Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-2.6-microblaze.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57
58 #include <asm/sections.h>
59
60 #include "lockdep_internals.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81
82 static __always_inline bool lockdep_enabled(void)
83 {
84         if (!debug_locks)
85                 return false;
86
87         if (this_cpu_read(lockdep_recursion))
88                 return false;
89
90         if (current->lockdep_recursion)
91                 return false;
92
93         return true;
94 }
95
96 /*
97  * lockdep_lock: protects the lockdep graph, the hashes and the
98  *               class/list/hash allocators.
99  *
100  * This is one of the rare exceptions where it's justified
101  * to use a raw spinlock - we really dont want the spinlock
102  * code to recurse back into the lockdep code...
103  */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106
107 static inline void lockdep_lock(void)
108 {
109         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110
111         __this_cpu_inc(lockdep_recursion);
112         arch_spin_lock(&__lock);
113         __owner = current;
114 }
115
116 static inline void lockdep_unlock(void)
117 {
118         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
119
120         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
121                 return;
122
123         __owner = NULL;
124         arch_spin_unlock(&__lock);
125         __this_cpu_dec(lockdep_recursion);
126 }
127
128 static inline bool lockdep_assert_locked(void)
129 {
130         return DEBUG_LOCKS_WARN_ON(__owner != current);
131 }
132
133 static struct task_struct *lockdep_selftest_task_struct;
134
135
136 static int graph_lock(void)
137 {
138         lockdep_lock();
139         /*
140          * Make sure that if another CPU detected a bug while
141          * walking the graph we dont change it (while the other
142          * CPU is busy printing out stuff with the graph lock
143          * dropped already)
144          */
145         if (!debug_locks) {
146                 lockdep_unlock();
147                 return 0;
148         }
149         return 1;
150 }
151
152 static inline void graph_unlock(void)
153 {
154         lockdep_unlock();
155 }
156
157 /*
158  * Turn lock debugging off and return with 0 if it was off already,
159  * and also release the graph lock:
160  */
161 static inline int debug_locks_off_graph_unlock(void)
162 {
163         int ret = debug_locks_off();
164
165         lockdep_unlock();
166
167         return ret;
168 }
169
170 unsigned long nr_list_entries;
171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
173
174 /*
175  * All data structures here are protected by the global debug_lock.
176  *
177  * nr_lock_classes is the number of elements of lock_classes[] that is
178  * in use.
179  */
180 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
181 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
183 unsigned long nr_lock_classes;
184 unsigned long nr_zapped_classes;
185 #ifndef CONFIG_DEBUG_LOCKDEP
186 static
187 #endif
188 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
189 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
190
191 static inline struct lock_class *hlock_class(struct held_lock *hlock)
192 {
193         unsigned int class_idx = hlock->class_idx;
194
195         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
196         barrier();
197
198         if (!test_bit(class_idx, lock_classes_in_use)) {
199                 /*
200                  * Someone passed in garbage, we give up.
201                  */
202                 DEBUG_LOCKS_WARN_ON(1);
203                 return NULL;
204         }
205
206         /*
207          * At this point, if the passed hlock->class_idx is still garbage,
208          * we just have to live with it
209          */
210         return lock_classes + class_idx;
211 }
212
213 #ifdef CONFIG_LOCK_STAT
214 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
215
216 static inline u64 lockstat_clock(void)
217 {
218         return local_clock();
219 }
220
221 static int lock_point(unsigned long points[], unsigned long ip)
222 {
223         int i;
224
225         for (i = 0; i < LOCKSTAT_POINTS; i++) {
226                 if (points[i] == 0) {
227                         points[i] = ip;
228                         break;
229                 }
230                 if (points[i] == ip)
231                         break;
232         }
233
234         return i;
235 }
236
237 static void lock_time_inc(struct lock_time *lt, u64 time)
238 {
239         if (time > lt->max)
240                 lt->max = time;
241
242         if (time < lt->min || !lt->nr)
243                 lt->min = time;
244
245         lt->total += time;
246         lt->nr++;
247 }
248
249 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
250 {
251         if (!src->nr)
252                 return;
253
254         if (src->max > dst->max)
255                 dst->max = src->max;
256
257         if (src->min < dst->min || !dst->nr)
258                 dst->min = src->min;
259
260         dst->total += src->total;
261         dst->nr += src->nr;
262 }
263
264 struct lock_class_stats lock_stats(struct lock_class *class)
265 {
266         struct lock_class_stats stats;
267         int cpu, i;
268
269         memset(&stats, 0, sizeof(struct lock_class_stats));
270         for_each_possible_cpu(cpu) {
271                 struct lock_class_stats *pcs =
272                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
273
274                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
275                         stats.contention_point[i] += pcs->contention_point[i];
276
277                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
278                         stats.contending_point[i] += pcs->contending_point[i];
279
280                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
281                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
282
283                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
284                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
285
286                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
287                         stats.bounces[i] += pcs->bounces[i];
288         }
289
290         return stats;
291 }
292
293 void clear_lock_stats(struct lock_class *class)
294 {
295         int cpu;
296
297         for_each_possible_cpu(cpu) {
298                 struct lock_class_stats *cpu_stats =
299                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
300
301                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
302         }
303         memset(class->contention_point, 0, sizeof(class->contention_point));
304         memset(class->contending_point, 0, sizeof(class->contending_point));
305 }
306
307 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
308 {
309         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
310 }
311
312 static void lock_release_holdtime(struct held_lock *hlock)
313 {
314         struct lock_class_stats *stats;
315         u64 holdtime;
316
317         if (!lock_stat)
318                 return;
319
320         holdtime = lockstat_clock() - hlock->holdtime_stamp;
321
322         stats = get_lock_stats(hlock_class(hlock));
323         if (hlock->read)
324                 lock_time_inc(&stats->read_holdtime, holdtime);
325         else
326                 lock_time_inc(&stats->write_holdtime, holdtime);
327 }
328 #else
329 static inline void lock_release_holdtime(struct held_lock *hlock)
330 {
331 }
332 #endif
333
334 /*
335  * We keep a global list of all lock classes. The list is only accessed with
336  * the lockdep spinlock lock held. free_lock_classes is a list with free
337  * elements. These elements are linked together by the lock_entry member in
338  * struct lock_class.
339  */
340 LIST_HEAD(all_lock_classes);
341 static LIST_HEAD(free_lock_classes);
342
343 /**
344  * struct pending_free - information about data structures about to be freed
345  * @zapped: Head of a list with struct lock_class elements.
346  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
347  *      are about to be freed.
348  */
349 struct pending_free {
350         struct list_head zapped;
351         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
352 };
353
354 /**
355  * struct delayed_free - data structures used for delayed freeing
356  *
357  * A data structure for delayed freeing of data structures that may be
358  * accessed by RCU readers at the time these were freed.
359  *
360  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
361  * @index:     Index of @pf to which freed data structures are added.
362  * @scheduled: Whether or not an RCU callback has been scheduled.
363  * @pf:        Array with information about data structures about to be freed.
364  */
365 static struct delayed_free {
366         struct rcu_head         rcu_head;
367         int                     index;
368         int                     scheduled;
369         struct pending_free     pf[2];
370 } delayed_free;
371
372 /*
373  * The lockdep classes are in a hash-table as well, for fast lookup:
374  */
375 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
376 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
377 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
378 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
379
380 static struct hlist_head classhash_table[CLASSHASH_SIZE];
381
382 /*
383  * We put the lock dependency chains into a hash-table as well, to cache
384  * their existence:
385  */
386 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
387 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
388 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
389 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
390
391 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
392
393 /*
394  * the id of held_lock
395  */
396 static inline u16 hlock_id(struct held_lock *hlock)
397 {
398         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
399
400         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
401 }
402
403 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
404 {
405         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
406 }
407
408 /*
409  * The hash key of the lock dependency chains is a hash itself too:
410  * it's a hash of all locks taken up to that lock, including that lock.
411  * It's a 64-bit hash, because it's important for the keys to be
412  * unique.
413  */
414 static inline u64 iterate_chain_key(u64 key, u32 idx)
415 {
416         u32 k0 = key, k1 = key >> 32;
417
418         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
419
420         return k0 | (u64)k1 << 32;
421 }
422
423 void lockdep_init_task(struct task_struct *task)
424 {
425         task->lockdep_depth = 0; /* no locks held yet */
426         task->curr_chain_key = INITIAL_CHAIN_KEY;
427         task->lockdep_recursion = 0;
428 }
429
430 static __always_inline void lockdep_recursion_inc(void)
431 {
432         __this_cpu_inc(lockdep_recursion);
433 }
434
435 static __always_inline void lockdep_recursion_finish(void)
436 {
437         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
438                 __this_cpu_write(lockdep_recursion, 0);
439 }
440
441 void lockdep_set_selftest_task(struct task_struct *task)
442 {
443         lockdep_selftest_task_struct = task;
444 }
445
446 /*
447  * Debugging switches:
448  */
449
450 #define VERBOSE                 0
451 #define VERY_VERBOSE            0
452
453 #if VERBOSE
454 # define HARDIRQ_VERBOSE        1
455 # define SOFTIRQ_VERBOSE        1
456 #else
457 # define HARDIRQ_VERBOSE        0
458 # define SOFTIRQ_VERBOSE        0
459 #endif
460
461 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
462 /*
463  * Quick filtering for interesting events:
464  */
465 static int class_filter(struct lock_class *class)
466 {
467 #if 0
468         /* Example */
469         if (class->name_version == 1 &&
470                         !strcmp(class->name, "lockname"))
471                 return 1;
472         if (class->name_version == 1 &&
473                         !strcmp(class->name, "&struct->lockfield"))
474                 return 1;
475 #endif
476         /* Filter everything else. 1 would be to allow everything else */
477         return 0;
478 }
479 #endif
480
481 static int verbose(struct lock_class *class)
482 {
483 #if VERBOSE
484         return class_filter(class);
485 #endif
486         return 0;
487 }
488
489 static void print_lockdep_off(const char *bug_msg)
490 {
491         printk(KERN_DEBUG "%s\n", bug_msg);
492         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
493 #ifdef CONFIG_LOCK_STAT
494         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
495 #endif
496 }
497
498 unsigned long nr_stack_trace_entries;
499
500 #ifdef CONFIG_PROVE_LOCKING
501 /**
502  * struct lock_trace - single stack backtrace
503  * @hash_entry: Entry in a stack_trace_hash[] list.
504  * @hash:       jhash() of @entries.
505  * @nr_entries: Number of entries in @entries.
506  * @entries:    Actual stack backtrace.
507  */
508 struct lock_trace {
509         struct hlist_node       hash_entry;
510         u32                     hash;
511         u32                     nr_entries;
512         unsigned long           entries[] __aligned(sizeof(unsigned long));
513 };
514 #define LOCK_TRACE_SIZE_IN_LONGS                                \
515         (sizeof(struct lock_trace) / sizeof(unsigned long))
516 /*
517  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
518  */
519 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
520 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
521
522 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
523 {
524         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
525                 memcmp(t1->entries, t2->entries,
526                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
527 }
528
529 static struct lock_trace *save_trace(void)
530 {
531         struct lock_trace *trace, *t2;
532         struct hlist_head *hash_head;
533         u32 hash;
534         int max_entries;
535
536         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
537         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
538
539         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
540         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
541                 LOCK_TRACE_SIZE_IN_LONGS;
542
543         if (max_entries <= 0) {
544                 if (!debug_locks_off_graph_unlock())
545                         return NULL;
546
547                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
548                 dump_stack();
549
550                 return NULL;
551         }
552         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
553
554         hash = jhash(trace->entries, trace->nr_entries *
555                      sizeof(trace->entries[0]), 0);
556         trace->hash = hash;
557         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
558         hlist_for_each_entry(t2, hash_head, hash_entry) {
559                 if (traces_identical(trace, t2))
560                         return t2;
561         }
562         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
563         hlist_add_head(&trace->hash_entry, hash_head);
564
565         return trace;
566 }
567
568 /* Return the number of stack traces in the stack_trace[] array. */
569 u64 lockdep_stack_trace_count(void)
570 {
571         struct lock_trace *trace;
572         u64 c = 0;
573         int i;
574
575         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
576                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
577                         c++;
578                 }
579         }
580
581         return c;
582 }
583
584 /* Return the number of stack hash chains that have at least one stack trace. */
585 u64 lockdep_stack_hash_count(void)
586 {
587         u64 c = 0;
588         int i;
589
590         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
591                 if (!hlist_empty(&stack_trace_hash[i]))
592                         c++;
593
594         return c;
595 }
596 #endif
597
598 unsigned int nr_hardirq_chains;
599 unsigned int nr_softirq_chains;
600 unsigned int nr_process_chains;
601 unsigned int max_lockdep_depth;
602
603 #ifdef CONFIG_DEBUG_LOCKDEP
604 /*
605  * Various lockdep statistics:
606  */
607 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
608 #endif
609
610 #ifdef CONFIG_PROVE_LOCKING
611 /*
612  * Locking printouts:
613  */
614
615 #define __USAGE(__STATE)                                                \
616         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
617         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
618         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
619         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
620
621 static const char *usage_str[] =
622 {
623 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
624 #include "lockdep_states.h"
625 #undef LOCKDEP_STATE
626         [LOCK_USED] = "INITIAL USE",
627         [LOCK_USED_READ] = "INITIAL READ USE",
628         /* abused as string storage for verify_lock_unused() */
629         [LOCK_USAGE_STATES] = "IN-NMI",
630 };
631 #endif
632
633 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
634 {
635         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
636 }
637
638 static inline unsigned long lock_flag(enum lock_usage_bit bit)
639 {
640         return 1UL << bit;
641 }
642
643 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
644 {
645         /*
646          * The usage character defaults to '.' (i.e., irqs disabled and not in
647          * irq context), which is the safest usage category.
648          */
649         char c = '.';
650
651         /*
652          * The order of the following usage checks matters, which will
653          * result in the outcome character as follows:
654          *
655          * - '+': irq is enabled and not in irq context
656          * - '-': in irq context and irq is disabled
657          * - '?': in irq context and irq is enabled
658          */
659         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
660                 c = '+';
661                 if (class->usage_mask & lock_flag(bit))
662                         c = '?';
663         } else if (class->usage_mask & lock_flag(bit))
664                 c = '-';
665
666         return c;
667 }
668
669 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
670 {
671         int i = 0;
672
673 #define LOCKDEP_STATE(__STATE)                                          \
674         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
675         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
676 #include "lockdep_states.h"
677 #undef LOCKDEP_STATE
678
679         usage[i] = '\0';
680 }
681
682 static void __print_lock_name(struct lock_class *class)
683 {
684         char str[KSYM_NAME_LEN];
685         const char *name;
686
687         name = class->name;
688         if (!name) {
689                 name = __get_key_name(class->key, str);
690                 printk(KERN_CONT "%s", name);
691         } else {
692                 printk(KERN_CONT "%s", name);
693                 if (class->name_version > 1)
694                         printk(KERN_CONT "#%d", class->name_version);
695                 if (class->subclass)
696                         printk(KERN_CONT "/%d", class->subclass);
697         }
698 }
699
700 static void print_lock_name(struct lock_class *class)
701 {
702         char usage[LOCK_USAGE_CHARS];
703
704         get_usage_chars(class, usage);
705
706         printk(KERN_CONT " (");
707         __print_lock_name(class);
708         printk(KERN_CONT "){%s}-{%hd:%hd}", usage,
709                         class->wait_type_outer ?: class->wait_type_inner,
710                         class->wait_type_inner);
711 }
712
713 static void print_lockdep_cache(struct lockdep_map *lock)
714 {
715         const char *name;
716         char str[KSYM_NAME_LEN];
717
718         name = lock->name;
719         if (!name)
720                 name = __get_key_name(lock->key->subkeys, str);
721
722         printk(KERN_CONT "%s", name);
723 }
724
725 static void print_lock(struct held_lock *hlock)
726 {
727         /*
728          * We can be called locklessly through debug_show_all_locks() so be
729          * extra careful, the hlock might have been released and cleared.
730          *
731          * If this indeed happens, lets pretend it does not hurt to continue
732          * to print the lock unless the hlock class_idx does not point to a
733          * registered class. The rationale here is: since we don't attempt
734          * to distinguish whether we are in this situation, if it just
735          * happened we can't count on class_idx to tell either.
736          */
737         struct lock_class *lock = hlock_class(hlock);
738
739         if (!lock) {
740                 printk(KERN_CONT "<RELEASED>\n");
741                 return;
742         }
743
744         printk(KERN_CONT "%px", hlock->instance);
745         print_lock_name(lock);
746         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
747 }
748
749 static void lockdep_print_held_locks(struct task_struct *p)
750 {
751         int i, depth = READ_ONCE(p->lockdep_depth);
752
753         if (!depth)
754                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
755         else
756                 printk("%d lock%s held by %s/%d:\n", depth,
757                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
758         /*
759          * It's not reliable to print a task's held locks if it's not sleeping
760          * and it's not the current task.
761          */
762         if (p->state == TASK_RUNNING && p != current)
763                 return;
764         for (i = 0; i < depth; i++) {
765                 printk(" #%d: ", i);
766                 print_lock(p->held_locks + i);
767         }
768 }
769
770 static void print_kernel_ident(void)
771 {
772         printk("%s %.*s %s\n", init_utsname()->release,
773                 (int)strcspn(init_utsname()->version, " "),
774                 init_utsname()->version,
775                 print_tainted());
776 }
777
778 static int very_verbose(struct lock_class *class)
779 {
780 #if VERY_VERBOSE
781         return class_filter(class);
782 #endif
783         return 0;
784 }
785
786 /*
787  * Is this the address of a static object:
788  */
789 #ifdef __KERNEL__
790 static int static_obj(const void *obj)
791 {
792         unsigned long start = (unsigned long) &_stext,
793                       end   = (unsigned long) &_end,
794                       addr  = (unsigned long) obj;
795
796         if (arch_is_kernel_initmem_freed(addr))
797                 return 0;
798
799         /*
800          * static variable?
801          */
802         if ((addr >= start) && (addr < end))
803                 return 1;
804
805         if (arch_is_kernel_data(addr))
806                 return 1;
807
808         /*
809          * in-kernel percpu var?
810          */
811         if (is_kernel_percpu_address(addr))
812                 return 1;
813
814         /*
815          * module static or percpu var?
816          */
817         return is_module_address(addr) || is_module_percpu_address(addr);
818 }
819 #endif
820
821 /*
822  * To make lock name printouts unique, we calculate a unique
823  * class->name_version generation counter. The caller must hold the graph
824  * lock.
825  */
826 static int count_matching_names(struct lock_class *new_class)
827 {
828         struct lock_class *class;
829         int count = 0;
830
831         if (!new_class->name)
832                 return 0;
833
834         list_for_each_entry(class, &all_lock_classes, lock_entry) {
835                 if (new_class->key - new_class->subclass == class->key)
836                         return class->name_version;
837                 if (class->name && !strcmp(class->name, new_class->name))
838                         count = max(count, class->name_version);
839         }
840
841         return count + 1;
842 }
843
844 /* used from NMI context -- must be lockless */
845 static __always_inline struct lock_class *
846 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
847 {
848         struct lockdep_subclass_key *key;
849         struct hlist_head *hash_head;
850         struct lock_class *class;
851
852         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
853                 debug_locks_off();
854                 printk(KERN_ERR
855                         "BUG: looking up invalid subclass: %u\n", subclass);
856                 printk(KERN_ERR
857                         "turning off the locking correctness validator.\n");
858                 dump_stack();
859                 return NULL;
860         }
861
862         /*
863          * If it is not initialised then it has never been locked,
864          * so it won't be present in the hash table.
865          */
866         if (unlikely(!lock->key))
867                 return NULL;
868
869         /*
870          * NOTE: the class-key must be unique. For dynamic locks, a static
871          * lock_class_key variable is passed in through the mutex_init()
872          * (or spin_lock_init()) call - which acts as the key. For static
873          * locks we use the lock object itself as the key.
874          */
875         BUILD_BUG_ON(sizeof(struct lock_class_key) >
876                         sizeof(struct lockdep_map));
877
878         key = lock->key->subkeys + subclass;
879
880         hash_head = classhashentry(key);
881
882         /*
883          * We do an RCU walk of the hash, see lockdep_free_key_range().
884          */
885         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
886                 return NULL;
887
888         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
889                 if (class->key == key) {
890                         /*
891                          * Huh! same key, different name? Did someone trample
892                          * on some memory? We're most confused.
893                          */
894                         WARN_ON_ONCE(class->name != lock->name &&
895                                      lock->key != &__lockdep_no_validate__);
896                         return class;
897                 }
898         }
899
900         return NULL;
901 }
902
903 /*
904  * Static locks do not have their class-keys yet - for them the key is
905  * the lock object itself. If the lock is in the per cpu area, the
906  * canonical address of the lock (per cpu offset removed) is used.
907  */
908 static bool assign_lock_key(struct lockdep_map *lock)
909 {
910         unsigned long can_addr, addr = (unsigned long)lock;
911
912 #ifdef __KERNEL__
913         /*
914          * lockdep_free_key_range() assumes that struct lock_class_key
915          * objects do not overlap. Since we use the address of lock
916          * objects as class key for static objects, check whether the
917          * size of lock_class_key objects does not exceed the size of
918          * the smallest lock object.
919          */
920         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
921 #endif
922
923         if (__is_kernel_percpu_address(addr, &can_addr))
924                 lock->key = (void *)can_addr;
925         else if (__is_module_percpu_address(addr, &can_addr))
926                 lock->key = (void *)can_addr;
927         else if (static_obj(lock))
928                 lock->key = (void *)lock;
929         else {
930                 /* Debug-check: all keys must be persistent! */
931                 debug_locks_off();
932                 pr_err("INFO: trying to register non-static key.\n");
933                 pr_err("the code is fine but needs lockdep annotation.\n");
934                 pr_err("turning off the locking correctness validator.\n");
935                 dump_stack();
936                 return false;
937         }
938
939         return true;
940 }
941
942 #ifdef CONFIG_DEBUG_LOCKDEP
943
944 /* Check whether element @e occurs in list @h */
945 static bool in_list(struct list_head *e, struct list_head *h)
946 {
947         struct list_head *f;
948
949         list_for_each(f, h) {
950                 if (e == f)
951                         return true;
952         }
953
954         return false;
955 }
956
957 /*
958  * Check whether entry @e occurs in any of the locks_after or locks_before
959  * lists.
960  */
961 static bool in_any_class_list(struct list_head *e)
962 {
963         struct lock_class *class;
964         int i;
965
966         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
967                 class = &lock_classes[i];
968                 if (in_list(e, &class->locks_after) ||
969                     in_list(e, &class->locks_before))
970                         return true;
971         }
972         return false;
973 }
974
975 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
976 {
977         struct lock_list *e;
978
979         list_for_each_entry(e, h, entry) {
980                 if (e->links_to != c) {
981                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
982                                c->name ? : "(?)",
983                                (unsigned long)(e - list_entries),
984                                e->links_to && e->links_to->name ?
