Merge branch 'work.recursive_removal' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82
83 static __always_inline bool lockdep_enabled(void)
84 {
85         if (!debug_locks)
86                 return false;
87
88         if (this_cpu_read(lockdep_recursion))
89                 return false;
90
91         if (current->lockdep_recursion)
92                 return false;
93
94         return true;
95 }
96
97 /*
98  * lockdep_lock: protects the lockdep graph, the hashes and the
99  *               class/list/hash allocators.
100  *
101  * This is one of the rare exceptions where it's justified
102  * to use a raw spinlock - we really dont want the spinlock
103  * code to recurse back into the lockdep code...
104  */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107
108 static inline void lockdep_lock(void)
109 {
110         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111
112         __this_cpu_inc(lockdep_recursion);
113         arch_spin_lock(&__lock);
114         __owner = current;
115 }
116
117 static inline void lockdep_unlock(void)
118 {
119         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120
121         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122                 return;
123
124         __owner = NULL;
125         arch_spin_unlock(&__lock);
126         __this_cpu_dec(lockdep_recursion);
127 }
128
129 static inline bool lockdep_assert_locked(void)
130 {
131         return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133
134 static struct task_struct *lockdep_selftest_task_struct;
135
136
137 static int graph_lock(void)
138 {
139         lockdep_lock();
140         /*
141          * Make sure that if another CPU detected a bug while
142          * walking the graph we dont change it (while the other
143          * CPU is busy printing out stuff with the graph lock
144          * dropped already)
145          */
146         if (!debug_locks) {
147                 lockdep_unlock();
148                 return 0;
149         }
150         return 1;
151 }
152
153 static inline void graph_unlock(void)
154 {
155         lockdep_unlock();
156 }
157
158 /*
159  * Turn lock debugging off and return with 0 if it was off already,
160  * and also release the graph lock:
161  */
162 static inline int debug_locks_off_graph_unlock(void)
163 {
164         int ret = debug_locks_off();
165
166         lockdep_unlock();
167
168         return ret;
169 }
170
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174
175 /*
176  * All data structures here are protected by the global debug_lock.
177  *
178  * nr_lock_classes is the number of elements of lock_classes[] that is
179  * in use.
180  */
181 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 #ifndef CONFIG_DEBUG_LOCKDEP
187 static
188 #endif
189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
191
192 static inline struct lock_class *hlock_class(struct held_lock *hlock)
193 {
194         unsigned int class_idx = hlock->class_idx;
195
196         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
197         barrier();
198
199         if (!test_bit(class_idx, lock_classes_in_use)) {
200                 /*
201                  * Someone passed in garbage, we give up.
202                  */
203                 DEBUG_LOCKS_WARN_ON(1);
204                 return NULL;
205         }
206
207         /*
208          * At this point, if the passed hlock->class_idx is still garbage,
209          * we just have to live with it
210          */
211         return lock_classes + class_idx;
212 }
213
214 #ifdef CONFIG_LOCK_STAT
215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
216
217 static inline u64 lockstat_clock(void)
218 {
219         return local_clock();
220 }
221
222 static int lock_point(unsigned long points[], unsigned long ip)
223 {
224         int i;
225
226         for (i = 0; i < LOCKSTAT_POINTS; i++) {
227                 if (points[i] == 0) {
228                         points[i] = ip;
229                         break;
230                 }
231                 if (points[i] == ip)
232                         break;
233         }
234
235         return i;
236 }
237
238 static void lock_time_inc(struct lock_time *lt, u64 time)
239 {
240         if (time > lt->max)
241                 lt->max = time;
242
243         if (time < lt->min || !lt->nr)
244                 lt->min = time;
245
246         lt->total += time;
247         lt->nr++;
248 }
249
250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
251 {
252         if (!src->nr)
253                 return;
254
255         if (src->max > dst->max)
256                 dst->max = src->max;
257
258         if (src->min < dst->min || !dst->nr)
259                 dst->min = src->min;
260
261         dst->total += src->total;
262         dst->nr += src->nr;
263 }
264
265 struct lock_class_stats lock_stats(struct lock_class *class)
266 {
267         struct lock_class_stats stats;
268         int cpu, i;
269
270         memset(&stats, 0, sizeof(struct lock_class_stats));
271         for_each_possible_cpu(cpu) {
272                 struct lock_class_stats *pcs =
273                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
274
275                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
276                         stats.contention_point[i] += pcs->contention_point[i];
277
278                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
279                         stats.contending_point[i] += pcs->contending_point[i];
280
281                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
282                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
283
284                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
285                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
286
287                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
288                         stats.bounces[i] += pcs->bounces[i];
289         }
290
291         return stats;
292 }
293
294 void clear_lock_stats(struct lock_class *class)
295 {
296         int cpu;
297
298         for_each_possible_cpu(cpu) {
299                 struct lock_class_stats *cpu_stats =
300                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
301
302                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
303         }
304         memset(class->contention_point, 0, sizeof(class->contention_point));
305         memset(class->contending_point, 0, sizeof(class->contending_point));
306 }
307
308 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
309 {
310         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
311 }
312
313 static void lock_release_holdtime(struct held_lock *hlock)
314 {
315         struct lock_class_stats *stats;
316         u64 holdtime;
317
318         if (!lock_stat)
319                 return;
320
321         holdtime = lockstat_clock() - hlock->holdtime_stamp;
322
323         stats = get_lock_stats(hlock_class(hlock));
324         if (hlock->read)
325                 lock_time_inc(&stats->read_holdtime, holdtime);
326         else
327                 lock_time_inc(&stats->write_holdtime, holdtime);
328 }
329 #else
330 static inline void lock_release_holdtime(struct held_lock *hlock)
331 {
332 }
333 #endif
334
335 /*
336  * We keep a global list of all lock classes. The list is only accessed with
337  * the lockdep spinlock lock held. free_lock_classes is a list with free
338  * elements. These elements are linked together by the lock_entry member in
339  * struct lock_class.
340  */
341 LIST_HEAD(all_lock_classes);
342 static LIST_HEAD(free_lock_classes);
343
344 /**
345  * struct pending_free - information about data structures about to be freed
346  * @zapped: Head of a list with struct lock_class elements.
347  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
348  *      are about to be freed.
349  */
350 struct pending_free {
351         struct list_head zapped;
352         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
353 };
354
355 /**
356  * struct delayed_free - data structures used for delayed freeing
357  *
358  * A data structure for delayed freeing of data structures that may be
359  * accessed by RCU readers at the time these were freed.
360  *
361  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
362  * @index:     Index of @pf to which freed data structures are added.
363  * @scheduled: Whether or not an RCU callback has been scheduled.
364  * @pf:        Array with information about data structures about to be freed.
365  */
366 static struct delayed_free {
367         struct rcu_head         rcu_head;
368         int                     index;
369         int                     scheduled;
370         struct pending_free     pf[2];
371 } delayed_free;
372
373 /*
374  * The lockdep classes are in a hash-table as well, for fast lookup:
375  */
376 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
377 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
378 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
379 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
380
381 static struct hlist_head classhash_table[CLASSHASH_SIZE];
382
383 /*
384  * We put the lock dependency chains into a hash-table as well, to cache
385  * their existence:
386  */
387 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
388 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
389 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
390 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
391
392 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
393
394 /*
395  * the id of held_lock
396  */
397 static inline u16 hlock_id(struct held_lock *hlock)
398 {
399         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
400
401         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
402 }
403
404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
405 {
406         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
407 }
408
409 /*
410  * The hash key of the lock dependency chains is a hash itself too:
411  * it's a hash of all locks taken up to that lock, including that lock.
412  * It's a 64-bit hash, because it's important for the keys to be
413  * unique.
414  */
415 static inline u64 iterate_chain_key(u64 key, u32 idx)
416 {
417         u32 k0 = key, k1 = key >> 32;
418
419         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
420
421         return k0 | (u64)k1 << 32;
422 }
423
424 void lockdep_init_task(struct task_struct *task)
425 {
426         task->lockdep_depth = 0; /* no locks held yet */
427         task->curr_chain_key = INITIAL_CHAIN_KEY;
428         task->lockdep_recursion = 0;
429 }
430
431 static __always_inline void lockdep_recursion_inc(void)
432 {
433         __this_cpu_inc(lockdep_recursion);
434 }
435
436 static __always_inline void lockdep_recursion_finish(void)
437 {
438         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
439                 __this_cpu_write(lockdep_recursion, 0);
440 }
441
442 void lockdep_set_selftest_task(struct task_struct *task)
443 {
444         lockdep_selftest_task_struct = task;
445 }
446
447 /*
448  * Debugging switches:
449  */
450
451 #define VERBOSE                 0
452 #define VERY_VERBOSE            0
453
454 #if VERBOSE
455 # define HARDIRQ_VERBOSE        1
456 # define SOFTIRQ_VERBOSE        1
457 #else
458 # define HARDIRQ_VERBOSE        0
459 # define SOFTIRQ_VERBOSE        0
460 #endif
461
462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
463 /*
464  * Quick filtering for interesting events:
465  */
466 static int class_filter(struct lock_class *class)
467 {
468 #if 0
469         /* Example */
470         if (class->name_version == 1 &&
471                         !strcmp(class->name, "lockname"))
472                 return 1;
473         if (class->name_version == 1 &&
474                         !strcmp(class->name, "&struct->lockfield"))
475                 return 1;
476 #endif
477         /* Filter everything else. 1 would be to allow everything else */
478         return 0;
479 }
480 #endif
481
482 static int verbose(struct lock_class *class)
483 {
484 #if VERBOSE
485         return class_filter(class);
486 #endif
487         return 0;
488 }
489
490 static void print_lockdep_off(const char *bug_msg)
491 {
492         printk(KERN_DEBUG "%s\n", bug_msg);
493         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
494 #ifdef CONFIG_LOCK_STAT
495         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
496 #endif
497 }
498
499 unsigned long nr_stack_trace_entries;
500
501 #ifdef CONFIG_PROVE_LOCKING
502 /**
503  * struct lock_trace - single stack backtrace
504  * @hash_entry: Entry in a stack_trace_hash[] list.
505  * @hash:       jhash() of @entries.
506  * @nr_entries: Number of entries in @entries.
507  * @entries:    Actual stack backtrace.
508  */
509 struct lock_trace {
510         struct hlist_node       hash_entry;
511         u32                     hash;
512         u32                     nr_entries;
513         unsigned long           entries[] __aligned(sizeof(unsigned long));
514 };
515 #define LOCK_TRACE_SIZE_IN_LONGS                                \
516         (sizeof(struct lock_trace) / sizeof(unsigned long))
517 /*
518  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
519  */
520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
522
523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
524 {
525         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
526                 memcmp(t1->entries, t2->entries,
527                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
528 }
529
530 static struct lock_trace *save_trace(void)
531 {
532         struct lock_trace *trace, *t2;
533         struct hlist_head *hash_head;
534         u32 hash;
535         int max_entries;
536
537         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
538         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
539
540         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
541         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
542                 LOCK_TRACE_SIZE_IN_LONGS;
543
544         if (max_entries <= 0) {
545                 if (!debug_locks_off_graph_unlock())
546                         return NULL;
547
548                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
549                 dump_stack();
550
551                 return NULL;
552         }
553         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
554
555         hash = jhash(trace->entries, trace->nr_entries *
556                      sizeof(trace->entries[0]), 0);
557         trace->hash = hash;
558         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
559         hlist_for_each_entry(t2, hash_head, hash_entry) {
560                 if (traces_identical(trace, t2))
561                         return t2;
562         }
563         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
564         hlist_add_head(&trace->hash_entry, hash_head);
565
566         return trace;
567 }
568
569 /* Return the number of stack traces in the stack_trace[] array. */
570 u64 lockdep_stack_trace_count(void)
571 {
572         struct lock_trace *trace;
573         u64 c = 0;
574         int i;
575
576         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
577                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
578                         c++;
579                 }
580         }
581
582         return c;
583 }
584
585 /* Return the number of stack hash chains that have at least one stack trace. */
586 u64 lockdep_stack_hash_count(void)
587 {
588         u64 c = 0;
589         int i;
590
591         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
592                 if (!hlist_empty(&stack_trace_hash[i]))
593                         c++;
594
595         return c;
596 }
597 #endif
598
599 unsigned int nr_hardirq_chains;
600 unsigned int nr_softirq_chains;
601 unsigned int nr_process_chains;
602 unsigned int max_lockdep_depth;
603
604 #ifdef CONFIG_DEBUG_LOCKDEP
605 /*
606  * Various lockdep statistics:
607  */
608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
609 #endif
610
611 #ifdef CONFIG_PROVE_LOCKING
612 /*
613  * Locking printouts:
614  */
615
616 #define __USAGE(__STATE)                                                \
617         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
618         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
619         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
620         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
621
622 static const char *usage_str[] =
623 {
624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
625 #include "lockdep_states.h"
626 #undef LOCKDEP_STATE
627         [LOCK_USED] = "INITIAL USE",
628         [LOCK_USED_READ] = "INITIAL READ USE",
629         /* abused as string storage for verify_lock_unused() */
630         [LOCK_USAGE_STATES] = "IN-NMI",
631 };
632 #endif
633
634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
635 {
636         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
637 }
638
639 static inline unsigned long lock_flag(enum lock_usage_bit bit)
640 {
641         return 1UL << bit;
642 }
643
644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
645 {
646         /*
647          * The usage character defaults to '.' (i.e., irqs disabled and not in
648          * irq context), which is the safest usage category.
649          */
650         char c = '.';
651
652         /*
653          * The order of the following usage checks matters, which will
654          * result in the outcome character as follows:
655          *
656          * - '+': irq is enabled and not in irq context
657          * - '-': in irq context and irq is disabled
658          * - '?': in irq context and irq is enabled
659          */
660         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
661                 c = '+';
662                 if (class->usage_mask & lock_flag(bit))
663                         c = '?';
664         } else if (class->usage_mask & lock_flag(bit))
665                 c = '-';
666
667         return c;
668 }
669
670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
671 {
672         int i = 0;
673
674 #define LOCKDEP_STATE(__STATE)                                          \
675         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
676         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
677 #include "lockdep_states.h"
678 #undef LOCKDEP_STATE
679
680         usage[i] = '\0';
681 }
682
683 static void __print_lock_name(struct lock_class *class)
684 {
685         char str[KSYM_NAME_LEN];
686         const char *name;
687
688         name = class->name;
689         if (!name) {
690                 name = __get_key_name(class->key, str);
691                 printk(KERN_CONT "%s", name);
692         } else {
693                 printk(KERN_CONT "%s", name);
694                 if (class->name_version > 1)
695                         printk(KERN_CONT "#%d", class->name_version);
696                 if (class->subclass)
697                         printk(KERN_CONT "/%d", class->subclass);
698         }
699 }
700
701 static void print_lock_name(struct lock_class *class)
702 {
703         char usage[LOCK_USAGE_CHARS];
704
705         get_usage_chars(class, usage);
706
707         printk(KERN_CONT " (");
708         __print_lock_name(class);
709         printk(KERN_CONT "){%s}-{%d:%d}", usage,
710                         class->wait_type_outer ?: class->wait_type_inner,
711                         class->wait_type_inner);
712 }
713
714 static void print_lockdep_cache(struct lockdep_map *lock)
715 {
716         const char *name;
717         char str[KSYM_NAME_LEN];
718
719         name = lock->name;
720         if (!name)
721                 name = __get_key_name(lock->key->subkeys, str);
722
723         printk(KERN_CONT "%s", name);
724 }
725
726 static void print_lock(struct held_lock *hlock)
727 {
728         /*
729          * We can be called locklessly through debug_show_all_locks() so be
730          * extra careful, the hlock might have been released and cleared.
731          *
732          * If this indeed happens, lets pretend it does not hurt to continue
733          * to print the lock unless the hlock class_idx does not point to a
734          * registered class. The rationale here is: since we don't attempt
735          * to distinguish whether we are in this situation, if it just
736          * happened we can't count on class_idx to tell either.
737          */
738         struct lock_class *lock = hlock_class(hlock);
739
740         if (!lock) {
741                 printk(KERN_CONT "<RELEASED>\n");
742                 return;
743         }
744
745         printk(KERN_CONT "%px", hlock->instance);
746         print_lock_name(lock);
747         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
748 }
749
750 static void lockdep_print_held_locks(struct task_struct *p)
751 {
752         int i, depth = READ_ONCE(p->lockdep_depth);
753
754         if (!depth)
755                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
756         else
757                 printk("%d lock%s held by %s/%d:\n", depth,
758                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
759         /*
760          * It's not reliable to print a task's held locks if it's not sleeping
761          * and it's not the current task.
762          */
763         if (p->state == TASK_RUNNING && p != current)
764                 return;
765         for (i = 0; i < depth; i++) {
766                 printk(" #%d: ", i);
767                 print_lock(p->held_locks + i);
768         }
769 }
770
771 static void print_kernel_ident(void)
772 {
773         printk("%s %.*s %s\n", init_utsname()->release,
774                 (int)strcspn(init_utsname()->version, " "),
775                 init_utsname()->version,
776                 print_tainted());
777 }
778
779 static int very_verbose(struct lock_class *class)
780 {
781 #if VERY_VERBOSE
782         return class_filter(class);
783 #endif
784         return 0;
785 }
786
787 /*
788  * Is this the address of a static object:
789  */
790 #ifdef __KERNEL__
791 static int static_obj(const void *obj)
792 {
793         unsigned long start = (unsigned long) &_stext,
794                       end   = (unsigned long) &_end,
795                       addr  = (unsigned long) obj;
796
797         if (arch_is_kernel_initmem_freed(addr))
798                 return 0;
799
800         /*
801          * static variable?
802          */
803         if ((addr >= start) && (addr < end))
804                 return 1;
805
806         if (arch_is_kernel_data(addr))
807                 return 1;
808
809         /*
810          * in-kernel percpu var?
811          */
812         if (is_kernel_percpu_address(addr))
813                 return 1;
814
815         /*
816          * module static or percpu var?
817          */
818         return is_module_address(addr) || is_module_percpu_address(addr);
819 }
820 #endif
821
822 /*
823  * To make lock name printouts unique, we calculate a unique
824  * class->name_version generation counter. The caller must hold the graph
825  * lock.
826  */
827 static int count_matching_names(struct lock_class *new_class)
828 {
829         struct lock_class *class;
830         int count = 0;
831
832         if (!new_class->name)
833                 return 0;
834
835         list_for_each_entry(class, &all_lock_classes, lock_entry) {
836                 if (new_class->key - new_class->subclass == class->key)
837                         return class->name_version;
838                 if (class->name && !strcmp(class->name, new_class->name))
839                         count = max(count, class->name_version);
840         }
841
842         return count + 1;
843 }
844
845 /* used from NMI context -- must be lockless */
846 static __always_inline struct lock_class *
847 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
848 {
849         struct lockdep_subclass_key *key;
850         struct hlist_head *hash_head;
851         struct lock_class *class;
852
853         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
854                 debug_locks_off();
855                 printk(KERN_ERR
856                         "BUG: looking up invalid subclass: %u\n", subclass);
857                 printk(KERN_ERR
858                         "turning off the locking correctness validator.\n");
859                 dump_stack();
860                 return NULL;
861         }
862
863         /*
864          * If it is not initialised then it has never been locked,
865          * so it won't be present in the hash table.
866          */
867         if (unlikely(!lock->key))
868                 return NULL;
869
870         /*
871          * NOTE: the class-key must be unique. For dynamic locks, a static
872          * lock_class_key variable is passed in through the mutex_init()
873          * (or spin_lock_init()) call - which acts as the key. For static
874          * locks we use the lock object itself as the key.
875          */
876         BUILD_BUG_ON(sizeof(struct lock_class_key) >
877                         sizeof(struct lockdep_map));
878
879         key = lock->key->subkeys + subclass;
880
881         hash_head = classhashentry(key);
882
883         /*
884          * We do an RCU walk of the hash, see lockdep_free_key_range().
885          */
886         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
887                 return NULL;
888
889         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
890                 if (class->key == key) {
891                         /*
892                          * Huh! same key, different name? Did someone trample
893                          * on some memory? We're most confused.
