ARM: dts: Don't use legacy clock defines for dra7 clkctrl
[linux-2.6-microblaze.git] / kernel / locking / rtmutex.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
4  *
5  * started by Ingo Molnar and Thomas Gleixner.
6  *
7  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
8  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
9  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
10  *  Copyright (C) 2006 Esben Nielsen
11  * Adaptive Spinlocks:
12  *  Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
13  *                                   and Peter Morreale,
14  * Adaptive Spinlocks simplification:
15  *  Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
16  *
17  *  See Documentation/locking/rt-mutex-design.rst for details.
18  */
19 #include <linux/sched.h>
20 #include <linux/sched/debug.h>
21 #include <linux/sched/deadline.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/rt.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/ww_mutex.h>
26
27 #include "rtmutex_common.h"
28
29 #ifndef WW_RT
30 # define build_ww_mutex()       (false)
31 # define ww_container_of(rtm)   NULL
32
33 static inline int __ww_mutex_add_waiter(struct rt_mutex_waiter *waiter,
34                                         struct rt_mutex *lock,
35                                         struct ww_acquire_ctx *ww_ctx)
36 {
37         return 0;
38 }
39
40 static inline void __ww_mutex_check_waiters(struct rt_mutex *lock,
41                                             struct ww_acquire_ctx *ww_ctx)
42 {
43 }
44
45 static inline void ww_mutex_lock_acquired(struct ww_mutex *lock,
46                                           struct ww_acquire_ctx *ww_ctx)
47 {
48 }
49
50 static inline int __ww_mutex_check_kill(struct rt_mutex *lock,
51                                         struct rt_mutex_waiter *waiter,
52                                         struct ww_acquire_ctx *ww_ctx)
53 {
54         return 0;
55 }
56
57 #else
58 # define build_ww_mutex()       (true)
59 # define ww_container_of(rtm)   container_of(rtm, struct ww_mutex, base)
60 # include "ww_mutex.h"
61 #endif
62
63 /*
64  * lock->owner state tracking:
65  *
66  * lock->owner holds the task_struct pointer of the owner. Bit 0
67  * is used to keep track of the "lock has waiters" state.
68  *
69  * owner        bit0
70  * NULL         0       lock is free (fast acquire possible)
71  * NULL         1       lock is free and has waiters and the top waiter
72  *                              is going to take the lock*
73  * taskpointer  0       lock is held (fast release possible)
74  * taskpointer  1       lock is held and has waiters**
75  *
76  * The fast atomic compare exchange based acquire and release is only
77  * possible when bit 0 of lock->owner is 0.
78  *
79  * (*) It also can be a transitional state when grabbing the lock
80  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
81  * we need to set the bit0 before looking at the lock, and the owner may be
82  * NULL in this small time, hence this can be a transitional state.
83  *
84  * (**) There is a small time when bit 0 is set but there are no
85  * waiters. This can happen when grabbing the lock in the slow path.
86  * To prevent a cmpxchg of the owner releasing the lock, we need to
87  * set this bit before looking at the lock.
88  */
89
90 static __always_inline void
91 rt_mutex_set_owner(struct rt_mutex_base *lock, struct task_struct *owner)
92 {
93         unsigned long val = (unsigned long)owner;
94
95         if (rt_mutex_has_waiters(lock))
96                 val |= RT_MUTEX_HAS_WAITERS;
97
98         WRITE_ONCE(lock->owner, (struct task_struct *)val);
99 }
100
101 static __always_inline void clear_rt_mutex_waiters(struct rt_mutex_base *lock)
102 {
103         lock->owner = (struct task_struct *)
104                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
105 }
106
107 static __always_inline void fixup_rt_mutex_waiters(struct rt_mutex_base *lock)
108 {
109         unsigned long owner, *p = (unsigned long *) &lock->owner;
110
111         if (rt_mutex_has_waiters(lock))
112                 return;
113
114         /*
115          * The rbtree has no waiters enqueued, now make sure that the
116          * lock->owner still has the waiters bit set, otherwise the
117          * following can happen:
118          *
119          * CPU 0        CPU 1           CPU2
120          * l->owner=T1
121          *              rt_mutex_lock(l)
122          *              lock(l->lock)
123          *              l->owner = T1 | HAS_WAITERS;
124          *              enqueue(T2)
125          *              boost()
126          *                unlock(l->lock)
127          *              block()
128          *
129          *                              rt_mutex_lock(l)
130          *                              lock(l->lock)
131          *                              l->owner = T1 | HAS_WAITERS;
132          *                              enqueue(T3)
133          *                              boost()
134          *                                unlock(l->lock)
135          *                              block()
136          *              signal(->T2)    signal(->T3)
137          *              lock(l->lock)
138          *              dequeue(T2)
139          *              deboost()
140          *                unlock(l->lock)
141          *                              lock(l->lock)
142          *                              dequeue(T3)
143          *                               ==> wait list is empty
144          *                              deboost()
145          *                               unlock(l->lock)
146          *              lock(l->lock)
147          *              fixup_rt_mutex_waiters()
148          *                if (wait_list_empty(l) {
149          *                  l->owner = owner
150          *                  owner = l->owner & ~HAS_WAITERS;
151          *                    ==> l->owner = T1
152          *                }
153          *                              lock(l->lock)
154          * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
155          *                                if (wait_list_empty(l) {
156          *                                  owner = l->owner & ~HAS_WAITERS;
157          * cmpxchg(l->owner, T1, NULL)
158          *  ===> Success (l->owner = NULL)
159          *
160          *                                  l->owner = owner
161          *                                    ==> l->owner = T1
162          *                                }
163          *
164          * With the check for the waiter bit in place T3 on CPU2 will not
165          * overwrite. All tasks fiddling with the waiters bit are
166          * serialized by l->lock, so nothing else can modify the waiters
167          * bit. If the bit is set then nothing can change l->owner either
168          * so the simple RMW is safe. The cmpxchg() will simply fail if it
169          * happens in the middle of the RMW because the waiters bit is
170          * still set.
171          */
172         owner = READ_ONCE(*p);
173         if (owner & RT_MUTEX_HAS_WAITERS)
174                 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
175 }
176
177 /*
178  * We can speed up the acquire/release, if there's no debugging state to be
179  * set up.
180  */
181 #ifndef CONFIG_DEBUG_RT_MUTEXES
182 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
183                                                      struct task_struct *old,
184                                                      struct task_struct *new)
185 {
186         return try_cmpxchg_acquire(&lock->owner, &old, new);
187 }
188
189 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
190                                                      struct task_struct *old,
191                                                      struct task_struct *new)
192 {
193         return try_cmpxchg_release(&lock->owner, &old, new);
194 }
195
196 /*
197  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
198  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
199  * relaxed semantics suffice.