985                                e->links_to->name : "(?)",
986                                e->class && e->class->name ? e->class->name :
987                                "(?)");
988                         return false;
989                 }
990         }
991         return true;
992 }
993
994 #ifdef CONFIG_PROVE_LOCKING
995 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
996 #endif
997
998 static bool check_lock_chain_key(struct lock_chain *chain)
999 {
1000 #ifdef CONFIG_PROVE_LOCKING
1001         u64 chain_key = INITIAL_CHAIN_KEY;
1002         int i;
1003
1004         for (i = chain->base; i < chain->base + chain->depth; i++)
1005                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1006         /*
1007          * The 'unsigned long long' casts avoid that a compiler warning
1008          * is reported when building tools/lib/lockdep.
1009          */
1010         if (chain->chain_key != chain_key) {
1011                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1012                        (unsigned long long)(chain - lock_chains),
1013                        (unsigned long long)chain->chain_key,
1014                        (unsigned long long)chain_key);
1015                 return false;
1016         }
1017 #endif
1018         return true;
1019 }
1020
1021 static bool in_any_zapped_class_list(struct lock_class *class)
1022 {
1023         struct pending_free *pf;
1024         int i;
1025
1026         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1027                 if (in_list(&class->lock_entry, &pf->zapped))
1028                         return true;
1029         }
1030
1031         return false;
1032 }
1033
1034 static bool __check_data_structures(void)
1035 {
1036         struct lock_class *class;
1037         struct lock_chain *chain;
1038         struct hlist_head *head;
1039         struct lock_list *e;
1040         int i;
1041
1042         /* Check whether all classes occur in a lock list. */
1043         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1044                 class = &lock_classes[i];
1045                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1046                     !in_list(&class->lock_entry, &free_lock_classes) &&
1047                     !in_any_zapped_class_list(class)) {
1048                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1049                                class, class->name ? : "(?)");
1050                         return false;
1051                 }
1052         }
1053
1054         /* Check whether all classes have valid lock lists. */
1055         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1056                 class = &lock_classes[i];
1057                 if (!class_lock_list_valid(class, &class->locks_before))
1058                         return false;
1059                 if (!class_lock_list_valid(class, &class->locks_after))
1060                         return false;
1061         }
1062
1063         /* Check the chain_key of all lock chains. */
1064         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1065                 head = chainhash_table + i;
1066                 hlist_for_each_entry_rcu(chain, head, entry) {
1067                         if (!check_lock_chain_key(chain))
1068                                 return false;
1069                 }
1070         }
1071
1072         /*
1073          * Check whether all list entries that are in use occur in a class
1074          * lock list.
1075          */
1076         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1077                 e = list_entries + i;
1078                 if (!in_any_class_list(&e->entry)) {
1079                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1080                                (unsigned int)(e - list_entries),
1081                                e->class->name ? : "(?)",
1082                                e->links_to->name ? : "(?)");
1083                         return false;
1084                 }
1085         }
1086
1087         /*
1088          * Check whether all list entries that are not in use do not occur in
1089          * a class lock list.
1090          */
1091         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1092                 e = list_entries + i;
1093                 if (in_any_class_list(&e->entry)) {
1094                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1095                                (unsigned int)(e - list_entries),
1096                                e->class && e->class->name ? e->class->name :
1097                                "(?)",
1098                                e->links_to && e->links_to->name ?
1099                                e->links_to->name : "(?)");
1100                         return false;
1101                 }
1102         }
1103
1104         return true;
1105 }
1106
1107 int check_consistency = 0;
1108 module_param(check_consistency, int, 0644);
1109
1110 static void check_data_structures(void)
1111 {
1112         static bool once = false;
1113
1114         if (check_consistency && !once) {
1115                 if (!__check_data_structures()) {
1116                         once = true;
1117                         WARN_ON(once);
1118                 }
1119         }
1120 }
1121
1122 #else /* CONFIG_DEBUG_LOCKDEP */
1123
1124 static inline void check_data_structures(void) { }
1125
1126 #endif /* CONFIG_DEBUG_LOCKDEP */
1127
1128 static void init_chain_block_buckets(void);
1129
1130 /*
1131  * Initialize the lock_classes[] array elements, the free_lock_classes list
1132  * and also the delayed_free structure.
1133  */
1134 static void init_data_structures_once(void)
1135 {
1136         static bool __read_mostly ds_initialized, rcu_head_initialized;
1137         int i;
1138
1139         if (likely(rcu_head_initialized))
1140                 return;
1141
1142         if (system_state >= SYSTEM_SCHEDULING) {
1143                 init_rcu_head(&delayed_free.rcu_head);
1144                 rcu_head_initialized = true;
1145         }
1146
1147         if (ds_initialized)
1148                 return;
1149
1150         ds_initialized = true;
1151
1152         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1153         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1154
1155         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1156                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1157                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1158                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1159         }
1160         init_chain_block_buckets();
1161 }
1162
1163 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1164 {
1165         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1166
1167         return lock_keys_hash + hash;
1168 }
1169
1170 /* Register a dynamically allocated key. */
1171 void lockdep_register_key(struct lock_class_key *key)
1172 {
1173         struct hlist_head *hash_head;
1174         struct lock_class_key *k;
1175         unsigned long flags;
1176
1177         if (WARN_ON_ONCE(static_obj(key)))
1178                 return;
1179         hash_head = keyhashentry(key);
1180
1181         raw_local_irq_save(flags);
1182         if (!graph_lock())
1183                 goto restore_irqs;
1184         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1185                 if (WARN_ON_ONCE(k == key))
1186                         goto out_unlock;
1187         }
1188         hlist_add_head_rcu(&key->hash_entry, hash_head);
1189 out_unlock:
1190         graph_unlock();
1191 restore_irqs:
1192         raw_local_irq_restore(flags);
1193 }
1194 EXPORT_SYMBOL_GPL(lockdep_register_key);
1195
1196 /* Check whether a key has been registered as a dynamic key. */
1197 static bool is_dynamic_key(const struct lock_class_key *key)
1198 {
1199         struct hlist_head *hash_head;
1200         struct lock_class_key *k;
1201         bool found = false;
1202
1203         if (WARN_ON_ONCE(static_obj(key)))
1204                 return false;
1205
1206         /*
1207          * If lock debugging is disabled lock_keys_hash[] may contain
1208          * pointers to memory that has already been freed. Avoid triggering
1209          * a use-after-free in that case by returning early.
1210          */
1211         if (!debug_locks)
1212                 return true;
1213
1214         hash_head = keyhashentry(key);
1215
1216         rcu_read_lock();
1217         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1218                 if (k == key) {
1219                         found = true;
1220                         break;
1221                 }
1222         }
1223         rcu_read_unlock();
1224
1225         return found;
1226 }
1227
1228 /*
1229  * Register a lock's class in the hash-table, if the class is not present
1230  * yet. Otherwise we look it up. We cache the result in the lock object
1231  * itself, so actual lookup of the hash should be once per lock object.
1232  */
1233 static struct lock_class *
1234 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1235 {
1236         struct lockdep_subclass_key *key;
1237         struct hlist_head *hash_head;
1238         struct lock_class *class;
1239
1240         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1241
1242         class = look_up_lock_class(lock, subclass);
1243         if (likely(class))
1244                 goto out_set_class_cache;
1245
1246         if (!lock->key) {
1247                 if (!assign_lock_key(lock))
1248                         return NULL;
1249         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1250                 return NULL;
1251         }
1252
1253         key = lock->key->subkeys + subclass;
1254         hash_head = classhashentry(key);
1255
1256         if (!graph_lock()) {
1257                 return NULL;
1258         }
1259         /*
1260          * We have to do the hash-walk again, to avoid races
1261          * with another CPU:
1262          */
1263         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1264                 if (class->key == key)
1265                         goto out_unlock_set;
1266         }
1267
1268         init_data_structures_once();
1269
1270         /* Allocate a new lock class and add it to the hash. */
1271         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1272                                          lock_entry);
1273         if (!class) {
1274                 if (!debug_locks_off_graph_unlock()) {
1275                         return NULL;
1276                 }
1277
1278                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1279                 dump_stack();
1280                 return NULL;
1281         }
1282         nr_lock_classes++;
1283         __set_bit(class - lock_classes, lock_classes_in_use);
1284         debug_atomic_inc(nr_unused_locks);
1285         class->key = key;
1286         class->name = lock->name;
1287         class->subclass = subclass;
1288         WARN_ON_ONCE(!list_empty(&class->locks_before));
1289         WARN_ON_ONCE(!list_empty(&class->locks_after));
1290         class->name_version = count_matching_names(class);
1291         class->wait_type_inner = lock->wait_type_inner;
1292         class->wait_type_outer = lock->wait_type_outer;
1293         class->lock_type = lock->lock_type;
1294         /*
1295          * We use RCU's safe list-add method to make
1296          * parallel walking of the hash-list safe:
1297          */
1298         hlist_add_head_rcu(&class->hash_entry, hash_head);
1299         /*
1300          * Remove the class from the free list and add it to the global list
1301          * of classes.
1302          */
1303         list_move_tail(&class->lock_entry, &all_lock_classes);
1304
1305         if (verbose(class)) {
1306                 graph_unlock();
1307
1308                 printk("\nnew class %px: %s", class->key, class->name);
1309                 if (class->name_version > 1)
1310                         printk(KERN_CONT "#%d", class->name_version);
1311                 printk(KERN_CONT "\n");
1312                 dump_stack();
1313
1314                 if (!graph_lock()) {
1315                         return NULL;
1316                 }
1317         }
1318 out_unlock_set:
1319         graph_unlock();
1320
1321 out_set_class_cache:
1322         if (!subclass || force)
1323                 lock->class_cache[0] = class;
1324         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1325                 lock->class_cache[subclass] = class;
1326
1327         /*
1328          * Hash collision, did we smoke some? We found a class with a matching
1329          * hash but the subclass -- which is hashed in -- didn't match.
1330          */
1331         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1332                 return NULL;
1333
1334         return class;
1335 }
1336
1337 #ifdef CONFIG_PROVE_LOCKING
1338 /*
1339  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1340  * with NULL on failure)
1341  */
1342 static struct lock_list *alloc_list_entry(void)
1343 {
1344         int idx = find_first_zero_bit(list_entries_in_use,
1345                                       ARRAY_SIZE(list_entries));
1346
1347         if (idx >= ARRAY_SIZE(list_entries)) {
1348                 if (!debug_locks_off_graph_unlock())
1349                         return NULL;
1350
1351                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1352                 dump_stack();
1353                 return NULL;
1354         }
1355         nr_list_entries++;
1356         __set_bit(idx, list_entries_in_use);
1357         return list_entries + idx;
1358 }
1359
1360 /*
1361  * Add a new dependency to the head of the list:
1362  */
1363 static int add_lock_to_list(struct lock_class *this,
1364                             struct lock_class *links_to, struct list_head *head,
1365                             unsigned long ip, u16 distance, u8 dep,
1366                             const struct lock_trace *trace)
1367 {
1368         struct lock_list *entry;
1369         /*
1370          * Lock not present yet - get a new dependency struct and
1371          * add it to the list:
1372          */
1373         entry = alloc_list_entry();
1374         if (!entry)
1375                 return 0;
1376
1377         entry->class = this;
1378         entry->links_to = links_to;
1379         entry->dep = dep;
1380         entry->distance = distance;
1381         entry->trace = trace;
1382         /*
1383          * Both allocation and removal are done under the graph lock; but
1384          * iteration is under RCU-sched; see look_up_lock_class() and
1385          * lockdep_free_key_range().
1386          */
1387         list_add_tail_rcu(&entry->entry, head);
1388
1389         return 1;
1390 }
1391
1392 /*
1393  * For good efficiency of modular, we use power of 2
1394  */
1395 #define MAX_CIRCULAR_QUEUE_SIZE         4096UL
1396 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1397
1398 /*
1399  * The circular_queue and helpers are used to implement graph
1400  * breadth-first search (BFS) algorithm, by which we can determine
1401  * whether there is a path from a lock to another. In deadlock checks,
1402  * a path from the next lock to be acquired to a previous held lock
1403  * indicates that adding the <prev> -> <next> lock dependency will
1404  * produce a circle in the graph. Breadth-first search instead of
1405  * depth-first search is used in order to find the shortest (circular)
1406  * path.
1407  */
1408 struct circular_queue {
1409         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1410         unsigned int  front, rear;
1411 };
1412
1413 static struct circular_queue lock_cq;
1414
1415 unsigned int max_bfs_queue_depth;
1416
1417 static unsigned int lockdep_dependency_gen_id;
1418
1419 static inline void __cq_init(struct circular_queue *cq)
1420 {
1421         cq->front = cq->rear = 0;
1422         lockdep_dependency_gen_id++;
1423 }
1424
1425 static inline int __cq_empty(struct circular_queue *cq)
1426 {
1427         return (cq->front == cq->rear);
1428 }
1429
1430 static inline int __cq_full(struct circular_queue *cq)
1431 {
1432         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1433 }
1434
1435 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1436 {
1437         if (__cq_full(cq))
1438                 return -1;
1439
1440         cq->element[cq->rear] = elem;
1441         cq->rear = (cq->rear + 1) & CQ_MASK;
1442         return 0;
1443 }
1444
1445 /*
1446  * Dequeue an element from the circular_queue, return a lock_list if
1447  * the queue is not empty, or NULL if otherwise.
1448  */
1449 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1450 {
1451         struct lock_list * lock;
1452
1453         if (__cq_empty(cq))
1454                 return NULL;
1455
1456         lock = cq->element[cq->front];
1457         cq->front = (cq->front + 1) & CQ_MASK;
1458
1459         return lock;
1460 }
1461
1462 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1463 {
1464         return (cq->rear - cq->front) & CQ_MASK;
1465 }
1466
1467 static inline void mark_lock_accessed(struct lock_list *lock)
1468 {
1469         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1470 }
1471
1472 static inline void visit_lock_entry(struct lock_list *lock,
1473                                     struct lock_list *parent)
1474 {
1475         lock->parent = parent;
1476 }
1477
1478 static inline unsigned long lock_accessed(struct lock_list *lock)
1479 {
1480         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1481 }
1482
1483 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1484 {
1485         return child->parent;
1486 }
1487
1488 static inline int get_lock_depth(struct lock_list *child)
1489 {
1490         int depth = 0;
1491         struct lock_list *parent;
1492
1493         while ((parent = get_lock_parent(child))) {
1494                 child = parent;
1495                 depth++;
1496         }
1497         return depth;
1498 }
1499
1500 /*
1501  * Return the forward or backward dependency list.
1502  *
1503  * @lock:   the lock_list to get its class's dependency list
1504  * @offset: the offset to struct lock_class to determine whether it is
1505  *          locks_after or locks_before
1506  */
1507 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1508 {
1509         void *lock_class = lock->class;
1510
1511         return lock_class + offset;
1512 }
1513 /*
1514  * Return values of a bfs search:
1515  *
1516  * BFS_E* indicates an error
1517  * BFS_R* indicates a result (match or not)
1518  *
1519  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1520  *
1521  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1522  *
1523  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1524  *             *@target_entry.
1525  *
1526  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1527  *               _unchanged_.
1528  */
1529 enum bfs_result {
1530         BFS_EINVALIDNODE = -2,
1531         BFS_EQUEUEFULL = -1,
1532         BFS_RMATCH = 0,
1533         BFS_RNOMATCH = 1,
1534 };
1535
1536 /*
1537  * bfs_result < 0 means error
1538  */
1539 static inline bool bfs_error(enum bfs_result res)
1540 {
1541         return res < 0;
1542 }
1543
1544 /*
1545  * DEP_*_BIT in lock_list::dep
1546  *
1547  * For dependency @prev -> @next:
1548  *
1549  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1550  *       (->read == 2)
1551  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1552  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1553  *   EN: @prev is exclusive locker and @next is non-recursive locker
1554  *
1555  * Note that we define the value of DEP_*_BITs so that:
1556  *   bit0 is prev->read == 0
1557  *   bit1 is next->read != 2
1558  */
1559 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1560 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1561 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1562 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1563
1564 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1565 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1566 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1567 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1568
1569 static inline unsigned int
1570 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1571 {
1572         return (prev->read == 0) + ((next->read != 2) << 1);
1573 }
1574
1575 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1576 {
1577         return 1U << __calc_dep_bit(prev, next);
1578 }
1579
1580 /*
1581  * calculate the dep_bit for backwards edges. We care about whether @prev is
1582  * shared and whether @next is recursive.
1583  */
1584 static inline unsigned int
1585 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1586 {
1587         return (next->read != 2) + ((prev->read == 0) << 1);
1588 }
1589
1590 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1591 {
1592         return 1U << __calc_dep_bitb(prev, next);
1593 }
1594
1595 /*
1596  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1597  * search.
1598  */
1599 static inline void __bfs_init_root(struct lock_list *lock,
1600                                    struct lock_class *class)
1601 {
1602         lock->class = class;
1603         lock->parent = NULL;
1604         lock->only_xr = 0;
1605 }
1606
1607 /*
1608  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1609  * root for a BFS search.
1610  *
1611  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1612  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1613  * and -(S*)->.
1614  */
1615 static inline void bfs_init_root(struct lock_list *lock,
1616                                  struct held_lock *hlock)
1617 {
1618         __bfs_init_root(lock, hlock_class(hlock));
1619         lock->only_xr = (hlock->read == 2);
1620 }
1621
1622 /*
1623  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1624  *
1625  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1626  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1627  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1628  */
1629 static inline void bfs_init_rootb(struct lock_list *lock,
1630                                   struct held_lock *hlock)
1631 {
1632         __bfs_init_root(lock, hlock_class(hlock));
1633         lock->only_xr = (hlock->read != 0);
1634 }
1635
1636 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1637 {
1638         if (!lock || !lock->parent)
1639                 return NULL;
1640
1641         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1642                                      &lock->entry, struct lock_list, entry);
1643 }
1644
1645 /*
1646  * Breadth-First Search to find a strong path in the dependency graph.
1647  *
1648  * @source_entry: the source of the path we are searching for.
1649  * @data: data used for the second parameter of @match function
1650  * @match: match function for the search
1651  * @target_entry: pointer to the target of a matched path
1652  * @offset: the offset to struct lock_class to determine whether it is
1653  *          locks_after or locks_before
1654  *
1655  * We may have multiple edges (considering different kinds of dependencies,
1656  * e.g. ER and SN) between two nodes in the dependency graph. But
1657  * only the strong dependency path in the graph is relevant to deadlocks. A
1658  * strong dependency path is a dependency path that doesn't have two adjacent
1659  * dependencies as -(*R)-> -(S*)->, please see:
1660  *
1661  *         Documentation/locking/lockdep-design.rst
1662  *
1663  * for more explanation of the definition of strong dependency paths
1664  *
1665  * In __bfs(), we only traverse in the strong dependency path:
1666  *
1667  *     In lock_list::only_xr, we record whether the previous dependency only
1668  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1669  *     filter out any -(S*)-> in the current dependency and after that, the
1670  *     ->only_xr is set according to whether we only have -(*R)-> left.
1671  */
1672 static enum bfs_result __bfs(struct lock_list *source_entry,
1673                              void *data,
1674                              bool (*match)(struct lock_list *entry, void *data),
1675                              bool (*skip)(struct lock_list *entry, void *data),
1676                              struct lock_list **target_entry,
1677                              int offset)
1678 {
1679         struct circular_queue *cq = &lock_cq;
1680         struct lock_list *lock = NULL;
1681         struct lock_list *entry;
1682         struct list_head *head;
1683         unsigned int cq_depth;
1684         bool first;
1685
1686         lockdep_assert_locked();
1687
1688         __cq_init(cq);
1689         __cq_enqueue(cq, source_entry);
1690
1691         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1692                 if (!lock->class)
1693                         return BFS_EINVALIDNODE;
1694
1695                 /*
1696                  * Step 1: check whether we already finish on this one.
1697                  *
1698                  * If we have visited all the dependencies from this @lock to
1699                  * others (iow, if we have visited all lock_list entries in
1700                  * @lock->class->locks_{after,before}) we skip, otherwise go
1701                  * and visit all the dependencies in the list and mark this
1702                  * list accessed.
1703                  */
1704                 if (lock_accessed(lock))
1705                         continue;
1706                 else
1707                         mark_lock_accessed(lock);
1708
1709                 /*
1710                  * Step 2: check whether prev dependency and this form a strong
1711                  *         dependency path.
1712                  */
1713                 if (lock->parent) { /* Parent exists, check prev dependency */
1714                         u8 dep = lock->dep;
1715                         bool prev_only_xr = lock->parent->only_xr;
1716
1717                         /*
1718                          * Mask out all -(S*)-> if we only have *R in previous
1719                          * step, because -(*R)-> -(S*)-> don't make up a strong
1720                          * dependency.
1721                          */
1722                         if (prev_only_xr)
1723                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1724
1725                         /* If nothing left, we skip */
1726                         if (!dep)
1727                                 continue;
1728
1729                         /* If there are only -(*R)-> left, set that for the next step */
1730                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1731                 }
1732
1733                 /*
1734                  * Step 3: we haven't visited this and there is a strong
1735                  *         dependency path to this, so check with @match.
1736                  *         If @skip is provide and returns true, we skip this
1737                  *         lock (and any path this lock is in).
1738                  */
1739                 if (skip && skip(lock, data))
1740                         continue;
1741
1742                 if (match(lock, data)) {
1743                         *target_entry = lock;
1744                         return BFS_RMATCH;
1745                 }
1746
1747                 /*
1748                  * Step 4: if not match, expand the path by adding the
1749                  *         forward or backwards dependencis in the search
1750                  *
1751                  */
1752                 first = true;
1753                 head = get_dep_list(lock, offset);
1754                 list_for_each_entry_rcu(entry, head, entry) {
1755                         visit_lock_entry(entry, lock);
1756
1757                         /*
1758                          * Note we only enqueue the first of the list into the
1759                          * queue, because we can always find a sibling
1760                          * dependency from one (see __bfs_next()), as a result
1761                          * the space of queue is saved.
