 0;
829
830                 /*
831                  * We can acquire the lock. Remove the waiter from the
832                  * lock waiters tree.
833                  */
834                 rt_mutex_dequeue(lock, waiter);
835
836         } else {
837                 /*
838                  * If the lock has waiters already we check whether @task is
839                  * eligible to take over the lock.
840                  *
841                  * If there are no other waiters, @task can acquire
842                  * the lock.  @task->pi_blocked_on is NULL, so it does
843                  * not need to be dequeued.
844                  */
845                 if (rt_mutex_has_waiters(lock)) {
846                         /*
847                          * If @task->prio is greater than or equal to
848                          * the top waiter priority (kernel view),
849                          * @task lost.
850                          */
851                         if (!rt_mutex_waiter_less(task_to_waiter(task),
852                                                   rt_mutex_top_waiter(lock)))
853                                 return 0;
854
855                         /*
856                          * The current top waiter stays enqueued. We
857                          * don't have to change anything in the lock
858                          * waiters order.
859                          */
860                 } else {
861                         /*
862                          * No waiters. Take the lock without the
863                          * pi_lock dance.@task->pi_blocked_on is NULL
864                          * and we have no waiters to enqueue in @task
865                          * pi waiters tree.
866                          */
867                         goto takeit;
868                 }
869         }
870
871         /*
872          * Clear @task->pi_blocked_on. Requires protection by
873          * @task->pi_lock. Redundant operation for the @waiter == NULL
874          * case, but conditionals are more expensive than a redundant
875          * store.
876          */
877         raw_spin_lock(&task->pi_lock);
878         task->pi_blocked_on = NULL;
879         /*
880          * Finish the lock acquisition. @task is the new owner. If
881          * other waiters exist we have to insert the highest priority
882          * waiter into @task->pi_waiters tree.
883          */
884         if (rt_mutex_has_waiters(lock))
885                 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
886         raw_spin_unlock(&task->pi_lock);
887
888 takeit:
889         /* We got the lock. */
890         debug_rt_mutex_lock(lock);
891
892         /*
893          * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
894          * are still waiters or clears it.
895          */
896         rt_mutex_set_owner(lock, task);
897
898         return 1;
899 }
900
901 /*
902  * Task blocks on lock.
903  *
904  * Prepare waiter and propagate pi chain
905  *
906  * This must be called with lock->wait_lock held and interrupts disabled
907  */
908 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
909                                    struct rt_mutex_waiter *waiter,
910                                    struct task_struct *task,
911                                    enum rtmutex_chainwalk chwalk)
912 {
913         struct task_struct *owner = rt_mutex_owner(lock);
914         struct rt_mutex_waiter *top_waiter = waiter;
915         struct rt_mutex *next_lock;
916         int chain_walk = 0, res;
917
918         lockdep_assert_held(&lock->wait_lock);
919
920         /*
921          * Early deadlock detection. We really don't want the task to
922          * enqueue on itself just to untangle the mess later. It's not
923          * only an optimization. We drop the locks, so another waiter
924          * can come in before the chain walk detects the deadlock. So
925          * the other will detect the deadlock and return -EDEADLOCK,
926          * which is wrong, as the other waiter is not in a deadlock
927          * situation.
928          */
929         if (owner == task)
930                 return -EDEADLK;
931
932         raw_spin_lock(&task->pi_lock);
933         waiter->task = task;
934         waiter->lock = lock;
935         waiter->prio = task->prio;
936         waiter->deadline = task->dl.deadline;
937
938         /* Get the top priority waiter on the lock */
939         if (rt_mutex_has_waiters(lock))
940                 top_waiter = rt_mutex_top_waiter(lock);
941         rt_mutex_enqueue(lock, waiter);
942
943         task->pi_blocked_on = waiter;
944
945         raw_spin_unlock(&task->pi_lock);
946
947         if (!owner)
948                 return 0;
949
950         raw_spin_lock(&owner->pi_lock);
951         if (waiter == rt_mutex_top_waiter(lock)) {
952                 rt_mutex_dequeue_pi(owner, top_waiter);
953                 rt_mutex_enqueue_pi(owner, waiter);
954
955                 rt_mutex_adjust_prio(owner);
956                 if (owner->pi_blocked_on)
957                         chain_walk = 1;
958         } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
959                 chain_walk = 1;
960         }
961
962         /* Store the lock on which owner is blocked or NULL */
963         next_lock = task_blocked_on_lock(owner);
964
965         raw_spin_unlock(&owner->pi_lock);
966         /*
967          * Even if full deadlock detection is on, if the owner is not
968          * blocked itself, we can avoid finding this out in the chain
969          * walk.