200  */
201 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
202 {
203         unsigned long owner, *p = (unsigned long *) &lock->owner;
204
205         do {
206                 owner = *p;
207         } while (cmpxchg_relaxed(p, owner,
208                                  owner | RT_MUTEX_HAS_WAITERS) != owner);
209 }
210
211 /*
212  * Safe fastpath aware unlock:
213  * 1) Clear the waiters bit
214  * 2) Drop lock->wait_lock
215  * 3) Try to unlock the lock with cmpxchg
216  */
217 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
218                                                  unsigned long flags)
219         __releases(lock->wait_lock)
220 {
221         struct task_struct *owner = rt_mutex_owner(lock);
222
223         clear_rt_mutex_waiters(lock);
224         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
225         /*
226          * If a new waiter comes in between the unlock and the cmpxchg
227          * we have two situations:
228          *
229          * unlock(wait_lock);
230          *                                      lock(wait_lock);
231          * cmpxchg(p, owner, 0) == owner
232          *                                      mark_rt_mutex_waiters(lock);
233          *                                      acquire(lock);
234          * or:
235          *
236          * unlock(wait_lock);
237          *                                      lock(wait_lock);
238          *                                      mark_rt_mutex_waiters(lock);
239          *
240          * cmpxchg(p, owner, 0) != owner
241          *                                      enqueue_waiter();
242          *                                      unlock(wait_lock);
243          * lock(wait_lock);
244          * wake waiter();
245          * unlock(wait_lock);
246          *                                      lock(wait_lock);
247          *                                      acquire(lock);
248          */
249         return rt_mutex_cmpxchg_release(lock, owner, NULL);
250 }
251
252 #else
253 static __always_inline bool rt_mutex_cmpxchg_acquire(struct rt_mutex_base *lock,
254                                                      struct task_struct *old,
255                                                      struct task_struct *new)
256 {
257         return false;
258
259 }
260
261 static __always_inline bool rt_mutex_cmpxchg_release(struct rt_mutex_base *lock,
262                                                      struct task_struct *old,
263                                                      struct task_struct *new)
264 {
265         return false;
266 }
267
268 static __always_inline void mark_rt_mutex_waiters(struct rt_mutex_base *lock)
269 {
270         lock->owner = (struct task_struct *)
271                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
272 }
273
274 /*
275  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
276  */
277 static __always_inline bool unlock_rt_mutex_safe(struct rt_mutex_base *lock,
278                                                  unsigned long flags)
279         __releases(lock->wait_lock)
280 {
281         lock->owner = NULL;
282         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
283         return true;
284 }
285 #endif
286
287 static __always_inline int __waiter_prio(struct task_struct *task)
288 {
289         int prio = task->prio;
290
291         if (!rt_prio(prio))
292                 return DEFAULT_PRIO;
293
294         return prio;
295 }
296
297 static __always_inline void
298 waiter_update_prio(struct rt_mutex_waiter *waiter, struct task_struct *task)
299 {
300         waiter->prio = __waiter_prio(task);
301         waiter->deadline = task->dl.deadline;
302 }
303
304 /*
305  * Only use with rt_mutex_waiter_{less,equal}()
306  */
307 #define task_to_waiter(p)       \
308         &(struct rt_mutex_waiter){ .prio = __waiter_prio(p), .deadline = (p)->dl.deadline }
309
310 static __always_inline int rt_mutex_waiter_less(struct rt_mutex_waiter *left,
311                                                 struct rt_mutex_waiter *right)
312 {
313         if (left->prio < right->prio)
314                 return 1;
315
316         /*
317          * If both waiters have dl_prio(), we check the deadlines of the
318          * associated tasks.
319          * If left waiter has a dl_prio(), and we didn't return 1 above,
320          * then right waiter has a dl_prio() too.
321          */
322         if (dl_prio(left->prio))
323                 return dl_time_before(left->deadline, right->deadline);
324
325         return 0;
326 }
327
328 static __always_inline int rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
329                                                  struct rt_mutex_waiter *right)
330 {
331         if (left->prio != right->prio)
332                 return 0;
333
334         /*
335          * If both waiters have dl_prio(), we check the deadlines of the
336          * associated tasks.
337          * If left waiter has a dl_prio(), and we didn't return 0 above,
338          * then right waiter has a dl_prio() too.
339          */
340         if (dl_prio(left->prio))
341                 return left->deadline == right->deadline;
342
343         return 1;
344 }
345
346 static inline bool rt_mutex_steal(struct rt_mutex_waiter *waiter,
347                                   struct rt_mutex_waiter *top_waiter)
348 {
349         if (rt_mutex_waiter_less(waiter, top_waiter))
350                 return true;
351
352 #ifdef RT_MUTEX_BUILD_SPINLOCKS
353         /*
354          * Note that RT tasks are excluded from same priority (lateral)
355          * steals to prevent the introduction of an unbounded latency.
356          */
357         if (rt_prio(waiter->prio) || dl_prio(waiter->prio))
358                 return false;
359
360         return rt_mutex_waiter_equal(waiter, top_waiter);
361 #else
362         return false;
363 #endif
364 }
365
366 #define __node_2_waiter(node) \
367         rb_entry((node), struct rt_mutex_waiter, tree_entry)
368
369 static __always_inline bool __waiter_less(struct rb_node *a, const struct rb_node *b)
370 {
371         struct rt_mutex_waiter *aw = __node_2_waiter(a);
372         struct rt_mutex_waiter *bw = __node_2_waiter(b);
373
374         if (rt_mutex_waiter_less(aw, bw))
375                 return 1;
376
377         if (!build_ww_mutex())
378                 return 0;
379
380         if (rt_mutex_waiter_less(bw, aw))
381                 return 0;
382
383         /* NOTE: relies on waiter->ww_ctx being set before insertion */
384         if (aw->ww_ctx) {
385                 if (!bw->ww_ctx)
386                         return 1;
387
388                 return (signed long)(aw->ww_ctx->stamp -
389                                      bw->ww_ctx->stamp) < 0;
390         }
391
392         return 0;
393 }
394
395 static __always_inline void
396 rt_mutex_enqueue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
397 {
398         rb_add_cached(&waiter->tree_entry, &lock->waiters, __waiter_less);
399 }
400
401 static __always_inline void
402 rt_mutex_dequeue(struct rt_mutex_base *lock, struct rt_mutex_waiter *waiter)
403 {
404         if (RB_EMPTY_NODE(&waiter->tree_entry))
405                 return;
406
407         rb_erase_cached(&waiter->tree_entry, &lock->waiters);
408         RB_CLEAR_NODE(&waiter->tree_entry);
409 }
410
411 #define __node_2_pi_waiter(node) \
412         rb_entry((node), struct rt_mutex_waiter, pi_tree_entry)
413
414 static __always_inline bool
415 __pi_waiter_less(struct rb_node *a, const struct rb_node *b)
416 {
417         return rt_mutex_waiter_less(__node_2_pi_waiter(a), __node_2_pi_waiter(b));
418 }
419
420 static __always_inline void
421 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
422 {
423         rb_add_cached(&waiter->pi_tree_entry, &task->pi_waiters, __pi_waiter_less);
424 }
425
426 static __always_inline void
427 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
428 {
429         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
430                 return;
431
432         rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
433         RB_CLEAR_NODE(&waiter->pi_tree_entry);
434 }
435
436 static __always_inline void rt_mutex_adjust_prio(struct task_struct *p)
437 {
438         struct task_struct *pi_task = NULL;
439
440         lockdep_assert_held(&p->pi_lock);
441
442         if (task_has_pi_waiters(p))
443                 pi_task = task_top_pi_waiter(p)->task;
444
445         rt_mutex_setprio(p, pi_task);
446 }
447
448 /* RT mutex specific wake_q wrappers */
449 static __always_inline void rt_mutex_wake_q_add_task(struct rt_wake_q_head *wqh,
450                                                      struct task_struct *task,
451                                                      unsigned int wake_state)
452 {
453         if (IS_ENABLED(CONFIG_PREEMPT_RT) && wake_state == TASK_RTLOCK_WAIT) {
454                 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
455                         WARN_ON_ONCE(wqh->rtlock_task);
456                 get_task_struct(task);
457                 wqh->rtlock_task = task;
458         } else {
459                 wake_q_add(&wqh->head, task);
460         }
461 }
462
463 static __always_inline void rt_mutex_wake_q_add(struct rt_wake_q_head *wqh,
464                                                 struct rt_mutex_waiter *w)
465 {
466         rt_mutex_wake_q_add_task(wqh, w->task, w->wake_state);
467 }
468
469 static __always_inline void rt_mutex_wake_up_q(struct rt_wake_q_head *wqh)
470 {
471         if (IS_ENABLED(CONFIG_PREEMPT_RT) && wqh->rtlock_task) {
472                 wake_up_state(wqh->rtlock_task, TASK_RTLOCK_WAIT);
473                 put_task_struct(wqh->rtlock_task);
474                 wqh->rtlock_task = NULL;
475         }
476
477         if (!wake_q_empty(&wqh->head))
478                 wake_up_q(&wqh->head);
479
480         /* Pairs with preempt_disable() in mark_wakeup_next_waiter() */
481         preempt_enable();
482 }
483
484 /*
485  * Deadlock detection is conditional:
486  *
487  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
488  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
489  *
490  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
491  * conducted independent of the detect argument.