1762                          */
1763                         if (!first)
1764                                 continue;
1765
1766                         first = false;
1767
1768                         if (__cq_enqueue(cq, entry))
1769                                 return BFS_EQUEUEFULL;
1770
1771                         cq_depth = __cq_get_elem_count(cq);
1772                         if (max_bfs_queue_depth < cq_depth)
1773                                 max_bfs_queue_depth = cq_depth;
1774                 }
1775         }
1776
1777         return BFS_RNOMATCH;
1778 }
1779
1780 static inline enum bfs_result
1781 __bfs_forwards(struct lock_list *src_entry,
1782                void *data,
1783                bool (*match)(struct lock_list *entry, void *data),
1784                bool (*skip)(struct lock_list *entry, void *data),
1785                struct lock_list **target_entry)
1786 {
1787         return __bfs(src_entry, data, match, skip, target_entry,
1788                      offsetof(struct lock_class, locks_after));
1789
1790 }
1791
1792 static inline enum bfs_result
1793 __bfs_backwards(struct lock_list *src_entry,
1794                 void *data,
1795                 bool (*match)(struct lock_list *entry, void *data),
1796                bool (*skip)(struct lock_list *entry, void *data),
1797                 struct lock_list **target_entry)
1798 {
1799         return __bfs(src_entry, data, match, skip, target_entry,
1800                      offsetof(struct lock_class, locks_before));
1801
1802 }
1803
1804 static void print_lock_trace(const struct lock_trace *trace,
1805                              unsigned int spaces)
1806 {
1807         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1808 }
1809
1810 /*
1811  * Print a dependency chain entry (this is only done when a deadlock
1812  * has been detected):
1813  */
1814 static noinline void
1815 print_circular_bug_entry(struct lock_list *target, int depth)
1816 {
1817         if (debug_locks_silent)
1818                 return;
1819         printk("\n-> #%u", depth);
1820         print_lock_name(target->class);
1821         printk(KERN_CONT ":\n");
1822         print_lock_trace(target->trace, 6);
1823 }
1824
1825 static void
1826 print_circular_lock_scenario(struct held_lock *src,
1827                              struct held_lock *tgt,
1828                              struct lock_list *prt)
1829 {
1830         struct lock_class *source = hlock_class(src);
1831         struct lock_class *target = hlock_class(tgt);
1832         struct lock_class *parent = prt->class;
1833
1834         /*
1835          * A direct locking problem where unsafe_class lock is taken
1836          * directly by safe_class lock, then all we need to show
1837          * is the deadlock scenario, as it is obvious that the
1838          * unsafe lock is taken under the safe lock.
1839          *
1840          * But if there is a chain instead, where the safe lock takes
1841          * an intermediate lock (middle_class) where this lock is
1842          * not the same as the safe lock, then the lock chain is
1843          * used to describe the problem. Otherwise we would need
1844          * to show a different CPU case for each link in the chain
1845          * from the safe_class lock to the unsafe_class lock.
1846          */
1847         if (parent != source) {
1848                 printk("Chain exists of:\n  ");
1849                 __print_lock_name(source);
1850                 printk(KERN_CONT " --> ");
1851                 __print_lock_name(parent);
1852                 printk(KERN_CONT " --> ");
1853                 __print_lock_name(target);
1854                 printk(KERN_CONT "\n\n");
1855         }
1856
1857         printk(" Possible unsafe locking scenario:\n\n");
1858         printk("       CPU0                    CPU1\n");
1859         printk("       ----                    ----\n");
1860         printk("  lock(");
1861         __print_lock_name(target);
1862         printk(KERN_CONT ");\n");
1863         printk("                               lock(");
1864         __print_lock_name(parent);
1865         printk(KERN_CONT ");\n");
1866         printk("                               lock(");
1867         __print_lock_name(target);
1868         printk(KERN_CONT ");\n");
1869         printk("  lock(");
1870         __print_lock_name(source);
1871         printk(KERN_CONT ");\n");
1872         printk("\n *** DEADLOCK ***\n\n");
1873 }
1874
1875 /*
1876  * When a circular dependency is detected, print the
1877  * header first:
1878  */
1879 static noinline void
1880 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1881                         struct held_lock *check_src,
1882                         struct held_lock *check_tgt)
1883 {
1884         struct task_struct *curr = current;
1885
1886         if (debug_locks_silent)
1887                 return;
1888
1889         pr_warn("\n");
1890         pr_warn("======================================================\n");
1891         pr_warn("WARNING: possible circular locking dependency detected\n");
1892         print_kernel_ident();
1893         pr_warn("------------------------------------------------------\n");
1894         pr_warn("%s/%d is trying to acquire lock:\n",
1895                 curr->comm, task_pid_nr(curr));
1896         print_lock(check_src);
1897
1898         pr_warn("\nbut task is already holding lock:\n");
1899
1900         print_lock(check_tgt);
1901         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1902         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1903
1904         print_circular_bug_entry(entry, depth);
1905 }
1906
1907 /*
1908  * We are about to add A -> B into the dependency graph, and in __bfs() a
1909  * strong dependency path A -> .. -> B is found: hlock_class equals
1910  * entry->class.
1911  *
1912  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1913  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1914  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1915  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1916  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1917  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1918  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1919  *
1920  * We need to make sure both the start and the end of A -> .. -> B is not
1921  * weaker than A -> B. For the start part, please see the comment in
1922  * check_redundant(). For the end part, we need:
1923  *
1924  * Either
1925  *
1926  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1927  *
1928  * or
1929  *
1930  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1931  *
1932  */
1933 static inline bool hlock_equal(struct lock_list *entry, void *data)
1934 {
1935         struct held_lock *hlock = (struct held_lock *)data;
1936
1937         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1938                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1939                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1940 }
1941
1942 /*
1943  * We are about to add B -> A into the dependency graph, and in __bfs() a
1944  * strong dependency path A -> .. -> B is found: hlock_class equals
1945  * entry->class.
1946  *
1947  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1948  * dependency cycle, that means:
1949  *
1950  * Either
1951  *
1952  *     a) B -> A is -(E*)->
1953  *
1954  * or
1955  *
1956  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1957  *
1958  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1959  */
1960 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1961 {
1962         struct held_lock *hlock = (struct held_lock *)data;
1963
1964         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1965                (hlock->read == 0 || /* B -> A is -(E*)-> */
1966                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1967 }
1968
1969 static noinline void print_circular_bug(struct lock_list *this,
1970                                 struct lock_list *target,
1971                                 struct held_lock *check_src,
1972                                 struct held_lock *check_tgt)
1973 {
1974         struct task_struct *curr = current;
1975         struct lock_list *parent;
1976         struct lock_list *first_parent;
1977         int depth;
1978
1979         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1980                 return;
1981
1982         this->trace = save_trace();
1983         if (!this->trace)
1984                 return;
1985
1986         depth = get_lock_depth(target);
1987
1988         print_circular_bug_header(target, depth, check_src, check_tgt);
1989
1990         parent = get_lock_parent(target);
1991         first_parent = parent;
1992
1993         while (parent) {
1994                 print_circular_bug_entry(parent, --depth);
1995                 parent = get_lock_parent(parent);
1996         }
1997
1998         printk("\nother info that might help us debug this:\n\n");
1999         print_circular_lock_scenario(check_src, check_tgt,
2000                                      first_parent);
2001
2002         lockdep_print_held_locks(curr);
2003
2004         printk("\nstack backtrace:\n");
2005         dump_stack();
2006 }
2007
2008 static noinline void print_bfs_bug(int ret)
2009 {
2010         if (!debug_locks_off_graph_unlock())
2011                 return;
2012
2013         /*
2014          * Breadth-first-search failed, graph got corrupted?
2015          */
2016         WARN(1, "lockdep bfs error:%d\n", ret);
2017 }
2018
2019 static bool noop_count(struct lock_list *entry, void *data)
2020 {
2021         (*(unsigned long *)data)++;
2022         return false;
2023 }
2024
2025 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2026 {
2027         unsigned long  count = 0;
2028         struct lock_list *target_entry;
2029
2030         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2031
2032         return count;
2033 }
2034 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2035 {
2036         unsigned long ret, flags;
2037         struct lock_list this;
2038
2039         __bfs_init_root(&this, class);
2040
2041         raw_local_irq_save(flags);
2042         lockdep_lock();
2043         ret = __lockdep_count_forward_deps(&this);
2044         lockdep_unlock();
2045         raw_local_irq_restore(flags);
2046
2047         return ret;
2048 }
2049
2050 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2051 {
2052         unsigned long  count = 0;
2053         struct lock_list *target_entry;
2054
2055         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2056
2057         return count;
2058 }
2059
2060 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2061 {
2062         unsigned long ret, flags;
2063         struct lock_list this;
2064
2065         __bfs_init_root(&this, class);
2066
2067         raw_local_irq_save(flags);
2068         lockdep_lock();
2069         ret = __lockdep_count_backward_deps(&this);
2070         lockdep_unlock();
2071         raw_local_irq_restore(flags);
2072
2073         return ret;
2074 }
2075
2076 /*
2077  * Check that the dependency graph starting at <src> can lead to
2078  * <target> or not.
2079  */
2080 static noinline enum bfs_result
2081 check_path(struct held_lock *target, struct lock_list *src_entry,
2082            bool (*match)(struct lock_list *entry, void *data),
2083            bool (*skip)(struct lock_list *entry, void *data),
2084            struct lock_list **target_entry)
2085 {
2086         enum bfs_result ret;
2087
2088         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2089
2090         if (unlikely(bfs_error(ret)))
2091                 print_bfs_bug(ret);
2092
2093         return ret;
2094 }
2095
2096 /*
2097  * Prove that the dependency graph starting at <src> can not
2098  * lead to <target>. If it can, there is a circle when adding
2099  * <target> -> <src> dependency.
2100  *
2101  * Print an error and return BFS_RMATCH if it does.
2102  */
2103 static noinline enum bfs_result
2104 check_noncircular(struct held_lock *src, struct held_lock *target,
2105                   struct lock_trace **const trace)
2106 {
2107         enum bfs_result ret;
2108         struct lock_list *target_entry;
2109         struct lock_list src_entry;
2110
2111         bfs_init_root(&src_entry, src);
2112
2113         debug_atomic_inc(nr_cyclic_checks);
2114
2115         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2116
2117         if (unlikely(ret == BFS_RMATCH)) {
2118                 if (!*trace) {
2119                         /*
2120                          * If save_trace fails here, the printing might
2121                          * trigger a WARN but because of the !nr_entries it
2122                          * should not do bad things.
2123                          */
2124                         *trace = save_trace();
2125                 }
2126
2127                 print_circular_bug(&src_entry, target_entry, src, target);
2128         }
2129
2130         return ret;
2131 }
2132
2133 #ifdef CONFIG_TRACE_IRQFLAGS
2134
2135 /*
2136  * Forwards and backwards subgraph searching, for the purposes of
2137  * proving that two subgraphs can be connected by a new dependency
2138  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2139  *
2140  * A irq safe->unsafe deadlock happens with the following conditions:
2141  *
2142  * 1) We have a strong dependency path A -> ... -> B
2143  *
2144  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2145  *    irq can create a new dependency B -> A (consider the case that a holder
2146  *    of B gets interrupted by an irq whose handler will try to acquire A).
2147  *
2148  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2149  *    strong circle:
2150  *
2151  *      For the usage bits of B:
2152  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2153  *           ENABLED_IRQ usage suffices.
2154  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2155  *           ENABLED_IRQ_*_READ usage suffices.
2156  *
2157  *      For the usage bits of A:
2158  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2159  *           USED_IN_IRQ usage suffices.
2160  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2161  *           USED_IN_IRQ_*_READ usage suffices.
2162  */
2163
2164 /*
2165  * There is a strong dependency path in the dependency graph: A -> B, and now
2166  * we need to decide which usage bit of A should be accumulated to detect
2167  * safe->unsafe bugs.
2168  *
2169  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2170  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2171  *
2172  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2173  * path, any usage of A should be considered. Otherwise, we should only
2174  * consider _READ usage.
2175  */
2176 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2177 {
2178         if (!entry->only_xr)
2179                 *(unsigned long *)mask |= entry->class->usage_mask;
2180         else /* Mask out _READ usage bits */
2181                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2182
2183         return false;
2184 }
2185
2186 /*
2187  * There is a strong dependency path in the dependency graph: A -> B, and now
2188  * we need to decide which usage bit of B conflicts with the usage bits of A,
2189  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2190  *
2191  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2192  * path, any usage of B should be considered. Otherwise, we should only
2193  * consider _READ usage.
2194  */
2195 static inline bool usage_match(struct lock_list *entry, void *mask)
2196 {
2197         if (!entry->only_xr)
2198                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2199         else /* Mask out _READ usage bits */
2200                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2201 }
2202
2203 static inline bool usage_skip(struct lock_list *entry, void *mask)
2204 {
2205         /*
2206          * Skip local_lock() for irq inversion detection.
2207          *
2208          * For !RT, local_lock() is not a real lock, so it won't carry any
2209          * dependency.
2210          *
2211          * For RT, an irq inversion happens when we have lock A and B, and on
2212          * some CPU we can have:
2213          *
2214          *      lock(A);
2215          *      <interrupted>
2216          *        lock(B);
2217          *
2218          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2219          *
2220          * Now we prove local_lock() cannot exist in that dependency. First we
2221          * have the observation for any lock chain L1 -> ... -> Ln, for any
2222          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2223          * wait context check will complain. And since B is not a sleep lock,
2224          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2225          * local_lock() is 3, which is greater than 2, therefore there is no
2226          * way the local_lock() exists in the dependency B -> ... -> A.
2227          *
2228          * As a result, we will skip local_lock(), when we search for irq
2229          * inversion bugs.
2230          */
2231         if (entry->class->lock_type == LD_LOCK_PERCPU) {
2232                 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2233                         return false;
2234
2235                 return true;
2236         }
2237
2238         return false;
2239 }
2240
2241 /*
2242  * Find a node in the forwards-direction dependency sub-graph starting
2243  * at @root->class that matches @bit.
2244  *
2245  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2246  * into *@target_entry.
2247  */
2248 static enum bfs_result
2249 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2250                         struct lock_list **target_entry)
2251 {
2252         enum bfs_result result;
2253
2254         debug_atomic_inc(nr_find_usage_forwards_checks);
2255
2256         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2257
2258         return result;
2259 }
2260
2261 /*
2262  * Find a node in the backwards-direction dependency sub-graph starting
2263  * at @root->class that matches @bit.
2264  */
2265 static enum bfs_result
2266 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2267                         struct lock_list **target_entry)
2268 {
2269         enum bfs_result result;
2270
2271         debug_atomic_inc(nr_find_usage_backwards_checks);
2272
2273         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2274
2275         return result;
2276 }
2277
2278 static void print_lock_class_header(struct lock_class *class, int depth)
2279 {
2280         int bit;
2281
2282         printk("%*s->", depth, "");
2283         print_lock_name(class);
2284 #ifdef CONFIG_DEBUG_LOCKDEP
2285         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2286 #endif
2287         printk(KERN_CONT " {\n");
2288
2289         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2290                 if (class->usage_mask & (1 << bit)) {
2291                         int len = depth;
2292
2293                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2294                         len += printk(KERN_CONT " at:\n");
2295                         print_lock_trace(class->usage_traces[bit], len);
2296                 }
2297         }
2298         printk("%*s }\n", depth, "");
2299
2300         printk("%*s ... key      at: [<%px>] %pS\n",
2301                 depth, "", class->key, class->key);
2302 }
2303
2304 /*
2305  * printk the shortest lock dependencies from @start to @end in reverse order:
2306  */
2307 static void __used
2308 print_shortest_lock_dependencies(struct lock_list *leaf,
2309                                  struct lock_list *root)
2310 {
2311         struct lock_list *entry = leaf;
2312         int depth;
2313
2314         /*compute depth from generated tree by BFS*/
2315         depth = get_lock_depth(leaf);
2316
2317         do {
2318                 print_lock_class_header(entry->class, depth);
2319                 printk("%*s ... acquired at:\n", depth, "");
2320                 print_lock_trace(entry->trace, 2);
2321                 printk("\n");
2322
2323                 if (depth == 0 && (entry != root)) {
2324                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2325                         break;
2326                 }
2327
2328                 entry = get_lock_parent(entry);
2329                 depth--;
2330         } while (entry && (depth >= 0));
2331 }
2332
2333 static void
2334 print_irq_lock_scenario(struct lock_list *safe_entry,
2335                         struct lock_list *unsafe_entry,
2336                         struct lock_class *prev_class,
2337                         struct lock_class *next_class)
2338 {
2339         struct lock_class *safe_class = safe_entry->class;
2340         struct lock_class *unsafe_class = unsafe_entry->class;
2341         struct lock_class *middle_class = prev_class;
2342
2343         if (middle_class == safe_class)
2344                 middle_class = next_class;
2345
2346         /*
2347          * A direct locking problem where unsafe_class lock is taken
2348          * directly by safe_class lock, then all we need to show
2349          * is the deadlock scenario, as it is obvious that the
2350          * unsafe lock is taken under the safe lock.
2351          *
2352          * But if there is a chain instead, where the safe lock takes
2353          * an intermediate lock (middle_class) where this lock is
2354          * not the same as the safe lock, then the lock chain is
2355          * used to describe the problem. Otherwise we would need
2356          * to show a different CPU case for each link in the chain
2357          * from the safe_class lock to the unsafe_class lock.
2358          */
2359         if (middle_class != unsafe_class) {
2360                 printk("Chain exists of:\n  ");
2361                 __print_lock_name(safe_class);
2362                 printk(KERN_CONT " --> ");
2363                 __print_lock_name(middle_class);
2364                 printk(KERN_CONT " --> ");
2365                 __print_lock_name(unsafe_class);
2366                 printk(KERN_CONT "\n\n");
2367         }
2368
2369         printk(" Possible interrupt unsafe locking scenario:\n\n");
2370         printk("       CPU0                    CPU1\n");
2371         printk("       ----                    ----\n");
2372         printk("  lock(");
2373         __print_lock_name(unsafe_class);
2374         printk(KERN_CONT ");\n");
2375         printk("                               local_irq_disable();\n");
2376         printk("                               lock(");
2377         __print_lock_name(safe_class);
2378         printk(KERN_CONT ");\n");
2379         printk("                               lock(");
2380         __print_lock_name(middle_class);
2381         printk(KERN_CONT ");\n");
2382         printk("  <Interrupt>\n");
2383         printk("    lock(");
2384         __print_lock_name(safe_class);
2385         printk(KERN_CONT ");\n");
2386         printk("\n *** DEADLOCK ***\n\n");
2387 }
2388
2389 static void
2390 print_bad_irq_dependency(struct task_struct *curr,
2391                          struct lock_list *prev_root,
2392                          struct lock_list *next_root,
2393                          struct lock_list *backwards_entry,
2394                          struct lock_list *forwards_entry,
2395                          struct held_lock *prev,
2396                          struct held_lock *next,
2397                          enum lock_usage_bit bit1,
2398                          enum lock_usage_bit bit2,
2399                          const char *irqclass)
2400 {
2401         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2402                 return;
2403
2404         pr_warn("\n");
2405         pr_warn("=====================================================\n");
2406         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2407                 irqclass, irqclass);
2408         print_kernel_ident();
2409         pr_warn("-----------------------------------------------------\n");
2410         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2411                 curr->comm, task_pid_nr(curr),
2412                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2413                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2414                 lockdep_hardirqs_enabled(),
2415                 curr->softirqs_enabled);
2416         print_lock(next);
2417
2418         pr_warn("\nand this task is already holding:\n");
2419         print_lock(prev);
2420         pr_warn("which would create a new lock dependency:\n");
2421         print_lock_name(hlock_class(prev));
2422         pr_cont(" ->");
2423         print_lock_name(hlock_class(next));
2424         pr_cont("\n");
2425
2426         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2427                 irqclass);
2428         print_lock_name(backwards_entry->class);
2429         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2430
2431         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2432
2433         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2434         print_lock_name(forwards_entry->class);
2435         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2436         pr_warn("...");
2437
2438         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2439
2440         pr_warn("\nother info that might help us debug this:\n\n");
2441         print_irq_lock_scenario(backwards_entry, forwards_entry,
2442                                 hlock_class(prev), hlock_class(next));
2443
2444         lockdep_print_held_locks(curr);
2445
2446         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2447         prev_root->trace = save_trace();
2448         if (!prev_root->trace)
2449                 return;
2450         print_shortest_lock_dependencies(backwards_entry, prev_root);
2451
2452         pr_warn("\nthe dependencies between the lock to be acquired");
2453         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2454         next_root->trace = save_trace();
2455         if (!next_root->trace)
2456                 return;
2457         print_shortest_lock_dependencies(forwards_entry, next_root);
2458
2459         pr_warn("\nstack backtrace:\n");
2460         dump_stack();
2461 }
2462
2463 static const char *state_names[] = {
2464 #define LOCKDEP_STATE(__STATE) \
2465         __stringify(__STATE),
2466 #include "lockdep_states.h"
2467 #undef LOCKDEP_STATE
2468 };
2469
2470 static const char *state_rnames[] = {
2471 #define LOCKDEP_STATE(__STATE) \
2472         __stringify(__STATE)"-READ",
2473 #include "lockdep_states.h"
2474 #undef LOCKDEP_STATE
2475 };
2476
2477 static inline const char *state_name(enum lock_usage_bit bit)
2478 {
2479         if (bit & LOCK_USAGE_READ_MASK)
2480                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2481         else
2482                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2483 }
2484
2485 /*
2486  * The bit number is encoded like:
2487  *
2488  *  bit0: 0 exclusive, 1 read lock
2489  *  bit1: 0 used in irq, 1 irq enabled
2490  *  bit2-n: state
2491  */
2492 static int exclusive_bit(int new_bit)
2493 {
2494         int state = new_bit & LOCK_USAGE_STATE_MASK;
2495         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2496
2497         /*
2498          * keep state, bit flip the direction and strip read.
2499          */
2500         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2501 }
2502
2503 /*
2504  * Observe that when given a bitmask where each bitnr is encoded as above, a
2505  * right shift of the mask transforms the individual bitnrs as -1 and
2506  * conversely, a left shift transforms into +1 for the individual bitnrs.
2507  *
2508  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2509  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2510  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2511  *
2512  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2513  *
2514  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2515  * all bits set) and recompose with bitnr1 flipped.
2516  */
2517 static unsigned long invert_dir_mask(unsigned long mask)
2518 {
2519         unsigned long excl = 0;
2520
2521         /* Invert dir */
2522         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2523         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2524
2525         return excl;
2526 }
2527
2528 /*
2529  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2530  * usage may cause deadlock too, for example:
2531  *
2532  * P1                           P2
2533  * <irq disabled>
2534  * write_lock(l1);              <irq enabled>
2535  *                              read_lock(l2);
2536  * write_lock(l2);
2537  *                              <in irq>
2538  *                              read_lock(l1);
2539  *
2540  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2541  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2542  * deadlock.
2543  *
2544  * In fact, all of the following cases may cause deadlocks:
2545  *
2546  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2547  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2548  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2549  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2550  *
2551  * As a result, to calculate the "exclusive mask", first we invert the
2552  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2553  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2554  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2555  */
2556 static unsigned long exclusive_mask(unsigned long mask)
2557 {
2558         unsigned long excl = invert_dir_mask(mask);
2559
2560         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2561         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2562
2563         return excl;
2564 }
2565
2566 /*
2567  * Retrieve the _possible_ original mask to which @mask is
2568  * exclusive. Ie: this is the opposite of exclusive_mask().