970          */
971         if (!chain_walk || !next_lock)
972                 return 0;
973
974         /*
975          * The owner can't disappear while holding a lock,
976          * so the owner struct is protected by wait_lock.
977          * Gets dropped in rt_mutex_adjust_prio_chain()!
978          */
979         get_task_struct(owner);
980
981         raw_spin_unlock_irq(&lock->wait_lock);
982
983         res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
984                                          next_lock, waiter, task);
985
986         raw_spin_lock_irq(&lock->wait_lock);
987
988         return res;
989 }
990
991 /*
992  * Remove the top waiter from the current tasks pi waiter tree and
993  * queue it up.
994  *
995  * Called with lock->wait_lock held and interrupts disabled.
996  */
997 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
998                                     struct rt_mutex *lock)
999 {
1000         struct rt_mutex_waiter *waiter;
1001
1002         raw_spin_lock(&current->pi_lock);
1003
1004         waiter = rt_mutex_top_waiter(lock);
1005
1006         /*
1007          * Remove it from current->pi_waiters and deboost.
1008          *
1009          * We must in fact deboost here in order to ensure we call
1010          * rt_mutex_setprio() to update p->pi_top_task before the
1011          * task unblocks.
1012          */
1013         rt_mutex_dequeue_pi(current, waiter);
1014         rt_mutex_adjust_prio(current);
1015
1016         /*
1017          * As we are waking up the top waiter, and the waiter stays
1018          * queued on the lock until it gets the lock, this lock
1019          * obviously has waiters. Just set the bit here and this has
1020          * the added benefit of forcing all new tasks into the
1021          * slow path making sure no task of lower priority than
1022          * the top waiter can steal this lock.
1023          */
1024         lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1025
1026         /*
1027          * We deboosted before waking the top waiter task such that we don't
1028          * run two tasks with the 'same' priority (and ensure the
1029          * p->pi_top_task pointer points to a blocked task). This however can
1030          * lead to priority inversion if we would get preempted after the
1031          * deboost but before waking our donor task, hence the preempt_disable()
1032          * before unlock.
1033          *
1034          * Pairs with preempt_enable() in rt_mutex_postunlock();
1035          */
1036         preempt_disable();
1037         wake_q_add(wake_q, waiter->task);
1038         raw_spin_unlock(&current->pi_lock);
1039 }
1040
1041 /*
1042  * Remove a waiter from a lock and give up
1043  *
1044  * Must be called with lock->wait_lock held and interrupts disabled. I must
1045  * have just failed to try_to_take_rt_mutex().
1046  */
1047 static void remove_waiter(struct rt_mutex *lock,
1048                           struct rt_mutex_waiter *waiter)
1049 {
1050         bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1051         struct task_struct *owner = rt_mutex_owner(lock);
1052         struct rt_mutex *next_lock;
1053
1054         lockdep_assert_held(&lock->wait_lock);
1055
1056         raw_spin_lock(&current->pi_lock);
1057         rt_mutex_dequeue(lock, waiter);
1058         current->pi_blocked_on = NULL;
1059         raw_spin_unlock(&current->pi_lock);
1060
1061         /*
1062          * Only update priority if the waiter was the highest priority
1063          * waiter of the lock and there is an owner to update.