492  *
493  * If the waiter argument is NULL this indicates the deboost path and
494  * deadlock detection is disabled independent of the detect argument
495  * and the config settings.
496  */
497 static __always_inline bool
498 rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
499                               enum rtmutex_chainwalk chwalk)
500 {
501         if (IS_ENABLED(CONFIG_DEBUG_RT_MUTEXES))
502                 return waiter != NULL;
503         return chwalk == RT_MUTEX_FULL_CHAINWALK;
504 }
505
506 static __always_inline struct rt_mutex_base *task_blocked_on_lock(struct task_struct *p)
507 {
508         return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
509 }
510
511 /*
512  * Adjust the priority chain. Also used for deadlock detection.
513  * Decreases task's usage by one - may thus free the task.
514  *
515  * @task:       the task owning the mutex (owner) for which a chain walk is
516  *              probably needed
517  * @chwalk:     do we have to carry out deadlock detection?
518  * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
519  *              things for a task that has just got its priority adjusted, and
520  *              is waiting on a mutex)
521  * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
522  *              we dropped its pi_lock. Is never dereferenced, only used for
523  *              comparison to detect lock chain changes.
524  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
525  *              its priority to the mutex owner (can be NULL in the case
526  *              depicted above or if the top waiter is gone away and we are
527  *              actually deboosting the owner)
528  * @top_task:   the current top waiter
529  *
530  * Returns 0 or -EDEADLK.
531  *
532  * Chain walk basics and protection scope
533  *
534  * [R] refcount on task
535  * [P] task->pi_lock held
536  * [L] rtmutex->wait_lock held
537  *
538  * Step Description                             Protected by
539  *      function arguments:
540  *      @task                                   [R]
541  *      @orig_lock if != NULL                   @top_task is blocked on it
542  *      @next_lock                              Unprotected. Cannot be
543  *                                              dereferenced. Only used for
544  *                                              comparison.
545  *      @orig_waiter if != NULL                 @top_task is blocked on it
546  *      @top_task                               current, or in case of proxy
547  *                                              locking protected by calling
548  *                                              code
549  *      again:
550  *        loop_sanity_check();
551  *      retry:
552  * [1]    lock(task->pi_lock);                  [R] acquire [P]
553  * [2]    waiter = task->pi_blocked_on;         [P]
554  * [3]    check_exit_conditions_1();            [P]
555  * [4]    lock = waiter->lock;                  [P]
556  * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
557  *          unlock(task->pi_lock);              release [P]
558  *          goto retry;
559  *        }
560  * [6]    check_exit_conditions_2();            [P] + [L]
561  * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
562  * [8]    unlock(task->pi_lock);                release [P]
563  *        put_task_struct(task);                release [R]
564  * [9]    check_exit_conditions_3();            [L]
565  * [10]   task = owner(lock);                   [L]
566  *        get_task_struct(task);                [L] acquire [R]
567  *        lock(task->pi_lock);                  [L] acquire [P]
568  * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
569  * [12]   check_exit_conditions_4();            [P] + [L]
570  * [13]   unlock(task->pi_lock);                release [P]
571  *        unlock(lock->wait_lock);              release [L]
572  *        goto again;
573  */
574 static int __sched rt_mutex_adjust_prio_chain(struct task_struct *task,
575                                               enum rtmutex_chainwalk chwalk,
576                                               struct rt_mutex_base *orig_lock,
577                                               struct rt_mutex_base *next_lock,
578                                               struct rt_mutex_waiter *orig_waiter,
579                                               struct task_struct *top_task)
580 {
581         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
582         struct rt_mutex_waiter *prerequeue_top_waiter;
583         int ret = 0, depth = 0;
584         struct rt_mutex_base *lock;
585         bool detect_deadlock;
586         bool requeue = true;
587
588         detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
589
590         /*
591          * The (de)boosting is a step by step approach with a lot of
592          * pitfalls. We want this to be preemptible and we want hold a
593          * maximum of two locks per step. So we have to check
594          * carefully whether things change under us.
595          */
596  again:
597         /*
598          * We limit the lock chain length for each invocation.
599          */
600         if (++depth > max_lock_depth) {
601                 static int prev_max;
602
603                 /*
604                  * Print this only once. If the admin changes the limit,
605                  * print a new message when reaching the limit again.
606                  */
607                 if (prev_max != max_lock_depth) {
608                         prev_max = max_lock_depth;
609                         printk(KERN_WARNING "Maximum lock depth %d reached "
610                                "task: %s (%d)\n", max_lock_depth,
611                                top_task->comm, task_pid_nr(top_task));
612                 }
613                 put_task_struct(task);
614
615                 return -EDEADLK;
616         }
617
618         /*
619          * We are fully preemptible here and only hold the refcount on
620          * @task. So everything can have changed under us since the
621          * caller or our own code below (goto retry/again) dropped all
622          * locks.
623          */
624  retry:
625         /*
626          * [1] Task cannot go away as we did a get_task() before !
627          */
628         raw_spin_lock_irq(&task->pi_lock);
629
630         /*
631          * [2] Get the waiter on which @task is blocked on.
632          */
633         waiter = task->pi_blocked_on;
634
635         /*
636          * [3] check_exit_conditions_1() protected by task->pi_lock.
637          */
638
639         /*
640          * Check whether the end of the boosting chain has been
641          * reached or the state of the chain has changed while we
642          * dropped the locks.
643          */
644         if (!waiter)
645                 goto out_unlock_pi;
646
647         /*
648          * Check the orig_waiter state. After we dropped the locks,
649          * the previous owner of the lock might have released the lock.
650          */
651         if (orig_waiter && !rt_mutex_owner(orig_lock))
652                 goto out_unlock_pi;
653
654         /*
655          * We dropped all locks after taking a refcount on @task, so
656          * the task might have moved on in the lock chain or even left
657          * the chain completely and blocks now on an unrelated lock or
658          * on @orig_lock.
659          *
660          * We stored the lock on which @task was blocked in @next_lock,
661          * so we can detect the chain change.