894                          */
895                         WARN_ON_ONCE(class->name != lock->name &&
896                                      lock->key != &__lockdep_no_validate__);
897                         return class;
898                 }
899         }
900
901         return NULL;
902 }
903
904 /*
905  * Static locks do not have their class-keys yet - for them the key is
906  * the lock object itself. If the lock is in the per cpu area, the
907  * canonical address of the lock (per cpu offset removed) is used.
908  */
909 static bool assign_lock_key(struct lockdep_map *lock)
910 {
911         unsigned long can_addr, addr = (unsigned long)lock;
912
913 #ifdef __KERNEL__
914         /*
915          * lockdep_free_key_range() assumes that struct lock_class_key
916          * objects do not overlap. Since we use the address of lock
917          * objects as class key for static objects, check whether the
918          * size of lock_class_key objects does not exceed the size of
919          * the smallest lock object.
920          */
921         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
922 #endif
923
924         if (__is_kernel_percpu_address(addr, &can_addr))
925                 lock->key = (void *)can_addr;
926         else if (__is_module_percpu_address(addr, &can_addr))
927                 lock->key = (void *)can_addr;
928         else if (static_obj(lock))
929                 lock->key = (void *)lock;
930         else {
931                 /* Debug-check: all keys must be persistent! */
932                 debug_locks_off();
933                 pr_err("INFO: trying to register non-static key.\n");
934                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
935                 pr_err("you didn't initialize this object before use?\n");
936                 pr_err("turning off the locking correctness validator.\n");
937                 dump_stack();
938                 return false;
939         }
940
941         return true;
942 }
943
944 #ifdef CONFIG_DEBUG_LOCKDEP
945
946 /* Check whether element @e occurs in list @h */
947 static bool in_list(struct list_head *e, struct list_head *h)
948 {
949         struct list_head *f;
950
951         list_for_each(f, h) {
952                 if (e == f)
953                         return true;
954         }
955
956         return false;
957 }
958
959 /*
960  * Check whether entry @e occurs in any of the locks_after or locks_before
961  * lists.
962  */
963 static bool in_any_class_list(struct list_head *e)
964 {
965         struct lock_class *class;
966         int i;
967
968         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
969                 class = &lock_classes[i];
970                 if (in_list(e, &class->locks_after) ||
971                     in_list(e, &class->locks_before))
972                         return true;
973         }
974         return false;
975 }
976
977 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
978 {
979         struct lock_list *e;
980
981         list_for_each_entry(e, h, entry) {
982                 if (e->links_to != c) {
983                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
984                                c->name ? : "(?)",
985                                (unsigned long)(e - list_entries),
986                                e->links_to && e->links_to->name ?
987                                e->links_to->name : "(?)",
988                                e->class && e->class->name ? e->class->name :
989                                "(?)");
990                         return false;
991                 }
992         }
993         return true;
994 }
995
996 #ifdef CONFIG_PROVE_LOCKING
997 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
998 #endif
999
1000 static bool check_lock_chain_key(struct lock_chain *chain)
1001 {
1002 #ifdef CONFIG_PROVE_LOCKING
1003         u64 chain_key = INITIAL_CHAIN_KEY;
1004         int i;
1005
1006         for (i = chain->base; i < chain->base + chain->depth; i++)
1007                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1008         /*
1009          * The 'unsigned long long' casts avoid that a compiler warning
1010          * is reported when building tools/lib/lockdep.
1011          */
1012         if (chain->chain_key != chain_key) {
1013                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1014                        (unsigned long long)(chain - lock_chains),
1015                        (unsigned long long)chain->chain_key,
1016                        (unsigned long long)chain_key);
1017                 return false;
1018         }
1019 #endif
1020         return true;
1021 }
1022
1023 static bool in_any_zapped_class_list(struct lock_class *class)
1024 {
1025         struct pending_free *pf;
1026         int i;
1027
1028         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1029                 if (in_list(&class->lock_entry, &pf->zapped))
1030                         return true;
1031         }
1032
1033         return false;
1034 }
1035
1036 static bool __check_data_structures(void)
1037 {
1038         struct lock_class *class;
1039         struct lock_chain *chain;
1040         struct hlist_head *head;
1041         struct lock_list *e;
1042         int i;
1043
1044         /* Check whether all classes occur in a lock list. */
1045         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1046                 class = &lock_classes[i];
1047                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1048                     !in_list(&class->lock_entry, &free_lock_classes) &&
1049                     !in_any_zapped_class_list(class)) {
1050                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1051                                class, class->name ? : "(?)");
1052                         return false;
1053                 }
1054         }
1055
1056         /* Check whether all classes have valid lock lists. */
1057         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1058                 class = &lock_classes[i];
1059                 if (!class_lock_list_valid(class, &class->locks_before))
1060                         return false;
1061                 if (!class_lock_list_valid(class, &class->locks_after))
1062                         return false;
1063         }
1064
1065         /* Check the chain_key of all lock chains. */
1066         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1067                 head = chainhash_table + i;
1068                 hlist_for_each_entry_rcu(chain, head, entry) {
1069                         if (!check_lock_chain_key(chain))
1070                                 return false;
1071                 }
1072         }
1073
1074         /*
1075          * Check whether all list entries that are in use occur in a class
1076          * lock list.
1077          */
1078         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1079                 e = list_entries + i;
1080                 if (!in_any_class_list(&e->entry)) {
1081                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1082                                (unsigned int)(e - list_entries),
1083                                e->class->name ? : "(?)",
1084                                e->links_to->name ? : "(?)");
1085                         return false;
1086                 }
1087         }
1088
1089         /*
1090          * Check whether all list entries that are not in use do not occur in
1091          * a class lock list.
1092          */
1093         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1094                 e = list_entries + i;
1095                 if (in_any_class_list(&e->entry)) {
1096                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1097                                (unsigned int)(e - list_entries),
1098                                e->class && e->class->name ? e->class->name :
1099                                "(?)",
1100                                e->links_to && e->links_to->name ?
1101                                e->links_to->name : "(?)");
1102                         return false;
1103                 }
1104         }
1105
1106         return true;
1107 }
1108
1109 int check_consistency = 0;
1110 module_param(check_consistency, int, 0644);
1111
1112 static void check_data_structures(void)
1113 {
1114         static bool once = false;
1115
1116         if (check_consistency && !once) {
1117                 if (!__check_data_structures()) {
1118                         once = true;
1119                         WARN_ON(once);
1120                 }
1121         }
1122 }
1123
1124 #else /* CONFIG_DEBUG_LOCKDEP */
1125
1126 static inline void check_data_structures(void) { }
1127
1128 #endif /* CONFIG_DEBUG_LOCKDEP */
1129
1130 static void init_chain_block_buckets(void);
1131
1132 /*
1133  * Initialize the lock_classes[] array elements, the free_lock_classes list
1134  * and also the delayed_free structure.
1135  */
1136 static void init_data_structures_once(void)
1137 {
1138         static bool __read_mostly ds_initialized, rcu_head_initialized;
1139         int i;
1140
1141         if (likely(rcu_head_initialized))
1142                 return;
1143
1144         if (system_state >= SYSTEM_SCHEDULING) {
1145                 init_rcu_head(&delayed_free.rcu_head);
1146                 rcu_head_initialized = true;
1147         }
1148
1149         if (ds_initialized)
1150                 return;
1151
1152         ds_initialized = true;
1153
1154         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1155         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1156
1157         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1158                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1159                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1160                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1161         }
1162         init_chain_block_buckets();
1163 }
1164
1165 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1166 {
1167         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1168
1169         return lock_keys_hash + hash;
1170 }
1171
1172 /* Register a dynamically allocated key. */
1173 void lockdep_register_key(struct lock_class_key *key)
1174 {
1175         struct hlist_head *hash_head;
1176         struct lock_class_key *k;
1177         unsigned long flags;
1178
1179         if (WARN_ON_ONCE(static_obj(key)))
1180                 return;
1181         hash_head = keyhashentry(key);
1182
1183         raw_local_irq_save(flags);
1184         if (!graph_lock())
1185                 goto restore_irqs;
1186         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1187                 if (WARN_ON_ONCE(k == key))
1188                         goto out_unlock;
1189         }
1190         hlist_add_head_rcu(&key->hash_entry, hash_head);
1191 out_unlock:
1192         graph_unlock();
1193 restore_irqs:
1194         raw_local_irq_restore(flags);
1195 }
1196 EXPORT_SYMBOL_GPL(lockdep_register_key);
1197
1198 /* Check whether a key has been registered as a dynamic key. */
1199 static bool is_dynamic_key(const struct lock_class_key *key)
1200 {
1201         struct hlist_head *hash_head;
1202         struct lock_class_key *k;
1203         bool found = false;
1204
1205         if (WARN_ON_ONCE(static_obj(key)))
1206                 return false;
1207
1208         /*
1209          * If lock debugging is disabled lock_keys_hash[] may contain
1210          * pointers to memory that has already been freed. Avoid triggering
1211          * a use-after-free in that case by returning early.
1212          */
1213         if (!debug_locks)
1214                 return true;
1215
1216         hash_head = keyhashentry(key);
1217
1218         rcu_read_lock();
1219         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1220                 if (k == key) {
1221                         found = true;
1222                         break;
1223                 }
1224         }
1225         rcu_read_unlock();
1226
1227         return found;
1228 }
1229
1230 /*
1231  * Register a lock's class in the hash-table, if the class is not present
1232  * yet. Otherwise we look it up. We cache the result in the lock object
1233  * itself, so actual lookup of the hash should be once per lock object.
1234  */
1235 static struct lock_class *
1236 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1237 {
1238         struct lockdep_subclass_key *key;
1239         struct hlist_head *hash_head;
1240         struct lock_class *class;
1241
1242         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1243
1244         class = look_up_lock_class(lock, subclass);
1245         if (likely(class))
1246                 goto out_set_class_cache;
1247
1248         if (!lock->key) {
1249                 if (!assign_lock_key(lock))
1250                         return NULL;
1251         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1252                 return NULL;
1253         }
1254
1255         key = lock->key->subkeys + subclass;
1256         hash_head = classhashentry(key);
1257
1258         if (!graph_lock()) {
1259                 return NULL;
1260         }
1261         /*
1262          * We have to do the hash-walk again, to avoid races
1263          * with another CPU:
1264          */
1265         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1266                 if (class->key == key)
1267                         goto out_unlock_set;
1268         }
1269
1270         init_data_structures_once();
1271
1272         /* Allocate a new lock class and add it to the hash. */
1273         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1274                                          lock_entry);
1275         if (!class) {
1276                 if (!debug_locks_off_graph_unlock()) {
1277                         return NULL;
1278                 }
1279
1280                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1281                 dump_stack();
1282                 return NULL;
1283         }
1284         nr_lock_classes++;
1285         __set_bit(class - lock_classes, lock_classes_in_use);
1286         debug_atomic_inc(nr_unused_locks);
1287         class->key = key;
1288         class->name = lock->name;
1289         class->subclass = subclass;
1290         WARN_ON_ONCE(!list_empty(&class->locks_before));
1291         WARN_ON_ONCE(!list_empty(&class->locks_after));
1292         class->name_version = count_matching_names(class);
1293         class->wait_type_inner = lock->wait_type_inner;
1294         class->wait_type_outer = lock->wait_type_outer;
1295         class->lock_type = lock->lock_type;
1296         /*
1297          * We use RCU's safe list-add method to make
1298          * parallel walking of the hash-list safe:
1299          */
1300         hlist_add_head_rcu(&class->hash_entry, hash_head);
1301         /*
1302          * Remove the class from the free list and add it to the global list
1303          * of classes.
1304          */
1305         list_move_tail(&class->lock_entry, &all_lock_classes);
1306
1307         if (verbose(class)) {
1308                 graph_unlock();
1309
1310                 printk("\nnew class %px: %s", class->key, class->name);
1311                 if (class->name_version > 1)
1312                         printk(KERN_CONT "#%d", class->name_version);
1313                 printk(KERN_CONT "\n");
1314                 dump_stack();
1315
1316                 if (!graph_lock()) {
1317                         return NULL;
1318                 }
1319         }
1320 out_unlock_set:
1321         graph_unlock();
1322
1323 out_set_class_cache:
1324         if (!subclass || force)
1325                 lock->class_cache[0] = class;
1326         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1327                 lock->class_cache[subclass] = class;
1328
1329         /*
1330          * Hash collision, did we smoke some? We found a class with a matching
1331          * hash but the subclass -- which is hashed in -- didn't match.
1332          */
1333         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1334                 return NULL;
1335
1336         return class;
1337 }
1338
1339 #ifdef CONFIG_PROVE_LOCKING
1340 /*
1341  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1342  * with NULL on failure)
1343  */
1344 static struct lock_list *alloc_list_entry(void)
1345 {
1346         int idx = find_first_zero_bit(list_entries_in_use,
1347                                       ARRAY_SIZE(list_entries));
1348
1349         if (idx >= ARRAY_SIZE(list_entries)) {
1350                 if (!debug_locks_off_graph_unlock())
1351                         return NULL;
1352
1353                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1354                 dump_stack();
1355                 return NULL;
1356         }
1357         nr_list_entries++;
1358         __set_bit(idx, list_entries_in_use);
1359         return list_entries + idx;
1360 }
1361
1362 /*
1363  * Add a new dependency to the head of the list:
1364  */
1365 static int add_lock_to_list(struct lock_class *this,
1366                             struct lock_class *links_to, struct list_head *head,
1367                             unsigned long ip, u16 distance, u8 dep,
1368                             const struct lock_trace *trace)
1369 {
1370         struct lock_list *entry;
1371         /*
1372          * Lock not present yet - get a new dependency struct and
1373          * add it to the list:
1374          */
1375         entry = alloc_list_entry();
1376         if (!entry)
1377                 return 0;
1378
1379         entry->class = this;
1380         entry->links_to = links_to;
1381         entry->dep = dep;
1382         entry->distance = distance;
1383         entry->trace = trace;
1384         /*
1385          * Both allocation and removal are done under the graph lock; but
1386          * iteration is under RCU-sched; see look_up_lock_class() and
1387          * lockdep_free_key_range().
1388          */
1389         list_add_tail_rcu(&entry->entry, head);
1390
1391         return 1;
1392 }
1393
1394 /*
1395  * For good efficiency of modular, we use power of 2
1396  */
1397 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1398 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1399
1400 /*
1401  * The circular_queue and helpers are used to implement graph
1402  * breadth-first search (BFS) algorithm, by which we can determine
1403  * whether there is a path from a lock to another. In deadlock checks,
1404  * a path from the next lock to be acquired to a previous held lock
1405  * indicates that adding the <prev> -> <next> lock dependency will
1406  * produce a circle in the graph. Breadth-first search instead of
1407  * depth-first search is used in order to find the shortest (circular)
1408  * path.
1409  */
1410 struct circular_queue {
1411         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1412         unsigned int  front, rear;
1413 };
1414
1415 static struct circular_queue lock_cq;
1416
1417 unsigned int max_bfs_queue_depth;
1418
1419 static unsigned int lockdep_dependency_gen_id;
1420
1421 static inline void __cq_init(struct circular_queue *cq)
1422 {
1423         cq->front = cq->rear = 0;
1424         lockdep_dependency_gen_id++;
1425 }
1426
1427 static inline int __cq_empty(struct circular_queue *cq)
1428 {
1429         return (cq->front == cq->rear);
1430 }
1431
1432 static inline int __cq_full(struct circular_queue *cq)
1433 {
1434         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1435 }
1436
1437 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1438 {
1439         if (__cq_full(cq))
1440                 return -1;
1441
1442         cq->element[cq->rear] = elem;
1443         cq->rear = (cq->rear + 1) & CQ_MASK;
1444         return 0;
1445 }
1446
1447 /*
1448  * Dequeue an element from the circular_queue, return a lock_list if
1449  * the queue is not empty, or NULL if otherwise.
1450  */
1451 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1452 {
1453         struct lock_list * lock;
1454
1455         if (__cq_empty(cq))
1456                 return NULL;
1457
1458         lock = cq->element[cq->front];
1459         cq->front = (cq->front + 1) & CQ_MASK;
1460
1461         return lock;
1462 }
1463
1464 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1465 {
1466         return (cq->rear - cq->front) & CQ_MASK;
1467 }
1468
1469 static inline void mark_lock_accessed(struct lock_list *lock)
1470 {
1471         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1472 }
1473
1474 static inline void visit_lock_entry(struct lock_list *lock,
1475                                     struct lock_list *parent)
1476 {
1477         lock->parent = parent;
1478 }
1479
1480 static inline unsigned long lock_accessed(struct lock_list *lock)
1481 {
1482         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1483 }
1484
1485 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1486 {
1487         return child->parent;
1488 }
1489
1490 static inline int get_lock_depth(struct lock_list *child)
1491 {
1492         int depth = 0;
1493         struct lock_list *parent;
1494
1495         while ((parent = get_lock_parent(child))) {
1496                 child = parent;
1497                 depth++;
1498         }
1499         return depth;
1500 }
1501
1502 /*
1503  * Return the forward or backward dependency list.
1504  *
1505  * @lock:   the lock_list to get its class's dependency list
1506  * @offset: the offset to struct lock_class to determine whether it is
1507  *          locks_after or locks_before
1508  */
1509 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1510 {
1511         void *lock_class = lock->class;
1512
1513         return lock_class + offset;
1514 }
1515 /*
1516  * Return values of a bfs search:
1517  *
1518  * BFS_E* indicates an error
1519  * BFS_R* indicates a result (match or not)
1520  *
1521  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1522  *
1523  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1524  *
1525  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1526  *             *@target_entry.
1527  *
1528  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1529  *               _unchanged_.
1530  */
1531 enum bfs_result {
1532         BFS_EINVALIDNODE = -2,
1533         BFS_EQUEUEFULL = -1,
1534         BFS_RMATCH = 0,
1535         BFS_RNOMATCH = 1,
1536 };
1537
1538 /*
1539  * bfs_result < 0 means error
1540  */
1541 static inline bool bfs_error(enum bfs_result res)
1542 {
1543         return res < 0;
1544 }
1545
1546 /*
1547  * DEP_*_BIT in lock_list::dep
1548  *
1549  * For dependency @prev -> @next:
1550  *
1551  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1552  *       (->read == 2)
1553  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1554  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1555  *   EN: @prev is exclusive locker and @next is non-recursive locker
1556  *
1557  * Note that we define the value of DEP_*_BITs so that:
1558  *   bit0 is prev->read == 0
1559  *   bit1 is next->read != 2
1560  */
1561 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1562 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1563 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1564 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1565
1566 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1567 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1568 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1569 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1570
1571 static inline unsigned int
1572 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1573 {
1574         return (prev->read == 0) + ((next->read != 2) << 1);
1575 }
1576
1577 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1578 {
1579         return 1U << __calc_dep_bit(prev, next);
1580 }
1581
1582 /*
1583  * calculate the dep_bit for backwards edges. We care about whether @prev is
1584  * shared and whether @next is recursive.
1585  */
1586 static inline unsigned int
1587 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1588 {
1589         return (next->read != 2) + ((prev->read == 0) << 1);
1590 }
1591
1592 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1593 {
1594         return 1U << __calc_dep_bitb(prev, next);
1595 }
1596
1597 /*
1598  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1599  * search.
1600  */
1601 static inline void __bfs_init_root(struct lock_list *lock,
1602                                    struct lock_class *class)
1603 {
1604         lock->class = class;
1605         lock->parent = NULL;
1606         lock->only_xr = 0;
1607 }
1608
1609 /*
1610  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1611  * root for a BFS search.
1612  *
1613  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1614  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1615  * and -(S*)->.
1616  */
1617 static inline void bfs_init_root(struct lock_list *lock,
1618                                  struct held_lock *hlock)
1619 {
1620         __bfs_init_root(lock, hlock_class(hlock));
1621         lock->only_xr = (hlock->read == 2);
1622 }
1623
1624 /*
1625  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1626  *
1627  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1628  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1629  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1630  */
1631 static inline void bfs_init_rootb(struct lock_list *lock,
1632                                   struct held_lock *hlock)
1633 {
1634         __bfs_init_root(lock, hlock_class(hlock));
1635         lock->only_xr = (hlock->read != 0);
1636 }
1637
1638 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1639 {
1640         if (!lock || !lock->parent)
1641                 return NULL;
1642
1643         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1644                                      &lock->entry, struct lock_list, entry);
1645 }
1646
1647 /*
1648  * Breadth-First Search to find a strong path in the dependency graph.