1064          */
1065         if (!owner || !is_top_waiter)
1066                 return;
1067
1068         raw_spin_lock(&owner->pi_lock);
1069
1070         rt_mutex_dequeue_pi(owner, waiter);
1071
1072         if (rt_mutex_has_waiters(lock))
1073                 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1074
1075         rt_mutex_adjust_prio(owner);
1076
1077         /* Store the lock on which owner is blocked or NULL */
1078         next_lock = task_blocked_on_lock(owner);
1079
1080         raw_spin_unlock(&owner->pi_lock);
1081
1082         /*
1083          * Don't walk the chain, if the owner task is not blocked
1084          * itself.
1085          */
1086         if (!next_lock)
1087                 return;
1088
1089         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1090         get_task_struct(owner);
1091
1092         raw_spin_unlock_irq(&lock->wait_lock);
1093
1094         rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1095                                    next_lock, NULL, current);
1096
1097         raw_spin_lock_irq(&lock->wait_lock);
1098 }
1099
1100 /*
1101  * Recheck the pi chain, in case we got a priority setting
1102  *
1103  * Called from sched_setscheduler
1104  */
1105 void rt_mutex_adjust_pi(struct task_struct *task)
1106 {
1107         struct rt_mutex_waiter *waiter;
1108         struct rt_mutex *next_lock;
1109         unsigned long flags;
1110
1111         raw_spin_lock_irqsave(&task->pi_lock, flags);
1112
1113         waiter = task->pi_blocked_on;
1114         if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1115                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1116                 return;
1117         }
1118         next_lock = waiter->lock;
1119         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1120
1121         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1122         get_task_struct(task);
1123
1124         rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1125                                    next_lock, NULL, task);
1126 }
1127
1128 void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1129 {
1130         debug_rt_mutex_init_waiter(waiter);
1131         RB_CLEAR_NODE(&waiter->pi_tree_entry);
1132         RB_CLEAR_NODE(&waiter->tree_entry);
1133         waiter->task = NULL;
1134 }
1135
1136 /**
1137  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1138  * @lock:                the rt_mutex to take
1139  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1140  *                       or TASK_UNINTERRUPTIBLE)
1141  * @timeout:             the pre-initialized and started timer, or NULL for none
1142  * @waiter:              the pre-initialized rt_mutex_waiter
1143  *
1144  * Must be called with lock->wait_lock held and interrupts disabled
1145  */
1146 static int __sched
1147 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1148                     struct hrtimer_sleeper *timeout,
1149                     struct rt_mutex_waiter *waiter)
1150 {
1151         int ret = 0;
1152
1153         for (;;) {
1154                 /* Try to acquire the lock: */
1155                 if (try_to_take_rt_mutex(lock, current, waiter))
1156                         break;
1157
1158                 /*
1159                  * TASK_INTERRUPTIBLE checks for signals and
1160                  * timeout. Ignored otherwise.
1161                  */
1162                 if (likely(state == TASK_INTERRUPTIBLE)) {
1163                         /* Signal pending? */
1164                         if (signal_pending(current))
1165                                 ret = -EINTR;
1166                         if (timeout && !timeout->task)
1167                                 ret = -ETIMEDOUT;
1168                         if (ret)
1169                                 break;
1170                 }
1171
1172                 raw_spin_unlock_irq(&lock->wait_lock);
1173
1174                 debug_rt_mutex_print_deadlock(waiter);
1175
1176                 schedule();
1177
1178                 raw_spin_lock_irq(&lock->wait_lock);
1179                 set_current_state(state);
1180         }
1181
1182         __set_current_state(TASK_RUNNING);
1183         return ret;
1184 }
1185
1186 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1187                                      struct rt_mutex_waiter *w)
1188 {
1189         /*
1190          * If the result is not -EDEADLOCK or the caller requested
1191          * deadlock detection, nothing to do here.
1192          */
1193         if (res != -EDEADLOCK || detect_deadlock)
1194                 return;
1195
1196         /*
1197          * Yell loudly and stop the task right here.