662          */
663         if (next_lock != waiter->lock)
664                 goto out_unlock_pi;
665
666         /*
667          * There could be 'spurious' loops in the lock graph due to ww_mutex,
668          * consider:
669          *
670          *   P1: A, ww_A, ww_B
671          *   P2: ww_B, ww_A
672          *   P3: A
673          *
674          * P3 should not return -EDEADLK because it gets trapped in the cycle
675          * created by P1 and P2 (which will resolve -- and runs into
676          * max_lock_depth above). Therefore disable detect_deadlock such that
677          * the below termination condition can trigger once all relevant tasks
678          * are boosted.
679          *
680          * Even when we start with ww_mutex we can disable deadlock detection,
681          * since we would supress a ww_mutex induced deadlock at [6] anyway.
682          * Supressing it here however is not sufficient since we might still
683          * hit [6] due to adjustment driven iteration.
684          *
685          * NOTE: if someone were to create a deadlock between 2 ww_classes we'd
686          * utterly fail to report it; lockdep should.
687          */
688         if (IS_ENABLED(CONFIG_PREEMPT_RT) && waiter->ww_ctx && detect_deadlock)
689                 detect_deadlock = false;
690
691         /*
692          * Drop out, when the task has no waiters. Note,
693          * top_waiter can be NULL, when we are in the deboosting
694          * mode!
695          */
696         if (top_waiter) {
697                 if (!task_has_pi_waiters(task))
698                         goto out_unlock_pi;
699                 /*
700                  * If deadlock detection is off, we stop here if we
701                  * are not the top pi waiter of the task. If deadlock
702                  * detection is enabled we continue, but stop the
703                  * requeueing in the chain walk.
704                  */
705                 if (top_waiter != task_top_pi_waiter(task)) {
706                         if (!detect_deadlock)
707                                 goto out_unlock_pi;
708                         else
709                                 requeue = false;
710                 }
711         }
712
713         /*
714          * If the waiter priority is the same as the task priority
715          * then there is no further priority adjustment necessary.  If
716          * deadlock detection is off, we stop the chain walk. If its
717          * enabled we continue, but stop the requeueing in the chain
718          * walk.
719          */
720         if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
721                 if (!detect_deadlock)
722                         goto out_unlock_pi;
723                 else
724                         requeue = false;
725         }
726
727         /*
728          * [4] Get the next lock
729          */
730         lock = waiter->lock;
731         /*
732          * [5] We need to trylock here as we are holding task->pi_lock,
733          * which is the reverse lock order versus the other rtmutex
734          * operations.
735          */
736         if (!raw_spin_trylock(&lock->wait_lock)) {
737                 raw_spin_unlock_irq(&task->pi_lock);
738                 cpu_relax();
739                 goto retry;
740         }
741
742         /*
743          * [6] check_exit_conditions_2() protected by task->pi_lock and
744          * lock->wait_lock.
745          *
746          * Deadlock detection. If the lock is the same as the original
747          * lock which caused us to walk the lock chain or if the
748          * current lock is owned by the task which initiated the chain
749          * walk, we detected a deadlock.
750          */
751         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
752                 ret = -EDEADLK;
753
754                 /*
755                  * When the deadlock is due to ww_mutex; also see above. Don't
756                  * report the deadlock and instead let the ww_mutex wound/die
757                  * logic pick which of the contending threads gets -EDEADLK.
758                  *
759                  * NOTE: assumes the cycle only contains a single ww_class; any
760                  * other configuration and we fail to report; also, see
761                  * lockdep.
762                  */
763                 if (IS_ENABLED(CONFIG_PREEMPT_RT) && orig_waiter && orig_waiter->ww_ctx)
764                         ret = 0;
765
766                 raw_spin_unlock(&lock->wait_lock);
767                 goto out_unlock_pi;
768         }
769
770         /*
771          * If we just follow the lock chain for deadlock detection, no
772          * need to do all the requeue operations. To avoid a truckload
773          * of conditionals around the various places below, just do the
774          * minimum chain walk checks.
775          */
776         if (!requeue) {
777                 /*
778                  * No requeue[7] here. Just release @task [8]
779                  */
780                 raw_spin_unlock(&task->pi_lock);
781                 put_task_struct(task);
782
783                 /*
784                  * [9] check_exit_conditions_3 protected by lock->wait_lock.
785                  * If there is no owner of the lock, end of chain.
786                  */
787                 if (!rt_mutex_owner(lock)) {
788                         raw_spin_unlock_irq(&lock->wait_lock);
789                         return 0;
790                 }
791
792                 /* [10] Grab the next task, i.e. owner of @lock */
793                 task = get_task_struct(rt_mutex_owner(lock));
794                 raw_spin_lock(&task->pi_lock);
795
796                 /*
797                  * No requeue [11] here. We just do deadlock detection.
798                  *
799                  * [12] Store whether owner is blocked
800                  * itself. Decision is made after dropping the locks
801                  */
802                 next_lock = task_blocked_on_lock(task);
803                 /*
804                  * Get the top waiter for the next iteration
805                  */
806                 top_waiter = rt_mutex_top_waiter(lock);
807
808                 /* [13] Drop locks */
809                 raw_spin_unlock(&task->pi_lock);
810                 raw_spin_unlock_irq(&lock->wait_lock);
811
812                 /* If owner is not blocked, end of chain. */
813                 if (!next_lock)
814                         goto out_put_task;
815                 goto again;
816         }
817
818         /*
819          * Store the current top waiter before doing the requeue
820          * operation on @lock. We need it for the boost/deboost
821          * decision below.
822          */
823         prerequeue_top_waiter = rt_mutex_top_waiter(lock);
824
825         /* [7] Requeue the waiter in the lock waiter tree. */
826         rt_mutex_dequeue(lock, waiter);
827
828         /*
829          * Update the waiter prio fields now that we're dequeued.
830          *
831          * These values can have changed through either:
832          *
833          *   sys_sched_set_scheduler() / sys_sched_setattr()
834          *
835          * or
836          *
837          *   DL CBS enforcement advancing the effective deadline.
838          *
839          * Even though pi_waiters also uses these fields, and that tree is only
840          * updated in [11], we can do this here, since we hold [L], which
841          * serializes all pi_waiters access and rb_erase() does not care about
842          * the values of the node being removed.
843          */
844         waiter_update_prio(waiter, task);
845
846         rt_mutex_enqueue(lock, waiter);
847
848         /* [8] Release the task */
849         raw_spin_unlock(&task->pi_lock);
850         put_task_struct(task);
851
852         /*
853          * [9] check_exit_conditions_3 protected by lock->wait_lock.
854          *
855          * We must abort the chain walk if there is no lock owner even
856          * in the dead lock detection case, as we have nothing to
857          * follow here. This is the end of the chain we are walking.
858          */
859         if (!rt_mutex_owner(lock)) {
860                 /*
861                  * If the requeue [7] above changed the top waiter,
862                  * then we need to wake the new top waiter up to try
863                  * to get the lock.
864                  */
865                 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
866                         wake_up_state(waiter->task, waiter->wake_state);
867                 raw_spin_unlock_irq(&lock->wait_lock);
868                 return 0;
869         }
870
871         /* [10] Grab the next task, i.e. the owner of @lock */
872         task = get_task_struct(rt_mutex_owner(lock));
873         raw_spin_lock(&task->pi_lock);
874
875         /* [11] requeue the pi waiters if necessary */
876         if (waiter == rt_mutex_top_waiter(lock)) {
877                 /*
878                  * The waiter became the new top (highest priority)
879                  * waiter on the lock. Replace the previous top waiter
880                  * in the owner tasks pi waiters tree with this waiter
881                  * and adjust the priority of the owner.