2569  * Note that 2 possible original bits can match an exclusive
2570  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2571  * cleared. So both are returned for each exclusive bit.
2572  */
2573 static unsigned long original_mask(unsigned long mask)
2574 {
2575         unsigned long excl = invert_dir_mask(mask);
2576
2577         /* Include read in existing usages */
2578         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2579         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2580
2581         return excl;
2582 }
2583
2584 /*
2585  * Find the first pair of bit match between an original
2586  * usage mask and an exclusive usage mask.
2587  */
2588 static int find_exclusive_match(unsigned long mask,
2589                                 unsigned long excl_mask,
2590                                 enum lock_usage_bit *bitp,
2591                                 enum lock_usage_bit *excl_bitp)
2592 {
2593         int bit, excl, excl_read;
2594
2595         for_each_set_bit(bit, &mask, LOCK_USED) {
2596                 /*
2597                  * exclusive_bit() strips the read bit, however,
2598                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2599                  * to search excl | LOCK_USAGE_READ_MASK as well.
2600                  */
2601                 excl = exclusive_bit(bit);
2602                 excl_read = excl | LOCK_USAGE_READ_MASK;
2603                 if (excl_mask & lock_flag(excl)) {
2604                         *bitp = bit;
2605                         *excl_bitp = excl;
2606                         return 0;
2607                 } else if (excl_mask & lock_flag(excl_read)) {
2608                         *bitp = bit;
2609                         *excl_bitp = excl_read;
2610                         return 0;
2611                 }
2612         }
2613         return -1;
2614 }
2615
2616 /*
2617  * Prove that the new dependency does not connect a hardirq-safe(-read)
2618  * lock with a hardirq-unsafe lock - to achieve this we search
2619  * the backwards-subgraph starting at <prev>, and the
2620  * forwards-subgraph starting at <next>:
2621  */
2622 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2623                            struct held_lock *next)
2624 {
2625         unsigned long usage_mask = 0, forward_mask, backward_mask;
2626         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2627         struct lock_list *target_entry1;
2628         struct lock_list *target_entry;
2629         struct lock_list this, that;
2630         enum bfs_result ret;
2631
2632         /*
2633          * Step 1: gather all hard/soft IRQs usages backward in an
2634          * accumulated usage mask.
2635          */
2636         bfs_init_rootb(&this, prev);
2637
2638         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2639         if (bfs_error(ret)) {
2640                 print_bfs_bug(ret);
2641                 return 0;
2642         }
2643
2644         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2645         if (!usage_mask)
2646                 return 1;
2647
2648         /*
2649          * Step 2: find exclusive uses forward that match the previous
2650          * backward accumulated mask.
2651          */
2652         forward_mask = exclusive_mask(usage_mask);
2653
2654         bfs_init_root(&that, next);
2655
2656         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2657         if (bfs_error(ret)) {
2658                 print_bfs_bug(ret);
2659                 return 0;
2660         }
2661         if (ret == BFS_RNOMATCH)
2662                 return 1;
2663
2664         /*
2665          * Step 3: we found a bad match! Now retrieve a lock from the backward
2666          * list whose usage mask matches the exclusive usage mask from the
2667          * lock found on the forward list.
2668          */
2669         backward_mask = original_mask(target_entry1->class->usage_mask);
2670
2671         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2672         if (bfs_error(ret)) {
2673                 print_bfs_bug(ret);
2674                 return 0;
2675         }
2676         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2677                 return 1;
2678
2679         /*
2680          * Step 4: narrow down to a pair of incompatible usage bits
2681          * and report it.
2682          */
2683         ret = find_exclusive_match(target_entry->class->usage_mask,
2684                                    target_entry1->class->usage_mask,
2685                                    &backward_bit, &forward_bit);
2686         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2687                 return 1;
2688
2689         print_bad_irq_dependency(curr, &this, &that,
2690                                  target_entry, target_entry1,
2691                                  prev, next,
2692                                  backward_bit, forward_bit,
2693                                  state_name(backward_bit));
2694
2695         return 0;
2696 }
2697
2698 #else
2699
2700 static inline int check_irq_usage(struct task_struct *curr,
2701                                   struct held_lock *prev, struct held_lock *next)
2702 {
2703         return 1;
2704 }
2705
2706 static inline bool usage_skip(struct lock_list *entry, void *mask)
2707 {
2708         return false;
2709 }
2710
2711 #endif /* CONFIG_TRACE_IRQFLAGS */
2712
2713 #ifdef CONFIG_LOCKDEP_SMALL
2714 /*
2715  * Check that the dependency graph starting at <src> can lead to
2716  * <target> or not. If it can, <src> -> <target> dependency is already
2717  * in the graph.
2718  *
2719  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2720  * any error appears in the bfs search.
2721  */
2722 static noinline enum bfs_result
2723 check_redundant(struct held_lock *src, struct held_lock *target)
2724 {
2725         enum bfs_result ret;
2726         struct lock_list *target_entry;
2727         struct lock_list src_entry;
2728
2729         bfs_init_root(&src_entry, src);
2730         /*
2731          * Special setup for check_redundant().
2732          *
2733          * To report redundant, we need to find a strong dependency path that
2734          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2735          * we need to let __bfs() only search for a path starting at a -(E*)->,
2736          * we achieve this by setting the initial node's ->only_xr to true in
2737          * that case. And if <prev> is S, we set initial ->only_xr to false
2738          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2739          */
2740         src_entry.only_xr = src->read == 0;
2741
2742         debug_atomic_inc(nr_redundant_checks);
2743
2744         /*
2745          * Note: we skip local_lock() for redundant check, because as the
2746          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2747          * the same.
2748          */
2749         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2750
2751         if (ret == BFS_RMATCH)
2752                 debug_atomic_inc(nr_redundant);
2753
2754         return ret;
2755 }
2756
2757 #else
2758
2759 static inline enum bfs_result
2760 check_redundant(struct held_lock *src, struct held_lock *target)
2761 {
2762         return BFS_RNOMATCH;
2763 }
2764
2765 #endif
2766
2767 static void inc_chains(int irq_context)
2768 {
2769         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2770                 nr_hardirq_chains++;
2771         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2772                 nr_softirq_chains++;
2773         else
2774                 nr_process_chains++;
2775 }
2776
2777 static void dec_chains(int irq_context)
2778 {
2779         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2780                 nr_hardirq_chains--;
2781         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2782                 nr_softirq_chains--;
2783         else
2784                 nr_process_chains--;
2785 }
2786
2787 static void
2788 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2789 {
2790         struct lock_class *next = hlock_class(nxt);
2791         struct lock_class *prev = hlock_class(prv);
2792
2793         printk(" Possible unsafe locking scenario:\n\n");
2794         printk("       CPU0\n");
2795         printk("       ----\n");
2796         printk("  lock(");
2797         __print_lock_name(prev);
2798         printk(KERN_CONT ");\n");
2799         printk("  lock(");
2800         __print_lock_name(next);
2801         printk(KERN_CONT ");\n");
2802         printk("\n *** DEADLOCK ***\n\n");
2803         printk(" May be due to missing lock nesting notation\n\n");
2804 }
2805
2806 static void
2807 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2808                    struct held_lock *next)
2809 {
2810         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2811                 return;
2812
2813         pr_warn("\n");
2814         pr_warn("============================================\n");
2815         pr_warn("WARNING: possible recursive locking detected\n");
2816         print_kernel_ident();
2817         pr_warn("--------------------------------------------\n");
2818         pr_warn("%s/%d is trying to acquire lock:\n",
2819                 curr->comm, task_pid_nr(curr));
2820         print_lock(next);
2821         pr_warn("\nbut task is already holding lock:\n");
2822         print_lock(prev);
2823
2824         pr_warn("\nother info that might help us debug this:\n");
2825         print_deadlock_scenario(next, prev);
2826         lockdep_print_held_locks(curr);
2827
2828         pr_warn("\nstack backtrace:\n");
2829         dump_stack();
2830 }
2831
2832 /*
2833  * Check whether we are holding such a class already.
2834  *
2835  * (Note that this has to be done separately, because the graph cannot
2836  * detect such classes of deadlocks.)
2837  *
2838  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2839  * lock class is held but nest_lock is also held, i.e. we rely on the
2840  * nest_lock to avoid the deadlock.
2841  */
2842 static int
2843 check_deadlock(struct task_struct *curr, struct held_lock *next)
2844 {
2845         struct held_lock *prev;
2846         struct held_lock *nest = NULL;
2847         int i;
2848
2849         for (i = 0; i < curr->lockdep_depth; i++) {
2850                 prev = curr->held_locks + i;
2851
2852                 if (prev->instance == next->nest_lock)
2853                         nest = prev;
2854
2855                 if (hlock_class(prev) != hlock_class(next))
2856                         continue;
2857
2858                 /*
2859                  * Allow read-after-read recursion of the same
2860                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2861                  */
2862                 if ((next->read == 2) && prev->read)
2863                         continue;
2864
2865                 /*
2866                  * We're holding the nest_lock, which serializes this lock's
2867                  * nesting behaviour.
2868                  */
2869                 if (nest)
2870                         return 2;
2871
2872                 print_deadlock_bug(curr, prev, next);
2873                 return 0;
2874         }
2875         return 1;
2876 }
2877
2878 /*
2879  * There was a chain-cache miss, and we are about to add a new dependency
2880  * to a previous lock. We validate the following rules:
2881  *
2882  *  - would the adding of the <prev> -> <next> dependency create a
2883  *    circular dependency in the graph? [== circular deadlock]
2884  *
2885  *  - does the new prev->next dependency connect any hardirq-safe lock
2886  *    (in the full backwards-subgraph starting at <prev>) with any
2887  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2888  *    <next>)? [== illegal lock inversion with hardirq contexts]
2889  *
2890  *  - does the new prev->next dependency connect any softirq-safe lock
2891  *    (in the full backwards-subgraph starting at <prev>) with any
2892  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2893  *    <next>)? [== illegal lock inversion with softirq contexts]
2894  *
2895  * any of these scenarios could lead to a deadlock.
2896  *
2897  * Then if all the validations pass, we add the forwards and backwards
2898  * dependency.
2899  */
2900 static int
2901 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2902                struct held_lock *next, u16 distance,
2903                struct lock_trace **const trace)
2904 {
2905         struct lock_list *entry;
2906         enum bfs_result ret;
2907
2908         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2909                 /*
2910                  * The warning statements below may trigger a use-after-free
2911                  * of the class name. It is better to trigger a use-after free
2912                  * and to have the class name most of the time instead of not
2913                  * having the class name available.
2914                  */
2915                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2916                           "Detected use-after-free of lock class %px/%s\n",
2917                           hlock_class(prev),
2918                           hlock_class(prev)->name);
2919                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2920                           "Detected use-after-free of lock class %px/%s\n",
2921                           hlock_class(next),
2922                           hlock_class(next)->name);
2923                 return 2;
2924         }
2925
2926         /*
2927          * Prove that the new <prev> -> <next> dependency would not
2928          * create a circular dependency in the graph. (We do this by
2929          * a breadth-first search into the graph starting at <next>,
2930          * and check whether we can reach <prev>.)
2931          *
2932          * The search is limited by the size of the circular queue (i.e.,
2933          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2934          * in the graph whose neighbours are to be checked.
2935          */
2936         ret = check_noncircular(next, prev, trace);
2937         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2938                 return 0;
2939
2940         if (!check_irq_usage(curr, prev, next))
2941                 return 0;
2942
2943         /*
2944          * Is the <prev> -> <next> dependency already present?
2945          *
2946          * (this may occur even though this is a new chain: consider
2947          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2948          *  chains - the second one will be new, but L1 already has
2949          *  L2 added to its dependency list, due to the first chain.)
2950          */
2951         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2952                 if (entry->class == hlock_class(next)) {
2953                         if (distance == 1)
2954                                 entry->distance = 1;
2955                         entry->dep |= calc_dep(prev, next);
2956
2957                         /*
2958                          * Also, update the reverse dependency in @next's
2959                          * ->locks_before list.
2960                          *
2961                          *  Here we reuse @entry as the cursor, which is fine
2962                          *  because we won't go to the next iteration of the
2963                          *  outer loop:
2964                          *
2965                          *  For normal cases, we return in the inner loop.
2966                          *
2967                          *  If we fail to return, we have inconsistency, i.e.
2968                          *  <prev>::locks_after contains <next> while
2969                          *  <next>::locks_before doesn't contain <prev>. In
2970                          *  that case, we return after the inner and indicate
2971                          *  something is wrong.
2972                          */
2973                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
2974                                 if (entry->class == hlock_class(prev)) {
2975                                         if (distance == 1)
2976                                                 entry->distance = 1;
2977                                         entry->dep |= calc_depb(prev, next);
2978                                         return 1;
2979                                 }
2980                         }
2981
2982                         /* <prev> is not found in <next>::locks_before */
2983                         return 0;
2984                 }
2985         }
2986
2987         /*
2988          * Is the <prev> -> <next> link redundant?
2989          */
2990         ret = check_redundant(prev, next);
2991         if (bfs_error(ret))
2992                 return 0;
2993         else if (ret == BFS_RMATCH)
2994                 return 2;
2995
2996         if (!*trace) {
2997                 *trace = save_trace();
2998                 if (!*trace)
2999                         return 0;
3000         }
3001
3002         /*
3003          * Ok, all validations passed, add the new lock
3004          * to the previous lock's dependency list:
3005          */
3006         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3007                                &hlock_class(prev)->locks_after,
3008                                next->acquire_ip, distance,
3009                                calc_dep(prev, next),
3010                                *trace);
3011
3012         if (!ret)
3013                 return 0;
3014
3015         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3016                                &hlock_class(next)->locks_before,
3017                                next->acquire_ip, distance,
3018                                calc_depb(prev, next),
3019                                *trace);
3020         if (!ret)
3021                 return 0;
3022
3023         return 2;
3024 }
3025
3026 /*
3027  * Add the dependency to all directly-previous locks that are 'relevant'.
3028  * The ones that are relevant are (in increasing distance from curr):
3029  * all consecutive trylock entries and the final non-trylock entry - or
3030  * the end of this context's lock-chain - whichever comes first.
3031  */
3032 static int
3033 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3034 {
3035         struct lock_trace *trace = NULL;
3036         int depth = curr->lockdep_depth;
3037         struct held_lock *hlock;
3038
3039         /*
3040          * Debugging checks.
3041          *
3042          * Depth must not be zero for a non-head lock:
3043          */
3044         if (!depth)
3045                 goto out_bug;
3046         /*
3047          * At least two relevant locks must exist for this
3048          * to be a head:
3049          */
3050         if (curr->held_locks[depth].irq_context !=
3051                         curr->held_locks[depth-1].irq_context)
3052                 goto out_bug;
3053
3054         for (;;) {
3055                 u16 distance = curr->lockdep_depth - depth + 1;
3056                 hlock = curr->held_locks + depth - 1;
3057
3058                 if (hlock->check) {
3059                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3060                         if (!ret)
3061                                 return 0;
3062
3063                         /*
3064                          * Stop after the first non-trylock entry,
3065                          * as non-trylock entries have added their
3066                          * own direct dependencies already, so this
3067                          * lock is connected to them indirectly:
3068                          */
3069                         if (!hlock->trylock)
3070                                 break;
3071                 }
3072
3073                 depth--;
3074                 /*
3075                  * End of lock-stack?
3076                  */
3077                 if (!depth)
3078                         break;
3079                 /*
3080                  * Stop the search if we cross into another context:
3081                  */
3082                 if (curr->held_locks[depth].irq_context !=
3083                                 curr->held_locks[depth-1].irq_context)
3084                         break;
3085         }
3086         return 1;
3087 out_bug:
3088         if (!debug_locks_off_graph_unlock())
3089                 return 0;
3090
3091         /*
3092          * Clearly we all shouldn't be here, but since we made it we
3093          * can reliable say we messed up our state. See the above two
3094          * gotos for reasons why we could possibly end up here.
3095          */
3096         WARN_ON(1);
3097
3098         return 0;
3099 }
3100
3101 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3102 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3103 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3104 unsigned long nr_zapped_lock_chains;
3105 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3106 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3107 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3108
3109 /*
3110  * The first 2 chain_hlocks entries in the chain block in the bucket
3111  * list contains the following meta data:
3112  *
3113  *   entry[0]:
3114  *     Bit    15 - always set to 1 (it is not a class index)
3115  *     Bits 0-14 - upper 15 bits of the next block index
3116  *   entry[1]    - lower 16 bits of next block index
3117  *
3118  * A next block index of all 1 bits means it is the end of the list.
3119  *
3120  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3121  * the chain block size:
3122  *
3123  *   entry[2] - upper 16 bits of the chain block size
3124  *   entry[3] - lower 16 bits of the chain block size
3125  */
3126 #define MAX_CHAIN_BUCKETS       16
3127 #define CHAIN_BLK_FLAG          (1U << 15)
3128 #define CHAIN_BLK_LIST_END      0xFFFFU
3129
3130 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3131
3132 static inline int size_to_bucket(int size)
3133 {
3134         if (size > MAX_CHAIN_BUCKETS)
3135                 return 0;
3136
3137         return size - 1;
3138 }
3139
3140 /*
3141  * Iterate all the chain blocks in a bucket.
3142  */
3143 #define for_each_chain_block(bucket, prev, curr)                \
3144         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3145              (curr) >= 0;                                       \
3146              (prev) = (curr), (curr) = chain_block_next(curr))
3147
3148 /*
3149  * next block or -1
3150  */
3151 static inline int chain_block_next(int offset)
3152 {
3153         int next = chain_hlocks[offset];
3154
3155         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3156
3157         if (next == CHAIN_BLK_LIST_END)
3158                 return -1;
3159
3160         next &= ~CHAIN_BLK_FLAG;
3161         next <<= 16;
3162         next |= chain_hlocks[offset + 1];
3163
3164         return next;
3165 }
3166
3167 /*
3168  * bucket-0 only
3169  */
3170 static inline int chain_block_size(int offset)
3171 {
3172         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3173 }
3174
3175 static inline void init_chain_block(int offset, int next, int bucket, int size)
3176 {
3177         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3178         chain_hlocks[offset + 1] = (u16)next;
3179
3180         if (size && !bucket) {
3181                 chain_hlocks[offset + 2] = size >> 16;
3182                 chain_hlocks[offset + 3] = (u16)size;
3183         }
3184 }
3185
3186 static inline void add_chain_block(int offset, int size)
3187 {
3188         int bucket = size_to_bucket(size);
3189         int next = chain_block_buckets[bucket];
3190         int prev, curr;
3191
3192         if (unlikely(size < 2)) {
3193                 /*
3194                  * We can't store single entries on the freelist. Leak them.
3195                  *
3196                  * One possible way out would be to uniquely mark them, other
3197                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3198                  * the block before it is re-added.
3199                  */
3200                 if (size)
3201                         nr_lost_chain_hlocks++;
3202                 return;
3203         }
3204
3205         nr_free_chain_hlocks += size;
3206         if (!bucket) {
3207                 nr_large_chain_blocks++;
3208
3209                 /*
3210                  * Variable sized, sort large to small.
3211                  */
3212                 for_each_chain_block(0, prev, curr) {
3213                         if (size >= chain_block_size(curr))
3214                                 break;
3215                 }
3216                 init_chain_block(offset, curr, 0, size);
3217                 if (prev < 0)
3218                         chain_block_buckets[0] = offset;
3219                 else
3220                         init_chain_block(prev, offset, 0, 0);
3221                 return;
3222         }
3223         /*
3224          * Fixed size, add to head.
3225          */
3226         init_chain_block(offset, next, bucket, size);
3227         chain_block_buckets[bucket] = offset;
3228 }
3229
3230 /*
3231  * Only the first block in the list can be deleted.
3232  *
3233  * For the variable size bucket[0], the first block (the largest one) is
3234  * returned, broken up and put back into the pool. So if a chain block of
3235  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3236  * queued up after the primordial chain block and never be used until the
3237  * hlock entries in the primordial chain block is almost used up. That
3238  * causes fragmentation and reduce allocation efficiency. That can be
3239  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3240  */
3241 static inline void del_chain_block(int bucket, int size, int next)
3242 {
3243         nr_free_chain_hlocks -= size;
3244         chain_block_buckets[bucket] = next;
3245
3246         if (!bucket)
3247                 nr_large_chain_blocks--;
3248 }
3249
3250 static void init_chain_block_buckets(void)
3251 {
3252         int i;
3253
3254         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3255                 chain_block_buckets[i] = -1;
3256
3257         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3258 }
3259
3260 /*
3261  * Return offset of a chain block of the right size or -1 if not found.
3262  *
3263  * Fairly simple worst-fit allocator with the addition of a number of size
3264  * specific free lists.
3265  */
3266 static int alloc_chain_hlocks(int req)
3267 {
3268         int bucket, curr, size;
3269
3270         /*
3271          * We rely on the MSB to act as an escape bit to denote freelist
3272          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3273          */
3274         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3275
3276         init_data_structures_once();
3277
3278         if (nr_free_chain_hlocks < req)
3279                 return -1;
3280
3281         /*
3282          * We require a minimum of 2 (u16) entries to encode a freelist
3283          * 'pointer'.
3284          */
3285         req = max(req, 2);
3286         bucket = size_to_bucket(req);
3287         curr = chain_block_buckets[bucket];
3288
3289         if (bucket) {
3290                 if (curr >= 0) {
3291                         del_chain_block(bucket, req, chain_block_next(curr));
3292                         return curr;
3293                 }
3294                 /* Try bucket 0 */
3295                 curr = chain_block_buckets[0];
3296         }
3297
3298         /*
3299          * The variable sized freelist is sorted by size; the first entry is
3300          * the largest. Use it if it fits.
3301          */
3302         if (curr >= 0) {
3303                 size = chain_block_size(curr);
3304                 if (likely(size >= req)) {
3305                         del_chain_block(0, size, chain_block_next(curr));
3306                         add_chain_block(curr + req, size - req);
3307                         return curr;
3308                 }
3309         }
3310
3311         /*
3312          * Last resort, split a block in a larger sized bucket.