1198          */
1199         rt_mutex_print_deadlock(w);
1200         while (1) {
1201                 set_current_state(TASK_INTERRUPTIBLE);
1202                 schedule();
1203         }
1204 }
1205
1206 /*
1207  * Slow path lock function:
1208  */
1209 static int __sched
1210 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1211                   struct hrtimer_sleeper *timeout,
1212                   enum rtmutex_chainwalk chwalk)
1213 {
1214         struct rt_mutex_waiter waiter;
1215         unsigned long flags;
1216         int ret = 0;
1217
1218         rt_mutex_init_waiter(&waiter);
1219
1220         /*
1221          * Technically we could use raw_spin_[un]lock_irq() here, but this can
1222          * be called in early boot if the cmpxchg() fast path is disabled
1223          * (debug, no architecture support). In this case we will acquire the
1224          * rtmutex with lock->wait_lock held. But we cannot unconditionally
1225          * enable interrupts in that early boot case. So we need to use the
1226          * irqsave/restore variants.
1227          */
1228         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1229
1230         /* Try to acquire the lock again: */
1231         if (try_to_take_rt_mutex(lock, current, NULL)) {
1232                 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1233                 return 0;
1234         }
1235
1236         set_current_state(state);
1237
1238         /* Setup the timer, when timeout != NULL */
1239         if (unlikely(timeout))
1240                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1241
1242         ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1243
1244         if (likely(!ret))
1245                 /* sleep on the mutex */
1246                 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1247
1248         if (unlikely(ret)) {
1249                 __set_current_state(TASK_RUNNING);
1250                 remove_waiter(lock, &waiter);
1251                 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1252         }
1253
1254         /*
1255          * try_to_take_rt_mutex() sets the waiter bit
1256          * unconditionally. We might have to fix that up.
1257          */
1258         fixup_rt_mutex_waiters(lock);
1259
1260         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1261
1262         /* Remove pending timer: */
1263         if (unlikely(timeout))
1264                 hrtimer_cancel(&timeout->timer);
1265
1266         debug_rt_mutex_free_waiter(&waiter);
1267
1268         return ret;
1269 }
1270
1271 static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1272 {
1273         int ret = try_to_take_rt_mutex(lock, current, NULL);
1274
1275         /*
1276          * try_to_take_rt_mutex() sets the lock waiters bit
1277          * unconditionally. Clean this up.
1278          */
1279         fixup_rt_mutex_waiters(lock);
1280
1281         return ret;
1282 }
1283
1284 /*
1285  * Slow path try-lock function:
1286  */
1287 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1288 {
1289         unsigned long flags;
1290         int ret;
1291
1292         /*
1293          * If the lock already has an owner we fail to get the lock.
1294          * This can be done without taking the @lock->wait_lock as
1295          * it is only being read, and this is a trylock anyway.
1296          */
1297         if (rt_mutex_owner(lock))
1298                 return 0;
1299
1300         /*
1301          * The mutex has currently no owner. Lock the wait lock and try to
1302          * acquire the lock. We use irqsave here to support early boot calls.
1303          */
1304         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1305
1306         ret = __rt_mutex_slowtrylock(lock);
1307
1308         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1309
1310         return ret;
1311 }
1312
1313 /*
1314  * Slow path to release a rt-mutex.
1315  *
1316  * Return whether the current task needs to call rt_mutex_postunlock().