882                  */
883                 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
884                 rt_mutex_enqueue_pi(task, waiter);
885                 rt_mutex_adjust_prio(task);
886
887         } else if (prerequeue_top_waiter == waiter) {
888                 /*
889                  * The waiter was the top waiter on the lock, but is
890                  * no longer the top priority waiter. Replace waiter in
891                  * the owner tasks pi waiters tree with the new top
892                  * (highest priority) waiter and adjust the priority
893                  * of the owner.
894                  * The new top waiter is stored in @waiter so that
895                  * @waiter == @top_waiter evaluates to true below and
896                  * we continue to deboost the rest of the chain.
897                  */
898                 rt_mutex_dequeue_pi(task, waiter);
899                 waiter = rt_mutex_top_waiter(lock);
900                 rt_mutex_enqueue_pi(task, waiter);
901                 rt_mutex_adjust_prio(task);
902         } else {
903                 /*
904                  * Nothing changed. No need to do any priority
905                  * adjustment.
906                  */
907         }
908
909         /*
910          * [12] check_exit_conditions_4() protected by task->pi_lock
911          * and lock->wait_lock. The actual decisions are made after we
912          * dropped the locks.
913          *
914          * Check whether the task which owns the current lock is pi
915          * blocked itself. If yes we store a pointer to the lock for
916          * the lock chain change detection above. After we dropped
917          * task->pi_lock next_lock cannot be dereferenced anymore.
918          */
919         next_lock = task_blocked_on_lock(task);
920         /*
921          * Store the top waiter of @lock for the end of chain walk
922          * decision below.
923          */
924         top_waiter = rt_mutex_top_waiter(lock);
925
926         /* [13] Drop the locks */
927         raw_spin_unlock(&task->pi_lock);
928         raw_spin_unlock_irq(&lock->wait_lock);
929
930         /*
931          * Make the actual exit decisions [12], based on the stored
932          * values.
933          *
934          * We reached the end of the lock chain. Stop right here. No
935          * point to go back just to figure that out.
936          */
937         if (!next_lock)
938                 goto out_put_task;
939
940         /*
941          * If the current waiter is not the top waiter on the lock,
942          * then we can stop the chain walk here if we are not in full
943          * deadlock detection mode.
944          */
945         if (!detect_deadlock && waiter != top_waiter)
946                 goto out_put_task;
947
948         goto again;
949
950  out_unlock_pi:
951         raw_spin_unlock_irq(&task->pi_lock);
952  out_put_task:
953         put_task_struct(task);
954
955         return ret;
956 }
957
958 /*
959  * Try to take an rt-mutex
960  *
961  * Must be called with lock->wait_lock held and interrupts disabled
962  *
963  * @lock:   The lock to be acquired.
964  * @task:   The task which wants to acquire the lock
965  * @waiter: The waiter that is queued to the lock's wait tree if the
966  *          callsite called task_blocked_on_lock(), otherwise NULL
967  */
968 static int __sched
969 try_to_take_rt_mutex(struct rt_mutex_base *lock, struct task_struct *task,
970                      struct rt_mutex_waiter *waiter)
971 {
972         lockdep_assert_held(&lock->wait_lock);
973
974         /*
975          * Before testing whether we can acquire @lock, we set the
976          * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
977          * other tasks which try to modify @lock into the slow path
978          * and they serialize on @lock->wait_lock.
979          *
980          * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
981          * as explained at the top of this file if and only if:
982          *
983          * - There is a lock owner. The caller must fixup the
984          *   transient state if it does a trylock or leaves the lock
985          *   function due to a signal or timeout.
986          *
987          * - @task acquires the lock and there are no other
988          *   waiters. This is undone in rt_mutex_set_owner(@task) at
989          *   the end of this function.
990          */
991         mark_rt_mutex_waiters(lock);
992
993         /*
994          * If @lock has an owner, give up.
995          */
996         if (rt_mutex_owner(lock))
997                 return 0;
998
999         /*
1000          * If @waiter != NULL, @task has already enqueued the waiter
1001          * into @lock waiter tree. If @waiter == NULL then this is a
1002          * trylock attempt.
1003          */
1004         if (waiter) {
1005                 struct rt_mutex_waiter *top_waiter = rt_mutex_top_waiter(lock);
1006
1007                 /*
1008                  * If waiter is the highest priority waiter of @lock,
1009                  * or allowed to steal it, take it over.
1010                  */
1011                 if (waiter == top_waiter || rt_mutex_steal(waiter, top_waiter)) {
1012                         /*
1013                          * We can acquire the lock. Remove the waiter from the
1014                          * lock waiters tree.
1015                          */
1016                         rt_mutex_dequeue(lock, waiter);
1017                 } else {
1018                         return 0;
1019                 }
1020         } else {
1021                 /*
1022                  * If the lock has waiters already we check whether @task is
1023                  * eligible to take over the lock.
1024                  *
1025                  * If there are no other waiters, @task can acquire
1026                  * the lock.  @task->pi_blocked_on is NULL, so it does
1027                  * not need to be dequeued.
1028                  */
1029                 if (rt_mutex_has_waiters(lock)) {
1030                         /* Check whether the trylock can steal it. */
1031                         if (!rt_mutex_steal(task_to_waiter(task),
1032                                             rt_mutex_top_waiter(lock)))
1033                                 return 0;
1034
1035                         /*
1036                          * The current top waiter stays enqueued. We
1037                          * don't have to change anything in the lock
1038                          * waiters order.
1039                          */
1040                 } else {
1041                         /*
1042                          * No waiters. Take the lock without the
1043                          * pi_lock dance.@task->pi_blocked_on is NULL
1044                          * and we have no waiters to enqueue in @task
1045                          * pi waiters tree.
1046                          */
1047                         goto takeit;
1048                 }
1049         }
1050
1051         /*
1052          * Clear @task->pi_blocked_on. Requires protection by
1053          * @task->pi_lock. Redundant operation for the @waiter == NULL
1054          * case, but conditionals are more expensive than a redundant
1055          * store.
1056          */
1057         raw_spin_lock(&task->pi_lock);
1058         task->pi_blocked_on = NULL;
1059         /*
1060          * Finish the lock acquisition. @task is the new owner. If
1061          * other waiters exist we have to insert the highest priority
1062          * waiter into @task->pi_waiters tree.
1063          */
1064         if (rt_mutex_has_waiters(lock))
1065                 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
1066         raw_spin_unlock(&task->pi_lock);
1067
1068 takeit:
1069         /*
1070          * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
1071          * are still waiters or clears it.
1072          */
1073         rt_mutex_set_owner(lock, task);
1074
1075         return 1;
1076 }
1077
1078 /*
1079  * Task blocks on lock.
1080  *
1081  * Prepare waiter and propagate pi chain
1082  *
1083  * This must be called with lock->wait_lock held and interrupts disabled
1084  */
1085 static int __sched task_blocks_on_rt_mutex(struct rt_mutex_base *lock,
1086                                            struct rt_mutex_waiter *waiter,
1087                                            struct task_struct *task,
1088                                            struct ww_acquire_ctx *ww_ctx,
1089                                            enum rtmutex_chainwalk chwalk)
1090 {
1091         struct task_struct *owner = rt_mutex_owner(lock);
1092         struct rt_mutex_waiter *top_waiter = waiter;
1093         struct rt_mutex_base *next_lock;
1094         int chain_walk = 0, res;
1095
1096         lockdep_assert_held(&lock->wait_lock);
1097
1098         /*
1099          * Early deadlock detection. We really don't want the task to
1100          * enqueue on itself just to untangle the mess later. It's not
1101          * only an optimization. We drop the locks, so another waiter
1102          * can come in before the chain walk detects the deadlock. So
1103          * the other will detect the deadlock and return -EDEADLOCK,
1104          * which is wrong, as the other waiter is not in a deadlock
1105          * situation.