1649  *
1650  * @source_entry: the source of the path we are searching for.
1651  * @data: data used for the second parameter of @match function
1652  * @match: match function for the search
1653  * @target_entry: pointer to the target of a matched path
1654  * @offset: the offset to struct lock_class to determine whether it is
1655  *          locks_after or locks_before
1656  *
1657  * We may have multiple edges (considering different kinds of dependencies,
1658  * e.g. ER and SN) between two nodes in the dependency graph. But
1659  * only the strong dependency path in the graph is relevant to deadlocks. A
1660  * strong dependency path is a dependency path that doesn't have two adjacent
1661  * dependencies as -(*R)-> -(S*)->, please see:
1662  *
1663  *         Documentation/locking/lockdep-design.rst
1664  *
1665  * for more explanation of the definition of strong dependency paths
1666  *
1667  * In __bfs(), we only traverse in the strong dependency path:
1668  *
1669  *     In lock_list::only_xr, we record whether the previous dependency only
1670  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1671  *     filter out any -(S*)-> in the current dependency and after that, the
1672  *     ->only_xr is set according to whether we only have -(*R)-> left.
1673  */
1674 static enum bfs_result __bfs(struct lock_list *source_entry,
1675                              void *data,
1676                              bool (*match)(struct lock_list *entry, void *data),
1677                              bool (*skip)(struct lock_list *entry, void *data),
1678                              struct lock_list **target_entry,
1679                              int offset)
1680 {
1681         struct circular_queue *cq = &lock_cq;
1682         struct lock_list *lock = NULL;
1683         struct lock_list *entry;
1684         struct list_head *head;
1685         unsigned int cq_depth;
1686         bool first;
1687
1688         lockdep_assert_locked();
1689
1690         __cq_init(cq);
1691         __cq_enqueue(cq, source_entry);
1692
1693         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1694                 if (!lock->class)
1695                         return BFS_EINVALIDNODE;
1696
1697                 /*
1698                  * Step 1: check whether we already finish on this one.
1699                  *
1700                  * If we have visited all the dependencies from this @lock to
1701                  * others (iow, if we have visited all lock_list entries in
1702                  * @lock->class->locks_{after,before}) we skip, otherwise go
1703                  * and visit all the dependencies in the list and mark this
1704                  * list accessed.
1705                  */
1706                 if (lock_accessed(lock))
1707                         continue;
1708                 else
1709                         mark_lock_accessed(lock);
1710
1711                 /*
1712                  * Step 2: check whether prev dependency and this form a strong
1713                  *         dependency path.
1714                  */
1715                 if (lock->parent) { /* Parent exists, check prev dependency */
1716                         u8 dep = lock->dep;
1717                         bool prev_only_xr = lock->parent->only_xr;
1718
1719                         /*
1720                          * Mask out all -(S*)-> if we only have *R in previous
1721                          * step, because -(*R)-> -(S*)-> don't make up a strong
1722                          * dependency.
1723                          */
1724                         if (prev_only_xr)
1725                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1726
1727                         /* If nothing left, we skip */
1728                         if (!dep)
1729                                 continue;
1730
1731                         /* If there are only -(*R)-> left, set that for the next step */
1732                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1733                 }
1734
1735                 /*
1736                  * Step 3: we haven't visited this and there is a strong
1737                  *         dependency path to this, so check with @match.
1738                  *         If @skip is provide and returns true, we skip this
1739                  *         lock (and any path this lock is in).
1740                  */
1741                 if (skip && skip(lock, data))
1742                         continue;
1743
1744                 if (match(lock, data)) {
1745                         *target_entry = lock;
1746                         return BFS_RMATCH;
1747                 }
1748
1749                 /*
1750                  * Step 4: if not match, expand the path by adding the
1751                  *         forward or backwards dependencies in the search
1752                  *
1753                  */
1754                 first = true;
1755                 head = get_dep_list(lock, offset);
1756                 list_for_each_entry_rcu(entry, head, entry) {
1757                         visit_lock_entry(entry, lock);
1758
1759                         /*
1760                          * Note we only enqueue the first of the list into the
1761                          * queue, because we can always find a sibling
1762                          * dependency from one (see __bfs_next()), as a result
1763                          * the space of queue is saved.
1764                          */
1765                         if (!first)
1766                                 continue;
1767
1768                         first = false;
1769
1770                         if (__cq_enqueue(cq, entry))
1771                                 return BFS_EQUEUEFULL;
1772
1773                         cq_depth = __cq_get_elem_count(cq);
1774                         if (max_bfs_queue_depth < cq_depth)
1775                                 max_bfs_queue_depth = cq_depth;
1776                 }
1777         }
1778
1779         return BFS_RNOMATCH;
1780 }
1781
1782 static inline enum bfs_result
1783 __bfs_forwards(struct lock_list *src_entry,
1784                void *data,
1785                bool (*match)(struct lock_list *entry, void *data),
1786                bool (*skip)(struct lock_list *entry, void *data),
1787                struct lock_list **target_entry)
1788 {
1789         return __bfs(src_entry, data, match, skip, target_entry,
1790                      offsetof(struct lock_class, locks_after));
1791
1792 }
1793
1794 static inline enum bfs_result
1795 __bfs_backwards(struct lock_list *src_entry,
1796                 void *data,
1797                 bool (*match)(struct lock_list *entry, void *data),
1798                bool (*skip)(struct lock_list *entry, void *data),
1799                 struct lock_list **target_entry)
1800 {
1801         return __bfs(src_entry, data, match, skip, target_entry,
1802                      offsetof(struct lock_class, locks_before));
1803
1804 }
1805
1806 static void print_lock_trace(const struct lock_trace *trace,
1807                              unsigned int spaces)
1808 {
1809         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1810 }
1811
1812 /*
1813  * Print a dependency chain entry (this is only done when a deadlock
1814  * has been detected):
1815  */
1816 static noinline void
1817 print_circular_bug_entry(struct lock_list *target, int depth)
1818 {
1819         if (debug_locks_silent)
1820                 return;
1821         printk("\n-> #%u", depth);
1822         print_lock_name(target->class);
1823         printk(KERN_CONT ":\n");
1824         print_lock_trace(target->trace, 6);
1825 }
1826
1827 static void
1828 print_circular_lock_scenario(struct held_lock *src,
1829                              struct held_lock *tgt,
1830                              struct lock_list *prt)
1831 {
1832         struct lock_class *source = hlock_class(src);
1833         struct lock_class *target = hlock_class(tgt);
1834         struct lock_class *parent = prt->class;
1835
1836         /*
1837          * A direct locking problem where unsafe_class lock is taken
1838          * directly by safe_class lock, then all we need to show
1839          * is the deadlock scenario, as it is obvious that the
1840          * unsafe lock is taken under the safe lock.
1841          *
1842          * But if there is a chain instead, where the safe lock takes
1843          * an intermediate lock (middle_class) where this lock is
1844          * not the same as the safe lock, then the lock chain is
1845          * used to describe the problem. Otherwise we would need
1846          * to show a different CPU case for each link in the chain
1847          * from the safe_class lock to the unsafe_class lock.
1848          */
1849         if (parent != source) {
1850                 printk("Chain exists of:\n  ");
1851                 __print_lock_name(source);
1852                 printk(KERN_CONT " --> ");
1853                 __print_lock_name(parent);
1854                 printk(KERN_CONT " --> ");
1855                 __print_lock_name(target);
1856                 printk(KERN_CONT "\n\n");
1857         }
1858
1859         printk(" Possible unsafe locking scenario:\n\n");
1860         printk("       CPU0                    CPU1\n");
1861         printk("       ----                    ----\n");
1862         printk("  lock(");
1863         __print_lock_name(target);
1864         printk(KERN_CONT ");\n");
1865         printk("                               lock(");
1866         __print_lock_name(parent);
1867         printk(KERN_CONT ");\n");
1868         printk("                               lock(");
1869         __print_lock_name(target);
1870         printk(KERN_CONT ");\n");
1871         printk("  lock(");
1872         __print_lock_name(source);
1873         printk(KERN_CONT ");\n");
1874         printk("\n *** DEADLOCK ***\n\n");
1875 }
1876
1877 /*
1878  * When a circular dependency is detected, print the
1879  * header first:
1880  */
1881 static noinline void
1882 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1883                         struct held_lock *check_src,
1884                         struct held_lock *check_tgt)
1885 {
1886         struct task_struct *curr = current;
1887
1888         if (debug_locks_silent)
1889                 return;
1890
1891         pr_warn("\n");
1892         pr_warn("======================================================\n");
1893         pr_warn("WARNING: possible circular locking dependency detected\n");
1894         print_kernel_ident();
1895         pr_warn("------------------------------------------------------\n");
1896         pr_warn("%s/%d is trying to acquire lock:\n",
1897                 curr->comm, task_pid_nr(curr));
1898         print_lock(check_src);
1899
1900         pr_warn("\nbut task is already holding lock:\n");
1901
1902         print_lock(check_tgt);
1903         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1904         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1905
1906         print_circular_bug_entry(entry, depth);
1907 }
1908
1909 /*
1910  * We are about to add A -> B into the dependency graph, and in __bfs() a
1911  * strong dependency path A -> .. -> B is found: hlock_class equals
1912  * entry->class.
1913  *
1914  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1915  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1916  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1917  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1918  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1919  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1920  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1921  *
1922  * We need to make sure both the start and the end of A -> .. -> B is not
1923  * weaker than A -> B. For the start part, please see the comment in
1924  * check_redundant(). For the end part, we need:
1925  *
1926  * Either
1927  *
1928  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1929  *
1930  * or
1931  *
1932  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1933  *
1934  */
1935 static inline bool hlock_equal(struct lock_list *entry, void *data)
1936 {
1937         struct held_lock *hlock = (struct held_lock *)data;
1938
1939         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1940                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1941                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1942 }
1943
1944 /*
1945  * We are about to add B -> A into the dependency graph, and in __bfs() a
1946  * strong dependency path A -> .. -> B is found: hlock_class equals
1947  * entry->class.
1948  *
1949  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1950  * dependency cycle, that means:
1951  *
1952  * Either
1953  *
1954  *     a) B -> A is -(E*)->
1955  *
1956  * or
1957  *
1958  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1959  *
1960  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1961  */
1962 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1963 {
1964         struct held_lock *hlock = (struct held_lock *)data;
1965
1966         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1967                (hlock->read == 0 || /* B -> A is -(E*)-> */
1968                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1969 }
1970
1971 static noinline void print_circular_bug(struct lock_list *this,
1972                                 struct lock_list *target,
1973                                 struct held_lock *check_src,
1974                                 struct held_lock *check_tgt)
1975 {
1976         struct task_struct *curr = current;
1977         struct lock_list *parent;
1978         struct lock_list *first_parent;
1979         int depth;
1980
1981         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1982                 return;
1983
1984         this->trace = save_trace();
1985         if (!this->trace)
1986                 return;
1987
1988         depth = get_lock_depth(target);
1989
1990         print_circular_bug_header(target, depth, check_src, check_tgt);
1991
1992         parent = get_lock_parent(target);
1993         first_parent = parent;
1994
1995         while (parent) {
1996                 print_circular_bug_entry(parent, --depth);
1997                 parent = get_lock_parent(parent);
1998         }
1999
2000         printk("\nother info that might help us debug this:\n\n");
2001         print_circular_lock_scenario(check_src, check_tgt,
2002                                      first_parent);
2003
2004         lockdep_print_held_locks(curr);
2005
2006         printk("\nstack backtrace:\n");
2007         dump_stack();
2008 }
2009
2010 static noinline void print_bfs_bug(int ret)
2011 {
2012         if (!debug_locks_off_graph_unlock())
2013                 return;
2014
2015         /*
2016          * Breadth-first-search failed, graph got corrupted?
2017          */
2018         WARN(1, "lockdep bfs error:%d\n", ret);
2019 }
2020
2021 static bool noop_count(struct lock_list *entry, void *data)
2022 {
2023         (*(unsigned long *)data)++;
2024         return false;
2025 }
2026
2027 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2028 {
2029         unsigned long  count = 0;
2030         struct lock_list *target_entry;
2031
2032         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2033
2034         return count;
2035 }
2036 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2037 {
2038         unsigned long ret, flags;
2039         struct lock_list this;
2040
2041         __bfs_init_root(&this, class);
2042
2043         raw_local_irq_save(flags);
2044         lockdep_lock();
2045         ret = __lockdep_count_forward_deps(&this);
2046         lockdep_unlock();
2047         raw_local_irq_restore(flags);
2048
2049         return ret;
2050 }
2051
2052 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2053 {
2054         unsigned long  count = 0;
2055         struct lock_list *target_entry;
2056
2057         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2058
2059         return count;
2060 }
2061
2062 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2063 {
2064         unsigned long ret, flags;
2065         struct lock_list this;
2066
2067         __bfs_init_root(&this, class);
2068
2069         raw_local_irq_save(flags);
2070         lockdep_lock();
2071         ret = __lockdep_count_backward_deps(&this);
2072         lockdep_unlock();
2073         raw_local_irq_restore(flags);
2074
2075         return ret;
2076 }
2077
2078 /*
2079  * Check that the dependency graph starting at <src> can lead to
2080  * <target> or not.
2081  */
2082 static noinline enum bfs_result
2083 check_path(struct held_lock *target, struct lock_list *src_entry,
2084            bool (*match)(struct lock_list *entry, void *data),
2085            bool (*skip)(struct lock_list *entry, void *data),
2086            struct lock_list **target_entry)
2087 {
2088         enum bfs_result ret;
2089
2090         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2091
2092         if (unlikely(bfs_error(ret)))
2093                 print_bfs_bug(ret);
2094
2095         return ret;
2096 }
2097
2098 /*
2099  * Prove that the dependency graph starting at <src> can not
2100  * lead to <target>. If it can, there is a circle when adding
2101  * <target> -> <src> dependency.
2102  *
2103  * Print an error and return BFS_RMATCH if it does.
2104  */
2105 static noinline enum bfs_result
2106 check_noncircular(struct held_lock *src, struct held_lock *target,
2107                   struct lock_trace **const trace)
2108 {
2109         enum bfs_result ret;
2110         struct lock_list *target_entry;
2111         struct lock_list src_entry;
2112
2113         bfs_init_root(&src_entry, src);
2114
2115         debug_atomic_inc(nr_cyclic_checks);
2116
2117         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2118
2119         if (unlikely(ret == BFS_RMATCH)) {
2120                 if (!*trace) {
2121                         /*
2122                          * If save_trace fails here, the printing might
2123                          * trigger a WARN but because of the !nr_entries it
2124                          * should not do bad things.
2125                          */
2126                         *trace = save_trace();
2127                 }
2128
2129                 print_circular_bug(&src_entry, target_entry, src, target);
2130         }
2131
2132         return ret;
2133 }
2134
2135 #ifdef CONFIG_TRACE_IRQFLAGS
2136
2137 /*
2138  * Forwards and backwards subgraph searching, for the purposes of
2139  * proving that two subgraphs can be connected by a new dependency
2140  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2141  *
2142  * A irq safe->unsafe deadlock happens with the following conditions:
2143  *
2144  * 1) We have a strong dependency path A -> ... -> B
2145  *
2146  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2147  *    irq can create a new dependency B -> A (consider the case that a holder
2148  *    of B gets interrupted by an irq whose handler will try to acquire A).
2149  *
2150  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2151  *    strong circle:
2152  *
2153  *      For the usage bits of B:
2154  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2155  *           ENABLED_IRQ usage suffices.
2156  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2157  *           ENABLED_IRQ_*_READ usage suffices.
2158  *
2159  *      For the usage bits of A:
2160  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2161  *           USED_IN_IRQ usage suffices.
2162  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2163  *           USED_IN_IRQ_*_READ usage suffices.
2164  */
2165
2166 /*
2167  * There is a strong dependency path in the dependency graph: A -> B, and now
2168  * we need to decide which usage bit of A should be accumulated to detect
2169  * safe->unsafe bugs.
2170  *
2171  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2172  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2173  *
2174  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2175  * path, any usage of A should be considered. Otherwise, we should only
2176  * consider _READ usage.
2177  */
2178 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2179 {
2180         if (!entry->only_xr)
2181                 *(unsigned long *)mask |= entry->class->usage_mask;
2182         else /* Mask out _READ usage bits */
2183                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2184
2185         return false;
2186 }
2187
2188 /*
2189  * There is a strong dependency path in the dependency graph: A -> B, and now
2190  * we need to decide which usage bit of B conflicts with the usage bits of A,
2191  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2192  *
2193  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2194  * path, any usage of B should be considered. Otherwise, we should only
2195  * consider _READ usage.
2196  */
2197 static inline bool usage_match(struct lock_list *entry, void *mask)
2198 {
2199         if (!entry->only_xr)
2200                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2201         else /* Mask out _READ usage bits */
2202                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2203 }
2204
2205 static inline bool usage_skip(struct lock_list *entry, void *mask)
2206 {
2207         /*
2208          * Skip local_lock() for irq inversion detection.
2209          *
2210          * For !RT, local_lock() is not a real lock, so it won't carry any
2211          * dependency.
2212          *
2213          * For RT, an irq inversion happens when we have lock A and B, and on
2214          * some CPU we can have:
2215          *
2216          *      lock(A);
2217          *      <interrupted>
2218          *        lock(B);
2219          *
2220          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2221          *
2222          * Now we prove local_lock() cannot exist in that dependency. First we
2223          * have the observation for any lock chain L1 -> ... -> Ln, for any
2224          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2225          * wait context check will complain. And since B is not a sleep lock,
2226          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2227          * local_lock() is 3, which is greater than 2, therefore there is no
2228          * way the local_lock() exists in the dependency B -> ... -> A.
2229          *
2230          * As a result, we will skip local_lock(), when we search for irq
2231          * inversion bugs.
2232          */
2233         if (entry->class->lock_type == LD_LOCK_PERCPU) {
2234                 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2235                         return false;
2236
2237                 return true;
2238         }
2239
2240         return false;
2241 }
2242
2243 /*
2244  * Find a node in the forwards-direction dependency sub-graph starting
2245  * at @root->class that matches @bit.
2246  *
2247  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2248  * into *@target_entry.
2249  */
2250 static enum bfs_result
2251 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2252                         struct lock_list **target_entry)
2253 {
2254         enum bfs_result result;
2255
2256         debug_atomic_inc(nr_find_usage_forwards_checks);
2257
2258         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2259
2260         return result;
2261 }
2262
2263 /*
2264  * Find a node in the backwards-direction dependency sub-graph starting
2265  * at @root->class that matches @bit.