1317  */
1318 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1319                                         struct wake_q_head *wake_q)
1320 {
1321         unsigned long flags;
1322
1323         /* irqsave required to support early boot calls */
1324         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1325
1326         debug_rt_mutex_unlock(lock);
1327
1328         /*
1329          * We must be careful here if the fast path is enabled. If we
1330          * have no waiters queued we cannot set owner to NULL here
1331          * because of:
1332          *
1333          * foo->lock->owner = NULL;
1334          *                      rtmutex_lock(foo->lock);   <- fast path
1335          *                      free = atomic_dec_and_test(foo->refcnt);
1336          *                      rtmutex_unlock(foo->lock); <- fast path
1337          *                      if (free)
1338          *                              kfree(foo);
1339          * raw_spin_unlock(foo->lock->wait_lock);
1340          *
1341          * So for the fastpath enabled kernel:
1342          *
1343          * Nothing can set the waiters bit as long as we hold
1344          * lock->wait_lock. So we do the following sequence:
1345          *
1346          *      owner = rt_mutex_owner(lock);
1347          *      clear_rt_mutex_waiters(lock);
1348          *      raw_spin_unlock(&lock->wait_lock);
1349          *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1350          *              return;
1351          *      goto retry;
1352          *
1353          * The fastpath disabled variant is simple as all access to
1354          * lock->owner is serialized by lock->wait_lock:
1355          *
1356          *      lock->owner = NULL;
1357          *      raw_spin_unlock(&lock->wait_lock);
1358          */
1359         while (!rt_mutex_has_waiters(lock)) {
1360                 /* Drops lock->wait_lock ! */
1361                 if (unlock_rt_mutex_safe(lock, flags) == true)
1362                         return false;
1363                 /* Relock the rtmutex and try again */
1364                 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1365         }
1366
1367         /*
1368          * The wakeup next waiter path does not suffer from the above
1369          * race. See the comments there.
1370          *
1371          * Queue the next waiter for wakeup once we release the wait_lock.
1372          */
1373         mark_wakeup_next_waiter(wake_q, lock);
1374         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1375
1376         return true; /* call rt_mutex_postunlock() */
1377 }
1378
1379 /*
1380  * debug aware fast / slowpath lock,trylock,unlock
1381  *
1382  * The atomic acquire/release ops are compiled away, when either the
1383  * architecture does not support cmpxchg or when debugging is enabled.
1384  */
1385 static inline int
1386 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1387                   int (*slowfn)(struct rt_mutex *lock, int state,
1388                                 struct hrtimer_sleeper *timeout,
1389                                 enum rtmutex_chainwalk chwalk))
1390 {
1391         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1392                 return 0;
1393
1394         return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1395 }
1396
1397 static inline int
1398 rt_mutex_fasttrylock(struct rt_mutex *lock,
1399                      int (*slowfn)(struct rt_mutex *lock))
1400 {
1401         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1402                 return 1;
1403
1404         return slowfn(lock);
1405 }
1406
1407 /*
1408  * Performs the wakeup of the top-waiter and re-enables preemption.
1409  */
1410 void rt_mutex_postunlock(struct wake_q_head *wake_q)
1411 {
1412         wake_up_q(wake_q);
1413
1414         /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1415         preempt_enable();
1416 }
1417
1418 static inline void
1419 rt_mutex_fastunlock(struct rt_mutex *lock,
1420                     bool (*slowfn)(struct rt_mutex *lock,
1421                                    struct wake_q_head *wqh))
1422 {
1423         DEFINE_WAKE_Q(wake_q);
1424
1425         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1426                 return;
1427
1428         if (slowfn(lock, &wake_q))
1429                 rt_mutex_postunlock(&wake_q);
1430 }
1431
1432 static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1433 {
1434         might_sleep();
1435
1436         mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1437         rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1438 }
1439
1440 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1441 /**
1442  * rt_mutex_lock_nested - lock a rt_mutex
1443  *
1444  * @lock: the rt_mutex to be locked
1445  * @subclass: the lockdep subclass
1446  */
1447 void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1448 {
1449         __rt_mutex_lock(lock, subclass);
1450 }
1451 EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1452
1453 #else /* !CONFIG_DEBUG_LOCK_ALLOC */
1454
1455 /**
1456  * rt_mutex_lock - lock a rt_mutex
1457  *
1458  * @lock: the rt_mutex to be locked
1459  */
1460 void __sched rt_mutex_lock(struct rt_mutex *lock)
1461 {
1462         __rt_mutex_lock(lock, 0);
1463 }
1464 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1465 #endif
1466
1467 /**
1468  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1469  *
1470  * @lock:               the rt_mutex to be locked
1471  *
1472  * Returns:
1473  *  0           on success
1474  * -EINTR       when interrupted by a signal
1475  */
1476 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1477 {
1478         int ret;
1479
1480         might_sleep();
1481
1482         mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1483         ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1484         if (ret)
1485                 mutex_release(&lock->dep_map, _RET_IP_);
1486
1487         return ret;
1488 }
1489 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1490
1491 /*
1492  * Futex variant, must not use fastpath.