1106          */
1107         if (owner == task)
1108                 return -EDEADLK;
1109
1110         raw_spin_lock(&task->pi_lock);
1111         waiter->task = task;
1112         waiter->lock = lock;
1113         waiter_update_prio(waiter, task);
1114
1115         /* Get the top priority waiter on the lock */
1116         if (rt_mutex_has_waiters(lock))
1117                 top_waiter = rt_mutex_top_waiter(lock);
1118         rt_mutex_enqueue(lock, waiter);
1119
1120         task->pi_blocked_on = waiter;
1121
1122         raw_spin_unlock(&task->pi_lock);
1123
1124         if (build_ww_mutex() && ww_ctx) {
1125                 struct rt_mutex *rtm;
1126
1127                 /* Check whether the waiter should back out immediately */
1128                 rtm = container_of(lock, struct rt_mutex, rtmutex);
1129                 res = __ww_mutex_add_waiter(waiter, rtm, ww_ctx);
1130                 if (res) {
1131                         raw_spin_lock(&task->pi_lock);
1132                         rt_mutex_dequeue(lock, waiter);
1133                         task->pi_blocked_on = NULL;
1134                         raw_spin_unlock(&task->pi_lock);
1135                         return res;
1136                 }
1137         }
1138
1139         if (!owner)
1140                 return 0;
1141
1142         raw_spin_lock(&owner->pi_lock);
1143         if (waiter == rt_mutex_top_waiter(lock)) {
1144                 rt_mutex_dequeue_pi(owner, top_waiter);
1145                 rt_mutex_enqueue_pi(owner, waiter);
1146
1147                 rt_mutex_adjust_prio(owner);
1148                 if (owner->pi_blocked_on)
1149                         chain_walk = 1;
1150         } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1151                 chain_walk = 1;
1152         }
1153
1154         /* Store the lock on which owner is blocked or NULL */
1155         next_lock = task_blocked_on_lock(owner);
1156
1157         raw_spin_unlock(&owner->pi_lock);
1158         /*
1159          * Even if full deadlock detection is on, if the owner is not
1160          * blocked itself, we can avoid finding this out in the chain
1161          * walk.
1162          */
1163         if (!chain_walk || !next_lock)
1164                 return 0;
1165
1166         /*
1167          * The owner can't disappear while holding a lock,
1168          * so the owner struct is protected by wait_lock.
1169          * Gets dropped in rt_mutex_adjust_prio_chain()!
1170          */
1171         get_task_struct(owner);
1172
1173         raw_spin_unlock_irq(&lock->wait_lock);
1174
1175         res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1176                                          next_lock, waiter, task);
1177
1178         raw_spin_lock_irq(&lock->wait_lock);
1179
1180         return res;
1181 }
1182
1183 /*
1184  * Remove the top waiter from the current tasks pi waiter tree and
1185  * queue it up.
1186  *
1187  * Called with lock->wait_lock held and interrupts disabled.
1188  */
1189 static void __sched mark_wakeup_next_waiter(struct rt_wake_q_head *wqh,
1190                                             struct rt_mutex_base *lock)
1191 {
1192         struct rt_mutex_waiter *waiter;
1193
1194         raw_spin_lock(&current->pi_lock);
1195
1196         waiter = rt_mutex_top_waiter(lock);
1197
1198         /*
1199          * Remove it from current->pi_waiters and deboost.
1200          *
1201          * We must in fact deboost here in order to ensure we call
1202          * rt_mutex_setprio() to update p->pi_top_task before the
1203          * task unblocks.
1204          */
1205         rt_mutex_dequeue_pi(current, waiter);
1206         rt_mutex_adjust_prio(current);
1207
1208         /*
1209          * As we are waking up the top waiter, and the waiter stays
1210          * queued on the lock until it gets the lock, this lock
1211          * obviously has waiters. Just set the bit here and this has
1212          * the added benefit of forcing all new tasks into the
1213          * slow path making sure no task of lower priority than
1214          * the top waiter can steal this lock.
1215          */
1216         lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1217
1218         /*
1219          * We deboosted before waking the top waiter task such that we don't
1220          * run two tasks with the 'same' priority (and ensure the
1221          * p->pi_top_task pointer points to a blocked task). This however can
1222          * lead to priority inversion if we would get preempted after the
1223          * deboost but before waking our donor task, hence the preempt_disable()
1224          * before unlock.
1225          *
1226          * Pairs with preempt_enable() in rt_mutex_wake_up_q();
1227          */
1228         preempt_disable();
1229         rt_mutex_wake_q_add(wqh, waiter);
1230         raw_spin_unlock(&current->pi_lock);
1231 }
1232
1233 static int __sched __rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1234 {
1235         int ret = try_to_take_rt_mutex(lock, current, NULL);
1236
1237         /*
1238          * try_to_take_rt_mutex() sets the lock waiters bit
1239          * unconditionally. Clean this up.
1240          */
1241         fixup_rt_mutex_waiters(lock);
1242
1243         return ret;
1244 }
1245
1246 /*
1247  * Slow path try-lock function:
1248  */
1249 static int __sched rt_mutex_slowtrylock(struct rt_mutex_base *lock)
1250 {
1251         unsigned long flags;
1252         int ret;
1253
1254         /*
1255          * If the lock already has an owner we fail to get the lock.
1256          * This can be done without taking the @lock->wait_lock as
1257          * it is only being read, and this is a trylock anyway.
1258          */
1259         if (rt_mutex_owner(lock))
1260                 return 0;
1261
1262         /*
1263          * The mutex has currently no owner. Lock the wait lock and try to
1264          * acquire the lock. We use irqsave here to support early boot calls.
1265          */
1266         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1267
1268         ret = __rt_mutex_slowtrylock(lock);
1269
1270         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1271
1272         return ret;
1273 }
1274
1275 static __always_inline int __rt_mutex_trylock(struct rt_mutex_base *lock)
1276 {
1277         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1278                 return 1;
1279
1280         return rt_mutex_slowtrylock(lock);
1281 }
1282
1283 /*
1284  * Slow path to release a rt-mutex.
1285  */
1286 static void __sched rt_mutex_slowunlock(struct rt_mutex_base *lock)
1287 {
1288         DEFINE_RT_WAKE_Q(wqh);
1289         unsigned long flags;
1290
1291         /* irqsave required to support early boot calls */
1292         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1293
1294         debug_rt_mutex_unlock(lock);
1295
1296         /*
1297          * We must be careful here if the fast path is enabled. If we
1298          * have no waiters queued we cannot set owner to NULL here
1299          * because of:
1300          *
1301          * foo->lock->owner = NULL;
1302          *                      rtmutex_lock(foo->lock);   <- fast path
1303          *                      free = atomic_dec_and_test(foo->refcnt);
1304          *                      rtmutex_unlock(foo->lock); <- fast path
1305          *                      if (free)
1306          *                              kfree(foo);
1307          * raw_spin_unlock(foo->lock->wait_lock);
1308          *
1309          * So for the fastpath enabled kernel:
1310          *
1311          * Nothing can set the waiters bit as long as we hold
1312          * lock->wait_lock. So we do the following sequence:
1313          *
1314          *      owner = rt_mutex_owner(lock);
1315          *      clear_rt_mutex_waiters(lock);
1316          *      raw_spin_unlock(&lock->wait_lock);
1317          *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1318          *              return;
1319          *      goto retry;
1320          *
1321          * The fastpath disabled variant is simple as all access to
1322          * lock->owner is serialized by lock->wait_lock:
1323          *
1324          *      lock->owner = NULL;
1325          *      raw_spin_unlock(&lock->wait_lock);
1326          */
1327         while (!rt_mutex_has_waiters(lock)) {
1328                 /* Drops lock->wait_lock ! */
1329                 if (unlock_rt_mutex_safe(lock, flags) == true)
1330                         return;
1331                 /* Relock the rtmutex and try again */
1332                 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1333         }
1334
1335         /*
1336          * The wakeup next waiter path does not suffer from the above
1337          * race. See the comments there.