2266  */
2267 static enum bfs_result
2268 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2269                         struct lock_list **target_entry)
2270 {
2271         enum bfs_result result;
2272
2273         debug_atomic_inc(nr_find_usage_backwards_checks);
2274
2275         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2276
2277         return result;
2278 }
2279
2280 static void print_lock_class_header(struct lock_class *class, int depth)
2281 {
2282         int bit;
2283
2284         printk("%*s->", depth, "");
2285         print_lock_name(class);
2286 #ifdef CONFIG_DEBUG_LOCKDEP
2287         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2288 #endif
2289         printk(KERN_CONT " {\n");
2290
2291         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2292                 if (class->usage_mask & (1 << bit)) {
2293                         int len = depth;
2294
2295                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2296                         len += printk(KERN_CONT " at:\n");
2297                         print_lock_trace(class->usage_traces[bit], len);
2298                 }
2299         }
2300         printk("%*s }\n", depth, "");
2301
2302         printk("%*s ... key      at: [<%px>] %pS\n",
2303                 depth, "", class->key, class->key);
2304 }
2305
2306 /*
2307  * printk the shortest lock dependencies from @start to @end in reverse order:
2308  */
2309 static void __used
2310 print_shortest_lock_dependencies(struct lock_list *leaf,
2311                                  struct lock_list *root)
2312 {
2313         struct lock_list *entry = leaf;
2314         int depth;
2315
2316         /*compute depth from generated tree by BFS*/
2317         depth = get_lock_depth(leaf);
2318
2319         do {
2320                 print_lock_class_header(entry->class, depth);
2321                 printk("%*s ... acquired at:\n", depth, "");
2322                 print_lock_trace(entry->trace, 2);
2323                 printk("\n");
2324
2325                 if (depth == 0 && (entry != root)) {
2326                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2327                         break;
2328                 }
2329
2330                 entry = get_lock_parent(entry);
2331                 depth--;
2332         } while (entry && (depth >= 0));
2333 }
2334
2335 static void
2336 print_irq_lock_scenario(struct lock_list *safe_entry,
2337                         struct lock_list *unsafe_entry,
2338                         struct lock_class *prev_class,
2339                         struct lock_class *next_class)
2340 {
2341         struct lock_class *safe_class = safe_entry->class;
2342         struct lock_class *unsafe_class = unsafe_entry->class;
2343         struct lock_class *middle_class = prev_class;
2344
2345         if (middle_class == safe_class)
2346                 middle_class = next_class;
2347
2348         /*
2349          * A direct locking problem where unsafe_class lock is taken
2350          * directly by safe_class lock, then all we need to show
2351          * is the deadlock scenario, as it is obvious that the
2352          * unsafe lock is taken under the safe lock.
2353          *
2354          * But if there is a chain instead, where the safe lock takes
2355          * an intermediate lock (middle_class) where this lock is
2356          * not the same as the safe lock, then the lock chain is
2357          * used to describe the problem. Otherwise we would need
2358          * to show a different CPU case for each link in the chain
2359          * from the safe_class lock to the unsafe_class lock.
2360          */
2361         if (middle_class != unsafe_class) {
2362                 printk("Chain exists of:\n  ");
2363                 __print_lock_name(safe_class);
2364                 printk(KERN_CONT " --> ");
2365                 __print_lock_name(middle_class);
2366                 printk(KERN_CONT " --> ");
2367                 __print_lock_name(unsafe_class);
2368                 printk(KERN_CONT "\n\n");
2369         }
2370
2371         printk(" Possible interrupt unsafe locking scenario:\n\n");
2372         printk("       CPU0                    CPU1\n");
2373         printk("       ----                    ----\n");
2374         printk("  lock(");
2375         __print_lock_name(unsafe_class);
2376         printk(KERN_CONT ");\n");
2377         printk("                               local_irq_disable();\n");
2378         printk("                               lock(");
2379         __print_lock_name(safe_class);
2380         printk(KERN_CONT ");\n");
2381         printk("                               lock(");
2382         __print_lock_name(middle_class);
2383         printk(KERN_CONT ");\n");
2384         printk("  <Interrupt>\n");
2385         printk("    lock(");
2386         __print_lock_name(safe_class);
2387         printk(KERN_CONT ");\n");
2388         printk("\n *** DEADLOCK ***\n\n");
2389 }
2390
2391 static void
2392 print_bad_irq_dependency(struct task_struct *curr,
2393                          struct lock_list *prev_root,
2394                          struct lock_list *next_root,
2395                          struct lock_list *backwards_entry,
2396                          struct lock_list *forwards_entry,
2397                          struct held_lock *prev,
2398                          struct held_lock *next,
2399                          enum lock_usage_bit bit1,
2400                          enum lock_usage_bit bit2,
2401                          const char *irqclass)
2402 {
2403         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2404                 return;
2405
2406         pr_warn("\n");
2407         pr_warn("=====================================================\n");
2408         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2409                 irqclass, irqclass);
2410         print_kernel_ident();
2411         pr_warn("-----------------------------------------------------\n");
2412         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2413                 curr->comm, task_pid_nr(curr),
2414                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2415                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2416                 lockdep_hardirqs_enabled(),
2417                 curr->softirqs_enabled);
2418         print_lock(next);
2419
2420         pr_warn("\nand this task is already holding:\n");
2421         print_lock(prev);
2422         pr_warn("which would create a new lock dependency:\n");
2423         print_lock_name(hlock_class(prev));
2424         pr_cont(" ->");
2425         print_lock_name(hlock_class(next));
2426         pr_cont("\n");
2427
2428         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2429                 irqclass);
2430         print_lock_name(backwards_entry->class);
2431         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2432
2433         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2434
2435         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2436         print_lock_name(forwards_entry->class);
2437         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2438         pr_warn("...");
2439
2440         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2441
2442         pr_warn("\nother info that might help us debug this:\n\n");
2443         print_irq_lock_scenario(backwards_entry, forwards_entry,
2444                                 hlock_class(prev), hlock_class(next));
2445
2446         lockdep_print_held_locks(curr);
2447
2448         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2449         prev_root->trace = save_trace();
2450         if (!prev_root->trace)
2451                 return;
2452         print_shortest_lock_dependencies(backwards_entry, prev_root);
2453
2454         pr_warn("\nthe dependencies between the lock to be acquired");
2455         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2456         next_root->trace = save_trace();
2457         if (!next_root->trace)
2458                 return;
2459         print_shortest_lock_dependencies(forwards_entry, next_root);
2460
2461         pr_warn("\nstack backtrace:\n");
2462         dump_stack();
2463 }
2464
2465 static const char *state_names[] = {
2466 #define LOCKDEP_STATE(__STATE) \
2467         __stringify(__STATE),
2468 #include "lockdep_states.h"
2469 #undef LOCKDEP_STATE
2470 };
2471
2472 static const char *state_rnames[] = {
2473 #define LOCKDEP_STATE(__STATE) \
2474         __stringify(__STATE)"-READ",
2475 #include "lockdep_states.h"
2476 #undef LOCKDEP_STATE
2477 };
2478
2479 static inline const char *state_name(enum lock_usage_bit bit)
2480 {
2481         if (bit & LOCK_USAGE_READ_MASK)
2482                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2483         else
2484                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2485 }
2486
2487 /*
2488  * The bit number is encoded like:
2489  *
2490  *  bit0: 0 exclusive, 1 read lock
2491  *  bit1: 0 used in irq, 1 irq enabled
2492  *  bit2-n: state
2493  */
2494 static int exclusive_bit(int new_bit)
2495 {
2496         int state = new_bit & LOCK_USAGE_STATE_MASK;
2497         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2498
2499         /*
2500          * keep state, bit flip the direction and strip read.
2501          */
2502         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2503 }
2504
2505 /*
2506  * Observe that when given a bitmask where each bitnr is encoded as above, a
2507  * right shift of the mask transforms the individual bitnrs as -1 and
2508  * conversely, a left shift transforms into +1 for the individual bitnrs.
2509  *
2510  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2511  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2512  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2513  *
2514  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2515  *
2516  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2517  * all bits set) and recompose with bitnr1 flipped.
2518  */
2519 static unsigned long invert_dir_mask(unsigned long mask)
2520 {
2521         unsigned long excl = 0;
2522
2523         /* Invert dir */
2524         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2525         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2526
2527         return excl;
2528 }
2529
2530 /*
2531  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2532  * usage may cause deadlock too, for example:
2533  *
2534  * P1                           P2
2535  * <irq disabled>
2536  * write_lock(l1);              <irq enabled>
2537  *                              read_lock(l2);
2538  * write_lock(l2);
2539  *                              <in irq>
2540  *                              read_lock(l1);
2541  *
2542  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2543  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2544  * deadlock.
2545  *
2546  * In fact, all of the following cases may cause deadlocks:
2547  *
2548  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2549  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2550  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2551  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2552  *
2553  * As a result, to calculate the "exclusive mask", first we invert the
2554  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2555  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2556  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2557  */
2558 static unsigned long exclusive_mask(unsigned long mask)
2559 {
2560         unsigned long excl = invert_dir_mask(mask);
2561
2562         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2563         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2564
2565         return excl;
2566 }
2567
2568 /*
2569  * Retrieve the _possible_ original mask to which @mask is
2570  * exclusive. Ie: this is the opposite of exclusive_mask().
2571  * Note that 2 possible original bits can match an exclusive
2572  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2573  * cleared. So both are returned for each exclusive bit.
2574  */
2575 static unsigned long original_mask(unsigned long mask)
2576 {
2577         unsigned long excl = invert_dir_mask(mask);
2578
2579         /* Include read in existing usages */
2580         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2581         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2582
2583         return excl;
2584 }
2585
2586 /*
2587  * Find the first pair of bit match between an original
2588  * usage mask and an exclusive usage mask.
2589  */
2590 static int find_exclusive_match(unsigned long mask,
2591                                 unsigned long excl_mask,
2592                                 enum lock_usage_bit *bitp,
2593                                 enum lock_usage_bit *excl_bitp)
2594 {
2595         int bit, excl, excl_read;
2596
2597         for_each_set_bit(bit, &mask, LOCK_USED) {
2598                 /*
2599                  * exclusive_bit() strips the read bit, however,
2600                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2601                  * to search excl | LOCK_USAGE_READ_MASK as well.
2602                  */
2603                 excl = exclusive_bit(bit);
2604                 excl_read = excl | LOCK_USAGE_READ_MASK;
2605                 if (excl_mask & lock_flag(excl)) {
2606                         *bitp = bit;
2607                         *excl_bitp = excl;
2608                         return 0;
2609                 } else if (excl_mask & lock_flag(excl_read)) {
2610                         *bitp = bit;
2611                         *excl_bitp = excl_read;
2612                         return 0;
2613                 }
2614         }
2615         return -1;
2616 }
2617
2618 /*
2619  * Prove that the new dependency does not connect a hardirq-safe(-read)
2620  * lock with a hardirq-unsafe lock - to achieve this we search
2621  * the backwards-subgraph starting at <prev>, and the
2622  * forwards-subgraph starting at <next>:
2623  */
2624 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2625                            struct held_lock *next)
2626 {
2627         unsigned long usage_mask = 0, forward_mask, backward_mask;
2628         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2629         struct lock_list *target_entry1;
2630         struct lock_list *target_entry;
2631         struct lock_list this, that;
2632         enum bfs_result ret;
2633
2634         /*
2635          * Step 1: gather all hard/soft IRQs usages backward in an
2636          * accumulated usage mask.
2637          */
2638         bfs_init_rootb(&this, prev);
2639
2640         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2641         if (bfs_error(ret)) {
2642                 print_bfs_bug(ret);
2643                 return 0;
2644         }
2645
2646         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2647         if (!usage_mask)
2648                 return 1;
2649
2650         /*
2651          * Step 2: find exclusive uses forward that match the previous
2652          * backward accumulated mask.
2653          */
2654         forward_mask = exclusive_mask(usage_mask);
2655
2656         bfs_init_root(&that, next);
2657
2658         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2659         if (bfs_error(ret)) {
2660                 print_bfs_bug(ret);
2661                 return 0;
2662         }
2663         if (ret == BFS_RNOMATCH)
2664                 return 1;
2665
2666         /*
2667          * Step 3: we found a bad match! Now retrieve a lock from the backward
2668          * list whose usage mask matches the exclusive usage mask from the
2669          * lock found on the forward list.
2670          */
2671         backward_mask = original_mask(target_entry1->class->usage_mask);
2672
2673         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2674         if (bfs_error(ret)) {
2675                 print_bfs_bug(ret);
2676                 return 0;
2677         }
2678         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2679                 return 1;
2680
2681         /*
2682          * Step 4: narrow down to a pair of incompatible usage bits
2683          * and report it.
2684          */
2685         ret = find_exclusive_match(target_entry->class->usage_mask,
2686                                    target_entry1->class->usage_mask,
2687                                    &backward_bit, &forward_bit);
2688         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2689                 return 1;
2690
2691         print_bad_irq_dependency(curr, &this, &that,
2692                                  target_entry, target_entry1,
2693                                  prev, next,
2694                                  backward_bit, forward_bit,
2695                                  state_name(backward_bit));
2696
2697         return 0;
2698 }
2699
2700 #else
2701
2702 static inline int check_irq_usage(struct task_struct *curr,
2703                                   struct held_lock *prev, struct held_lock *next)
2704 {
2705         return 1;
2706 }
2707
2708 static inline bool usage_skip(struct lock_list *entry, void *mask)
2709 {
2710         return false;
2711 }
2712
2713 #endif /* CONFIG_TRACE_IRQFLAGS */
2714
2715 #ifdef CONFIG_LOCKDEP_SMALL
2716 /*
2717  * Check that the dependency graph starting at <src> can lead to
2718  * <target> or not. If it can, <src> -> <target> dependency is already
2719  * in the graph.
2720  *
2721  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2722  * any error appears in the bfs search.
2723  */
2724 static noinline enum bfs_result
2725 check_redundant(struct held_lock *src, struct held_lock *target)
2726 {
2727         enum bfs_result ret;
2728         struct lock_list *target_entry;
2729         struct lock_list src_entry;
2730
2731         bfs_init_root(&src_entry, src);
2732         /*
2733          * Special setup for check_redundant().
2734          *
2735          * To report redundant, we need to find a strong dependency path that
2736          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2737          * we need to let __bfs() only search for a path starting at a -(E*)->,
2738          * we achieve this by setting the initial node's ->only_xr to true in
2739          * that case. And if <prev> is S, we set initial ->only_xr to false
2740          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2741          */
2742         src_entry.only_xr = src->read == 0;
2743
2744         debug_atomic_inc(nr_redundant_checks);
2745
2746         /*
2747          * Note: we skip local_lock() for redundant check, because as the
2748          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2749          * the same.
2750          */
2751         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2752
2753         if (ret == BFS_RMATCH)
2754                 debug_atomic_inc(nr_redundant);
2755
2756         return ret;
2757 }
2758
2759 #else
2760
2761 static inline enum bfs_result
2762 check_redundant(struct held_lock *src, struct held_lock *target)
2763 {
2764         return BFS_RNOMATCH;
2765 }
2766
2767 #endif
2768
2769 static void inc_chains(int irq_context)
2770 {
2771         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2772                 nr_hardirq_chains++;
2773         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2774                 nr_softirq_chains++;
2775         else
2776                 nr_process_chains++;
2777 }
2778
2779 static void dec_chains(int irq_context)
2780 {
2781         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2782                 nr_hardirq_chains--;
2783         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2784                 nr_softirq_chains--;
2785         else
2786                 nr_process_chains--;
2787 }
2788
2789 static void
2790 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2791 {
2792         struct lock_class *next = hlock_class(nxt);
2793         struct lock_class *prev = hlock_class(prv);
2794
2795         printk(" Possible unsafe locking scenario:\n\n");
2796         printk("       CPU0\n");
2797         printk("       ----\n");
2798         printk("  lock(");
2799         __print_lock_name(prev);
2800         printk(KERN_CONT ");\n");
2801         printk("  lock(");
2802         __print_lock_name(next);
2803         printk(KERN_CONT ");\n");
2804         printk("\n *** DEADLOCK ***\n\n");
2805         printk(" May be due to missing lock nesting notation\n\n");
2806 }
2807
2808 static void
2809 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2810                    struct held_lock *next)
2811 {
2812         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2813                 return;
2814
2815         pr_warn("\n");
2816         pr_warn("============================================\n");
2817         pr_warn("WARNING: possible recursive locking detected\n");
2818         print_kernel_ident();
2819         pr_warn("--------------------------------------------\n");
2820         pr_warn("%s/%d is trying to acquire lock:\n",
2821                 curr->comm, task_pid_nr(curr));
2822         print_lock(next);
2823         pr_warn("\nbut task is already holding lock:\n");
2824         print_lock(prev);
2825
2826         pr_warn("\nother info that might help us debug this:\n");
2827         print_deadlock_scenario(next, prev);
2828         lockdep_print_held_locks(curr);
2829
2830         pr_warn("\nstack backtrace:\n");
2831         dump_stack();
2832 }
2833
2834 /*
2835  * Check whether we are holding such a class already.
2836  *
2837  * (Note that this has to be done separately, because the graph cannot
2838  * detect such classes of deadlocks.)
2839  *
2840  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2841  * lock class is held but nest_lock is also held, i.e. we rely on the
2842  * nest_lock to avoid the deadlock.
2843  */
2844 static int
2845 check_deadlock(struct task_struct *curr, struct held_lock *next)
2846 {
2847         struct held_lock *prev;
2848         struct held_lock *nest = NULL;
2849         int i;
2850
2851         for (i = 0; i < curr->lockdep_depth; i++) {
2852                 prev = curr->held_locks + i;
2853
2854                 if (prev->instance == next->nest_lock)
2855                         nest = prev;
2856
2857                 if (hlock_class(prev) != hlock_class(next))
2858                         continue;
2859
2860                 /*
2861                  * Allow read-after-read recursion of the same
2862                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2863                  */
2864                 if ((next->read == 2) && prev->read)
2865                         continue;
2866
2867                 /*
2868                  * We're holding the nest_lock, which serializes this lock's
2869                  * nesting behaviour.
2870                  */
2871                 if (nest)
2872                         return 2;
2873
2874                 print_deadlock_bug(curr, prev, next);
2875                 return 0;
2876         }
2877         return 1;
2878 }
2879
2880 /*
2881  * There was a chain-cache miss, and we are about to add a new dependency
2882  * to a previous lock. We validate the following rules:
2883  *
2884  *  - would the adding of the <prev> -> <next> dependency create a
2885  *    circular dependency in the graph? [== circular deadlock]
2886  *
2887  *  - does the new prev->next dependency connect any hardirq-safe lock
2888  *    (in the full backwards-subgraph starting at <prev>) with any
2889  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2890  *    <next>)? [== illegal lock inversion with hardirq contexts]
2891  *
2892  *  - does the new prev->next dependency connect any softirq-safe lock
2893  *    (in the full backwards-subgraph starting at <prev>) with any
2894  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2895  *    <next>)? [== illegal lock inversion with softirq contexts]
2896  *
2897  * any of these scenarios could lead to a deadlock.
2898  *
2899  * Then if all the validations pass, we add the forwards and backwards
2900  * dependency.
2901  */
2902 static int
2903 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2904                struct held_lock *next, u16 distance,
2905                struct lock_trace **const trace)
2906 {
2907         struct lock_list *entry;
2908         enum bfs_result ret;
2909
2910         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2911                 /*
2912                  * The warning statements below may trigger a use-after-free
2913                  * of the class name. It is better to trigger a use-after free
2914                  * and to have the class name most of the time instead of not
2915                  * having the class name available.
2916                  */
2917                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2918                           "Detected use-after-free of lock class %px/%s\n",
2919                           hlock_class(prev),
2920                           hlock_class(prev)->name);
2921                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2922                           "Detected use-after-free of lock class %px/%s\n",
2923                           hlock_class(next),
2924                           hlock_class(next)->name);
2925                 return 2;
2926         }
2927
2928         /*
2929          * Prove that the new <prev> -> <next> dependency would not
2930          * create a circular dependency in the graph. (We do this by
2931          * a breadth-first search into the graph starting at <next>,
2932          * and check whether we can reach <prev>.)
2933          *
2934          * The search is limited by the size of the circular queue (i.e.,
2935          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2936          * in the graph whose neighbours are to be checked.
2937          */
2938         ret = check_noncircular(next, prev, trace);
2939         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2940                 return 0;
2941
2942         if (!check_irq_usage(curr, prev, next))
2943                 return 0;
2944
2945         /*
2946          * Is the <prev> -> <next> dependency already present?
2947          *
2948          * (this may occur even though this is a new chain: consider
2949          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2950          *  chains - the second one will be new, but L1 already has
2951          *  L2 added to its dependency list, due to the first chain.)
2952          */
2953         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2954                 if (entry->class == hlock_class(next)) {
2955                         if (distance == 1)
2956                                 entry->distance = 1;
2957                         entry->dep |= calc_dep(prev, next);
2958
2959                         /*
2960                          * Also, update the reverse dependency in @next's
2961                          * ->locks_before list.
2962                          *
2963                          *  Here we reuse @entry as the cursor, which is fine
2964                          *  because we won't go to the next iteration of the
2965                          *  outer loop:
2966                          *
2967                          *  For normal cases, we return in the inner loop.