3313          */
3314         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3315                 bucket = size_to_bucket(size);
3316                 curr = chain_block_buckets[bucket];
3317                 if (curr < 0)
3318                         continue;
3319
3320                 del_chain_block(bucket, size, chain_block_next(curr));
3321                 add_chain_block(curr + req, size - req);
3322                 return curr;
3323         }
3324
3325         return -1;
3326 }
3327
3328 static inline void free_chain_hlocks(int base, int size)
3329 {
3330         add_chain_block(base, max(size, 2));
3331 }
3332
3333 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3334 {
3335         u16 chain_hlock = chain_hlocks[chain->base + i];
3336         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3337
3338         return lock_classes + class_idx - 1;
3339 }
3340
3341 /*
3342  * Returns the index of the first held_lock of the current chain
3343  */
3344 static inline int get_first_held_lock(struct task_struct *curr,
3345                                         struct held_lock *hlock)
3346 {
3347         int i;
3348         struct held_lock *hlock_curr;
3349
3350         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3351                 hlock_curr = curr->held_locks + i;
3352                 if (hlock_curr->irq_context != hlock->irq_context)
3353                         break;
3354
3355         }
3356
3357         return ++i;
3358 }
3359
3360 #ifdef CONFIG_DEBUG_LOCKDEP
3361 /*
3362  * Returns the next chain_key iteration
3363  */
3364 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3365 {
3366         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3367
3368         printk(" hlock_id:%d -> chain_key:%016Lx",
3369                 (unsigned int)hlock_id,
3370                 (unsigned long long)new_chain_key);
3371         return new_chain_key;
3372 }
3373
3374 static void
3375 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3376 {
3377         struct held_lock *hlock;
3378         u64 chain_key = INITIAL_CHAIN_KEY;
3379         int depth = curr->lockdep_depth;
3380         int i = get_first_held_lock(curr, hlock_next);
3381
3382         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3383                 hlock_next->irq_context);
3384         for (; i < depth; i++) {
3385                 hlock = curr->held_locks + i;
3386                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3387
3388                 print_lock(hlock);
3389         }
3390
3391         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3392         print_lock(hlock_next);
3393 }
3394
3395 static void print_chain_keys_chain(struct lock_chain *chain)
3396 {
3397         int i;
3398         u64 chain_key = INITIAL_CHAIN_KEY;
3399         u16 hlock_id;
3400
3401         printk("depth: %u\n", chain->depth);
3402         for (i = 0; i < chain->depth; i++) {
3403                 hlock_id = chain_hlocks[chain->base + i];
3404                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3405
3406                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3407                 printk("\n");
3408         }
3409 }
3410
3411 static void print_collision(struct task_struct *curr,
3412                         struct held_lock *hlock_next,
3413                         struct lock_chain *chain)
3414 {
3415         pr_warn("\n");
3416         pr_warn("============================\n");
3417         pr_warn("WARNING: chain_key collision\n");
3418         print_kernel_ident();
3419         pr_warn("----------------------------\n");
3420         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3421         pr_warn("Hash chain already cached but the contents don't match!\n");
3422
3423         pr_warn("Held locks:");
3424         print_chain_keys_held_locks(curr, hlock_next);
3425
3426         pr_warn("Locks in cached chain:");
3427         print_chain_keys_chain(chain);
3428
3429         pr_warn("\nstack backtrace:\n");
3430         dump_stack();
3431 }
3432 #endif
3433
3434 /*
3435  * Checks whether the chain and the current held locks are consistent
3436  * in depth and also in content. If they are not it most likely means
3437  * that there was a collision during the calculation of the chain_key.
3438  * Returns: 0 not passed, 1 passed
3439  */
3440 static int check_no_collision(struct task_struct *curr,
3441                         struct held_lock *hlock,
3442                         struct lock_chain *chain)
3443 {
3444 #ifdef CONFIG_DEBUG_LOCKDEP
3445         int i, j, id;
3446
3447         i = get_first_held_lock(curr, hlock);
3448
3449         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3450                 print_collision(curr, hlock, chain);
3451                 return 0;
3452         }
3453
3454         for (j = 0; j < chain->depth - 1; j++, i++) {
3455                 id = hlock_id(&curr->held_locks[i]);
3456
3457                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3458                         print_collision(curr, hlock, chain);
3459                         return 0;
3460                 }
3461         }
3462 #endif
3463         return 1;
3464 }
3465
3466 /*
3467  * Given an index that is >= -1, return the index of the next lock chain.
3468  * Return -2 if there is no next lock chain.
3469  */
3470 long lockdep_next_lockchain(long i)
3471 {
3472         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3473         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3474 }
3475
3476 unsigned long lock_chain_count(void)
3477 {
3478         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3479 }
3480
3481 /* Must be called with the graph lock held. */
3482 static struct lock_chain *alloc_lock_chain(void)
3483 {
3484         int idx = find_first_zero_bit(lock_chains_in_use,
3485                                       ARRAY_SIZE(lock_chains));
3486
3487         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3488                 return NULL;
3489         __set_bit(idx, lock_chains_in_use);
3490         return lock_chains + idx;
3491 }
3492
3493 /*
3494  * Adds a dependency chain into chain hashtable. And must be called with
3495  * graph_lock held.
3496  *
3497  * Return 0 if fail, and graph_lock is released.
3498  * Return 1 if succeed, with graph_lock held.
3499  */
3500 static inline int add_chain_cache(struct task_struct *curr,
3501                                   struct held_lock *hlock,
3502                                   u64 chain_key)
3503 {
3504         struct hlist_head *hash_head = chainhashentry(chain_key);
3505         struct lock_chain *chain;
3506         int i, j;
3507
3508         /*
3509          * The caller must hold the graph lock, ensure we've got IRQs
3510          * disabled to make this an IRQ-safe lock.. for recursion reasons
3511          * lockdep won't complain about its own locking errors.
3512          */
3513         if (lockdep_assert_locked())
3514                 return 0;
3515
3516         chain = alloc_lock_chain();
3517         if (!chain) {
3518                 if (!debug_locks_off_graph_unlock())
3519                         return 0;
3520
3521                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3522                 dump_stack();
3523                 return 0;
3524         }
3525         chain->chain_key = chain_key;
3526         chain->irq_context = hlock->irq_context;
3527         i = get_first_held_lock(curr, hlock);
3528         chain->depth = curr->lockdep_depth + 1 - i;
3529
3530         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3531         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3532         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3533
3534         j = alloc_chain_hlocks(chain->depth);
3535         if (j < 0) {
3536                 if (!debug_locks_off_graph_unlock())
3537                         return 0;
3538
3539                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3540                 dump_stack();
3541                 return 0;
3542         }
3543
3544         chain->base = j;
3545         for (j = 0; j < chain->depth - 1; j++, i++) {
3546                 int lock_id = hlock_id(curr->held_locks + i);
3547
3548                 chain_hlocks[chain->base + j] = lock_id;
3549         }
3550         chain_hlocks[chain->base + j] = hlock_id(hlock);
3551         hlist_add_head_rcu(&chain->entry, hash_head);
3552         debug_atomic_inc(chain_lookup_misses);
3553         inc_chains(chain->irq_context);
3554
3555         return 1;
3556 }
3557
3558 /*
3559  * Look up a dependency chain. Must be called with either the graph lock or
3560  * the RCU read lock held.
3561  */
3562 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3563 {
3564         struct hlist_head *hash_head = chainhashentry(chain_key);
3565         struct lock_chain *chain;
3566
3567         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3568                 if (READ_ONCE(chain->chain_key) == chain_key) {
3569                         debug_atomic_inc(chain_lookup_hits);
3570                         return chain;
3571                 }
3572         }
3573         return NULL;
3574 }
3575
3576 /*
3577  * If the key is not present yet in dependency chain cache then
3578  * add it and return 1 - in this case the new dependency chain is
3579  * validated. If the key is already hashed, return 0.
3580  * (On return with 1 graph_lock is held.)
3581  */
3582 static inline int lookup_chain_cache_add(struct task_struct *curr,
3583                                          struct held_lock *hlock,
3584                                          u64 chain_key)
3585 {
3586         struct lock_class *class = hlock_class(hlock);
3587         struct lock_chain *chain = lookup_chain_cache(chain_key);
3588
3589         if (chain) {
3590 cache_hit:
3591                 if (!check_no_collision(curr, hlock, chain))
3592                         return 0;
3593
3594                 if (very_verbose(class)) {
3595                         printk("\nhash chain already cached, key: "
3596                                         "%016Lx tail class: [%px] %s\n",
3597                                         (unsigned long long)chain_key,
3598                                         class->key, class->name);
3599                 }
3600
3601                 return 0;
3602         }
3603
3604         if (very_verbose(class)) {
3605                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3606                         (unsigned long long)chain_key, class->key, class->name);
3607         }
3608
3609         if (!graph_lock())
3610                 return 0;
3611
3612         /*
3613          * We have to walk the chain again locked - to avoid duplicates:
3614          */
3615         chain = lookup_chain_cache(chain_key);
3616         if (chain) {
3617                 graph_unlock();
3618                 goto cache_hit;
3619         }
3620
3621         if (!add_chain_cache(curr, hlock, chain_key))
3622                 return 0;
3623
3624         return 1;
3625 }
3626
3627 static int validate_chain(struct task_struct *curr,
3628                           struct held_lock *hlock,
3629                           int chain_head, u64 chain_key)
3630 {
3631         /*
3632          * Trylock needs to maintain the stack of held locks, but it
3633          * does not add new dependencies, because trylock can be done
3634          * in any order.
3635          *
3636          * We look up the chain_key and do the O(N^2) check and update of
3637          * the dependencies only if this is a new dependency chain.
3638          * (If lookup_chain_cache_add() return with 1 it acquires
3639          * graph_lock for us)
3640          */
3641         if (!hlock->trylock && hlock->check &&
3642             lookup_chain_cache_add(curr, hlock, chain_key)) {
3643                 /*
3644                  * Check whether last held lock:
3645                  *
3646                  * - is irq-safe, if this lock is irq-unsafe
3647                  * - is softirq-safe, if this lock is hardirq-unsafe
3648                  *
3649                  * And check whether the new lock's dependency graph
3650                  * could lead back to the previous lock:
3651                  *
3652                  * - within the current held-lock stack
3653                  * - across our accumulated lock dependency records
3654                  *
3655                  * any of these scenarios could lead to a deadlock.
3656                  */
3657                 /*
3658                  * The simple case: does the current hold the same lock
3659                  * already?
3660                  */
3661                 int ret = check_deadlock(curr, hlock);
3662
3663                 if (!ret)
3664                         return 0;
3665                 /*
3666                  * Add dependency only if this lock is not the head
3667                  * of the chain, and if the new lock introduces no more
3668                  * lock dependency (because we already hold a lock with the
3669                  * same lock class) nor deadlock (because the nest_lock
3670                  * serializes nesting locks), see the comments for
3671                  * check_deadlock().
3672                  */
3673                 if (!chain_head && ret != 2) {
3674                         if (!check_prevs_add(curr, hlock))
3675                                 return 0;
3676                 }
3677
3678                 graph_unlock();
3679         } else {
3680                 /* after lookup_chain_cache_add(): */
3681                 if (unlikely(!debug_locks))
3682                         return 0;
3683         }
3684
3685         return 1;
3686 }
3687 #else
3688 static inline int validate_chain(struct task_struct *curr,
3689                                  struct held_lock *hlock,
3690                                  int chain_head, u64 chain_key)
3691 {
3692         return 1;
3693 }
3694
3695 static void init_chain_block_buckets(void)      { }
3696 #endif /* CONFIG_PROVE_LOCKING */
3697
3698 /*
3699  * We are building curr_chain_key incrementally, so double-check
3700  * it from scratch, to make sure that it's done correctly:
3701  */
3702 static void check_chain_key(struct task_struct *curr)
3703 {
3704 #ifdef CONFIG_DEBUG_LOCKDEP
3705         struct held_lock *hlock, *prev_hlock = NULL;
3706         unsigned int i;
3707         u64 chain_key = INITIAL_CHAIN_KEY;
3708
3709         for (i = 0; i < curr->lockdep_depth; i++) {
3710                 hlock = curr->held_locks + i;
3711                 if (chain_key != hlock->prev_chain_key) {
3712                         debug_locks_off();
3713                         /*
3714                          * We got mighty confused, our chain keys don't match
3715                          * with what we expect, someone trample on our task state?
3716                          */
3717                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3718                                 curr->lockdep_depth, i,
3719                                 (unsigned long long)chain_key,
3720                                 (unsigned long long)hlock->prev_chain_key);
3721                         return;
3722                 }
3723
3724                 /*
3725                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3726                  * it registered lock class index?
3727                  */
3728                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3729                         return;
3730
3731                 if (prev_hlock && (prev_hlock->irq_context !=
3732                                                         hlock->irq_context))
3733                         chain_key = INITIAL_CHAIN_KEY;
3734                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3735                 prev_hlock = hlock;
3736         }
3737         if (chain_key != curr->curr_chain_key) {
3738                 debug_locks_off();
3739                 /*
3740                  * More smoking hash instead of calculating it, damn see these
3741                  * numbers float.. I bet that a pink elephant stepped on my memory.
3742                  */
3743                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3744                         curr->lockdep_depth, i,
3745                         (unsigned long long)chain_key,
3746                         (unsigned long long)curr->curr_chain_key);
3747         }
3748 #endif
3749 }
3750
3751 #ifdef CONFIG_PROVE_LOCKING
3752 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3753                      enum lock_usage_bit new_bit);
3754
3755 static void print_usage_bug_scenario(struct held_lock *lock)
3756 {
3757         struct lock_class *class = hlock_class(lock);
3758
3759         printk(" Possible unsafe locking scenario:\n\n");
3760         printk("       CPU0\n");
3761         printk("       ----\n");
3762         printk("  lock(");
3763         __print_lock_name(class);
3764         printk(KERN_CONT ");\n");
3765         printk("  <Interrupt>\n");
3766         printk("    lock(");
3767         __print_lock_name(class);
3768         printk(KERN_CONT ");\n");
3769         printk("\n *** DEADLOCK ***\n\n");
3770 }
3771
3772 static void
3773 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3774                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3775 {
3776         if (!debug_locks_off() || debug_locks_silent)
3777                 return;
3778
3779         pr_warn("\n");
3780         pr_warn("================================\n");
3781         pr_warn("WARNING: inconsistent lock state\n");
3782         print_kernel_ident();
3783         pr_warn("--------------------------------\n");
3784
3785         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3786                 usage_str[prev_bit], usage_str[new_bit]);
3787
3788         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3789                 curr->comm, task_pid_nr(curr),
3790                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3791                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3792                 lockdep_hardirqs_enabled(),
3793                 lockdep_softirqs_enabled(curr));
3794         print_lock(this);
3795
3796         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3797         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3798
3799         print_irqtrace_events(curr);
3800         pr_warn("\nother info that might help us debug this:\n");
3801         print_usage_bug_scenario(this);
3802
3803         lockdep_print_held_locks(curr);
3804
3805         pr_warn("\nstack backtrace:\n");
3806         dump_stack();
3807 }
3808
3809 /*
3810  * Print out an error if an invalid bit is set:
3811  */
3812 static inline int
3813 valid_state(struct task_struct *curr, struct held_lock *this,
3814             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3815 {
3816         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3817                 graph_unlock();
3818                 print_usage_bug(curr, this, bad_bit, new_bit);
3819                 return 0;
3820         }
3821         return 1;
3822 }
3823
3824
3825 /*
3826  * print irq inversion bug:
3827  */
3828 static void
3829 print_irq_inversion_bug(struct task_struct *curr,
3830                         struct lock_list *root, struct lock_list *other,
3831                         struct held_lock *this, int forwards,
3832                         const char *irqclass)
3833 {
3834         struct lock_list *entry = other;
3835         struct lock_list *middle = NULL;
3836         int depth;
3837
3838         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3839                 return;
3840
3841         pr_warn("\n");
3842         pr_warn("========================================================\n");
3843         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3844         print_kernel_ident();
3845         pr_warn("--------------------------------------------------------\n");
3846         pr_warn("%s/%d just changed the state of lock:\n",
3847                 curr->comm, task_pid_nr(curr));
3848         print_lock(this);
3849         if (forwards)
3850                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3851         else
3852                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3853         print_lock_name(other->class);
3854         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3855
3856         pr_warn("\nother info that might help us debug this:\n");
3857
3858         /* Find a middle lock (if one exists) */
3859         depth = get_lock_depth(other);
3860         do {
3861                 if (depth == 0 && (entry != root)) {
3862                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3863                         break;
3864                 }
3865                 middle = entry;
3866                 entry = get_lock_parent(entry);
3867                 depth--;
3868         } while (entry && entry != root && (depth >= 0));
3869         if (forwards)
3870                 print_irq_lock_scenario(root, other,
3871                         middle ? middle->class : root->class, other->class);
3872         else
3873                 print_irq_lock_scenario(other, root,
3874                         middle ? middle->class : other->class, root->class);
3875
3876         lockdep_print_held_locks(curr);
3877
3878         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3879         root->trace = save_trace();
3880         if (!root->trace)
3881                 return;
3882         print_shortest_lock_dependencies(other, root);
3883
3884         pr_warn("\nstack backtrace:\n");
3885         dump_stack();
3886 }
3887
3888 /*
3889  * Prove that in the forwards-direction subgraph starting at <this>
3890  * there is no lock matching <mask>:
3891  */
3892 static int
3893 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3894                      enum lock_usage_bit bit)
3895 {
3896         enum bfs_result ret;
3897         struct lock_list root;
3898         struct lock_list *target_entry;
3899         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3900         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3901
3902         bfs_init_root(&root, this);
3903         ret = find_usage_forwards(&root, usage_mask, &target_entry);
3904         if (bfs_error(ret)) {
3905                 print_bfs_bug(ret);
3906                 return 0;
3907         }
3908         if (ret == BFS_RNOMATCH)
3909                 return 1;
3910
3911         /* Check whether write or read usage is the match */
3912         if (target_entry->class->usage_mask & lock_flag(bit)) {
3913                 print_irq_inversion_bug(curr, &root, target_entry,
3914                                         this, 1, state_name(bit));
3915         } else {
3916                 print_irq_inversion_bug(curr, &root, target_entry,
3917                                         this, 1, state_name(read_bit));
3918         }
3919
3920         return 0;
3921 }
3922
3923 /*
3924  * Prove that in the backwards-direction subgraph starting at <this>
3925  * there is no lock matching <mask>:
3926  */
3927 static int
3928 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3929                       enum lock_usage_bit bit)
3930 {
3931         enum bfs_result ret;
3932         struct lock_list root;
3933         struct lock_list *target_entry;
3934         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3935         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3936
3937         bfs_init_rootb(&root, this);
3938         ret = find_usage_backwards(&root, usage_mask, &target_entry);
3939         if (bfs_error(ret)) {
3940                 print_bfs_bug(ret);
3941                 return 0;
3942         }
3943         if (ret == BFS_RNOMATCH)
3944                 return 1;
3945
3946         /* Check whether write or read usage is the match */
3947         if (target_entry->class->usage_mask & lock_flag(bit)) {
3948                 print_irq_inversion_bug(curr, &root, target_entry,
3949                                         this, 0, state_name(bit));
3950         } else {
3951                 print_irq_inversion_bug(curr, &root, target_entry,
3952                                         this, 0, state_name(read_bit));
3953         }
3954
3955         return 0;
3956 }
3957
3958 void print_irqtrace_events(struct task_struct *curr)
3959 {
3960         const struct irqtrace_events *trace = &curr->irqtrace;
3961
3962         printk("irq event stamp: %u\n", trace->irq_events);
3963         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3964                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3965                 (void *)trace->hardirq_enable_ip);
3966         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3967                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3968                 (void *)trace->hardirq_disable_ip);
3969         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3970                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3971                 (void *)trace->softirq_enable_ip);
3972         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3973                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3974                 (void *)trace->softirq_disable_ip);
3975 }
3976
3977 static int HARDIRQ_verbose(struct lock_class *class)
3978 {
3979 #if HARDIRQ_VERBOSE
3980         return class_filter(class);
3981 #endif
3982         return 0;
3983 }
3984
3985 static int SOFTIRQ_verbose(struct lock_class *class)
3986 {
3987 #if SOFTIRQ_VERBOSE
3988         return class_filter(class);
3989 #endif
3990         return 0;
3991 }
3992
3993 static int (*state_verbose_f[])(struct lock_class *class) = {
3994 #define LOCKDEP_STATE(__STATE) \
3995         __STATE##_verbose,
3996 #include "lockdep_states.h"
3997 #undef LOCKDEP_STATE
3998 };
3999
4000 static inline int state_verbose(enum lock_usage_bit bit,
4001                                 struct lock_class *class)
4002 {
4003         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4004 }
4005
4006 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4007                              enum lock_usage_bit bit, const char *name);
4008
4009 static int
4010 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4011                 enum lock_usage_bit new_bit)
4012 {
4013         int excl_bit = exclusive_bit(new_bit);
4014         int read = new_bit & LOCK_USAGE_READ_MASK;
4015         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4016
4017         /*
4018          * Validate that this particular lock does not have conflicting
4019          * usage states.
4020          */
4021         if (!valid_state(curr, this, new_bit, excl_bit))
4022                 return 0;
4023
4024         /*
4025          * Check for read in write conflicts
4026          */
4027         if (!read && !valid_state(curr, this, new_bit,
4028                                   excl_bit + LOCK_USAGE_READ_MASK))
4029                 return 0;
4030
4031
4032         /*
4033          * Validate that the lock dependencies don't have conflicting usage
4034          * states.
4035          */
4036         if (dir) {
4037                 /*
4038                  * mark ENABLED has to look backwards -- to ensure no dependee
4039                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4040                  */
4041                 if (!check_usage_backwards(curr, this, excl_bit))
4042                         return 0;
4043         } else {
4044                 /*
4045                  * mark USED_IN has to look forwards -- to ensure no dependency
4046                  * has ENABLED state, which would allow recursion deadlocks.
4047                  */
4048                 if (!check_usage_forwards(curr, this, excl_bit))
4049                         return 0;
4050         }
4051
4052         if (state_verbose(new_bit, hlock_class(this)))
4053                 return 2;
4054
4055         return 1;
4056 }
4057
4058 /*
4059  * Mark all held locks with a usage bit:
4060  */
4061 static int
4062 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4063 {
4064         struct held_lock *hlock;
4065         int i;
4066
4067         for (i = 0; i < curr->lockdep_depth; i++) {
4068                 enum lock_usage_bit hlock_bit = base_bit;
4069                 hlock = curr->held_locks + i;
4070
4071                 if (hlock->read)
4072                         hlock_bit += LOCK_USAGE_READ_MASK;
4073
4074                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4075
4076                 if (!hlock->check)
4077                         continue;
4078
4079                 if (!mark_lock(curr, hlock, hlock_bit))
4080                         return 0;
4081         }
4082
4083         return 1;
4084 }
4085
4086 /*
4087  * Hardirqs will be enabled:
4088  */
4089 static void __trace_hardirqs_on_caller(void)
4090 {
4091         struct task_struct *curr = current;
4092
4093         /*
4094          * We are going to turn hardirqs on, so set the
4095          * usage bit for all held locks:
4096          */
4097         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4098                 return;
4099         /*
4100          * If we have softirqs enabled, then set the usage
4101          * bit for all held locks. (disabled hardirqs prevented
4102          * this bit from being set before)
4103          */
4104         if (curr->softirqs_enabled)
4105                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4106 }
4107
4108 /**
4109  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4110  * @ip:         Caller address
4111  *
4112  * Invoked before a possible transition to RCU idle from exit to user or
4113  * guest mode. This ensures that all RCU operations are done before RCU
4114  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4115  * invoked to set the final state.