1338          *
1339          * Queue the next waiter for wakeup once we release the wait_lock.
1340          */
1341         mark_wakeup_next_waiter(&wqh, lock);
1342         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1343
1344         rt_mutex_wake_up_q(&wqh);
1345 }
1346
1347 static __always_inline void __rt_mutex_unlock(struct rt_mutex_base *lock)
1348 {
1349         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1350                 return;
1351
1352         rt_mutex_slowunlock(lock);
1353 }
1354
1355 #ifdef CONFIG_SMP
1356 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1357                                   struct rt_mutex_waiter *waiter,
1358                                   struct task_struct *owner)
1359 {
1360         bool res = true;
1361
1362         rcu_read_lock();
1363         for (;;) {
1364                 /* If owner changed, trylock again. */
1365                 if (owner != rt_mutex_owner(lock))
1366                         break;
1367                 /*
1368                  * Ensure that @owner is dereferenced after checking that
1369                  * the lock owner still matches @owner. If that fails,
1370                  * @owner might point to freed memory. If it still matches,
1371                  * the rcu_read_lock() ensures the memory stays valid.
1372                  */
1373                 barrier();
1374                 /*
1375                  * Stop spinning when:
1376                  *  - the lock owner has been scheduled out
1377                  *  - current is not longer the top waiter
1378                  *  - current is requested to reschedule (redundant
1379                  *    for CONFIG_PREEMPT_RCU=y)
1380                  *  - the VCPU on which owner runs is preempted
1381                  */
1382                 if (!owner->on_cpu || need_resched() ||
1383                     rt_mutex_waiter_is_top_waiter(lock, waiter) ||
1384                     vcpu_is_preempted(task_cpu(owner))) {
1385                         res = false;
1386                         break;
1387                 }
1388                 cpu_relax();
1389         }
1390         rcu_read_unlock();
1391         return res;
1392 }
1393 #else
1394 static bool rtmutex_spin_on_owner(struct rt_mutex_base *lock,
1395                                   struct rt_mutex_waiter *waiter,
1396                                   struct task_struct *owner)
1397 {
1398         return false;
1399 }
1400 #endif
1401
1402 #ifdef RT_MUTEX_BUILD_MUTEX
1403 /*
1404  * Functions required for:
1405  *      - rtmutex, futex on all kernels
1406  *      - mutex and rwsem substitutions on RT kernels
1407  */
1408
1409 /*
1410  * Remove a waiter from a lock and give up
1411  *
1412  * Must be called with lock->wait_lock held and interrupts disabled. It must
1413  * have just failed to try_to_take_rt_mutex().
1414  */
1415 static void __sched remove_waiter(struct rt_mutex_base *lock,
1416                                   struct rt_mutex_waiter *waiter)
1417 {
1418         bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1419         struct task_struct *owner = rt_mutex_owner(lock);
1420         struct rt_mutex_base *next_lock;
1421
1422         lockdep_assert_held(&lock->wait_lock);
1423
1424         raw_spin_lock(&current->pi_lock);
1425         rt_mutex_dequeue(lock, waiter);
1426         current->pi_blocked_on = NULL;
1427         raw_spin_unlock(&current->pi_lock);
1428
1429         /*
1430          * Only update priority if the waiter was the highest priority
1431          * waiter of the lock and there is an owner to update.
1432          */
1433         if (!owner || !is_top_waiter)
1434                 return;
1435
1436         raw_spin_lock(&owner->pi_lock);
1437
1438         rt_mutex_dequeue_pi(owner, waiter);
1439
1440         if (rt_mutex_has_waiters(lock))
1441                 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1442
1443         rt_mutex_adjust_prio(owner);
1444
1445         /* Store the lock on which owner is blocked or NULL */
1446         next_lock = task_blocked_on_lock(owner);
1447
1448         raw_spin_unlock(&owner->pi_lock);
1449
1450         /*
1451          * Don't walk the chain, if the owner task is not blocked
1452          * itself.
1453          */
1454         if (!next_lock)
1455                 return;
1456
1457         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1458         get_task_struct(owner);
1459
1460         raw_spin_unlock_irq(&lock->wait_lock);
1461
1462         rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1463                                    next_lock, NULL, current);
1464
1465         raw_spin_lock_irq(&lock->wait_lock);
1466 }
1467
1468 /**
1469  * rt_mutex_slowlock_block() - Perform the wait-wake-try-to-take loop
1470  * @lock:                the rt_mutex to take
1471  * @ww_ctx:              WW mutex context pointer
1472  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1473  *                       or TASK_UNINTERRUPTIBLE)
1474  * @timeout:             the pre-initialized and started timer, or NULL for none
1475  * @waiter:              the pre-initialized rt_mutex_waiter
1476  *
1477  * Must be called with lock->wait_lock held and interrupts disabled
1478  */
1479 static int __sched rt_mutex_slowlock_block(struct rt_mutex_base *lock,
1480                                            struct ww_acquire_ctx *ww_ctx,
1481                                            unsigned int state,
1482                                            struct hrtimer_sleeper *timeout,
1483                                            struct rt_mutex_waiter *waiter)
1484 {
1485         struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1486         struct task_struct *owner;
1487         int ret = 0;
1488
1489         for (;;) {
1490                 /* Try to acquire the lock: */
1491                 if (try_to_take_rt_mutex(lock, current, waiter))
1492                         break;
1493
1494                 if (timeout && !timeout->task) {
1495                         ret = -ETIMEDOUT;
1496                         break;
1497                 }
1498                 if (signal_pending_state(state, current)) {
1499                         ret = -EINTR;
1500                         break;
1501                 }
1502
1503                 if (build_ww_mutex() && ww_ctx) {
1504                         ret = __ww_mutex_check_kill(rtm, waiter, ww_ctx);
1505                         if (ret)
1506                                 break;
1507                 }
1508
1509                 if (waiter == rt_mutex_top_waiter(lock))
1510                         owner = rt_mutex_owner(lock);
1511                 else
1512                         owner = NULL;
1513                 raw_spin_unlock_irq(&lock->wait_lock);
1514
1515                 if (!owner || !rtmutex_spin_on_owner(lock, waiter, owner))
1516                         schedule();
1517
1518                 raw_spin_lock_irq(&lock->wait_lock);
1519                 set_current_state(state);
1520         }
1521
1522         __set_current_state(TASK_RUNNING);
1523         return ret;
1524 }
1525
1526 static void __sched rt_mutex_handle_deadlock(int res, int detect_deadlock,
1527                                              struct rt_mutex_waiter *w)
1528 {
1529         /*
1530          * If the result is not -EDEADLOCK or the caller requested
1531          * deadlock detection, nothing to do here.