2968                          *
2969                          *  If we fail to return, we have inconsistency, i.e.
2970                          *  <prev>::locks_after contains <next> while
2971                          *  <next>::locks_before doesn't contain <prev>. In
2972                          *  that case, we return after the inner and indicate
2973                          *  something is wrong.
2974                          */
2975                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
2976                                 if (entry->class == hlock_class(prev)) {
2977                                         if (distance == 1)
2978                                                 entry->distance = 1;
2979                                         entry->dep |= calc_depb(prev, next);
2980                                         return 1;
2981                                 }
2982                         }
2983
2984                         /* <prev> is not found in <next>::locks_before */
2985                         return 0;
2986                 }
2987         }
2988
2989         /*
2990          * Is the <prev> -> <next> link redundant?
2991          */
2992         ret = check_redundant(prev, next);
2993         if (bfs_error(ret))
2994                 return 0;
2995         else if (ret == BFS_RMATCH)
2996                 return 2;
2997
2998         if (!*trace) {
2999                 *trace = save_trace();
3000                 if (!*trace)
3001                         return 0;
3002         }
3003
3004         /*
3005          * Ok, all validations passed, add the new lock
3006          * to the previous lock's dependency list:
3007          */
3008         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3009                                &hlock_class(prev)->locks_after,
3010                                next->acquire_ip, distance,
3011                                calc_dep(prev, next),
3012                                *trace);
3013
3014         if (!ret)
3015                 return 0;
3016
3017         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3018                                &hlock_class(next)->locks_before,
3019                                next->acquire_ip, distance,
3020                                calc_depb(prev, next),
3021                                *trace);
3022         if (!ret)
3023                 return 0;
3024
3025         return 2;
3026 }
3027
3028 /*
3029  * Add the dependency to all directly-previous locks that are 'relevant'.
3030  * The ones that are relevant are (in increasing distance from curr):
3031  * all consecutive trylock entries and the final non-trylock entry - or
3032  * the end of this context's lock-chain - whichever comes first.
3033  */
3034 static int
3035 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3036 {
3037         struct lock_trace *trace = NULL;
3038         int depth = curr->lockdep_depth;
3039         struct held_lock *hlock;
3040
3041         /*
3042          * Debugging checks.
3043          *
3044          * Depth must not be zero for a non-head lock:
3045          */
3046         if (!depth)
3047                 goto out_bug;
3048         /*
3049          * At least two relevant locks must exist for this
3050          * to be a head:
3051          */
3052         if (curr->held_locks[depth].irq_context !=
3053                         curr->held_locks[depth-1].irq_context)
3054                 goto out_bug;
3055
3056         for (;;) {
3057                 u16 distance = curr->lockdep_depth - depth + 1;
3058                 hlock = curr->held_locks + depth - 1;
3059
3060                 if (hlock->check) {
3061                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3062                         if (!ret)
3063                                 return 0;
3064
3065                         /*
3066                          * Stop after the first non-trylock entry,
3067                          * as non-trylock entries have added their
3068                          * own direct dependencies already, so this
3069                          * lock is connected to them indirectly:
3070                          */
3071                         if (!hlock->trylock)
3072                                 break;
3073                 }
3074
3075                 depth--;
3076                 /*
3077                  * End of lock-stack?
3078                  */
3079                 if (!depth)
3080                         break;
3081                 /*
3082                  * Stop the search if we cross into another context:
3083                  */
3084                 if (curr->held_locks[depth].irq_context !=
3085                                 curr->held_locks[depth-1].irq_context)
3086                         break;
3087         }
3088         return 1;
3089 out_bug:
3090         if (!debug_locks_off_graph_unlock())
3091                 return 0;
3092
3093         /*
3094          * Clearly we all shouldn't be here, but since we made it we
3095          * can reliable say we messed up our state. See the above two
3096          * gotos for reasons why we could possibly end up here.
3097          */
3098         WARN_ON(1);
3099
3100         return 0;
3101 }
3102
3103 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3104 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3105 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3106 unsigned long nr_zapped_lock_chains;
3107 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3108 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3109 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3110
3111 /*
3112  * The first 2 chain_hlocks entries in the chain block in the bucket
3113  * list contains the following meta data:
3114  *
3115  *   entry[0]:
3116  *     Bit    15 - always set to 1 (it is not a class index)
3117  *     Bits 0-14 - upper 15 bits of the next block index
3118  *   entry[1]    - lower 16 bits of next block index
3119  *
3120  * A next block index of all 1 bits means it is the end of the list.
3121  *
3122  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3123  * the chain block size:
3124  *
3125  *   entry[2] - upper 16 bits of the chain block size
3126  *   entry[3] - lower 16 bits of the chain block size
3127  */
3128 #define MAX_CHAIN_BUCKETS       16
3129 #define CHAIN_BLK_FLAG          (1U << 15)
3130 #define CHAIN_BLK_LIST_END      0xFFFFU
3131
3132 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3133
3134 static inline int size_to_bucket(int size)
3135 {
3136         if (size > MAX_CHAIN_BUCKETS)
3137                 return 0;
3138
3139         return size - 1;
3140 }
3141
3142 /*
3143  * Iterate all the chain blocks in a bucket.
3144  */
3145 #define for_each_chain_block(bucket, prev, curr)                \
3146         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3147              (curr) >= 0;                                       \
3148              (prev) = (curr), (curr) = chain_block_next(curr))
3149
3150 /*
3151  * next block or -1
3152  */
3153 static inline int chain_block_next(int offset)
3154 {
3155         int next = chain_hlocks[offset];
3156
3157         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3158
3159         if (next == CHAIN_BLK_LIST_END)
3160                 return -1;
3161
3162         next &= ~CHAIN_BLK_FLAG;
3163         next <<= 16;
3164         next |= chain_hlocks[offset + 1];
3165
3166         return next;
3167 }
3168
3169 /*
3170  * bucket-0 only
3171  */
3172 static inline int chain_block_size(int offset)
3173 {
3174         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3175 }
3176
3177 static inline void init_chain_block(int offset, int next, int bucket, int size)
3178 {
3179         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3180         chain_hlocks[offset + 1] = (u16)next;
3181
3182         if (size && !bucket) {
3183                 chain_hlocks[offset + 2] = size >> 16;
3184                 chain_hlocks[offset + 3] = (u16)size;
3185         }
3186 }
3187
3188 static inline void add_chain_block(int offset, int size)
3189 {
3190         int bucket = size_to_bucket(size);
3191         int next = chain_block_buckets[bucket];
3192         int prev, curr;
3193
3194         if (unlikely(size < 2)) {
3195                 /*
3196                  * We can't store single entries on the freelist. Leak them.
3197                  *
3198                  * One possible way out would be to uniquely mark them, other
3199                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3200                  * the block before it is re-added.
3201                  */
3202                 if (size)
3203                         nr_lost_chain_hlocks++;
3204                 return;
3205         }
3206
3207         nr_free_chain_hlocks += size;
3208         if (!bucket) {
3209                 nr_large_chain_blocks++;
3210
3211                 /*
3212                  * Variable sized, sort large to small.
3213                  */
3214                 for_each_chain_block(0, prev, curr) {
3215                         if (size >= chain_block_size(curr))
3216                                 break;
3217                 }
3218                 init_chain_block(offset, curr, 0, size);
3219                 if (prev < 0)
3220                         chain_block_buckets[0] = offset;
3221                 else
3222                         init_chain_block(prev, offset, 0, 0);
3223                 return;
3224         }
3225         /*
3226          * Fixed size, add to head.
3227          */
3228         init_chain_block(offset, next, bucket, size);
3229         chain_block_buckets[bucket] = offset;
3230 }
3231
3232 /*
3233  * Only the first block in the list can be deleted.
3234  *
3235  * For the variable size bucket[0], the first block (the largest one) is
3236  * returned, broken up and put back into the pool. So if a chain block of
3237  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3238  * queued up after the primordial chain block and never be used until the
3239  * hlock entries in the primordial chain block is almost used up. That
3240  * causes fragmentation and reduce allocation efficiency. That can be
3241  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3242  */
3243 static inline void del_chain_block(int bucket, int size, int next)
3244 {
3245         nr_free_chain_hlocks -= size;
3246         chain_block_buckets[bucket] = next;
3247
3248         if (!bucket)
3249                 nr_large_chain_blocks--;
3250 }
3251
3252 static void init_chain_block_buckets(void)
3253 {
3254         int i;
3255
3256         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3257                 chain_block_buckets[i] = -1;
3258
3259         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3260 }
3261
3262 /*
3263  * Return offset of a chain block of the right size or -1 if not found.
3264  *
3265  * Fairly simple worst-fit allocator with the addition of a number of size
3266  * specific free lists.
3267  */
3268 static int alloc_chain_hlocks(int req)
3269 {
3270         int bucket, curr, size;
3271
3272         /*
3273          * We rely on the MSB to act as an escape bit to denote freelist
3274          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3275          */
3276         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3277
3278         init_data_structures_once();
3279
3280         if (nr_free_chain_hlocks < req)
3281                 return -1;
3282
3283         /*
3284          * We require a minimum of 2 (u16) entries to encode a freelist
3285          * 'pointer'.
3286          */
3287         req = max(req, 2);
3288         bucket = size_to_bucket(req);
3289         curr = chain_block_buckets[bucket];
3290
3291         if (bucket) {
3292                 if (curr >= 0) {
3293                         del_chain_block(bucket, req, chain_block_next(curr));
3294                         return curr;
3295                 }
3296                 /* Try bucket 0 */
3297                 curr = chain_block_buckets[0];
3298         }
3299
3300         /*
3301          * The variable sized freelist is sorted by size; the first entry is
3302          * the largest. Use it if it fits.
3303          */
3304         if (curr >= 0) {
3305                 size = chain_block_size(curr);
3306                 if (likely(size >= req)) {
3307                         del_chain_block(0, size, chain_block_next(curr));
3308                         add_chain_block(curr + req, size - req);
3309                         return curr;
3310                 }
3311         }
3312
3313         /*
3314          * Last resort, split a block in a larger sized bucket.
3315          */
3316         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3317                 bucket = size_to_bucket(size);
3318                 curr = chain_block_buckets[bucket];
3319                 if (curr < 0)
3320                         continue;
3321
3322                 del_chain_block(bucket, size, chain_block_next(curr));
3323                 add_chain_block(curr + req, size - req);
3324                 return curr;
3325         }
3326
3327         return -1;
3328 }
3329
3330 static inline void free_chain_hlocks(int base, int size)
3331 {
3332         add_chain_block(base, max(size, 2));
3333 }
3334
3335 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3336 {
3337         u16 chain_hlock = chain_hlocks[chain->base + i];
3338         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3339
3340         return lock_classes + class_idx - 1;
3341 }
3342
3343 /*
3344  * Returns the index of the first held_lock of the current chain
3345  */
3346 static inline int get_first_held_lock(struct task_struct *curr,
3347                                         struct held_lock *hlock)
3348 {
3349         int i;
3350         struct held_lock *hlock_curr;
3351
3352         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3353                 hlock_curr = curr->held_locks + i;
3354                 if (hlock_curr->irq_context != hlock->irq_context)
3355                         break;
3356
3357         }
3358
3359         return ++i;
3360 }
3361
3362 #ifdef CONFIG_DEBUG_LOCKDEP
3363 /*
3364  * Returns the next chain_key iteration
3365  */
3366 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3367 {
3368         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3369
3370         printk(" hlock_id:%d -> chain_key:%016Lx",
3371                 (unsigned int)hlock_id,
3372                 (unsigned long long)new_chain_key);
3373         return new_chain_key;
3374 }
3375
3376 static void
3377 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3378 {
3379         struct held_lock *hlock;
3380         u64 chain_key = INITIAL_CHAIN_KEY;
3381         int depth = curr->lockdep_depth;
3382         int i = get_first_held_lock(curr, hlock_next);
3383
3384         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3385                 hlock_next->irq_context);
3386         for (; i < depth; i++) {
3387                 hlock = curr->held_locks + i;
3388                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3389
3390                 print_lock(hlock);
3391         }
3392
3393         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3394         print_lock(hlock_next);
3395 }
3396
3397 static void print_chain_keys_chain(struct lock_chain *chain)
3398 {
3399         int i;
3400         u64 chain_key = INITIAL_CHAIN_KEY;
3401         u16 hlock_id;
3402
3403         printk("depth: %u\n", chain->depth);
3404         for (i = 0; i < chain->depth; i++) {
3405                 hlock_id = chain_hlocks[chain->base + i];
3406                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3407
3408                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3409                 printk("\n");
3410         }
3411 }
3412
3413 static void print_collision(struct task_struct *curr,
3414                         struct held_lock *hlock_next,
3415                         struct lock_chain *chain)
3416 {
3417         pr_warn("\n");
3418         pr_warn("============================\n");
3419         pr_warn("WARNING: chain_key collision\n");
3420         print_kernel_ident();
3421         pr_warn("----------------------------\n");
3422         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3423         pr_warn("Hash chain already cached but the contents don't match!\n");
3424
3425         pr_warn("Held locks:");
3426         print_chain_keys_held_locks(curr, hlock_next);
3427
3428         pr_warn("Locks in cached chain:");
3429         print_chain_keys_chain(chain);
3430
3431         pr_warn("\nstack backtrace:\n");
3432         dump_stack();
3433 }
3434 #endif
3435
3436 /*
3437  * Checks whether the chain and the current held locks are consistent
3438  * in depth and also in content. If they are not it most likely means
3439  * that there was a collision during the calculation of the chain_key.
3440  * Returns: 0 not passed, 1 passed
3441  */
3442 static int check_no_collision(struct task_struct *curr,
3443                         struct held_lock *hlock,
3444                         struct lock_chain *chain)
3445 {
3446 #ifdef CONFIG_DEBUG_LOCKDEP
3447         int i, j, id;
3448
3449         i = get_first_held_lock(curr, hlock);
3450
3451         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3452                 print_collision(curr, hlock, chain);
3453                 return 0;
3454         }
3455
3456         for (j = 0; j < chain->depth - 1; j++, i++) {
3457                 id = hlock_id(&curr->held_locks[i]);
3458
3459                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3460                         print_collision(curr, hlock, chain);
3461                         return 0;
3462                 }
3463         }
3464 #endif
3465         return 1;
3466 }
3467
3468 /*
3469  * Given an index that is >= -1, return the index of the next lock chain.
3470  * Return -2 if there is no next lock chain.
3471  */
3472 long lockdep_next_lockchain(long i)
3473 {
3474         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3475         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3476 }
3477
3478 unsigned long lock_chain_count(void)
3479 {
3480         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3481 }
3482
3483 /* Must be called with the graph lock held. */
3484 static struct lock_chain *alloc_lock_chain(void)
3485 {
3486         int idx = find_first_zero_bit(lock_chains_in_use,
3487                                       ARRAY_SIZE(lock_chains));
3488
3489         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3490                 return NULL;
3491         __set_bit(idx, lock_chains_in_use);
3492         return lock_chains + idx;
3493 }
3494
3495 /*
3496  * Adds a dependency chain into chain hashtable. And must be called with
3497  * graph_lock held.
3498  *
3499  * Return 0 if fail, and graph_lock is released.
3500  * Return 1 if succeed, with graph_lock held.
3501  */
3502 static inline int add_chain_cache(struct task_struct *curr,
3503                                   struct held_lock *hlock,
3504                                   u64 chain_key)
3505 {
3506         struct hlist_head *hash_head = chainhashentry(chain_key);
3507         struct lock_chain *chain;
3508         int i, j;
3509
3510         /*
3511          * The caller must hold the graph lock, ensure we've got IRQs
3512          * disabled to make this an IRQ-safe lock.. for recursion reasons
3513          * lockdep won't complain about its own locking errors.
3514          */
3515         if (lockdep_assert_locked())
3516                 return 0;
3517
3518         chain = alloc_lock_chain();
3519         if (!chain) {
3520                 if (!debug_locks_off_graph_unlock())
3521                         return 0;
3522
3523                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3524                 dump_stack();
3525                 return 0;
3526         }
3527         chain->chain_key = chain_key;
3528         chain->irq_context = hlock->irq_context;
3529         i = get_first_held_lock(curr, hlock);
3530         chain->depth = curr->lockdep_depth + 1 - i;
3531
3532         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3533         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3534         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3535
3536         j = alloc_chain_hlocks(chain->depth);
3537         if (j < 0) {
3538                 if (!debug_locks_off_graph_unlock())
3539                         return 0;
3540
3541                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3542                 dump_stack();
3543                 return 0;
3544         }
3545
3546         chain->base = j;
3547         for (j = 0; j < chain->depth - 1; j++, i++) {
3548                 int lock_id = hlock_id(curr->held_locks + i);
3549
3550                 chain_hlocks[chain->base + j] = lock_id;
3551         }
3552         chain_hlocks[chain->base + j] = hlock_id(hlock);
3553         hlist_add_head_rcu(&chain->entry, hash_head);
3554         debug_atomic_inc(chain_lookup_misses);
3555         inc_chains(chain->irq_context);
3556
3557         return 1;
3558 }
3559
3560 /*
3561  * Look up a dependency chain. Must be called with either the graph lock or
3562  * the RCU read lock held.
3563  */
3564 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3565 {
3566         struct hlist_head *hash_head = chainhashentry(chain_key);
3567         struct lock_chain *chain;
3568
3569         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3570                 if (READ_ONCE(chain->chain_key) == chain_key) {
3571                         debug_atomic_inc(chain_lookup_hits);
3572                         return chain;
3573                 }
3574         }
3575         return NULL;
3576 }
3577
3578 /*
3579  * If the key is not present yet in dependency chain cache then
3580  * add it and return 1 - in this case the new dependency chain is
3581  * validated. If the key is already hashed, return 0.
3582  * (On return with 1 graph_lock is held.)
3583  */
3584 static inline int lookup_chain_cache_add(struct task_struct *curr,
3585                                          struct held_lock *hlock,
3586                                          u64 chain_key)
3587 {
3588         struct lock_class *class = hlock_class(hlock);
3589         struct lock_chain *chain = lookup_chain_cache(chain_key);
3590
3591         if (chain) {
3592 cache_hit:
3593                 if (!check_no_collision(curr, hlock, chain))
3594                         return 0;
3595
3596                 if (very_verbose(class)) {
3597                         printk("\nhash chain already cached, key: "
3598                                         "%016Lx tail class: [%px] %s\n",
3599                                         (unsigned long long)chain_key,
3600                                         class->key, class->name);
3601                 }
3602
3603                 return 0;
3604         }
3605
3606         if (very_verbose(class)) {
3607                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3608                         (unsigned long long)chain_key, class->key, class->name);
3609         }
3610
3611         if (!graph_lock())
3612                 return 0;
3613
3614         /*
3615          * We have to walk the chain again locked - to avoid duplicates:
3616          */
3617         chain = lookup_chain_cache(chain_key);
3618         if (chain) {
3619                 graph_unlock();
3620                 goto cache_hit;
3621         }
3622
3623         if (!add_chain_cache(curr, hlock, chain_key))
3624                 return 0;
3625
3626         return 1;
3627 }
3628
3629 static int validate_chain(struct task_struct *curr,
3630                           struct held_lock *hlock,
3631                           int chain_head, u64 chain_key)
3632 {
3633         /*
3634          * Trylock needs to maintain the stack of held locks, but it
3635          * does not add new dependencies, because trylock can be done
3636          * in any order.
3637          *
3638          * We look up the chain_key and do the O(N^2) check and update of
3639          * the dependencies only if this is a new dependency chain.
3640          * (If lookup_chain_cache_add() return with 1 it acquires
3641          * graph_lock for us)
3642          */
3643         if (!hlock->trylock && hlock->check &&
3644             lookup_chain_cache_add(curr, hlock, chain_key)) {
3645                 /*
3646                  * Check whether last held lock:
3647                  *
3648                  * - is irq-safe, if this lock is irq-unsafe
3649                  * - is softirq-safe, if this lock is hardirq-unsafe
3650                  *
3651                  * And check whether the new lock's dependency graph
3652                  * could lead back to the previous lock:
3653                  *
3654                  * - within the current held-lock stack
3655                  * - across our accumulated lock dependency records
3656                  *
3657                  * any of these scenarios could lead to a deadlock.