1493  */
1494 int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1495 {
1496         return rt_mutex_slowtrylock(lock);
1497 }
1498
1499 int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1500 {
1501         return __rt_mutex_slowtrylock(lock);
1502 }
1503
1504 /**
1505  * rt_mutex_trylock - try to lock a rt_mutex
1506  *
1507  * @lock:       the rt_mutex to be locked
1508  *
1509  * This function can only be called in thread context. It's safe to
1510  * call it from atomic regions, but not from hard interrupt or soft
1511  * interrupt context.
1512  *
1513  * Returns 1 on success and 0 on contention
1514  */
1515 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1516 {
1517         int ret;
1518
1519         if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1520                 return 0;
1521
1522         ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1523         if (ret)
1524                 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1525
1526         return ret;
1527 }
1528 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1529
1530 /**
1531  * rt_mutex_unlock - unlock a rt_mutex
1532  *
1533  * @lock: the rt_mutex to be unlocked
1534  */
1535 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1536 {
1537         mutex_release(&lock->dep_map, _RET_IP_);
1538         rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1539 }
1540 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1541
1542 /**
1543  * __rt_mutex_futex_unlock - Futex variant, that since futex variants
1544  * do not use the fast-path, can be simple and will not need to retry.
1545  *
1546  * @lock:       The rt_mutex to be unlocked
1547  * @wake_q:     The wake queue head from which to get the next lock waiter
1548  */
1549 bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1550                                     struct wake_q_head *wake_q)
1551 {
1552         lockdep_assert_held(&lock->wait_lock);
1553
1554         debug_rt_mutex_unlock(lock);
1555
1556         if (!rt_mutex_has_waiters(lock)) {
1557                 lock->owner = NULL;
1558                 return false; /* done */
1559         }
1560
1561         /*
1562          * We've already deboosted, mark_wakeup_next_waiter() will
1563          * retain preempt_disabled when we drop the wait_lock, to
1564          * avoid inversion prior to the wakeup.  preempt_disable()
1565          * therein pairs with rt_mutex_postunlock().
1566          */
1567         mark_wakeup_next_waiter(wake_q, lock);
1568
1569         return true; /* call postunlock() */
1570 }
1571
1572 void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1573 {
1574         DEFINE_WAKE_Q(wake_q);
1575         unsigned long flags;
1576         bool postunlock;
1577
1578         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1579         postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1580         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1581
1582         if (postunlock)
1583                 rt_mutex_postunlock(&wake_q);
1584 }
1585
1586 /**
1587  * rt_mutex_destroy - mark a mutex unusable
1588  * @lock: the mutex to be destroyed
1589  *
1590  * This function marks the mutex uninitialized, and any subsequent
1591  * use of the mutex is forbidden. The mutex must not be locked when
1592  * this function is called.
1593  */
1594 void rt_mutex_destroy(struct rt_mutex *lock)
1595 {
1596         WARN_ON(rt_mutex_is_locked(lock));
1597 #ifdef CONFIG_DEBUG_RT_MUTEXES
1598         lock->magic = NULL;
1599 #endif
1600 }
1601 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1602
1603 /**
1604  * __rt_mutex_init - initialize the rt_mutex
1605  *
1606  * @lock:       The rt_mutex to be initialized
1607  * @name:       The lock name used for debugging
1608  * @key:        The lock class key used for debugging
1609  *
1610  * Initialize the rt_mutex to unlocked state.