1532          */
1533         if (res != -EDEADLOCK || detect_deadlock)
1534                 return;
1535
1536         if (build_ww_mutex() && w->ww_ctx)
1537                 return;
1538
1539         /*
1540          * Yell loudly and stop the task right here.
1541          */
1542         WARN(1, "rtmutex deadlock detected\n");
1543         while (1) {
1544                 set_current_state(TASK_INTERRUPTIBLE);
1545                 schedule();
1546         }
1547 }
1548
1549 /**
1550  * __rt_mutex_slowlock - Locking slowpath invoked with lock::wait_lock held
1551  * @lock:       The rtmutex to block lock
1552  * @ww_ctx:     WW mutex context pointer
1553  * @state:      The task state for sleeping
1554  * @chwalk:     Indicator whether full or partial chainwalk is requested
1555  * @waiter:     Initializer waiter for blocking
1556  */
1557 static int __sched __rt_mutex_slowlock(struct rt_mutex_base *lock,
1558                                        struct ww_acquire_ctx *ww_ctx,
1559                                        unsigned int state,
1560                                        enum rtmutex_chainwalk chwalk,
1561                                        struct rt_mutex_waiter *waiter)
1562 {
1563         struct rt_mutex *rtm = container_of(lock, struct rt_mutex, rtmutex);
1564         struct ww_mutex *ww = ww_container_of(rtm);
1565         int ret;
1566
1567         lockdep_assert_held(&lock->wait_lock);
1568
1569         /* Try to acquire the lock again: */
1570         if (try_to_take_rt_mutex(lock, current, NULL)) {
1571                 if (build_ww_mutex() && ww_ctx) {
1572                         __ww_mutex_check_waiters(rtm, ww_ctx);
1573                         ww_mutex_lock_acquired(ww, ww_ctx);
1574                 }
1575                 return 0;
1576         }
1577
1578         set_current_state(state);
1579
1580         ret = task_blocks_on_rt_mutex(lock, waiter, current, ww_ctx, chwalk);
1581         if (likely(!ret))
1582                 ret = rt_mutex_slowlock_block(lock, ww_ctx, state, NULL, waiter);
1583
1584         if (likely(!ret)) {
1585                 /* acquired the lock */
1586                 if (build_ww_mutex() && ww_ctx) {
1587                         if (!ww_ctx->is_wait_die)
1588                                 __ww_mutex_check_waiters(rtm, ww_ctx);
1589                         ww_mutex_lock_acquired(ww, ww_ctx);
1590                 }
1591         } else {
1592                 __set_current_state(TASK_RUNNING);
1593                 remove_waiter(lock, waiter);
1594                 rt_mutex_handle_deadlock(ret, chwalk, waiter);
1595         }
1596
1597         /*
1598          * try_to_take_rt_mutex() sets the waiter bit
1599          * unconditionally. We might have to fix that up.
1600          */
1601         fixup_rt_mutex_waiters(lock);
1602         return ret;
1603 }
1604
1605 static inline int __rt_mutex_slowlock_locked(struct rt_mutex_base *lock,
1606                                              struct ww_acquire_ctx *ww_ctx,
1607                                              unsigned int state)
1608 {
1609         struct rt_mutex_waiter waiter;
1610         int ret;
1611
1612         rt_mutex_init_waiter(&waiter);
1613         waiter.ww_ctx = ww_ctx;
1614
1615         ret = __rt_mutex_slowlock(lock, ww_ctx, state, RT_MUTEX_MIN_CHAINWALK,
1616                                   &waiter);
1617
1618         debug_rt_mutex_free_waiter(&waiter);
1619         return ret;
1620 }
1621
1622 /*
1623  * rt_mutex_slowlock - Locking slowpath invoked when fast path fails
1624  * @lock:       The rtmutex to block lock
1625  * @ww_ctx:     WW mutex context pointer
1626  * @state:      The task state for sleeping
1627  */
1628 static int __sched rt_mutex_slowlock(struct rt_mutex_base *lock,
1629                                      struct ww_acquire_ctx *ww_ctx,
1630                                      unsigned int state)
1631 {
1632         unsigned long flags;
1633         int ret;
1634
1635         /*
1636          * Technically we could use raw_spin_[un]lock_irq() here, but this can
1637          * be called in early boot if the cmpxchg() fast path is disabled
1638          * (debug, no architecture support). In this case we will acquire the
1639          * rtmutex with lock->wait_lock held. But we cannot unconditionally
1640          * enable interrupts in that early boot case. So we need to use the
1641          * irqsave/restore variants.
1642          */
1643         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1644         ret = __rt_mutex_slowlock_locked(lock, ww_ctx, state);
1645         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1646
1647         return ret;
1648 }
1649
1650 static __always_inline int __rt_mutex_lock(struct rt_mutex_base *lock,
1651                                            unsigned int state)
1652 {
1653         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1654                 return 0;
1655
1656         return rt_mutex_slowlock(lock, NULL, state);
1657 }
1658 #endif /* RT_MUTEX_BUILD_MUTEX */
1659
1660 #ifdef RT_MUTEX_BUILD_SPINLOCKS
1661 /*
1662  * Functions required for spin/rw_lock substitution on RT kernels
1663  */
1664
1665 /**
1666  * rtlock_slowlock_locked - Slow path lock acquisition for RT locks
1667  * @lock:       The underlying RT mutex
1668  */
1669 static void __sched rtlock_slowlock_locked(struct rt_mutex_base *lock)
1670 {
1671         struct rt_mutex_waiter waiter;
1672         struct task_struct *owner;
1673
1674         lockdep_assert_held(&lock->wait_lock);
1675
1676         if (try_to_take_rt_mutex(lock, current, NULL))
1677                 return;
1678
1679         rt_mutex_init_rtlock_waiter(&waiter);
1680
1681         /* Save current state and set state to TASK_RTLOCK_WAIT */
1682         current_save_and_set_rtlock_wait_state();
1683
1684         task_blocks_on_rt_mutex(lock, &waiter, current, NULL, RT_MUTEX_MIN_CHAINWALK);
1685
1686         for (;;) {
1687                 /* Try to acquire the lock again */
1688                 if (try_to_take_rt_mutex(lock, current, &waiter))
1689                         break;
1690
1691                 if (&waiter == rt_mutex_top_waiter(lock))
1692                         owner = rt_mutex_owner(lock);
1693                 else
1694                         owner = NULL;
1695                 raw_spin_unlock_irq(&lock->wait_lock);
1696
1697                 if (!owner || !rtmutex_spin_on_owner(lock, &waiter, owner))
1698                         schedule_rtlock();
1699
1700                 raw_spin_lock_irq(&lock->wait_lock);
1701                 set_current_state(TASK_RTLOCK_WAIT);
1702         }
1703
1704         /* Restore the task state */
1705         current_restore_rtlock_saved_state();
1706
1707         /*
1708          * try_to_take_rt_mutex() sets the waiter bit unconditionally.
1709          * We might have to fix that up:
1710          */
1711         fixup_rt_mutex_waiters(lock);
1712         debug_rt_mutex_free_waiter(&waiter);
1713 }
1714
1715 static __always_inline void __sched rtlock_slowlock(struct rt_mutex_base *lock)
1716 {
1717         unsigned long flags;
1718
1719         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1720         rtlock_slowlock_locked(lock);
1721         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1722 }
1723
1724 #endif /* RT_MUTEX_BUILD_SPINLOCKS */