3658                  */
3659                 /*
3660                  * The simple case: does the current hold the same lock
3661                  * already?
3662                  */
3663                 int ret = check_deadlock(curr, hlock);
3664
3665                 if (!ret)
3666                         return 0;
3667                 /*
3668                  * Add dependency only if this lock is not the head
3669                  * of the chain, and if the new lock introduces no more
3670                  * lock dependency (because we already hold a lock with the
3671                  * same lock class) nor deadlock (because the nest_lock
3672                  * serializes nesting locks), see the comments for
3673                  * check_deadlock().
3674                  */
3675                 if (!chain_head && ret != 2) {
3676                         if (!check_prevs_add(curr, hlock))
3677                                 return 0;
3678                 }
3679
3680                 graph_unlock();
3681         } else {
3682                 /* after lookup_chain_cache_add(): */
3683                 if (unlikely(!debug_locks))
3684                         return 0;
3685         }
3686
3687         return 1;
3688 }
3689 #else
3690 static inline int validate_chain(struct task_struct *curr,
3691                                  struct held_lock *hlock,
3692                                  int chain_head, u64 chain_key)
3693 {
3694         return 1;
3695 }
3696
3697 static void init_chain_block_buckets(void)      { }
3698 #endif /* CONFIG_PROVE_LOCKING */
3699
3700 /*
3701  * We are building curr_chain_key incrementally, so double-check
3702  * it from scratch, to make sure that it's done correctly:
3703  */
3704 static void check_chain_key(struct task_struct *curr)
3705 {
3706 #ifdef CONFIG_DEBUG_LOCKDEP
3707         struct held_lock *hlock, *prev_hlock = NULL;
3708         unsigned int i;
3709         u64 chain_key = INITIAL_CHAIN_KEY;
3710
3711         for (i = 0; i < curr->lockdep_depth; i++) {
3712                 hlock = curr->held_locks + i;
3713                 if (chain_key != hlock->prev_chain_key) {
3714                         debug_locks_off();
3715                         /*
3716                          * We got mighty confused, our chain keys don't match
3717                          * with what we expect, someone trample on our task state?
3718                          */
3719                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3720                                 curr->lockdep_depth, i,
3721                                 (unsigned long long)chain_key,
3722                                 (unsigned long long)hlock->prev_chain_key);
3723                         return;
3724                 }
3725
3726                 /*
3727                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3728                  * it registered lock class index?
3729                  */
3730                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3731                         return;
3732
3733                 if (prev_hlock && (prev_hlock->irq_context !=
3734                                                         hlock->irq_context))
3735                         chain_key = INITIAL_CHAIN_KEY;
3736                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3737                 prev_hlock = hlock;
3738         }
3739         if (chain_key != curr->curr_chain_key) {
3740                 debug_locks_off();
3741                 /*
3742                  * More smoking hash instead of calculating it, damn see these
3743                  * numbers float.. I bet that a pink elephant stepped on my memory.
3744                  */
3745                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3746                         curr->lockdep_depth, i,
3747                         (unsigned long long)chain_key,
3748                         (unsigned long long)curr->curr_chain_key);
3749         }
3750 #endif
3751 }
3752
3753 #ifdef CONFIG_PROVE_LOCKING
3754 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3755                      enum lock_usage_bit new_bit);
3756
3757 static void print_usage_bug_scenario(struct held_lock *lock)
3758 {
3759         struct lock_class *class = hlock_class(lock);
3760
3761         printk(" Possible unsafe locking scenario:\n\n");
3762         printk("       CPU0\n");
3763         printk("       ----\n");
3764         printk("  lock(");
3765         __print_lock_name(class);
3766         printk(KERN_CONT ");\n");
3767         printk("  <Interrupt>\n");
3768         printk("    lock(");
3769         __print_lock_name(class);
3770         printk(KERN_CONT ");\n");
3771         printk("\n *** DEADLOCK ***\n\n");
3772 }
3773
3774 static void
3775 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3776                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3777 {
3778         if (!debug_locks_off() || debug_locks_silent)
3779                 return;
3780
3781         pr_warn("\n");
3782         pr_warn("================================\n");
3783         pr_warn("WARNING: inconsistent lock state\n");
3784         print_kernel_ident();
3785         pr_warn("--------------------------------\n");
3786
3787         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3788                 usage_str[prev_bit], usage_str[new_bit]);
3789
3790         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3791                 curr->comm, task_pid_nr(curr),
3792                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3793                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3794                 lockdep_hardirqs_enabled(),
3795                 lockdep_softirqs_enabled(curr));
3796         print_lock(this);
3797
3798         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3799         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3800
3801         print_irqtrace_events(curr);
3802         pr_warn("\nother info that might help us debug this:\n");
3803         print_usage_bug_scenario(this);
3804
3805         lockdep_print_held_locks(curr);
3806
3807         pr_warn("\nstack backtrace:\n");
3808         dump_stack();
3809 }
3810
3811 /*
3812  * Print out an error if an invalid bit is set:
3813  */
3814 static inline int
3815 valid_state(struct task_struct *curr, struct held_lock *this,
3816             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3817 {
3818         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3819                 graph_unlock();
3820                 print_usage_bug(curr, this, bad_bit, new_bit);
3821                 return 0;
3822         }
3823         return 1;
3824 }
3825
3826
3827 /*
3828  * print irq inversion bug:
3829  */
3830 static void
3831 print_irq_inversion_bug(struct task_struct *curr,
3832                         struct lock_list *root, struct lock_list *other,
3833                         struct held_lock *this, int forwards,
3834                         const char *irqclass)
3835 {
3836         struct lock_list *entry = other;
3837         struct lock_list *middle = NULL;
3838         int depth;
3839
3840         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3841                 return;
3842
3843         pr_warn("\n");
3844         pr_warn("========================================================\n");
3845         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3846         print_kernel_ident();
3847         pr_warn("--------------------------------------------------------\n");
3848         pr_warn("%s/%d just changed the state of lock:\n",
3849                 curr->comm, task_pid_nr(curr));
3850         print_lock(this);
3851         if (forwards)
3852                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3853         else
3854                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3855         print_lock_name(other->class);
3856         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3857
3858         pr_warn("\nother info that might help us debug this:\n");
3859
3860         /* Find a middle lock (if one exists) */
3861         depth = get_lock_depth(other);
3862         do {
3863                 if (depth == 0 && (entry != root)) {
3864                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3865                         break;
3866                 }
3867                 middle = entry;
3868                 entry = get_lock_parent(entry);
3869                 depth--;
3870         } while (entry && entry != root && (depth >= 0));
3871         if (forwards)
3872                 print_irq_lock_scenario(root, other,
3873                         middle ? middle->class : root->class, other->class);
3874         else
3875                 print_irq_lock_scenario(other, root,
3876                         middle ? middle->class : other->class, root->class);
3877
3878         lockdep_print_held_locks(curr);
3879
3880         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3881         root->trace = save_trace();
3882         if (!root->trace)
3883                 return;
3884         print_shortest_lock_dependencies(other, root);
3885
3886         pr_warn("\nstack backtrace:\n");
3887         dump_stack();
3888 }
3889
3890 /*
3891  * Prove that in the forwards-direction subgraph starting at <this>
3892  * there is no lock matching <mask>:
3893  */
3894 static int
3895 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3896                      enum lock_usage_bit bit)
3897 {
3898         enum bfs_result ret;
3899         struct lock_list root;
3900         struct lock_list *target_entry;
3901         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3902         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3903
3904         bfs_init_root(&root, this);
3905         ret = find_usage_forwards(&root, usage_mask, &target_entry);
3906         if (bfs_error(ret)) {
3907                 print_bfs_bug(ret);
3908                 return 0;
3909         }
3910         if (ret == BFS_RNOMATCH)
3911                 return 1;
3912
3913         /* Check whether write or read usage is the match */
3914         if (target_entry->class->usage_mask & lock_flag(bit)) {
3915                 print_irq_inversion_bug(curr, &root, target_entry,
3916                                         this, 1, state_name(bit));
3917         } else {
3918                 print_irq_inversion_bug(curr, &root, target_entry,
3919                                         this, 1, state_name(read_bit));
3920         }
3921
3922         return 0;
3923 }
3924
3925 /*
3926  * Prove that in the backwards-direction subgraph starting at <this>
3927  * there is no lock matching <mask>:
3928  */
3929 static int
3930 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3931                       enum lock_usage_bit bit)
3932 {
3933         enum bfs_result ret;
3934         struct lock_list root;
3935         struct lock_list *target_entry;
3936         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3937         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3938
3939         bfs_init_rootb(&root, this);
3940         ret = find_usage_backwards(&root, usage_mask, &target_entry);
3941         if (bfs_error(ret)) {
3942                 print_bfs_bug(ret);
3943                 return 0;
3944         }
3945         if (ret == BFS_RNOMATCH)
3946                 return 1;
3947
3948         /* Check whether write or read usage is the match */
3949         if (target_entry->class->usage_mask & lock_flag(bit)) {
3950                 print_irq_inversion_bug(curr, &root, target_entry,
3951                                         this, 0, state_name(bit));
3952         } else {
3953                 print_irq_inversion_bug(curr, &root, target_entry,
3954                                         this, 0, state_name(read_bit));
3955         }
3956
3957         return 0;
3958 }
3959
3960 void print_irqtrace_events(struct task_struct *curr)
3961 {
3962         const struct irqtrace_events *trace = &curr->irqtrace;
3963
3964         printk("irq event stamp: %u\n", trace->irq_events);
3965         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3966                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3967                 (void *)trace->hardirq_enable_ip);
3968         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3969                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3970                 (void *)trace->hardirq_disable_ip);
3971         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3972                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3973                 (void *)trace->softirq_enable_ip);
3974         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3975                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3976                 (void *)trace->softirq_disable_ip);
3977 }
3978
3979 static int HARDIRQ_verbose(struct lock_class *class)
3980 {
3981 #if HARDIRQ_VERBOSE
3982         return class_filter(class);
3983 #endif
3984         return 0;
3985 }
3986
3987 static int SOFTIRQ_verbose(struct lock_class *class)
3988 {
3989 #if SOFTIRQ_VERBOSE
3990         return class_filter(class);
3991 #endif
3992         return 0;
3993 }
3994
3995 static int (*state_verbose_f[])(struct lock_class *class) = {
3996 #define LOCKDEP_STATE(__STATE) \
3997         __STATE##_verbose,
3998 #include "lockdep_states.h"
3999 #undef LOCKDEP_STATE
4000 };
4001
4002 static inline int state_verbose(enum lock_usage_bit bit,
4003                                 struct lock_class *class)
4004 {
4005         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4006 }
4007
4008 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4009                              enum lock_usage_bit bit, const char *name);
4010
4011 static int
4012 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4013                 enum lock_usage_bit new_bit)
4014 {
4015         int excl_bit = exclusive_bit(new_bit);
4016         int read = new_bit & LOCK_USAGE_READ_MASK;
4017         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4018
4019         /*
4020          * Validate that this particular lock does not have conflicting
4021          * usage states.
4022          */
4023         if (!valid_state(curr, this, new_bit, excl_bit))
4024                 return 0;
4025
4026         /*
4027          * Check for read in write conflicts
4028          */
4029         if (!read && !valid_state(curr, this, new_bit,
4030                                   excl_bit + LOCK_USAGE_READ_MASK))
4031                 return 0;
4032
4033
4034         /*
4035          * Validate that the lock dependencies don't have conflicting usage
4036          * states.
4037          */
4038         if (dir) {
4039                 /*
4040                  * mark ENABLED has to look backwards -- to ensure no dependee
4041                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4042                  */
4043                 if (!check_usage_backwards(curr, this, excl_bit))
4044                         return 0;
4045         } else {
4046                 /*
4047                  * mark USED_IN has to look forwards -- to ensure no dependency
4048                  * has ENABLED state, which would allow recursion deadlocks.
4049                  */
4050                 if (!check_usage_forwards(curr, this, excl_bit))
4051                         return 0;
4052         }
4053
4054         if (state_verbose(new_bit, hlock_class(this)))
4055                 return 2;
4056
4057         return 1;
4058 }
4059
4060 /*
4061  * Mark all held locks with a usage bit:
4062  */
4063 static int
4064 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4065 {
4066         struct held_lock *hlock;
4067         int i;
4068
4069         for (i = 0; i < curr->lockdep_depth; i++) {
4070                 enum lock_usage_bit hlock_bit = base_bit;
4071                 hlock = curr->held_locks + i;
4072
4073                 if (hlock->read)
4074                         hlock_bit += LOCK_USAGE_READ_MASK;
4075
4076                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4077
4078                 if (!hlock->check)
4079                         continue;
4080
4081                 if (!mark_lock(curr, hlock, hlock_bit))
4082                         return 0;
4083         }
4084
4085         return 1;
4086 }
4087
4088 /*
4089  * Hardirqs will be enabled:
4090  */
4091 static void __trace_hardirqs_on_caller(void)
4092 {
4093         struct task_struct *curr = current;
4094
4095         /*
4096          * We are going to turn hardirqs on, so set the
4097          * usage bit for all held locks:
4098          */
4099         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4100                 return;
4101         /*
4102          * If we have softirqs enabled, then set the usage
4103          * bit for all held locks. (disabled hardirqs prevented
4104          * this bit from being set before)
4105          */
4106         if (curr->softirqs_enabled)
4107                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4108 }
4109
4110 /**
4111  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4112  * @ip:         Caller address
4113  *
4114  * Invoked before a possible transition to RCU idle from exit to user or
4115  * guest mode. This ensures that all RCU operations are done before RCU
4116  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4117  * invoked to set the final state.
4118  */
4119 void lockdep_hardirqs_on_prepare(unsigned long ip)
4120 {
4121         if (unlikely(!debug_locks))
4122                 return;
4123
4124         /*
4125          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4126          */
4127         if (unlikely(in_nmi()))
4128                 return;
4129
4130         if (unlikely(this_cpu_read(lockdep_recursion)))
4131                 return;
4132
4133         if (unlikely(lockdep_hardirqs_enabled())) {
4134                 /*
4135                  * Neither irq nor preemption are disabled here
4136                  * so this is racy by nature but losing one hit
4137                  * in a stat is not a big deal.
4138                  */
4139                 __debug_atomic_inc(redundant_hardirqs_on);
4140                 return;
4141         }
4142
4143         /*
4144          * We're enabling irqs and according to our state above irqs weren't
4145          * already enabled, yet we find the hardware thinks they are in fact
4146          * enabled.. someone messed up their IRQ state tracing.
4147          */
4148         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4149                 return;
4150
4151         /*
4152          * See the fine text that goes along with this variable definition.
4153          */
4154         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4155                 return;
4156
4157         /*
4158          * Can't allow enabling interrupts while in an interrupt handler,
4159          * that's general bad form and such. Recursion, limited stack etc..
4160          */
4161         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4162                 return;
4163
4164         current->hardirq_chain_key = current->curr_chain_key;
4165
4166         lockdep_recursion_inc();
4167         __trace_hardirqs_on_caller();
4168         lockdep_recursion_finish();
4169 }
4170 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4171
4172 void noinstr lockdep_hardirqs_on(unsigned long ip)
4173 {
4174         struct irqtrace_events *trace = &current->irqtrace;
4175
4176         if (unlikely(!debug_locks))
4177                 return;
4178
4179         /*
4180          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4181          * tracking state and hardware state are out of sync.
4182          *
4183          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4184          * and not rely on hardware state like normal interrupts.
4185          */
4186         if (unlikely(in_nmi())) {
4187                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4188                         return;
4189
4190                 /*
4191                  * Skip:
4192                  *  - recursion check, because NMI can hit lockdep;
4193                  *  - hardware state check, because above;
4194                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4195                  */
4196                 goto skip_checks;
4197         }
4198
4199         if (unlikely(this_cpu_read(lockdep_recursion)))
4200                 return;
4201
4202         if (lockdep_hardirqs_enabled()) {
4203                 /*
4204                  * Neither irq nor preemption are disabled here
4205                  * so this is racy by nature but losing one hit
4206                  * in a stat is not a big deal.
4207                  */
4208                 __debug_atomic_inc(redundant_hardirqs_on);
4209                 return;
4210         }
4211
4212         /*
4213          * We're enabling irqs and according to our state above irqs weren't
4214          * already enabled, yet we find the hardware thinks they are in fact
4215          * enabled.. someone messed up their IRQ state tracing.
4216          */
4217         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4218                 return;
4219
4220         /*
4221          * Ensure the lock stack remained unchanged between
4222          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4223          */
4224         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4225                             current->curr_chain_key);
4226
4227 skip_checks:
4228         /* we'll do an OFF -> ON transition: */
4229         __this_cpu_write(hardirqs_enabled, 1);
4230         trace->hardirq_enable_ip = ip;
4231         trace->hardirq_enable_event = ++trace->irq_events;
4232         debug_atomic_inc(hardirqs_on_events);
4233 }
4234 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4235
4236 /*
4237  * Hardirqs were disabled:
4238  */
4239 void noinstr lockdep_hardirqs_off(unsigned long ip)
4240 {
4241         if (unlikely(!debug_locks))
4242                 return;
4243
4244         /*
4245          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4246          * they will restore the software state. This ensures the software
4247          * state is consistent inside NMIs as well.
4248          */
4249         if (in_nmi()) {
4250                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4251                         return;
4252         } else if (__this_cpu_read(lockdep_recursion))
4253                 return;
4254
4255         /*
4256          * So we're supposed to get called after you mask local IRQs, but for
4257          * some reason the hardware doesn't quite think you did a proper job.
4258          */
4259         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4260                 return;
4261
4262         if (lockdep_hardirqs_enabled()) {
4263                 struct irqtrace_events *trace = &current->irqtrace;
4264
4265                 /*
4266                  * We have done an ON -> OFF transition:
4267                  */
4268                 __this_cpu_write(hardirqs_enabled, 0);
4269                 trace->hardirq_disable_ip = ip;
4270                 trace->hardirq_disable_event = ++trace->irq_events;
4271                 debug_atomic_inc(hardirqs_off_events);
4272         } else {
4273                 debug_atomic_inc(redundant_hardirqs_off);
4274         }
4275 }
4276 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4277
4278 /*
4279  * Softirqs will be enabled:
4280  */
4281 void lockdep_softirqs_on(unsigned long ip)
4282 {
4283         struct irqtrace_events *trace = &current->irqtrace;
4284
4285         if (unlikely(!lockdep_enabled()))
4286                 return;
4287
4288         /*
4289          * We fancy IRQs being disabled here, see softirq.c, avoids
4290          * funny state and nesting things.
4291          */
4292         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4293                 return;
4294
4295         if (current->softirqs_enabled) {
4296                 debug_atomic_inc(redundant_softirqs_on);
4297                 return;
4298         }
4299
4300         lockdep_recursion_inc();
4301         /*
4302          * We'll do an OFF -> ON transition:
4303          */
4304         current->softirqs_enabled = 1;
4305         trace->softirq_enable_ip = ip;
4306         trace->softirq_enable_event = ++trace->irq_events;
4307         debug_atomic_inc(softirqs_on_events);
4308         /*
4309          * We are going to turn softirqs on, so set the
4310          * usage bit for all held locks, if hardirqs are
4311          * enabled too:
4312          */
4313         if (lockdep_hardirqs_enabled())
4314                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4315         lockdep_recursion_finish();
4316 }
4317
4318 /*
4319  * Softirqs were disabled:
4320  */
4321 void lockdep_softirqs_off(unsigned long ip)
4322 {
4323         if (unlikely(!lockdep_enabled()))
4324                 return;
4325
4326         /*
4327          * We fancy IRQs being disabled here, see softirq.c
4328          */
4329         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4330                 return;
4331
4332         if (current->softirqs_enabled) {
4333                 struct irqtrace_events *trace = &current->irqtrace;
4334
4335                 /*
4336                  * We have done an ON -> OFF transition:
4337                  */
4338                 current->softirqs_enabled = 0;
4339                 trace->softirq_disable_ip = ip;
4340                 trace->softirq_disable_event = ++trace->irq_events;
4341                 debug_atomic_inc(softirqs_off_events);
4342                 /*
4343                  * Whoops, we wanted softirqs off, so why aren't they?