1611  *
1612  * Initializing of a locked rt_mutex is not allowed
1613  */
1614 void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1615                      struct lock_class_key *key)
1616 {
1617         lock->owner = NULL;
1618         raw_spin_lock_init(&lock->wait_lock);
1619         lock->waiters = RB_ROOT_CACHED;
1620
1621         if (name && key)
1622                 debug_rt_mutex_init(lock, name, key);
1623 }
1624 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1625
1626 /**
1627  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1628  *                              proxy owner
1629  *
1630  * @lock:       the rt_mutex to be locked
1631  * @proxy_owner:the task to set as owner
1632  *
1633  * No locking. Caller has to do serializing itself
1634  *
1635  * Special API call for PI-futex support. This initializes the rtmutex and
1636  * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1637  * possible at this point because the pi_state which contains the rtmutex
1638  * is not yet visible to other tasks.
1639  */
1640 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1641                                 struct task_struct *proxy_owner)
1642 {
1643         __rt_mutex_init(lock, NULL, NULL);
1644         debug_rt_mutex_proxy_lock(lock, proxy_owner);
1645         rt_mutex_set_owner(lock, proxy_owner);
1646 }
1647
1648 /**
1649  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1650  *
1651  * @lock:       the rt_mutex to be locked
1652  *
1653  * No locking. Caller has to do serializing itself
1654  *
1655  * Special API call for PI-futex support. This merrily cleans up the rtmutex
1656  * (debugging) state. Concurrent operations on this rt_mutex are not
1657  * possible because it belongs to the pi_state which is about to be freed
1658  * and it is not longer visible to other tasks.
1659  */
1660 void rt_mutex_proxy_unlock(struct rt_mutex *lock)
1661 {
1662         debug_rt_mutex_proxy_unlock(lock);
1663         rt_mutex_set_owner(lock, NULL);
1664 }
1665
1666 /**
1667  * __rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1668  * @lock:               the rt_mutex to take
1669  * @waiter:             the pre-initialized rt_mutex_waiter
1670  * @task:               the task to prepare
1671  *
1672  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1673  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1674  *
1675  * NOTE: does _NOT_ remove the @waiter on failure; must either call
1676  * rt_mutex_wait_proxy_lock() or rt_mutex_cleanup_proxy_lock() after this.
1677  *
1678  * Returns:
1679  *  0 - task blocked on lock
1680  *  1 - acquired the lock for task, caller should wake it up
1681  * <0 - error
1682  *
1683  * Special API call for PI-futex support.
1684  */
1685 int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1686                               struct rt_mutex_waiter *waiter,
1687                               struct task_struct *task)
1688 {
1689         int ret;
1690
1691         lockdep_assert_held(&lock->wait_lock);
1692
1693         if (try_to_take_rt_mutex(lock, task, NULL))
1694                 return 1;
1695
1696         /* We enforce deadlock detection for futexes */
1697         ret = task_blocks_on_rt_mutex(lock, waiter, task,
1698                                       RT_MUTEX_FULL_CHAINWALK);
1699
1700         if (ret && !rt_mutex_owner(lock)) {
1701                 /*
1702                  * Reset the return value. We might have
1703                  * returned with -EDEADLK and the owner
1704                  * released the lock while we were walking the
1705                  * pi chain.  Let the waiter sort it out.
1706                  */
1707                 ret = 0;
1708         }
1709
1710         debug_rt_mutex_print_deadlock(waiter);
1711
1712         return ret;
1713 }
1714
1715 /**
1716  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1717  * @lock:               the rt_mutex to take
1718  * @waiter:             the pre-initialized rt_mutex_waiter
1719  * @task:               the task to prepare
1720  *
1721  * Starts the rt_mutex acquire; it enqueues the @waiter and does deadlock
1722  * detection. It does not wait, see rt_mutex_wait_proxy_lock() for that.