4116  */
4117 void lockdep_hardirqs_on_prepare(unsigned long ip)
4118 {
4119         if (unlikely(!debug_locks))
4120                 return;
4121
4122         /*
4123          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4124          */
4125         if (unlikely(in_nmi()))
4126                 return;
4127
4128         if (unlikely(this_cpu_read(lockdep_recursion)))
4129                 return;
4130
4131         if (unlikely(lockdep_hardirqs_enabled())) {
4132                 /*
4133                  * Neither irq nor preemption are disabled here
4134                  * so this is racy by nature but losing one hit
4135                  * in a stat is not a big deal.
4136                  */
4137                 __debug_atomic_inc(redundant_hardirqs_on);
4138                 return;
4139         }
4140
4141         /*
4142          * We're enabling irqs and according to our state above irqs weren't
4143          * already enabled, yet we find the hardware thinks they are in fact
4144          * enabled.. someone messed up their IRQ state tracing.
4145          */
4146         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4147                 return;
4148
4149         /*
4150          * See the fine text that goes along with this variable definition.
4151          */
4152         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4153                 return;
4154
4155         /*
4156          * Can't allow enabling interrupts while in an interrupt handler,
4157          * that's general bad form and such. Recursion, limited stack etc..
4158          */
4159         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4160                 return;
4161
4162         current->hardirq_chain_key = current->curr_chain_key;
4163
4164         lockdep_recursion_inc();
4165         __trace_hardirqs_on_caller();
4166         lockdep_recursion_finish();
4167 }
4168 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4169
4170 void noinstr lockdep_hardirqs_on(unsigned long ip)
4171 {
4172         struct irqtrace_events *trace = &current->irqtrace;
4173
4174         if (unlikely(!debug_locks))
4175                 return;
4176
4177         /*
4178          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4179          * tracking state and hardware state are out of sync.
4180          *
4181          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4182          * and not rely on hardware state like normal interrupts.
4183          */
4184         if (unlikely(in_nmi())) {
4185                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4186                         return;
4187
4188                 /*
4189                  * Skip:
4190                  *  - recursion check, because NMI can hit lockdep;
4191                  *  - hardware state check, because above;
4192                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4193                  */
4194                 goto skip_checks;
4195         }
4196
4197         if (unlikely(this_cpu_read(lockdep_recursion)))
4198                 return;
4199
4200         if (lockdep_hardirqs_enabled()) {
4201                 /*
4202                  * Neither irq nor preemption are disabled here
4203                  * so this is racy by nature but losing one hit
4204                  * in a stat is not a big deal.
4205                  */
4206                 __debug_atomic_inc(redundant_hardirqs_on);
4207                 return;
4208         }
4209
4210         /*
4211          * We're enabling irqs and according to our state above irqs weren't
4212          * already enabled, yet we find the hardware thinks they are in fact
4213          * enabled.. someone messed up their IRQ state tracing.
4214          */
4215         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4216                 return;
4217
4218         /*
4219          * Ensure the lock stack remained unchanged between
4220          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4221          */
4222         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4223                             current->curr_chain_key);
4224
4225 skip_checks:
4226         /* we'll do an OFF -> ON transition: */
4227         __this_cpu_write(hardirqs_enabled, 1);
4228         trace->hardirq_enable_ip = ip;
4229         trace->hardirq_enable_event = ++trace->irq_events;
4230         debug_atomic_inc(hardirqs_on_events);
4231 }
4232 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4233
4234 /*
4235  * Hardirqs were disabled:
4236  */
4237 void noinstr lockdep_hardirqs_off(unsigned long ip)
4238 {
4239         if (unlikely(!debug_locks))
4240                 return;
4241
4242         /*
4243          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4244          * they will restore the software state. This ensures the software
4245          * state is consistent inside NMIs as well.
4246          */
4247         if (in_nmi()) {
4248                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4249                         return;
4250         } else if (__this_cpu_read(lockdep_recursion))
4251                 return;
4252
4253         /*
4254          * So we're supposed to get called after you mask local IRQs, but for
4255          * some reason the hardware doesn't quite think you did a proper job.
4256          */
4257         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4258                 return;
4259
4260         if (lockdep_hardirqs_enabled()) {
4261                 struct irqtrace_events *trace = &current->irqtrace;
4262
4263                 /*
4264                  * We have done an ON -> OFF transition:
4265                  */
4266                 __this_cpu_write(hardirqs_enabled, 0);
4267                 trace->hardirq_disable_ip = ip;
4268                 trace->hardirq_disable_event = ++trace->irq_events;
4269                 debug_atomic_inc(hardirqs_off_events);
4270         } else {
4271                 debug_atomic_inc(redundant_hardirqs_off);
4272         }
4273 }
4274 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4275
4276 /*
4277  * Softirqs will be enabled:
4278  */
4279 void lockdep_softirqs_on(unsigned long ip)
4280 {
4281         struct irqtrace_events *trace = &current->irqtrace;
4282
4283         if (unlikely(!lockdep_enabled()))
4284                 return;
4285
4286         /*
4287          * We fancy IRQs being disabled here, see softirq.c, avoids
4288          * funny state and nesting things.
4289          */
4290         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4291                 return;
4292
4293         if (current->softirqs_enabled) {
4294                 debug_atomic_inc(redundant_softirqs_on);
4295                 return;
4296         }
4297
4298         lockdep_recursion_inc();
4299         /*
4300          * We'll do an OFF -> ON transition:
4301          */
4302         current->softirqs_enabled = 1;
4303         trace->softirq_enable_ip = ip;
4304         trace->softirq_enable_event = ++trace->irq_events;
4305         debug_atomic_inc(softirqs_on_events);
4306         /*
4307          * We are going to turn softirqs on, so set the
4308          * usage bit for all held locks, if hardirqs are
4309          * enabled too:
4310          */
4311         if (lockdep_hardirqs_enabled())
4312                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4313         lockdep_recursion_finish();
4314 }
4315
4316 /*
4317  * Softirqs were disabled:
4318  */
4319 void lockdep_softirqs_off(unsigned long ip)
4320 {
4321         if (unlikely(!lockdep_enabled()))
4322                 return;
4323
4324         /*
4325          * We fancy IRQs being disabled here, see softirq.c
4326          */
4327         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4328                 return;
4329
4330         if (current->softirqs_enabled) {
4331                 struct irqtrace_events *trace = &current->irqtrace;
4332
4333                 /*
4334                  * We have done an ON -> OFF transition:
4335                  */
4336                 current->softirqs_enabled = 0;
4337                 trace->softirq_disable_ip = ip;
4338                 trace->softirq_disable_event = ++trace->irq_events;
4339                 debug_atomic_inc(softirqs_off_events);
4340                 /*
4341                  * Whoops, we wanted softirqs off, so why aren't they?
4342                  */
4343                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4344         } else
4345                 debug_atomic_inc(redundant_softirqs_off);
4346 }
4347
4348 static int
4349 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4350 {
4351         if (!check)
4352                 goto lock_used;
4353
4354         /*
4355          * If non-trylock use in a hardirq or softirq context, then
4356          * mark the lock as used in these contexts:
4357          */
4358         if (!hlock->trylock) {
4359                 if (hlock->read) {
4360                         if (lockdep_hardirq_context())
4361                                 if (!mark_lock(curr, hlock,
4362                                                 LOCK_USED_IN_HARDIRQ_READ))
4363                                         return 0;
4364                         if (curr->softirq_context)
4365                                 if (!mark_lock(curr, hlock,
4366                                                 LOCK_USED_IN_SOFTIRQ_READ))
4367                                         return 0;
4368                 } else {
4369                         if (lockdep_hardirq_context())
4370                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4371                                         return 0;
4372                         if (curr->softirq_context)
4373                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4374                                         return 0;
4375                 }
4376         }
4377         if (!hlock->hardirqs_off) {
4378                 if (hlock->read) {
4379                         if (!mark_lock(curr, hlock,
4380                                         LOCK_ENABLED_HARDIRQ_READ))
4381                                 return 0;
4382                         if (curr->softirqs_enabled)
4383                                 if (!mark_lock(curr, hlock,
4384                                                 LOCK_ENABLED_SOFTIRQ_READ))
4385                                         return 0;
4386                 } else {
4387                         if (!mark_lock(curr, hlock,
4388                                         LOCK_ENABLED_HARDIRQ))
4389                                 return 0;
4390                         if (curr->softirqs_enabled)
4391                                 if (!mark_lock(curr, hlock,
4392                                                 LOCK_ENABLED_SOFTIRQ))
4393                                         return 0;
4394                 }
4395         }
4396
4397 lock_used:
4398         /* mark it as used: */
4399         if (!mark_lock(curr, hlock, LOCK_USED))
4400                 return 0;
4401
4402         return 1;
4403 }
4404
4405 static inline unsigned int task_irq_context(struct task_struct *task)
4406 {
4407         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4408                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4409 }
4410
4411 static int separate_irq_context(struct task_struct *curr,
4412                 struct held_lock *hlock)
4413 {
4414         unsigned int depth = curr->lockdep_depth;
4415
4416         /*
4417          * Keep track of points where we cross into an interrupt context:
4418          */
4419         if (depth) {
4420                 struct held_lock *prev_hlock;
4421
4422                 prev_hlock = curr->held_locks + depth-1;
4423                 /*
4424                  * If we cross into another context, reset the
4425                  * hash key (this also prevents the checking and the
4426                  * adding of the dependency to 'prev'):
4427                  */
4428                 if (prev_hlock->irq_context != hlock->irq_context)
4429                         return 1;
4430         }
4431         return 0;
4432 }
4433
4434 /*
4435  * Mark a lock with a usage bit, and validate the state transition:
4436  */
4437 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4438                              enum lock_usage_bit new_bit)
4439 {
4440         unsigned int new_mask, ret = 1;
4441
4442         if (new_bit >= LOCK_USAGE_STATES) {
4443                 DEBUG_LOCKS_WARN_ON(1);
4444                 return 0;
4445         }
4446
4447         if (new_bit == LOCK_USED && this->read)
4448                 new_bit = LOCK_USED_READ;
4449
4450         new_mask = 1 << new_bit;
4451
4452         /*
4453          * If already set then do not dirty the cacheline,
4454          * nor do any checks:
4455          */
4456         if (likely(hlock_class(this)->usage_mask & new_mask))
4457                 return 1;
4458
4459         if (!graph_lock())
4460                 return 0;
4461         /*
4462          * Make sure we didn't race:
4463          */
4464         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4465                 goto unlock;
4466
4467         if (!hlock_class(this)->usage_mask)
4468                 debug_atomic_dec(nr_unused_locks);
4469
4470         hlock_class(this)->usage_mask |= new_mask;
4471
4472         if (new_bit < LOCK_TRACE_STATES) {
4473                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4474                         return 0;
4475         }
4476
4477         if (new_bit < LOCK_USED) {
4478                 ret = mark_lock_irq(curr, this, new_bit);
4479                 if (!ret)
4480                         return 0;
4481         }
4482
4483 unlock:
4484         graph_unlock();
4485
4486         /*
4487          * We must printk outside of the graph_lock:
4488          */
4489         if (ret == 2) {
4490                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4491                 print_lock(this);
4492                 print_irqtrace_events(curr);
4493                 dump_stack();
4494         }
4495
4496         return ret;
4497 }
4498
4499 static inline short task_wait_context(struct task_struct *curr)
4500 {
4501         /*
4502          * Set appropriate wait type for the context; for IRQs we have to take
4503          * into account force_irqthread as that is implied by PREEMPT_RT.
4504          */
4505         if (lockdep_hardirq_context()) {
4506                 /*
4507                  * Check if force_irqthreads will run us threaded.
4508                  */
4509                 if (curr->hardirq_threaded || curr->irq_config)
4510                         return LD_WAIT_CONFIG;
4511
4512                 return LD_WAIT_SPIN;
4513         } else if (curr->softirq_context) {
4514                 /*
4515                  * Softirqs are always threaded.
4516                  */
4517                 return LD_WAIT_CONFIG;
4518         }
4519
4520         return LD_WAIT_MAX;
4521 }
4522
4523 static int
4524 print_lock_invalid_wait_context(struct task_struct *curr,
4525                                 struct held_lock *hlock)
4526 {
4527         short curr_inner;
4528
4529         if (!debug_locks_off())
4530                 return 0;
4531         if (debug_locks_silent)
4532                 return 0;
4533
4534         pr_warn("\n");
4535         pr_warn("=============================\n");
4536         pr_warn("[ BUG: Invalid wait context ]\n");
4537         print_kernel_ident();
4538         pr_warn("-----------------------------\n");
4539
4540         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4541         print_lock(hlock);
4542
4543         pr_warn("other info that might help us debug this:\n");
4544
4545         curr_inner = task_wait_context(curr);
4546         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4547
4548         lockdep_print_held_locks(curr);
4549
4550         pr_warn("stack backtrace:\n");
4551         dump_stack();
4552
4553         return 0;
4554 }
4555
4556 /*
4557  * Verify the wait_type context.
4558  *
4559  * This check validates we takes locks in the right wait-type order; that is it
4560  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4561  * acquire spinlocks inside raw_spinlocks and the sort.
4562  *
4563  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4564  * can be taken from (pretty much) any context but also has constraints.
4565  * However when taken in a stricter environment the RCU lock does not loosen
4566  * the constraints.
4567  *
4568  * Therefore we must look for the strictest environment in the lock stack and
4569  * compare that to the lock we're trying to acquire.
4570  */
4571 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4572 {
4573         u8 next_inner = hlock_class(next)->wait_type_inner;
4574         u8 next_outer = hlock_class(next)->wait_type_outer;
4575         u8 curr_inner;
4576         int depth;
4577
4578         if (!curr->lockdep_depth || !next_inner || next->trylock)
4579                 return 0;
4580
4581         if (!next_outer)
4582                 next_outer = next_inner;
4583
4584         /*
4585          * Find start of current irq_context..
4586          */
4587         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4588                 struct held_lock *prev = curr->held_locks + depth;
4589                 if (prev->irq_context != next->irq_context)
4590                         break;
4591         }
4592         depth++;
4593
4594         curr_inner = task_wait_context(curr);
4595
4596         for (; depth < curr->lockdep_depth; depth++) {
4597                 struct held_lock *prev = curr->held_locks + depth;
4598                 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4599
4600                 if (prev_inner) {
4601                         /*
4602                          * We can have a bigger inner than a previous one
4603                          * when outer is smaller than inner, as with RCU.
4604                          *
4605                          * Also due to trylocks.
4606                          */
4607                         curr_inner = min(curr_inner, prev_inner);
4608                 }
4609         }
4610
4611         if (next_outer > curr_inner)
4612                 return print_lock_invalid_wait_context(curr, next);
4613
4614         return 0;
4615 }
4616
4617 #else /* CONFIG_PROVE_LOCKING */
4618
4619 static inline int
4620 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4621 {
4622         return 1;
4623 }
4624
4625 static inline unsigned int task_irq_context(struct task_struct *task)
4626 {
4627         return 0;
4628 }
4629
4630 static inline int separate_irq_context(struct task_struct *curr,
4631                 struct held_lock *hlock)
4632 {
4633         return 0;
4634 }
4635
4636 static inline int check_wait_context(struct task_struct *curr,
4637                                      struct held_lock *next)
4638 {
4639         return 0;
4640 }
4641
4642 #endif /* CONFIG_PROVE_LOCKING */
4643
4644 /*
4645  * Initialize a lock instance's lock-class mapping info:
4646  */
4647 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4648                             struct lock_class_key *key, int subclass,
4649                             u8 inner, u8 outer, u8 lock_type)
4650 {
4651         int i;
4652
4653         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4654                 lock->class_cache[i] = NULL;
4655
4656 #ifdef CONFIG_LOCK_STAT
4657         lock->cpu = raw_smp_processor_id();
4658 #endif
4659
4660         /*
4661          * Can't be having no nameless bastards around this place!
4662          */
4663         if (DEBUG_LOCKS_WARN_ON(!name)) {
4664                 lock->name = "NULL";
4665                 return;
4666         }
4667
4668         lock->name = name;
4669
4670         lock->wait_type_outer = outer;
4671         lock->wait_type_inner = inner;
4672         lock->lock_type = lock_type;
4673
4674         /*
4675          * No key, no joy, we need to hash something.
4676          */
4677         if (DEBUG_LOCKS_WARN_ON(!key))
4678                 return;
4679         /*
4680          * Sanity check, the lock-class key must either have been allocated
4681          * statically or must have been registered as a dynamic key.
4682          */
4683         if (!static_obj(key) && !is_dynamic_key(key)) {
4684                 if (debug_locks)
4685                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4686                 DEBUG_LOCKS_WARN_ON(1);
4687                 return;
4688         }
4689         lock->key = key;
4690
4691         if (unlikely(!debug_locks))
4692                 return;
4693
4694         if (subclass) {
4695                 unsigned long flags;
4696
4697                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4698                         return;
4699
4700                 raw_local_irq_save(flags);
4701                 lockdep_recursion_inc();
4702                 register_lock_class(lock, subclass, 1);
4703                 lockdep_recursion_finish();
4704                 raw_local_irq_restore(flags);
4705         }
4706 }
4707 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4708
4709 struct lock_class_key __lockdep_no_validate__;
4710 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4711
4712 static void
4713 print_lock_nested_lock_not_held(struct task_struct *curr,
4714                                 struct held_lock *hlock,
4715                                 unsigned long ip)
4716 {
4717         if (!debug_locks_off())
4718                 return;
4719         if (debug_locks_silent)
4720                 return;
4721
4722         pr_warn("\n");
4723         pr_warn("==================================\n");
4724         pr_warn("WARNING: Nested lock was not taken\n");
4725         print_kernel_ident();
4726         pr_warn("----------------------------------\n");
4727
4728         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4729         print_lock(hlock);
4730
4731         pr_warn("\nbut this task is not holding:\n");
4732         pr_warn("%s\n", hlock->nest_lock->name);
4733
4734         pr_warn("\nstack backtrace:\n");
4735         dump_stack();
4736
4737         pr_warn("\nother info that might help us debug this:\n");
4738         lockdep_print_held_locks(curr);
4739
4740         pr_warn("\nstack backtrace:\n");
4741         dump_stack();
4742 }
4743
4744 static int __lock_is_held(const struct lockdep_map *lock, int read);
4745
4746 /*
4747  * This gets called for every mutex_lock*()/spin_lock*() operation.
4748  * We maintain the dependency maps and validate the locking attempt:
4749  *
4750  * The callers must make sure that IRQs are disabled before calling it,
4751  * otherwise we could get an interrupt which would want to take locks,
4752  * which would end up in lockdep again.
4753  */
4754 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4755                           int trylock, int read, int check, int hardirqs_off,
4756                           struct lockdep_map *nest_lock, unsigned long ip,
4757                           int references, int pin_count)
4758 {
4759         struct task_struct *curr = current;
4760         struct lock_class *class = NULL;
4761         struct held_lock *hlock;
4762         unsigned int depth;
4763         int chain_head = 0;
4764         int class_idx;
4765         u64 chain_key;
4766
4767         if (unlikely(!debug_locks))
4768                 return 0;
4769
4770         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4771                 check = 0;
4772
4773         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4774                 class = lock->class_cache[subclass];
4775         /*
4776          * Not cached?
4777          */
4778         if (unlikely(!class)) {
4779                 class = register_lock_class(lock, subclass, 0);
4780                 if (!class)
4781                         return 0;
4782         }
4783
4784         debug_class_ops_inc(class);
4785
4786         if (very_verbose(class)) {
4787                 printk("\nacquire class [%px] %s", class->key, class->name);
4788                 if (class->name_version > 1)
4789                         printk(KERN_CONT "#%d", class->name_version);
4790                 printk(KERN_CONT "\n");
4791                 dump_stack();
4792         }
4793
4794         /*
4795          * Add the lock to the list of currently held locks.
4796          * (we dont increase the depth just yet, up until the
4797          * dependency checks are done)
4798          */
4799         depth = curr->lockdep_depth;
4800         /*
4801          * Ran out of static storage for our per-task lock stack again have we?
4802          */
4803         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4804                 return 0;
4805
4806         class_idx = class - lock_classes;
4807
4808         if (depth) { /* we're holding locks */
4809                 hlock = curr->held_locks + depth - 1;
4810                 if (hlock->class_idx == class_idx && nest_lock) {
4811                         if (!references)
4812                                 references++;
4813
4814                         if (!hlock->references)
4815                                 hlock->references++;
4816
4817                         hlock->references += references;
4818
4819                         /* Overflow */
4820                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4821                                 return 0;
4822
4823                         return 2;
4824                 }
4825         }
4826
4827         hlock = curr->held_locks + depth;
4828         /*
4829          * Plain impossible, we just registered it and checked it weren't no
4830          * NULL like.. I bet this mushroom I ate was good!
4831          */
4832         if (DEBUG_LOCKS_WARN_ON(!class))
4833                 return 0;
4834         hlock->class_idx = class_idx;
4835         hlock->acquire_ip = ip;
4836         hlock->instance = lock;
4837         hlock->nest_lock = nest_lock;
4838         hlock->irq_context = task_irq_context(curr);
4839         hlock->trylock = trylock;
4840         hlock->read = read;
4841         hlock->check = check;
4842         hlock->hardirqs_off = !!hardirqs_off;
4843         hlock->references = references;
4844 #ifdef CONFIG_LOCK_STAT
4845         hlock->waittime_stamp = 0;
4846         hlock->holdtime_stamp = lockstat_clock();
4847 #endif
4848         hlock->pin_count = pin_count;
4849
4850         if (check_wait_context(curr, hlock))
4851                 return 0;
4852
4853         /* Initialize the lock usage bit */
4854         if (!mark_usage(curr, hlock, check))
4855                 return 0;
4856
4857         /*
4858          * Calculate the chain hash: it's the combined hash of all the
4859          * lock keys along the dependency chain. We save the hash value
4860          * at every step so that we can get the current hash easily
4861          * after unlock. The chain hash is then used to cache dependency
4862          * results.
4863          *
4864          * The 'key ID' is what is the most compact key value to drive
4865          * the hash, not class->key.
4866          */
4867         /*
4868          * Whoops, we did it again.. class_idx is invalid.
4869          */
4870         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4871                 return 0;
4872
4873         chain_key = curr->curr_chain_key;
4874         if (!depth) {
4875                 /*
4876                  * How can we have a chain hash when we ain't got no keys?!