4344                  */
4345                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4346         } else
4347                 debug_atomic_inc(redundant_softirqs_off);
4348 }
4349
4350 static int
4351 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4352 {
4353         if (!check)
4354                 goto lock_used;
4355
4356         /*
4357          * If non-trylock use in a hardirq or softirq context, then
4358          * mark the lock as used in these contexts:
4359          */
4360         if (!hlock->trylock) {
4361                 if (hlock->read) {
4362                         if (lockdep_hardirq_context())
4363                                 if (!mark_lock(curr, hlock,
4364                                                 LOCK_USED_IN_HARDIRQ_READ))
4365                                         return 0;
4366                         if (curr->softirq_context)
4367                                 if (!mark_lock(curr, hlock,
4368                                                 LOCK_USED_IN_SOFTIRQ_READ))
4369                                         return 0;
4370                 } else {
4371                         if (lockdep_hardirq_context())
4372                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4373                                         return 0;
4374                         if (curr->softirq_context)
4375                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4376                                         return 0;
4377                 }
4378         }
4379         if (!hlock->hardirqs_off) {
4380                 if (hlock->read) {
4381                         if (!mark_lock(curr, hlock,
4382                                         LOCK_ENABLED_HARDIRQ_READ))
4383                                 return 0;
4384                         if (curr->softirqs_enabled)
4385                                 if (!mark_lock(curr, hlock,
4386                                                 LOCK_ENABLED_SOFTIRQ_READ))
4387                                         return 0;
4388                 } else {
4389                         if (!mark_lock(curr, hlock,
4390                                         LOCK_ENABLED_HARDIRQ))
4391                                 return 0;
4392                         if (curr->softirqs_enabled)
4393                                 if (!mark_lock(curr, hlock,
4394                                                 LOCK_ENABLED_SOFTIRQ))
4395                                         return 0;
4396                 }
4397         }
4398
4399 lock_used:
4400         /* mark it as used: */
4401         if (!mark_lock(curr, hlock, LOCK_USED))
4402                 return 0;
4403
4404         return 1;
4405 }
4406
4407 static inline unsigned int task_irq_context(struct task_struct *task)
4408 {
4409         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4410                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4411 }
4412
4413 static int separate_irq_context(struct task_struct *curr,
4414                 struct held_lock *hlock)
4415 {
4416         unsigned int depth = curr->lockdep_depth;
4417
4418         /*
4419          * Keep track of points where we cross into an interrupt context:
4420          */
4421         if (depth) {
4422                 struct held_lock *prev_hlock;
4423
4424                 prev_hlock = curr->held_locks + depth-1;
4425                 /*
4426                  * If we cross into another context, reset the
4427                  * hash key (this also prevents the checking and the
4428                  * adding of the dependency to 'prev'):
4429                  */
4430                 if (prev_hlock->irq_context != hlock->irq_context)
4431                         return 1;
4432         }
4433         return 0;
4434 }
4435
4436 /*
4437  * Mark a lock with a usage bit, and validate the state transition:
4438  */
4439 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4440                              enum lock_usage_bit new_bit)
4441 {
4442         unsigned int new_mask, ret = 1;
4443
4444         if (new_bit >= LOCK_USAGE_STATES) {
4445                 DEBUG_LOCKS_WARN_ON(1);
4446                 return 0;
4447         }
4448
4449         if (new_bit == LOCK_USED && this->read)
4450                 new_bit = LOCK_USED_READ;
4451
4452         new_mask = 1 << new_bit;
4453
4454         /*
4455          * If already set then do not dirty the cacheline,
4456          * nor do any checks:
4457          */
4458         if (likely(hlock_class(this)->usage_mask & new_mask))
4459                 return 1;
4460
4461         if (!graph_lock())
4462                 return 0;
4463         /*
4464          * Make sure we didn't race:
4465          */
4466         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4467                 goto unlock;
4468
4469         if (!hlock_class(this)->usage_mask)
4470                 debug_atomic_dec(nr_unused_locks);
4471
4472         hlock_class(this)->usage_mask |= new_mask;
4473
4474         if (new_bit < LOCK_TRACE_STATES) {
4475                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4476                         return 0;
4477         }
4478
4479         if (new_bit < LOCK_USED) {
4480                 ret = mark_lock_irq(curr, this, new_bit);
4481                 if (!ret)
4482                         return 0;
4483         }
4484
4485 unlock:
4486         graph_unlock();
4487
4488         /*
4489          * We must printk outside of the graph_lock:
4490          */
4491         if (ret == 2) {
4492                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4493                 print_lock(this);
4494                 print_irqtrace_events(curr);
4495                 dump_stack();
4496         }
4497
4498         return ret;
4499 }
4500
4501 static inline short task_wait_context(struct task_struct *curr)
4502 {
4503         /*
4504          * Set appropriate wait type for the context; for IRQs we have to take
4505          * into account force_irqthread as that is implied by PREEMPT_RT.
4506          */
4507         if (lockdep_hardirq_context()) {
4508                 /*
4509                  * Check if force_irqthreads will run us threaded.
4510                  */
4511                 if (curr->hardirq_threaded || curr->irq_config)
4512                         return LD_WAIT_CONFIG;
4513
4514                 return LD_WAIT_SPIN;
4515         } else if (curr->softirq_context) {
4516                 /*
4517                  * Softirqs are always threaded.
4518                  */
4519                 return LD_WAIT_CONFIG;
4520         }
4521
4522         return LD_WAIT_MAX;
4523 }
4524
4525 static int
4526 print_lock_invalid_wait_context(struct task_struct *curr,
4527                                 struct held_lock *hlock)
4528 {
4529         short curr_inner;
4530
4531         if (!debug_locks_off())
4532                 return 0;
4533         if (debug_locks_silent)
4534                 return 0;
4535
4536         pr_warn("\n");
4537         pr_warn("=============================\n");
4538         pr_warn("[ BUG: Invalid wait context ]\n");
4539         print_kernel_ident();
4540         pr_warn("-----------------------------\n");
4541
4542         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4543         print_lock(hlock);
4544
4545         pr_warn("other info that might help us debug this:\n");
4546
4547         curr_inner = task_wait_context(curr);
4548         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4549
4550         lockdep_print_held_locks(curr);
4551
4552         pr_warn("stack backtrace:\n");
4553         dump_stack();
4554
4555         return 0;
4556 }
4557
4558 /*
4559  * Verify the wait_type context.
4560  *
4561  * This check validates we takes locks in the right wait-type order; that is it
4562  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4563  * acquire spinlocks inside raw_spinlocks and the sort.
4564  *
4565  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4566  * can be taken from (pretty much) any context but also has constraints.
4567  * However when taken in a stricter environment the RCU lock does not loosen
4568  * the constraints.
4569  *
4570  * Therefore we must look for the strictest environment in the lock stack and
4571  * compare that to the lock we're trying to acquire.
4572  */
4573 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4574 {
4575         u8 next_inner = hlock_class(next)->wait_type_inner;
4576         u8 next_outer = hlock_class(next)->wait_type_outer;
4577         u8 curr_inner;
4578         int depth;
4579
4580         if (!curr->lockdep_depth || !next_inner || next->trylock)
4581                 return 0;
4582
4583         if (!next_outer)
4584                 next_outer = next_inner;
4585
4586         /*
4587          * Find start of current irq_context..
4588          */
4589         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4590                 struct held_lock *prev = curr->held_locks + depth;
4591                 if (prev->irq_context != next->irq_context)
4592                         break;
4593         }
4594         depth++;
4595
4596         curr_inner = task_wait_context(curr);
4597
4598         for (; depth < curr->lockdep_depth; depth++) {
4599                 struct held_lock *prev = curr->held_locks + depth;
4600                 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4601
4602                 if (prev_inner) {
4603                         /*
4604                          * We can have a bigger inner than a previous one
4605                          * when outer is smaller than inner, as with RCU.
4606                          *
4607                          * Also due to trylocks.
4608                          */
4609                         curr_inner = min(curr_inner, prev_inner);
4610                 }
4611         }
4612
4613         if (next_outer > curr_inner)
4614                 return print_lock_invalid_wait_context(curr, next);
4615
4616         return 0;
4617 }
4618
4619 #else /* CONFIG_PROVE_LOCKING */
4620
4621 static inline int
4622 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4623 {
4624         return 1;
4625 }
4626
4627 static inline unsigned int task_irq_context(struct task_struct *task)
4628 {
4629         return 0;
4630 }
4631
4632 static inline int separate_irq_context(struct task_struct *curr,
4633                 struct held_lock *hlock)
4634 {
4635         return 0;
4636 }
4637
4638 static inline int check_wait_context(struct task_struct *curr,
4639                                      struct held_lock *next)
4640 {
4641         return 0;
4642 }
4643
4644 #endif /* CONFIG_PROVE_LOCKING */
4645
4646 /*
4647  * Initialize a lock instance's lock-class mapping info:
4648  */
4649 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4650                             struct lock_class_key *key, int subclass,
4651                             u8 inner, u8 outer, u8 lock_type)
4652 {
4653         int i;
4654
4655         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4656                 lock->class_cache[i] = NULL;
4657
4658 #ifdef CONFIG_LOCK_STAT
4659         lock->cpu = raw_smp_processor_id();
4660 #endif
4661
4662         /*
4663          * Can't be having no nameless bastards around this place!
4664          */
4665         if (DEBUG_LOCKS_WARN_ON(!name)) {
4666                 lock->name = "NULL";
4667                 return;
4668         }
4669
4670         lock->name = name;
4671
4672         lock->wait_type_outer = outer;
4673         lock->wait_type_inner = inner;
4674         lock->lock_type = lock_type;
4675
4676         /*
4677          * No key, no joy, we need to hash something.
4678          */
4679         if (DEBUG_LOCKS_WARN_ON(!key))
4680                 return;
4681         /*
4682          * Sanity check, the lock-class key must either have been allocated
4683          * statically or must have been registered as a dynamic key.
4684          */
4685         if (!static_obj(key) && !is_dynamic_key(key)) {
4686                 if (debug_locks)
4687                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4688                 DEBUG_LOCKS_WARN_ON(1);
4689                 return;
4690         }
4691         lock->key = key;
4692
4693         if (unlikely(!debug_locks))
4694                 return;
4695
4696         if (subclass) {
4697                 unsigned long flags;
4698
4699                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4700                         return;
4701
4702                 raw_local_irq_save(flags);
4703                 lockdep_recursion_inc();
4704                 register_lock_class(lock, subclass, 1);
4705                 lockdep_recursion_finish();
4706                 raw_local_irq_restore(flags);
4707         }
4708 }
4709 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4710
4711 struct lock_class_key __lockdep_no_validate__;
4712 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4713
4714 static void
4715 print_lock_nested_lock_not_held(struct task_struct *curr,
4716                                 struct held_lock *hlock,
4717                                 unsigned long ip)
4718 {
4719         if (!debug_locks_off())
4720                 return;
4721         if (debug_locks_silent)
4722                 return;
4723
4724         pr_warn("\n");
4725         pr_warn("==================================\n");
4726         pr_warn("WARNING: Nested lock was not taken\n");
4727         print_kernel_ident();
4728         pr_warn("----------------------------------\n");
4729
4730         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4731         print_lock(hlock);
4732
4733         pr_warn("\nbut this task is not holding:\n");
4734         pr_warn("%s\n", hlock->nest_lock->name);
4735
4736         pr_warn("\nstack backtrace:\n");
4737         dump_stack();
4738
4739         pr_warn("\nother info that might help us debug this:\n");
4740         lockdep_print_held_locks(curr);
4741
4742         pr_warn("\nstack backtrace:\n");
4743         dump_stack();
4744 }
4745
4746 static int __lock_is_held(const struct lockdep_map *lock, int read);
4747
4748 /*
4749  * This gets called for every mutex_lock*()/spin_lock*() operation.
4750  * We maintain the dependency maps and validate the locking attempt:
4751  *
4752  * The callers must make sure that IRQs are disabled before calling it,
4753  * otherwise we could get an interrupt which would want to take locks,
4754  * which would end up in lockdep again.
4755  */
4756 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4757                           int trylock, int read, int check, int hardirqs_off,
4758                           struct lockdep_map *nest_lock, unsigned long ip,
4759                           int references, int pin_count)
4760 {
4761         struct task_struct *curr = current;
4762         struct lock_class *class = NULL;
4763         struct held_lock *hlock;
4764         unsigned int depth;
4765         int chain_head = 0;
4766         int class_idx;
4767         u64 chain_key;
4768
4769         if (unlikely(!debug_locks))
4770                 return 0;
4771
4772         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4773                 check = 0;
4774
4775         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4776                 class = lock->class_cache[subclass];
4777         /*
4778          * Not cached?
4779          */
4780         if (unlikely(!class)) {
4781                 class = register_lock_class(lock, subclass, 0);
4782                 if (!class)
4783                         return 0;
4784         }
4785
4786         debug_class_ops_inc(class);
4787
4788         if (very_verbose(class)) {
4789                 printk("\nacquire class [%px] %s", class->key, class->name);
4790                 if (class->name_version > 1)
4791                         printk(KERN_CONT "#%d", class->name_version);
4792                 printk(KERN_CONT "\n");
4793                 dump_stack();
4794         }
4795
4796         /*
4797          * Add the lock to the list of currently held locks.
4798          * (we dont increase the depth just yet, up until the
4799          * dependency checks are done)
4800          */
4801         depth = curr->lockdep_depth;
4802         /*
4803          * Ran out of static storage for our per-task lock stack again have we?
4804          */
4805         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4806                 return 0;
4807
4808         class_idx = class - lock_classes;
4809
4810         if (depth) { /* we're holding locks */
4811                 hlock = curr->held_locks + depth - 1;
4812                 if (hlock->class_idx == class_idx && nest_lock) {
4813                         if (!references)
4814                                 references++;
4815
4816                         if (!hlock->references)
4817                                 hlock->references++;
4818
4819                         hlock->references += references;
4820
4821                         /* Overflow */
4822                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4823                                 return 0;
4824
4825                         return 2;
4826                 }
4827         }
4828
4829         hlock = curr->held_locks + depth;
4830         /*
4831          * Plain impossible, we just registered it and checked it weren't no
4832          * NULL like.. I bet this mushroom I ate was good!
4833          */
4834         if (DEBUG_LOCKS_WARN_ON(!class))
4835                 return 0;
4836         hlock->class_idx = class_idx;
4837         hlock->acquire_ip = ip;
4838         hlock->instance = lock;
4839         hlock->nest_lock = nest_lock;
4840         hlock->irq_context = task_irq_context(curr);
4841         hlock->trylock = trylock;
4842         hlock->read = read;
4843         hlock->check = check;
4844         hlock->hardirqs_off = !!hardirqs_off;
4845         hlock->references = references;
4846 #ifdef CONFIG_LOCK_STAT
4847         hlock->waittime_stamp = 0;
4848         hlock->holdtime_stamp = lockstat_clock();
4849 #endif
4850         hlock->pin_count = pin_count;
4851
4852         if (check_wait_context(curr, hlock))
4853                 return 0;
4854
4855         /* Initialize the lock usage bit */
4856         if (!mark_usage(curr, hlock, check))
4857                 return 0;
4858
4859         /*
4860          * Calculate the chain hash: it's the combined hash of all the
4861          * lock keys along the dependency chain. We save the hash value
4862          * at every step so that we can get the current hash easily
4863          * after unlock. The chain hash is then used to cache dependency
4864          * results.
4865          *
4866          * The 'key ID' is what is the most compact key value to drive
4867          * the hash, not class->key.
4868          */
4869         /*
4870          * Whoops, we did it again.. class_idx is invalid.
4871          */
4872         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4873                 return 0;
4874
4875         chain_key = curr->curr_chain_key;
4876         if (!depth) {
4877                 /*
4878                  * How can we have a chain hash when we ain't got no keys?!
4879                  */
4880                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4881                         return 0;
4882                 chain_head = 1;
4883         }
4884
4885         hlock->prev_chain_key = chain_key;
4886         if (separate_irq_context(curr, hlock)) {
4887                 chain_key = INITIAL_CHAIN_KEY;
4888                 chain_head = 1;
4889         }
4890         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4891
4892         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4893                 print_lock_nested_lock_not_held(curr, hlock, ip);
4894                 return 0;
4895         }
4896
4897         if (!debug_locks_silent) {
4898                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4899                 WARN_ON_ONCE(!hlock_class(hlock)->key);
4900         }
4901
4902         if (!validate_chain(curr, hlock, chain_head, chain_key))
4903                 return 0;
4904
4905         curr->curr_chain_key = chain_key;
4906         curr->lockdep_depth++;
4907         check_chain_key(curr);
4908 #ifdef CONFIG_DEBUG_LOCKDEP
4909         if (unlikely(!debug_locks))
4910                 return 0;
4911 #endif
4912         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4913                 debug_locks_off();
4914                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4915                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4916                        curr->lockdep_depth, MAX_LOCK_DEPTH);
4917
4918                 lockdep_print_held_locks(current);
4919                 debug_show_all_locks();
4920                 dump_stack();
4921
4922                 return 0;
4923         }
4924
4925         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4926                 max_lockdep_depth = curr->lockdep_depth;
4927
4928         return 1;
4929 }
4930
4931 static void print_unlock_imbalance_bug(struct task_struct *curr,
4932                                        struct lockdep_map *lock,
4933                                        unsigned long ip)
4934 {
4935         if (!debug_locks_off())
4936                 return;
4937         if (debug_locks_silent)
4938                 return;
4939
4940         pr_warn("\n");
4941         pr_warn("=====================================\n");
4942         pr_warn("WARNING: bad unlock balance detected!\n");
4943         print_kernel_ident();
4944         pr_warn("-------------------------------------\n");
4945         pr_warn("%s/%d is trying to release lock (",
4946                 curr->comm, task_pid_nr(curr));
4947         print_lockdep_cache(lock);
4948         pr_cont(") at:\n");
4949         print_ip_sym(KERN_WARNING, ip);
4950         pr_warn("but there are no more locks to release!\n");
4951         pr_warn("\nother info that might help us debug this:\n");
4952         lockdep_print_held_locks(curr);
4953
4954         pr_warn("\nstack backtrace:\n");
4955         dump_stack();
4956 }
4957
4958 static noinstr int match_held_lock(const struct held_lock *hlock,
4959                                    const struct lockdep_map *lock)
4960 {
4961         if (hlock->instance == lock)
4962                 return 1;
4963
4964         if (hlock->references) {
4965                 const struct lock_class *class = lock->class_cache[0];
4966
4967                 if (!class)
4968                         class = look_up_lock_class(lock, 0);
4969
4970                 /*
4971                  * If look_up_lock_class() failed to find a class, we're trying
4972                  * to test if we hold a lock that has never yet been acquired.
4973                  * Clearly if the lock hasn't been acquired _ever_, we're not
4974                  * holding it either, so report failure.
4975                  */
4976                 if (!class)
4977                         return 0;
4978
4979                 /*
4980                  * References, but not a lock we're actually ref-counting?
4981                  * State got messed up, follow the sites that change ->references
4982                  * and try to make sense of it.