1723  *
1724  * NOTE: unlike __rt_mutex_start_proxy_lock this _DOES_ remove the @waiter
1725  * on failure.
1726  *
1727  * Returns:
1728  *  0 - task blocked on lock
1729  *  1 - acquired the lock for task, caller should wake it up
1730  * <0 - error
1731  *
1732  * Special API call for PI-futex support.
1733  */
1734 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1735                               struct rt_mutex_waiter *waiter,
1736                               struct task_struct *task)
1737 {
1738         int ret;
1739
1740         raw_spin_lock_irq(&lock->wait_lock);
1741         ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1742         if (unlikely(ret))
1743                 remove_waiter(lock, waiter);
1744         raw_spin_unlock_irq(&lock->wait_lock);
1745
1746         return ret;
1747 }
1748
1749 /**
1750  * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1751  * @lock:               the rt_mutex we were woken on
1752  * @to:                 the timeout, null if none. hrtimer should already have
1753  *                      been started.
1754  * @waiter:             the pre-initialized rt_mutex_waiter
1755  *
1756  * Wait for the lock acquisition started on our behalf by
1757  * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1758  * rt_mutex_cleanup_proxy_lock().
1759  *
1760  * Returns:
1761  *  0 - success
1762  * <0 - error, one of -EINTR, -ETIMEDOUT
1763  *
1764  * Special API call for PI-futex support
1765  */
1766 int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1767                                struct hrtimer_sleeper *to,
1768                                struct rt_mutex_waiter *waiter)
1769 {
1770         int ret;
1771
1772         raw_spin_lock_irq(&lock->wait_lock);
1773         /* sleep on the mutex */
1774         set_current_state(TASK_INTERRUPTIBLE);
1775         ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1776         /*
1777          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1778          * have to fix that up.
1779          */
1780         fixup_rt_mutex_waiters(lock);
1781         raw_spin_unlock_irq(&lock->wait_lock);
1782
1783         return ret;
1784 }
1785
1786 /**
1787  * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1788  * @lock:               the rt_mutex we were woken on
1789  * @waiter:             the pre-initialized rt_mutex_waiter
1790  *
1791  * Attempt to clean up after a failed __rt_mutex_start_proxy_lock() or
1792  * rt_mutex_wait_proxy_lock().
1793  *
1794  * Unless we acquired the lock; we're still enqueued on the wait-list and can
1795  * in fact still be granted ownership until we're removed. Therefore we can
1796  * find we are in fact the owner and must disregard the
1797  * rt_mutex_wait_proxy_lock() failure.
1798  *
1799  * Returns:
1800  *  true  - did the cleanup, we done.
1801  *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1802  *          caller should disregards its return value.
1803  *
1804  * Special API call for PI-futex support
1805  */
1806 bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1807                                  struct rt_mutex_waiter *waiter)
1808 {
1809         bool cleanup = false;
1810
1811         raw_spin_lock_irq(&lock->wait_lock);
1812         /*
1813          * Do an unconditional try-lock, this deals with the lock stealing
1814          * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1815          * sets a NULL owner.
1816          *
1817          * We're not interested in the return value, because the subsequent
1818          * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1819          * we will own the lock and it will have removed the waiter. If we
1820          * failed the trylock, we're still not owner and we need to remove
1821          * ourselves.
1822          */
1823         try_to_take_rt_mutex(lock, current, waiter);
1824         /*
1825          * Unless we're the owner; we're still enqueued on the wait_list.
1826          * So check if we became owner, if not, take us off the wait_list.
1827          */
1828         if (rt_mutex_owner(lock) != current) {
1829                 remove_waiter(lock, waiter);
1830                 cleanup = true;
1831         }
1832         /*
1833          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1834          * have to fix that up.
1835          */
1836         fixup_rt_mutex_waiters(lock);
1837
1838         raw_spin_unlock_irq(&lock->wait_lock);
1839
1840         return cleanup;
1841 }