4877                  */
4878                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4879                         return 0;
4880                 chain_head = 1;
4881         }
4882
4883         hlock->prev_chain_key = chain_key;
4884         if (separate_irq_context(curr, hlock)) {
4885                 chain_key = INITIAL_CHAIN_KEY;
4886                 chain_head = 1;
4887         }
4888         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4889
4890         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4891                 print_lock_nested_lock_not_held(curr, hlock, ip);
4892                 return 0;
4893         }
4894
4895         if (!debug_locks_silent) {
4896                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4897                 WARN_ON_ONCE(!hlock_class(hlock)->key);
4898         }
4899
4900         if (!validate_chain(curr, hlock, chain_head, chain_key))
4901                 return 0;
4902
4903         curr->curr_chain_key = chain_key;
4904         curr->lockdep_depth++;
4905         check_chain_key(curr);
4906 #ifdef CONFIG_DEBUG_LOCKDEP
4907         if (unlikely(!debug_locks))
4908                 return 0;
4909 #endif
4910         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4911                 debug_locks_off();
4912                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4913                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4914                        curr->lockdep_depth, MAX_LOCK_DEPTH);
4915
4916                 lockdep_print_held_locks(current);
4917                 debug_show_all_locks();
4918                 dump_stack();
4919
4920                 return 0;
4921         }
4922
4923         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4924                 max_lockdep_depth = curr->lockdep_depth;
4925
4926         return 1;
4927 }
4928
4929 static void print_unlock_imbalance_bug(struct task_struct *curr,
4930                                        struct lockdep_map *lock,
4931                                        unsigned long ip)
4932 {
4933         if (!debug_locks_off())
4934                 return;
4935         if (debug_locks_silent)
4936                 return;
4937
4938         pr_warn("\n");
4939         pr_warn("=====================================\n");
4940         pr_warn("WARNING: bad unlock balance detected!\n");
4941         print_kernel_ident();
4942         pr_warn("-------------------------------------\n");
4943         pr_warn("%s/%d is trying to release lock (",
4944                 curr->comm, task_pid_nr(curr));
4945         print_lockdep_cache(lock);
4946         pr_cont(") at:\n");
4947         print_ip_sym(KERN_WARNING, ip);
4948         pr_warn("but there are no more locks to release!\n");
4949         pr_warn("\nother info that might help us debug this:\n");
4950         lockdep_print_held_locks(curr);
4951
4952         pr_warn("\nstack backtrace:\n");
4953         dump_stack();
4954 }
4955
4956 static noinstr int match_held_lock(const struct held_lock *hlock,
4957                                    const struct lockdep_map *lock)
4958 {
4959         if (hlock->instance == lock)
4960                 return 1;
4961
4962         if (hlock->references) {
4963                 const struct lock_class *class = lock->class_cache[0];
4964
4965                 if (!class)
4966                         class = look_up_lock_class(lock, 0);
4967
4968                 /*
4969                  * If look_up_lock_class() failed to find a class, we're trying
4970                  * to test if we hold a lock that has never yet been acquired.
4971                  * Clearly if the lock hasn't been acquired _ever_, we're not
4972                  * holding it either, so report failure.
4973                  */
4974                 if (!class)
4975                         return 0;
4976
4977                 /*
4978                  * References, but not a lock we're actually ref-counting?
4979                  * State got messed up, follow the sites that change ->references
4980                  * and try to make sense of it.
4981                  */
4982                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4983                         return 0;
4984
4985                 if (hlock->class_idx == class - lock_classes)
4986                         return 1;
4987         }
4988
4989         return 0;
4990 }
4991
4992 /* @depth must not be zero */
4993 static struct held_lock *find_held_lock(struct task_struct *curr,
4994                                         struct lockdep_map *lock,
4995                                         unsigned int depth, int *idx)
4996 {
4997         struct held_lock *ret, *hlock, *prev_hlock;
4998         int i;
4999
5000         i = depth - 1;
5001         hlock = curr->held_locks + i;
5002         ret = hlock;
5003         if (match_held_lock(hlock, lock))
5004                 goto out;
5005
5006         ret = NULL;
5007         for (i--, prev_hlock = hlock--;
5008              i >= 0;
5009              i--, prev_hlock = hlock--) {
5010                 /*
5011                  * We must not cross into another context:
5012                  */
5013                 if (prev_hlock->irq_context != hlock->irq_context) {
5014                         ret = NULL;
5015                         break;
5016                 }
5017                 if (match_held_lock(hlock, lock)) {
5018                         ret = hlock;
5019                         break;
5020                 }
5021         }
5022
5023 out:
5024         *idx = i;
5025         return ret;
5026 }
5027
5028 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5029                                 int idx, unsigned int *merged)
5030 {
5031         struct held_lock *hlock;
5032         int first_idx = idx;
5033
5034         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5035                 return 0;
5036
5037         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5038                 switch (__lock_acquire(hlock->instance,
5039                                     hlock_class(hlock)->subclass,
5040                                     hlock->trylock,
5041                                     hlock->read, hlock->check,
5042                                     hlock->hardirqs_off,
5043                                     hlock->nest_lock, hlock->acquire_ip,
5044                                     hlock->references, hlock->pin_count)) {
5045                 case 0:
5046                         return 1;
5047                 case 1:
5048                         break;
5049                 case 2:
5050                         *merged += (idx == first_idx);
5051                         break;
5052                 default:
5053                         WARN_ON(1);
5054                         return 0;
5055                 }
5056         }
5057         return 0;
5058 }
5059
5060 static int
5061 __lock_set_class(struct lockdep_map *lock, const char *name,
5062                  struct lock_class_key *key, unsigned int subclass,
5063                  unsigned long ip)
5064 {
5065         struct task_struct *curr = current;
5066         unsigned int depth, merged = 0;
5067         struct held_lock *hlock;
5068         struct lock_class *class;
5069         int i;
5070
5071         if (unlikely(!debug_locks))
5072                 return 0;
5073
5074         depth = curr->lockdep_depth;
5075         /*
5076          * This function is about (re)setting the class of a held lock,
5077          * yet we're not actually holding any locks. Naughty user!
5078          */
5079         if (DEBUG_LOCKS_WARN_ON(!depth))
5080                 return 0;
5081
5082         hlock = find_held_lock(curr, lock, depth, &i);
5083         if (!hlock) {
5084                 print_unlock_imbalance_bug(curr, lock, ip);
5085                 return 0;
5086         }
5087
5088         lockdep_init_map_waits(lock, name, key, 0,
5089                                lock->wait_type_inner,
5090                                lock->wait_type_outer);
5091         class = register_lock_class(lock, subclass, 0);
5092         hlock->class_idx = class - lock_classes;
5093
5094         curr->lockdep_depth = i;
5095         curr->curr_chain_key = hlock->prev_chain_key;
5096
5097         if (reacquire_held_locks(curr, depth, i, &merged))
5098                 return 0;
5099
5100         /*
5101          * I took it apart and put it back together again, except now I have
5102          * these 'spare' parts.. where shall I put them.
5103          */
5104         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5105                 return 0;
5106         return 1;
5107 }
5108
5109 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5110 {
5111         struct task_struct *curr = current;
5112         unsigned int depth, merged = 0;
5113         struct held_lock *hlock;
5114         int i;
5115
5116         if (unlikely(!debug_locks))
5117                 return 0;
5118
5119         depth = curr->lockdep_depth;
5120         /*
5121          * This function is about (re)setting the class of a held lock,
5122          * yet we're not actually holding any locks. Naughty user!
5123          */
5124         if (DEBUG_LOCKS_WARN_ON(!depth))
5125                 return 0;
5126
5127         hlock = find_held_lock(curr, lock, depth, &i);
5128         if (!hlock) {
5129                 print_unlock_imbalance_bug(curr, lock, ip);
5130                 return 0;
5131         }
5132
5133         curr->lockdep_depth = i;
5134         curr->curr_chain_key = hlock->prev_chain_key;
5135
5136         WARN(hlock->read, "downgrading a read lock");
5137         hlock->read = 1;
5138         hlock->acquire_ip = ip;
5139
5140         if (reacquire_held_locks(curr, depth, i, &merged))
5141                 return 0;
5142
5143         /* Merging can't happen with unchanged classes.. */
5144         if (DEBUG_LOCKS_WARN_ON(merged))
5145                 return 0;
5146
5147         /*
5148          * I took it apart and put it back together again, except now I have
5149          * these 'spare' parts.. where shall I put them.
5150          */
5151         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5152                 return 0;
5153
5154         return 1;
5155 }
5156
5157 /*
5158  * Remove the lock from the list of currently held locks - this gets
5159  * called on mutex_unlock()/spin_unlock*() (or on a failed
5160  * mutex_lock_interruptible()).
5161  */
5162 static int
5163 __lock_release(struct lockdep_map *lock, unsigned long ip)
5164 {
5165         struct task_struct *curr = current;
5166         unsigned int depth, merged = 1;
5167         struct held_lock *hlock;
5168         int i;
5169
5170         if (unlikely(!debug_locks))
5171                 return 0;
5172
5173         depth = curr->lockdep_depth;
5174         /*
5175          * So we're all set to release this lock.. wait what lock? We don't
5176          * own any locks, you've been drinking again?
5177          */
5178         if (depth <= 0) {
5179                 print_unlock_imbalance_bug(curr, lock, ip);
5180                 return 0;
5181         }
5182
5183         /*
5184          * Check whether the lock exists in the current stack
5185          * of held locks:
5186          */
5187         hlock = find_held_lock(curr, lock, depth, &i);
5188         if (!hlock) {
5189                 print_unlock_imbalance_bug(curr, lock, ip);
5190                 return 0;
5191         }
5192
5193         if (hlock->instance == lock)
5194                 lock_release_holdtime(hlock);
5195
5196         WARN(hlock->pin_count, "releasing a pinned lock\n");
5197
5198         if (hlock->references) {
5199                 hlock->references--;
5200                 if (hlock->references) {
5201                         /*
5202                          * We had, and after removing one, still have
5203                          * references, the current lock stack is still
5204                          * valid. We're done!
5205                          */
5206                         return 1;
5207                 }
5208         }
5209
5210         /*
5211          * We have the right lock to unlock, 'hlock' points to it.
5212          * Now we remove it from the stack, and add back the other
5213          * entries (if any), recalculating the hash along the way:
5214          */
5215
5216         curr->lockdep_depth = i;
5217         curr->curr_chain_key = hlock->prev_chain_key;
5218
5219         /*
5220          * The most likely case is when the unlock is on the innermost
5221          * lock. In this case, we are done!
5222          */
5223         if (i == depth-1)
5224                 return 1;
5225
5226         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5227                 return 0;
5228
5229         /*
5230          * We had N bottles of beer on the wall, we drank one, but now
5231          * there's not N-1 bottles of beer left on the wall...
5232          * Pouring two of the bottles together is acceptable.
5233          */
5234         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5235
5236         /*
5237          * Since reacquire_held_locks() would have called check_chain_key()
5238          * indirectly via __lock_acquire(), we don't need to do it again
5239          * on return.
5240          */
5241         return 0;
5242 }
5243
5244 static __always_inline
5245 int __lock_is_held(const struct lockdep_map *lock, int read)
5246 {
5247         struct task_struct *curr = current;
5248         int i;
5249
5250         for (i = 0; i < curr->lockdep_depth; i++) {
5251                 struct held_lock *hlock = curr->held_locks + i;
5252
5253                 if (match_held_lock(hlock, lock)) {
5254                         if (read == -1 || hlock->read == read)
5255                                 return 1;
5256
5257                         return 0;
5258                 }
5259         }
5260
5261         return 0;
5262 }
5263
5264 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5265 {
5266         struct pin_cookie cookie = NIL_COOKIE;
5267         struct task_struct *curr = current;
5268         int i;
5269
5270         if (unlikely(!debug_locks))
5271                 return cookie;
5272
5273         for (i = 0; i < curr->lockdep_depth; i++) {
5274                 struct held_lock *hlock = curr->held_locks + i;
5275
5276                 if (match_held_lock(hlock, lock)) {
5277                         /*
5278                          * Grab 16bits of randomness; this is sufficient to not
5279                          * be guessable and still allows some pin nesting in
5280                          * our u32 pin_count.
5281                          */
5282                         cookie.val = 1 + (prandom_u32() >> 16);
5283                         hlock->pin_count += cookie.val;
5284                         return cookie;
5285                 }
5286         }
5287
5288         WARN(1, "pinning an unheld lock\n");
5289         return cookie;
5290 }
5291
5292 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5293 {
5294         struct task_struct *curr = current;
5295         int i;
5296
5297         if (unlikely(!debug_locks))
5298                 return;
5299
5300         for (i = 0; i < curr->lockdep_depth; i++) {
5301                 struct held_lock *hlock = curr->held_locks + i;
5302
5303                 if (match_held_lock(hlock, lock)) {
5304                         hlock->pin_count += cookie.val;
5305                         return;
5306                 }
5307         }
5308
5309         WARN(1, "pinning an unheld lock\n");
5310 }
5311
5312 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5313 {
5314         struct task_struct *curr = current;
5315         int i;
5316
5317         if (unlikely(!debug_locks))
5318                 return;
5319
5320         for (i = 0; i < curr->lockdep_depth; i++) {
5321                 struct held_lock *hlock = curr->held_locks + i;
5322
5323                 if (match_held_lock(hlock, lock)) {
5324                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5325                                 return;
5326
5327                         hlock->pin_count -= cookie.val;
5328
5329                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5330                                 hlock->pin_count = 0;
5331
5332                         return;
5333                 }
5334         }
5335
5336         WARN(1, "unpinning an unheld lock\n");
5337 }
5338
5339 /*
5340  * Check whether we follow the irq-flags state precisely:
5341  */
5342 static noinstr void check_flags(unsigned long flags)
5343 {
5344 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5345         if (!debug_locks)
5346                 return;
5347
5348         /* Get the warning out..  */
5349         instrumentation_begin();
5350
5351         if (irqs_disabled_flags(flags)) {
5352                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5353                         printk("possible reason: unannotated irqs-off.\n");
5354                 }
5355         } else {
5356                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5357                         printk("possible reason: unannotated irqs-on.\n");
5358                 }
5359         }
5360
5361         /*
5362          * We dont accurately track softirq state in e.g.
5363          * hardirq contexts (such as on 4KSTACKS), so only
5364          * check if not in hardirq contexts:
5365          */
5366         if (!hardirq_count()) {
5367                 if (softirq_count()) {
5368                         /* like the above, but with softirqs */
5369                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5370                 } else {
5371                         /* lick the above, does it taste good? */
5372                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5373                 }
5374         }
5375
5376         if (!debug_locks)
5377                 print_irqtrace_events(current);
5378
5379         instrumentation_end();
5380 #endif
5381 }
5382
5383 void lock_set_class(struct lockdep_map *lock, const char *name,
5384                     struct lock_class_key *key, unsigned int subclass,
5385                     unsigned long ip)
5386 {
5387         unsigned long flags;
5388
5389         if (unlikely(!lockdep_enabled()))
5390                 return;
5391
5392         raw_local_irq_save(flags);
5393         lockdep_recursion_inc();
5394         check_flags(flags);
5395         if (__lock_set_class(lock, name, key, subclass, ip))
5396                 check_chain_key(current);
5397         lockdep_recursion_finish();
5398         raw_local_irq_restore(flags);
5399 }
5400 EXPORT_SYMBOL_GPL(lock_set_class);
5401
5402 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5403 {
5404         unsigned long flags;
5405
5406         if (unlikely(!lockdep_enabled()))
5407                 return;
5408
5409         raw_local_irq_save(flags);
5410         lockdep_recursion_inc();
5411         check_flags(flags);
5412         if (__lock_downgrade(lock, ip))
5413                 check_chain_key(current);
5414         lockdep_recursion_finish();
5415         raw_local_irq_restore(flags);
5416 }
5417 EXPORT_SYMBOL_GPL(lock_downgrade);
5418
5419 /* NMI context !!! */
5420 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5421 {
5422 #ifdef CONFIG_PROVE_LOCKING
5423         struct lock_class *class = look_up_lock_class(lock, subclass);
5424         unsigned long mask = LOCKF_USED;
5425
5426         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5427         if (!class)
5428                 return;
5429
5430         /*
5431          * READ locks only conflict with USED, such that if we only ever use
5432          * READ locks, there is no deadlock possible -- RCU.
5433          */
5434         if (!hlock->read)
5435                 mask |= LOCKF_USED_READ;
5436
5437         if (!(class->usage_mask & mask))
5438                 return;
5439
5440         hlock->class_idx = class - lock_classes;
5441
5442         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5443 #endif
5444 }
5445
5446 static bool lockdep_nmi(void)
5447 {
5448         if (raw_cpu_read(lockdep_recursion))
5449                 return false;
5450
5451         if (!in_nmi())
5452                 return false;
5453
5454         return true;
5455 }
5456
5457 /*
5458  * read_lock() is recursive if:
5459  * 1. We force lockdep think this way in selftests or
5460  * 2. The implementation is not queued read/write lock or
5461  * 3. The locker is at an in_interrupt() context.
5462  */
5463 bool read_lock_is_recursive(void)
5464 {
5465         return force_read_lock_recursive ||
5466                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5467                in_interrupt();
5468 }
5469 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5470
5471 /*
5472  * We are not always called with irqs disabled - do that here,
5473  * and also avoid lockdep recursion:
5474  */
5475 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5476                           int trylock, int read, int check,
5477                           struct lockdep_map *nest_lock, unsigned long ip)
5478 {
5479         unsigned long flags;
5480
5481         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5482
5483         if (!debug_locks)
5484                 return;
5485
5486         if (unlikely(!lockdep_enabled())) {
5487                 /* XXX allow trylock from NMI ?!? */
5488                 if (lockdep_nmi() && !trylock) {
5489                         struct held_lock hlock;
5490
5491                         hlock.acquire_ip = ip;
5492                         hlock.instance = lock;
5493                         hlock.nest_lock = nest_lock;
5494                         hlock.irq_context = 2; // XXX
5495                         hlock.trylock = trylock;
5496                         hlock.read = read;
5497                         hlock.check = check;
5498                         hlock.hardirqs_off = true;
5499                         hlock.references = 0;
5500
5501                         verify_lock_unused(lock, &hlock, subclass);
5502                 }
5503                 return;
5504         }
5505
5506         raw_local_irq_save(flags);
5507         check_flags(flags);
5508
5509         lockdep_recursion_inc();
5510         __lock_acquire(lock, subclass, trylock, read, check,
5511                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5512         lockdep_recursion_finish();
5513         raw_local_irq_restore(flags);
5514 }
5515 EXPORT_SYMBOL_GPL(lock_acquire);
5516
5517 void lock_release(struct lockdep_map *lock, unsigned long ip)
5518 {
5519         unsigned long flags;
5520
5521         trace_lock_release(lock, ip);
5522
5523         if (unlikely(!lockdep_enabled()))
5524                 return;
5525
5526         raw_local_irq_save(flags);
5527         check_flags(flags);
5528
5529         lockdep_recursion_inc();
5530         if (__lock_release(lock, ip))
5531                 check_chain_key(current);
5532         lockdep_recursion_finish();
5533         raw_local_irq_restore(flags);
5534 }
5535 EXPORT_SYMBOL_GPL(lock_release);
5536
5537 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5538 {
5539         unsigned long flags;
5540         int ret = 0;
5541
5542         if (unlikely(!lockdep_enabled()))
5543                 return 1; /* avoid false negative lockdep_assert_held() */
5544
5545         raw_local_irq_save(flags);
5546         check_flags(flags);
5547
5548         lockdep_recursion_inc();
5549         ret = __lock_is_held(lock, read);
5550         lockdep_recursion_finish();
5551         raw_local_irq_restore(flags);
5552
5553         return ret;
5554 }
5555 EXPORT_SYMBOL_GPL(lock_is_held_type);
5556 NOKPROBE_SYMBOL(lock_is_held_type);
5557
5558 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5559 {
5560         struct pin_cookie cookie = NIL_COOKIE;
5561         unsigned long flags;
5562
5563         if (unlikely(!lockdep_enabled()))
5564                 return cookie;
5565
5566         raw_local_irq_save(flags);
5567         check_flags(flags);
5568
5569         lockdep_recursion_inc();
5570         cookie = __lock_pin_lock(lock);
5571         lockdep_recursion_finish();
5572         raw_local_irq_restore(flags);
5573
5574         return cookie;
5575 }
5576 EXPORT_SYMBOL_GPL(lock_pin_lock);
5577
5578 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5579 {
5580         unsigned long flags;
5581
5582         if (unlikely(!lockdep_enabled()))
5583                 return;
5584
5585         raw_local_irq_save(flags);
5586         check_flags(flags);
5587
5588         lockdep_recursion_inc();
5589         __lock_repin_lock(lock, cookie);
5590         lockdep_recursion_finish();
5591         raw_local_irq_restore(flags);
5592 }
5593 EXPORT_SYMBOL_GPL(lock_repin_lock);
5594
5595 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5596 {
5597         unsigned long flags;
5598
5599         if (unlikely(!lockdep_enabled()))
5600                 return;
5601
5602         raw_local_irq_save(flags);
5603         check_flags(flags);
5604
5605         lockdep_recursion_inc();
5606         __lock_unpin_lock(lock, cookie);
5607         lockdep_recursion_finish();
5608         raw_local_irq_restore(flags);
5609 }
5610 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5611
5612 #ifdef CONFIG_LOCK_STAT
5613 static void print_lock_contention_bug(struct task_struct *curr,
5614                                       struct lockdep_map *lock,
5615                                       unsigned long ip)
5616 {
5617         if (!debug_locks_off())
5618                 return;
5619         if (debug_locks_silent)
5620                 return;
5621
5622         pr_warn("\n");
5623         pr_warn("=================================\n");
5624         pr_warn("WARNING: bad contention detected!\n");
5625         print_kernel_ident();
5626         pr_warn("---------------------------------\n");
5627         pr_warn("%s/%d is trying to contend lock (",
5628                 curr->comm, task_pid_nr(curr));
5629         print_lockdep_cache(lock);
5630         pr_cont(") at:\n");
5631         print_ip_sym(KERN_WARNING, ip);
5632         pr_warn("but there are no locks held!\n");
5633         pr_warn("\nother info that might help us debug this:\n");
5634         lockdep_print_held_locks(curr);
5635
5636         pr_warn("\nstack backtrace:\n");
5637         dump_stack();
5638 }
5639
5640 static void
5641 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5642 {
5643         struct task_struct *curr = current;
5644         struct held_lock *hlock;
5645         struct lock_class_stats *stats;
5646         unsigned int depth;
5647         int i, contention_point, contending_point;
5648
5649         depth = curr->lockdep_depth;
5650         /*
5651          * Whee, we contended on this lock, except it seems we're not
5652          * actually trying to acquire anything much at all..
5653          */
5654         if (DEBUG_LOCKS_WARN_ON(!depth))
5655                 return;
5656
5657         hlock = find_held_lock(curr, lock, depth, &i);
5658         if (!hlock) {
5659                 print_lock_contention_bug(curr, lock, ip);
5660                 return;
5661         }
5662
5663         if (hlock->instance != lock)
5664                 return;
5665
5666         hlock->waittime_stamp = lockstat_clock();
5667
5668         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5669         contending_point = lock_point(hlock_class(hlock)->contending_point,
5670                                       lock->ip);
5671
5672         stats = get_lock_stats(hlock_class(hlock));
5673         if (contention_point < LOCKSTAT_POINTS)
5674                 stats->contention_point[contention_point]++;
5675         if (contending_point < LOCKSTAT_POINTS)
5676                 stats->contending_point[contending_point]++;
5677         if (lock->cpu != smp_processor_id())
5678                 stats->bounces[bounce_contended + !!hlock->read]++;
5679 }
5680
5681 static void
5682 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5683 {
5684         struct task_struct *curr = current;
5685         struct held_lock *hlock;
5686         struct lock_class_stats *stats;
5687         unsigned int depth;
5688         u64 now, waittime = 0;
5689         int i, cpu;
5690
5691         depth = curr->lockdep_depth;
5692         /*
5693          * Yay, we acquired ownership of this lock we didn't try to
5694          * acquire, how the heck did that happen?
5695          */
5696         if (DEBUG_LOCKS_WARN_ON(!depth))
5697                 return;
5698
5699         hlock = find_held_lock(curr, lock, depth, &i);
5700         if (!hlock) {
5701                 print_lock_contention_bug(curr, lock, _RET_IP_);
5702                 return;
5703         }
5704
5705         if (hlock->instance != lock)
5706                 return;
5707
5708         cpu = smp_processor_id();
5709         if (hlock->waittime_stamp) {
5710                 now = lockstat_clock();
5711                 waittime = now - hlock->waittime_stamp;
5712                 hlock->holdtime_stamp = now;
5713         }
5714
5715         stats = get_lock_stats(hlock_class(hlock));
5716         if (waittime) {
5717                 if (hlock->read)
5718                         lock_time_inc(&stats->read_waittime, waittime);
5719                 else
5720                         lock_time_inc(&stats->write_waittime, waittime);
5721         }
5722         if (lock->cpu != cpu)
5723                 stats->bounces[bounce_acquired + !!hlock->read]++;
5724
5725         lock->cpu = cpu;
5726         lock->ip = ip;
5727 }
5728
5729 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5730 {
5731         unsigned long flags;
5732
5733         trace_lock_acquired(lock, ip);
5734
5735         if (unlikely(!lock_stat || !lockdep_enabled()))
5736                 return;
5737
5738         raw_local_irq_save(flags);
5739         check_flags(flags);
5740         lockdep_recursion_inc();
5741         __lock_contended(lock, ip);
5742         lockdep_recursion_finish();
5743         raw_local_irq_restore(flags);
5744 }
5745 EXPORT_SYMBOL_GPL(lock_contended);
5746
5747 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5748 {
5749         unsigned long flags;
5750
5751         trace_lock_contended(lock, ip);
5752
5753         if (unlikely(!lock_stat || !lockdep_enabled()))
5754                 return;
5755
5756         raw_local_irq_save(flags);
5757         check_flags(flags);
5758         lockdep_recursion_inc();
5759         __lock_acquired(lock, ip);
5760         lockdep_recursion_finish();
5761         raw_local_irq_restore(flags);
5762 }
5763 EXPORT_SYMBOL_GPL(lock_acquired);
5764 #endif
5765
5766 /*
5767  * Used by the testsuite, sanitize the validator state
5768  * after a simulated failure:
5769  */
5770
5771 void lockdep_reset(void)
5772 {
5773         unsigned long flags;
5774         int i;
5775
5776         raw_local_irq_save(flags);
5777         lockdep_init_task(current);
5778         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5779         nr_hardirq_chains = 0;
5780         nr_softirq_chains = 0;
5781         nr_process_chains = 0;
5782         debug_locks = 1;
5783         for (i = 0; i < CHAINHASH_SIZE; i++)
5784                 INIT_HLIST_HEAD(chainhash_table + i);
5785         raw_local_irq_restore(flags);
5786 }
5787
5788 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5789 static void remove_class_from_lock_chain(struct pending_free *pf,
5790                                          struct lock_chain *chain,
5791                                          struct lock_class *class)
5792 {
5793 #ifdef CONFIG_PROVE_LOCKING
5794         int i;
5795
5796         for (i = chain->base; i < chain->base + chain->depth; i++) {
5797                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5798                         continue;
5799                 /*
5800                  * Each lock class occurs at most once in a lock chain so once
5801                  * we found a match we can break out of this loop.
5802                  */
5803                 goto free_lock_chain;
5804         }
5805         /* Since the chain has not been modified, return. */
5806         return;
5807
5808 free_lock_chain:
5809         free_chain_hlocks(chain->base, chain->depth);
5810         /* Overwrite the chain key for concurrent RCU readers. */
5811         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5812         dec_chains(chain->irq_context);
5813
5814         /*
5815          * Note: calling hlist_del_rcu() from inside a
5816          * hlist_for_each_entry_rcu() loop is safe.
5817          */
5818         hlist_del_rcu(&chain->entry);
5819         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5820         nr_zapped_lock_chains++;
5821 #endif
5822 }
5823
5824 /* Must be called with the graph lock held. */
5825 static void remove_class_from_lock_chains(struct pending_free *pf,
5826                                           struct lock_class *class)
5827 {
5828         struct lock_chain *chain;
5829         struct hlist_head *head;
5830         int i;
5831
5832         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5833                 head = chainhash_table + i;
5834                 hlist_for_each_entry_rcu(chain, head, entry) {
5835                         remove_class_from_lock_chain(pf, chain, class);
5836                 }
5837         }
5838 }
5839
5840 /*
5841  * Remove all references to a lock class. The caller must hold the graph lock.
5842  */
5843 static void zap_class(struct pending_free *pf, struct lock_class *class)
5844 {
5845         struct lock_list *entry;
5846         int i;
5847
5848         WARN_ON_ONCE(!class->key);
5849
5850         /*
5851          * Remove all dependencies this lock is
5852          * involved in:
5853          */
5854         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5855                 entry = list_entries + i;
5856                 if (entry->class != class && entry->links_to != class)
5857                         continue;
5858                 __clear_bit(i, list_entries_in_use);
5859                 nr_list_entries--;
5860                 list_del_rcu(&entry->entry);
5861         }
5862         if (list_empty(&class->locks_after) &&
5863             list_empty(&class->locks_before)) {
5864                 list_move_tail(&class->lock_entry, &pf->zapped);
5865                 hlist_del_rcu(&class->hash_entry);
5866                 WRITE_ONCE(class->key, NULL);
5867                 WRITE_ONCE(class->name, NULL);
5868                 nr_lock_classes--;
5869                 __clear_bit(class - lock_classes, lock_classes_in_use);
5870         } else {
5871                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5872                           class->name);
5873         }
5874
5875         remove_class_from_lock_chains(pf, class);
5876         nr_zapped_classes++;
5877 }
5878
5879 static void reinit_class(struct lock_class *class)
5880 {
5881         void *const p = class;
5882         const unsigned int offset = offsetof(struct lock_class, key);
5883
5884         WARN_ON_ONCE(!class->lock_entry.next);
5885         WARN_ON_ONCE(!list_empty(&class->locks_after));
5886         WARN_ON_ONCE(!list_empty(&class->locks_before));
5887         memset(p + offset, 0, sizeof(*class) - offset);
5888         WARN_ON_ONCE(!class->lock_entry.next);
5889         WARN_ON_ONCE(!list_empty(&class->locks_after));
5890         WARN_ON_ONCE(!list_empty(&class->locks_before));
5891 }
5892
5893 static inline int within(const void *addr, void *start, unsigned long size)
5894 {
5895         return addr >= start && addr < start + size;
5896 }
5897
5898 static bool inside_selftest(void)
5899 {
5900         return current == lockdep_selftest_task_struct;
5901 }
5902
5903 /* The caller must hold the graph lock. */
5904 static struct pending_free *get_pending_free(void)
5905 {
5906         return delayed_free.pf + delayed_free.index;
5907 }
5908
5909 static void free_zapped_rcu(struct rcu_head *cb);
5910
5911 /*
5912  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5913  * the graph lock held.
5914  */
5915 static void call_rcu_zapped(struct pending_free *pf)
5916 {
5917         WARN_ON_ONCE(inside_selftest());
5918
5919         if (list_empty(&pf->zapped))
5920                 return;
5921
5922         if (delayed_free.scheduled)
5923                 return;
5924
5925         delayed_free.scheduled = true;
5926
5927         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5928         delayed_free.index ^= 1;
5929
5930         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5931 }
5932
5933 /* The caller must hold the graph lock. May be called from RCU context. */
5934 static void __free_zapped_classes(struct pending_free *pf)
5935 {
5936         struct lock_class *class;
5937
5938         check_data_structures();
5939
5940         list_for_each_entry(class, &pf->zapped, lock_entry)
5941                 reinit_class(class);
5942
5943         list_splice_init(&pf->zapped, &free_lock_classes);
5944
5945 #ifdef CONFIG_PROVE_LOCKING
5946         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5947                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5948         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5949 #endif
5950 }
5951
5952 static void free_zapped_rcu(struct rcu_head *ch)
5953 {
5954         struct pending_free *pf;
5955         unsigned long flags;
5956
5957         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5958                 return;
5959
5960         raw_local_irq_save(flags);
5961         lockdep_lock();
5962
5963         /* closed head */
5964         pf = delayed_free.pf + (delayed_free.index ^ 1);
5965         __free_zapped_classes(pf);
5966         delayed_free.scheduled = false;
5967
5968         /*
5969          * If there's anything on the open list, close and start a new callback.
5970          */
5971         call_rcu_zapped(delayed_free.pf + delayed_free.index);
5972
5973         lockdep_unlock();
5974         raw_local_irq_restore(flags);
5975 }
5976
5977 /*
5978  * Remove all lock classes from the class hash table and from the
5979  * all_lock_classes list whose key or name is in the address range [start,
5980  * start + size). Move these lock classes to the zapped_classes list. Must
5981  * be called with the graph lock held.
5982  */
5983 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5984                                      unsigned long size)
5985 {
5986         struct lock_class *class;
5987         struct hlist_head *head;
5988         int i;
5989
5990         /* Unhash all classes that were created by a module. */
5991         for (i = 0; i < CLASSHASH_SIZE; i++) {
5992                 head = classhash_table + i;
5993                 hlist_for_each_entry_rcu(class, head, hash_entry) {
5994                         if (!within(class->key, start, size) &&
5995                             !within(class->name, start, size))
5996                                 continue;
5997                         zap_class(pf, class);
5998                 }
5999         }
6000 }
6001
6002 /*
6003  * Used in module.c to remove lock classes from memory that is going to be
6004  * freed; and possibly re-used by other modules.
6005  *
6006  * We will have had one synchronize_rcu() before getting here, so we're
6007  * guaranteed nobody will look up these exact classes -- they're properly dead
6008  * but still allocated.
6009  */
6010 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6011 {
6012         struct pending_free *pf;
6013         unsigned long flags;
6014
6015         init_data_structures_once();
6016
6017         raw_local_irq_save(flags);
6018         lockdep_lock();
6019         pf = get_pending_free();
6020         __lockdep_free_key_range(pf, start, size);
6021         call_rcu_zapped(pf);
6022         lockdep_unlock();
6023         raw_local_irq_restore(flags);
6024
6025         /*
6026          * Wait for any possible iterators from look_up_lock_class() to pass
6027          * before continuing to free the memory they refer to.
6028          */
6029         synchronize_rcu();
6030 }
6031
6032 /*
6033  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6034  * Ignores debug_locks. Must only be used by the lockdep selftests.
6035  */
6036 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6037 {
6038         struct pending_free *pf = delayed_free.pf;
6039         unsigned long flags;
6040
6041         init_data_structures_once();
6042
6043         raw_local_irq_save(flags);
6044         lockdep_lock();
6045         __lockdep_free_key_range(pf, start, size);
6046         __free_zapped_classes(pf);
6047         lockdep_unlock();
6048         raw_local_irq_restore(flags);
6049 }
6050
6051 void lockdep_free_key_range(void *start, unsigned long size)
6052 {
6053         init_data_structures_once();
6054
6055         if (inside_selftest())
6056                 lockdep_free_key_range_imm(start, size);
6057         else
6058                 lockdep_free_key_range_reg(start, size);
6059 }
6060
6061 /*
6062  * Check whether any element of the @lock->class_cache[] array refers to a
6063  * registered lock class. The caller must hold either the graph lock or the
6064  * RCU read lock.
6065  */
6066 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6067 {
6068         struct lock_class *class;
6069         struct hlist_head *head;
6070         int i, j;
6071
6072         for (i = 0; i < CLASSHASH_SIZE; i++) {
6073                 head = classhash_table + i;
6074                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6075                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6076                                 if (lock->class_cache[j] == class)
6077                                         return true;
6078                 }
6079         }
6080         return false;
6081 }
6082
6083 /* The caller must hold the graph lock. Does not sleep. */
6084 static void __lockdep_reset_lock(struct pending_free *pf,
6085                                  struct lockdep_map *lock)
6086 {
6087         struct lock_class *class;
6088         int j;
6089
6090         /*
6091          * Remove all classes this lock might have:
6092          */
6093         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6094                 /*
6095                  * If the class exists we look it up and zap it:
6096                  */
6097                 class = look_up_lock_class(lock, j);
6098                 if (class)
6099                         zap_class(pf, class);
6100         }
6101         /*
6102          * Debug check: in the end all mapped classes should
6103          * be gone.
6104          */
6105         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6106                 debug_locks_off();
6107 }
6108
6109 /*
6110  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6111  * released data structures from RCU context.
6112  */
6113 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6114 {
6115         struct pending_free *pf;
6116         unsigned long flags;
6117         int locked;
6118
6119         raw_local_irq_save(flags);
6120         locked = graph_lock();
6121         if (!locked)
6122                 goto out_irq;
6123
6124         pf = get_pending_free();
6125         __lockdep_reset_lock(pf, lock);
6126         call_rcu_zapped(pf);
6127
6128         graph_unlock();
6129 out_irq:
6130         raw_local_irq_restore(flags);
6131 }
6132
6133 /*
6134  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6135  * lockdep selftests.
6136  */
6137 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6138 {
6139         struct pending_free *pf = delayed_free.pf;
6140         unsigned long flags;
6141
6142         raw_local_irq_save(flags);
6143         lockdep_lock();
6144         __lockdep_reset_lock(pf, lock);
6145         __free_zapped_classes(pf);
6146         lockdep_unlock();
6147         raw_local_irq_restore(flags);
6148 }
6149
6150 void lockdep_reset_lock(struct lockdep_map *lock)
6151 {
6152         init_data_structures_once();
6153
6154         if (inside_selftest())
6155                 lockdep_reset_lock_imm(lock);
6156         else
6157                 lockdep_reset_lock_reg(lock);
6158 }
6159
6160 /* Unregister a dynamically allocated key. */
6161 void lockdep_unregister_key(struct lock_class_key *key)
6162 {
6163         struct hlist_head *hash_head = keyhashentry(key);
6164         struct lock_class_key *k;
6165         struct pending_free *pf;
6166         unsigned long flags;
6167         bool found = false;
6168
6169         might_sleep();
6170
6171         if (WARN_ON_ONCE(static_obj(key)))
6172                 return;
6173
6174         raw_local_irq_save(flags);
6175         if (!graph_lock())
6176                 goto out_irq;
6177
6178         pf = get_pending_free();
6179         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6180                 if (k == key) {
6181                         hlist_del_rcu(&k->hash_entry);
6182                         found = true;
6183                         break;
6184                 }
6185         }
6186         WARN_ON_ONCE(!found);
6187         __lockdep_free_key_range(pf, key, 1);
6188         call_rcu_zapped(pf);
6189         graph_unlock();
6190 out_irq:
6191         raw_local_irq_restore(flags);
6192
6193         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6194         synchronize_rcu();
6195 }
6196 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6197
6198 void __init lockdep_init(void)
6199 {
6200         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6201
6202         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6203         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6204         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6205         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6206         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6207         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6208         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6209
6210         printk(" memory used by lock dependency info: %zu kB\n",
6211                (sizeof(lock_classes) +
6212                 sizeof(lock_classes_in_use) +
6213                 sizeof(classhash_table) +
6214                 sizeof(list_entries) +
6215                 sizeof(list_entries_in_use) +
6216                 sizeof(chainhash_table) +
6217                 sizeof(delayed_free)
6218 #ifdef CONFIG_PROVE_LOCKING
6219                 + sizeof(lock_cq)
6220                 + sizeof(lock_chains)
6221                 + sizeof(lock_chains_in_use)
6222                 + sizeof(chain_hlocks)
6223 #endif
6224                 ) / 1024
6225                 );
6226
6227 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6228         printk(" memory used for stack traces: %zu kB\n",
6229                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6230                );
6231 #endif
6232
6233         printk(" per task-struct memory footprint: %zu bytes\n",
6234                sizeof(((struct task_struct *)NULL)->held_locks));
6235 }
6236
6237 static void
6238 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6239                      const void *mem_to, struct held_lock *hlock)
6240 {
6241         if (!debug_locks_off())
6242                 return;
6243         if (debug_locks_silent)
6244                 return;
6245
6246         pr_warn("\n");
6247         pr_warn("=========================\n");
6248         pr_warn("WARNING: held lock freed!\n");
6249         print_kernel_ident();
6250         pr_warn("-------------------------\n");
6251         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6252                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6253         print_lock(hlock);
6254         lockdep_print_held_locks(curr);
6255
6256         pr_warn("\nstack backtrace:\n");
6257         dump_stack();
6258 }
6259
6260 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6261                                 const void* lock_from, unsigned long lock_len)
6262 {
6263         return lock_from + lock_len <= mem_from ||
6264                 mem_from + mem_len <= lock_from;
6265 }
6266
6267 /*
6268  * Called when kernel memory is freed (or unmapped), or if a lock
6269  * is destroyed or reinitialized - this code checks whether there is
6270  * any held lock in the memory range of <from> to <to>:
6271  */
6272 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6273 {
6274         struct task_struct *curr = current;
6275         struct held_lock *hlock;
6276         unsigned long flags;
6277         int i;
6278
6279         if (unlikely(!debug_locks))
6280                 return;
6281
6282         raw_local_irq_save(flags);
6283         for (i = 0; i < curr->lockdep_depth; i++) {
6284                 hlock = curr->held_locks + i;
6285
6286                 if (not_in_range(mem_from, mem_len, hlock->instance,
6287                                         sizeof(*hlock->instance)))
6288                         continue;
6289
6290                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6291                 break;
6292         }
6293         raw_local_irq_restore(flags);
6294 }
6295 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6296
6297 static void print_held_locks_bug(void)
6298 {
6299         if (!debug_locks_off())
6300                 return;
6301         if (debug_locks_silent)
6302                 return;
6303
6304         pr_warn("\n");
6305         pr_warn("====================================\n");
6306         pr_warn("WARNING: %s/%d still has locks held!\n",
6307                current->comm, task_pid_nr(current));
6308         print_kernel_ident();
6309         pr_warn("------------------------------------\n");
6310         lockdep_print_held_locks(current);
6311         pr_warn("\nstack backtrace:\n");
6312         dump_stack();
6313 }
6314
6315 void debug_check_no_locks_held(void)
6316 {
6317         if (unlikely(current->lockdep_depth > 0))
6318                 print_held_locks_bug();
6319 }
6320 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6321
6322 #ifdef __KERNEL__
6323 void debug_show_all_locks(void)
6324 {
6325         struct task_struct *g, *p;
6326
6327         if (unlikely(!debug_locks)) {
6328                 pr_warn("INFO: lockdep is turned off.\n");
6329                 return;
6330         }
6331         pr_warn("\nShowing all locks held in the system:\n");
6332
6333         rcu_read_lock();
6334         for_each_process_thread(g, p) {
6335                 if (!p->lockdep_depth)
6336                         continue;
6337                 lockdep_print_held_locks(p);
6338                 touch_nmi_watchdog();
6339                 touch_all_softlockup_watchdogs();
6340         }
6341         rcu_read_unlock();
6342
6343         pr_warn("\n");
6344         pr_warn("=============================================\n\n");
6345 }
6346 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6347 #endif
6348
6349 /*
6350  * Careful: only use this function if you are sure that
6351  * the task cannot run in parallel!
6352  */
6353 void debug_show_held_locks(struct task_struct *task)
6354 {
6355         if (unlikely(!debug_locks)) {
6356                 printk("INFO: lockdep is turned off.\n");
6357                 return;
6358         }
6359         lockdep_print_held_locks(task);
6360 }
6361 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6362
6363 asmlinkage __visible void lockdep_sys_exit(void)
6364 {
6365         struct task_struct *curr = current;
6366
6367         if (unlikely(curr->lockdep_depth)) {
6368                 if (!debug_locks_off())
6369                         return;
6370                 pr_warn("\n");
6371                 pr_warn("================================================\n");
6372                 pr_warn("WARNING: lock held when returning to user space!\n");
6373                 print_kernel_ident();
6374                 pr_warn("------------------------------------------------\n");
6375                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6376                                 curr->comm, curr->pid);
6377                 lockdep_print_held_locks(curr);
6378         }
6379
6380         /*
6381          * The lock history for each syscall should be independent. So wipe the
6382          * slate clean on return to userspace.
6383          */
6384         lockdep_invariant_state(false);
6385 }
6386
6387 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6388 {
6389         struct task_struct *curr = current;
6390
6391         /* Note: the following can be executed concurrently, so be careful. */
6392         pr_warn("\n");
6393         pr_warn("=============================\n");
6394         pr_warn("WARNING: suspicious RCU usage\n");
6395         print_kernel_ident();
6396         pr_warn("-----------------------------\n");
6397         pr_warn("%s:%d %s!\n", file, line, s);
6398         pr_warn("\nother info that might help us debug this:\n\n");
6399         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6400                !rcu_lockdep_current_cpu_online()
6401                         ? "RCU used illegally from offline CPU!\n"
6402                         : "",
6403                rcu_scheduler_active, debug_locks);
6404
6405         /*
6406          * If a CPU is in the RCU-free window in idle (ie: in the section
6407          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6408          * considers that CPU to be in an "extended quiescent state",
6409          * which means that RCU will be completely ignoring that CPU.
6410          * Therefore, rcu_read_lock() and friends have absolutely no
6411          * effect on a CPU running in that state. In other words, even if
6412          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6413          * delete data structures out from under it.  RCU really has no
6414          * choice here: we need to keep an RCU-free window in idle where
6415          * the CPU may possibly enter into low power mode. This way we can
6416          * notice an extended quiescent state to other CPUs that started a grace
6417          * period. Otherwise we would delay any grace period as long as we run
6418          * in the idle task.
6419          *
6420          * So complain bitterly if someone does call rcu_read_lock(),
6421          * rcu_read_lock_bh() and so on from extended quiescent states.
6422          */
6423         if (!rcu_is_watching())
6424                 pr_warn("RCU used illegally from extended quiescent state!\n");
6425
6426         lockdep_print_held_locks(curr);
6427         pr_warn("\nstack backtrace:\n");
6428         dump_stack();
6429 }
6430 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);