4983                  */
4984                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4985                         return 0;
4986
4987                 if (hlock->class_idx == class - lock_classes)
4988                         return 1;
4989         }
4990
4991         return 0;
4992 }
4993
4994 /* @depth must not be zero */
4995 static struct held_lock *find_held_lock(struct task_struct *curr,
4996                                         struct lockdep_map *lock,
4997                                         unsigned int depth, int *idx)
4998 {
4999         struct held_lock *ret, *hlock, *prev_hlock;
5000         int i;
5001
5002         i = depth - 1;
5003         hlock = curr->held_locks + i;
5004         ret = hlock;
5005         if (match_held_lock(hlock, lock))
5006                 goto out;
5007
5008         ret = NULL;
5009         for (i--, prev_hlock = hlock--;
5010              i >= 0;
5011              i--, prev_hlock = hlock--) {
5012                 /*
5013                  * We must not cross into another context:
5014                  */
5015                 if (prev_hlock->irq_context != hlock->irq_context) {
5016                         ret = NULL;
5017                         break;
5018                 }
5019                 if (match_held_lock(hlock, lock)) {
5020                         ret = hlock;
5021                         break;
5022                 }
5023         }
5024
5025 out:
5026         *idx = i;
5027         return ret;
5028 }
5029
5030 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5031                                 int idx, unsigned int *merged)
5032 {
5033         struct held_lock *hlock;
5034         int first_idx = idx;
5035
5036         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5037                 return 0;
5038
5039         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5040                 switch (__lock_acquire(hlock->instance,
5041                                     hlock_class(hlock)->subclass,
5042                                     hlock->trylock,
5043                                     hlock->read, hlock->check,
5044                                     hlock->hardirqs_off,
5045                                     hlock->nest_lock, hlock->acquire_ip,
5046                                     hlock->references, hlock->pin_count)) {
5047                 case 0:
5048                         return 1;
5049                 case 1:
5050                         break;
5051                 case 2:
5052                         *merged += (idx == first_idx);
5053                         break;
5054                 default:
5055                         WARN_ON(1);
5056                         return 0;
5057                 }
5058         }
5059         return 0;
5060 }
5061
5062 static int
5063 __lock_set_class(struct lockdep_map *lock, const char *name,
5064                  struct lock_class_key *key, unsigned int subclass,
5065                  unsigned long ip)
5066 {
5067         struct task_struct *curr = current;
5068         unsigned int depth, merged = 0;
5069         struct held_lock *hlock;
5070         struct lock_class *class;
5071         int i;
5072
5073         if (unlikely(!debug_locks))
5074                 return 0;
5075
5076         depth = curr->lockdep_depth;
5077         /*
5078          * This function is about (re)setting the class of a held lock,
5079          * yet we're not actually holding any locks. Naughty user!
5080          */
5081         if (DEBUG_LOCKS_WARN_ON(!depth))
5082                 return 0;
5083
5084         hlock = find_held_lock(curr, lock, depth, &i);
5085         if (!hlock) {
5086                 print_unlock_imbalance_bug(curr, lock, ip);
5087                 return 0;
5088         }
5089
5090         lockdep_init_map_waits(lock, name, key, 0,
5091                                lock->wait_type_inner,
5092                                lock->wait_type_outer);
5093         class = register_lock_class(lock, subclass, 0);
5094         hlock->class_idx = class - lock_classes;
5095
5096         curr->lockdep_depth = i;
5097         curr->curr_chain_key = hlock->prev_chain_key;
5098
5099         if (reacquire_held_locks(curr, depth, i, &merged))
5100                 return 0;
5101
5102         /*
5103          * I took it apart and put it back together again, except now I have
5104          * these 'spare' parts.. where shall I put them.
5105          */
5106         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5107                 return 0;
5108         return 1;
5109 }
5110
5111 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5112 {
5113         struct task_struct *curr = current;
5114         unsigned int depth, merged = 0;
5115         struct held_lock *hlock;
5116         int i;
5117
5118         if (unlikely(!debug_locks))
5119                 return 0;
5120
5121         depth = curr->lockdep_depth;
5122         /*
5123          * This function is about (re)setting the class of a held lock,
5124          * yet we're not actually holding any locks. Naughty user!
5125          */
5126         if (DEBUG_LOCKS_WARN_ON(!depth))
5127                 return 0;
5128
5129         hlock = find_held_lock(curr, lock, depth, &i);
5130         if (!hlock) {
5131                 print_unlock_imbalance_bug(curr, lock, ip);
5132                 return 0;
5133         }
5134
5135         curr->lockdep_depth = i;
5136         curr->curr_chain_key = hlock->prev_chain_key;
5137
5138         WARN(hlock->read, "downgrading a read lock");
5139         hlock->read = 1;
5140         hlock->acquire_ip = ip;
5141
5142         if (reacquire_held_locks(curr, depth, i, &merged))
5143                 return 0;
5144
5145         /* Merging can't happen with unchanged classes.. */
5146         if (DEBUG_LOCKS_WARN_ON(merged))
5147                 return 0;
5148
5149         /*
5150          * I took it apart and put it back together again, except now I have
5151          * these 'spare' parts.. where shall I put them.
5152          */
5153         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5154                 return 0;
5155
5156         return 1;
5157 }
5158
5159 /*
5160  * Remove the lock from the list of currently held locks - this gets
5161  * called on mutex_unlock()/spin_unlock*() (or on a failed
5162  * mutex_lock_interruptible()).
5163  */
5164 static int
5165 __lock_release(struct lockdep_map *lock, unsigned long ip)
5166 {
5167         struct task_struct *curr = current;
5168         unsigned int depth, merged = 1;
5169         struct held_lock *hlock;
5170         int i;
5171
5172         if (unlikely(!debug_locks))
5173                 return 0;
5174
5175         depth = curr->lockdep_depth;
5176         /*
5177          * So we're all set to release this lock.. wait what lock? We don't
5178          * own any locks, you've been drinking again?
5179          */
5180         if (depth <= 0) {
5181                 print_unlock_imbalance_bug(curr, lock, ip);
5182                 return 0;
5183         }
5184
5185         /*
5186          * Check whether the lock exists in the current stack
5187          * of held locks:
5188          */
5189         hlock = find_held_lock(curr, lock, depth, &i);
5190         if (!hlock) {
5191                 print_unlock_imbalance_bug(curr, lock, ip);
5192                 return 0;
5193         }
5194
5195         if (hlock->instance == lock)
5196                 lock_release_holdtime(hlock);
5197
5198         WARN(hlock->pin_count, "releasing a pinned lock\n");
5199
5200         if (hlock->references) {
5201                 hlock->references--;
5202                 if (hlock->references) {
5203                         /*
5204                          * We had, and after removing one, still have
5205                          * references, the current lock stack is still
5206                          * valid. We're done!
5207                          */
5208                         return 1;
5209                 }
5210         }
5211
5212         /*
5213          * We have the right lock to unlock, 'hlock' points to it.
5214          * Now we remove it from the stack, and add back the other
5215          * entries (if any), recalculating the hash along the way:
5216          */
5217
5218         curr->lockdep_depth = i;
5219         curr->curr_chain_key = hlock->prev_chain_key;
5220
5221         /*
5222          * The most likely case is when the unlock is on the innermost
5223          * lock. In this case, we are done!
5224          */
5225         if (i == depth-1)
5226                 return 1;
5227
5228         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5229                 return 0;
5230
5231         /*
5232          * We had N bottles of beer on the wall, we drank one, but now
5233          * there's not N-1 bottles of beer left on the wall...
5234          * Pouring two of the bottles together is acceptable.
5235          */
5236         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5237
5238         /*
5239          * Since reacquire_held_locks() would have called check_chain_key()
5240          * indirectly via __lock_acquire(), we don't need to do it again
5241          * on return.
5242          */
5243         return 0;
5244 }
5245
5246 static __always_inline
5247 int __lock_is_held(const struct lockdep_map *lock, int read)
5248 {
5249         struct task_struct *curr = current;
5250         int i;
5251
5252         for (i = 0; i < curr->lockdep_depth; i++) {
5253                 struct held_lock *hlock = curr->held_locks + i;
5254
5255                 if (match_held_lock(hlock, lock)) {
5256                         if (read == -1 || hlock->read == read)
5257                                 return LOCK_STATE_HELD;
5258
5259                         return LOCK_STATE_NOT_HELD;
5260                 }
5261         }
5262
5263         return LOCK_STATE_NOT_HELD;
5264 }
5265
5266 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5267 {
5268         struct pin_cookie cookie = NIL_COOKIE;
5269         struct task_struct *curr = current;
5270         int i;
5271
5272         if (unlikely(!debug_locks))
5273                 return cookie;
5274
5275         for (i = 0; i < curr->lockdep_depth; i++) {
5276                 struct held_lock *hlock = curr->held_locks + i;
5277
5278                 if (match_held_lock(hlock, lock)) {
5279                         /*
5280                          * Grab 16bits of randomness; this is sufficient to not
5281                          * be guessable and still allows some pin nesting in
5282                          * our u32 pin_count.
5283                          */
5284                         cookie.val = 1 + (prandom_u32() >> 16);
5285                         hlock->pin_count += cookie.val;
5286                         return cookie;
5287                 }
5288         }
5289
5290         WARN(1, "pinning an unheld lock\n");
5291         return cookie;
5292 }
5293
5294 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5295 {
5296         struct task_struct *curr = current;
5297         int i;
5298
5299         if (unlikely(!debug_locks))
5300                 return;
5301
5302         for (i = 0; i < curr->lockdep_depth; i++) {
5303                 struct held_lock *hlock = curr->held_locks + i;
5304
5305                 if (match_held_lock(hlock, lock)) {
5306                         hlock->pin_count += cookie.val;
5307                         return;
5308                 }
5309         }
5310
5311         WARN(1, "pinning an unheld lock\n");
5312 }
5313
5314 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5315 {
5316         struct task_struct *curr = current;
5317         int i;
5318
5319         if (unlikely(!debug_locks))
5320                 return;
5321
5322         for (i = 0; i < curr->lockdep_depth; i++) {
5323                 struct held_lock *hlock = curr->held_locks + i;
5324
5325                 if (match_held_lock(hlock, lock)) {
5326                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5327                                 return;
5328
5329                         hlock->pin_count -= cookie.val;
5330
5331                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5332                                 hlock->pin_count = 0;
5333
5334                         return;
5335                 }
5336         }
5337
5338         WARN(1, "unpinning an unheld lock\n");
5339 }
5340
5341 /*
5342  * Check whether we follow the irq-flags state precisely:
5343  */
5344 static noinstr void check_flags(unsigned long flags)
5345 {
5346 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5347         if (!debug_locks)
5348                 return;
5349
5350         /* Get the warning out..  */
5351         instrumentation_begin();
5352
5353         if (irqs_disabled_flags(flags)) {
5354                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5355                         printk("possible reason: unannotated irqs-off.\n");
5356                 }
5357         } else {
5358                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5359                         printk("possible reason: unannotated irqs-on.\n");
5360                 }
5361         }
5362
5363         /*
5364          * We dont accurately track softirq state in e.g.
5365          * hardirq contexts (such as on 4KSTACKS), so only
5366          * check if not in hardirq contexts:
5367          */
5368         if (!hardirq_count()) {
5369                 if (softirq_count()) {
5370                         /* like the above, but with softirqs */
5371                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5372                 } else {
5373                         /* lick the above, does it taste good? */
5374                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5375                 }
5376         }
5377
5378         if (!debug_locks)
5379                 print_irqtrace_events(current);
5380
5381         instrumentation_end();
5382 #endif
5383 }
5384
5385 void lock_set_class(struct lockdep_map *lock, const char *name,
5386                     struct lock_class_key *key, unsigned int subclass,
5387                     unsigned long ip)
5388 {
5389         unsigned long flags;
5390
5391         if (unlikely(!lockdep_enabled()))
5392                 return;
5393
5394         raw_local_irq_save(flags);
5395         lockdep_recursion_inc();
5396         check_flags(flags);
5397         if (__lock_set_class(lock, name, key, subclass, ip))
5398                 check_chain_key(current);
5399         lockdep_recursion_finish();
5400         raw_local_irq_restore(flags);
5401 }
5402 EXPORT_SYMBOL_GPL(lock_set_class);
5403
5404 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5405 {
5406         unsigned long flags;
5407
5408         if (unlikely(!lockdep_enabled()))
5409                 return;
5410
5411         raw_local_irq_save(flags);
5412         lockdep_recursion_inc();
5413         check_flags(flags);
5414         if (__lock_downgrade(lock, ip))
5415                 check_chain_key(current);
5416         lockdep_recursion_finish();
5417         raw_local_irq_restore(flags);
5418 }
5419 EXPORT_SYMBOL_GPL(lock_downgrade);
5420
5421 /* NMI context !!! */
5422 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5423 {
5424 #ifdef CONFIG_PROVE_LOCKING
5425         struct lock_class *class = look_up_lock_class(lock, subclass);
5426         unsigned long mask = LOCKF_USED;
5427
5428         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5429         if (!class)
5430                 return;
5431
5432         /*
5433          * READ locks only conflict with USED, such that if we only ever use
5434          * READ locks, there is no deadlock possible -- RCU.
5435          */
5436         if (!hlock->read)
5437                 mask |= LOCKF_USED_READ;
5438
5439         if (!(class->usage_mask & mask))
5440                 return;
5441
5442         hlock->class_idx = class - lock_classes;
5443
5444         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5445 #endif
5446 }
5447
5448 static bool lockdep_nmi(void)
5449 {
5450         if (raw_cpu_read(lockdep_recursion))
5451                 return false;
5452
5453         if (!in_nmi())
5454                 return false;
5455
5456         return true;
5457 }
5458
5459 /*
5460  * read_lock() is recursive if:
5461  * 1. We force lockdep think this way in selftests or
5462  * 2. The implementation is not queued read/write lock or
5463  * 3. The locker is at an in_interrupt() context.
5464  */
5465 bool read_lock_is_recursive(void)
5466 {
5467         return force_read_lock_recursive ||
5468                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5469                in_interrupt();
5470 }
5471 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5472
5473 /*
5474  * We are not always called with irqs disabled - do that here,
5475  * and also avoid lockdep recursion:
5476  */
5477 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5478                           int trylock, int read, int check,
5479                           struct lockdep_map *nest_lock, unsigned long ip)
5480 {
5481         unsigned long flags;
5482
5483         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5484
5485         if (!debug_locks)
5486                 return;
5487
5488         if (unlikely(!lockdep_enabled())) {
5489                 /* XXX allow trylock from NMI ?!? */
5490                 if (lockdep_nmi() && !trylock) {
5491                         struct held_lock hlock;
5492
5493                         hlock.acquire_ip = ip;
5494                         hlock.instance = lock;
5495                         hlock.nest_lock = nest_lock;
5496                         hlock.irq_context = 2; // XXX
5497                         hlock.trylock = trylock;
5498                         hlock.read = read;
5499                         hlock.check = check;
5500                         hlock.hardirqs_off = true;
5501                         hlock.references = 0;
5502
5503                         verify_lock_unused(lock, &hlock, subclass);
5504                 }
5505                 return;
5506         }
5507
5508         raw_local_irq_save(flags);
5509         check_flags(flags);
5510
5511         lockdep_recursion_inc();
5512         __lock_acquire(lock, subclass, trylock, read, check,
5513                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5514         lockdep_recursion_finish();
5515         raw_local_irq_restore(flags);
5516 }
5517 EXPORT_SYMBOL_GPL(lock_acquire);
5518
5519 void lock_release(struct lockdep_map *lock, unsigned long ip)
5520 {
5521         unsigned long flags;
5522
5523         trace_lock_release(lock, ip);
5524
5525         if (unlikely(!lockdep_enabled()))
5526                 return;
5527
5528         raw_local_irq_save(flags);
5529         check_flags(flags);
5530
5531         lockdep_recursion_inc();
5532         if (__lock_release(lock, ip))
5533                 check_chain_key(current);
5534         lockdep_recursion_finish();
5535         raw_local_irq_restore(flags);
5536 }
5537 EXPORT_SYMBOL_GPL(lock_release);
5538
5539 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5540 {
5541         unsigned long flags;
5542         int ret = LOCK_STATE_NOT_HELD;
5543
5544         /*
5545          * Avoid false negative lockdep_assert_held() and
5546          * lockdep_assert_not_held().
5547          */
5548         if (unlikely(!lockdep_enabled()))
5549                 return LOCK_STATE_UNKNOWN;
5550
5551         raw_local_irq_save(flags);
5552         check_flags(flags);
5553
5554         lockdep_recursion_inc();
5555         ret = __lock_is_held(lock, read);
5556         lockdep_recursion_finish();
5557         raw_local_irq_restore(flags);
5558
5559         return ret;
5560 }
5561 EXPORT_SYMBOL_GPL(lock_is_held_type);
5562 NOKPROBE_SYMBOL(lock_is_held_type);
5563
5564 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5565 {
5566         struct pin_cookie cookie = NIL_COOKIE;
5567         unsigned long flags;
5568
5569         if (unlikely(!lockdep_enabled()))
5570                 return cookie;
5571
5572         raw_local_irq_save(flags);
5573         check_flags(flags);
5574
5575         lockdep_recursion_inc();
5576         cookie = __lock_pin_lock(lock);
5577         lockdep_recursion_finish();
5578         raw_local_irq_restore(flags);
5579
5580         return cookie;
5581 }
5582 EXPORT_SYMBOL_GPL(lock_pin_lock);
5583
5584 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5585 {
5586         unsigned long flags;
5587
5588         if (unlikely(!lockdep_enabled()))
5589                 return;
5590
5591         raw_local_irq_save(flags);
5592         check_flags(flags);
5593
5594         lockdep_recursion_inc();
5595         __lock_repin_lock(lock, cookie);
5596         lockdep_recursion_finish();
5597         raw_local_irq_restore(flags);
5598 }
5599 EXPORT_SYMBOL_GPL(lock_repin_lock);
5600
5601 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5602 {
5603         unsigned long flags;
5604
5605         if (unlikely(!lockdep_enabled()))
5606                 return;
5607
5608         raw_local_irq_save(flags);
5609         check_flags(flags);
5610
5611         lockdep_recursion_inc();
5612         __lock_unpin_lock(lock, cookie);
5613         lockdep_recursion_finish();
5614         raw_local_irq_restore(flags);
5615 }
5616 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5617
5618 #ifdef CONFIG_LOCK_STAT
5619 static void print_lock_contention_bug(struct task_struct *curr,
5620                                       struct lockdep_map *lock,
5621                                       unsigned long ip)
5622 {
5623         if (!debug_locks_off())
5624                 return;
5625         if (debug_locks_silent)
5626                 return;
5627
5628         pr_warn("\n");
5629         pr_warn("=================================\n");
5630         pr_warn("WARNING: bad contention detected!\n");
5631         print_kernel_ident();
5632         pr_warn("---------------------------------\n");
5633         pr_warn("%s/%d is trying to contend lock (",
5634                 curr->comm, task_pid_nr(curr));
5635         print_lockdep_cache(lock);
5636         pr_cont(") at:\n");
5637         print_ip_sym(KERN_WARNING, ip);
5638         pr_warn("but there are no locks held!\n");
5639         pr_warn("\nother info that might help us debug this:\n");
5640         lockdep_print_held_locks(curr);
5641
5642         pr_warn("\nstack backtrace:\n");
5643         dump_stack();
5644 }
5645
5646 static void
5647 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5648 {
5649         struct task_struct *curr = current;
5650         struct held_lock *hlock;
5651         struct lock_class_stats *stats;
5652         unsigned int depth;
5653         int i, contention_point, contending_point;
5654
5655         depth = curr->lockdep_depth;
5656         /*
5657          * Whee, we contended on this lock, except it seems we're not
5658          * actually trying to acquire anything much at all..
5659          */
5660         if (DEBUG_LOCKS_WARN_ON(!depth))
5661                 return;
5662
5663         hlock = find_held_lock(curr, lock, depth, &i);
5664         if (!hlock) {
5665                 print_lock_contention_bug(curr, lock, ip);
5666                 return;
5667         }
5668
5669         if (hlock->instance != lock)
5670                 return;
5671
5672         hlock->waittime_stamp = lockstat_clock();
5673
5674         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5675         contending_point = lock_point(hlock_class(hlock)->contending_point,
5676                                       lock->ip);
5677
5678         stats = get_lock_stats(hlock_class(hlock));
5679         if (contention_point < LOCKSTAT_POINTS)
5680                 stats->contention_point[contention_point]++;
5681         if (contending_point < LOCKSTAT_POINTS)
5682                 stats->contending_point[contending_point]++;
5683         if (lock->cpu != smp_processor_id())
5684                 stats->bounces[bounce_contended + !!hlock->read]++;
5685 }
5686
5687 static void
5688 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5689 {
5690         struct task_struct *curr = current;
5691         struct held_lock *hlock;
5692         struct lock_class_stats *stats;
5693         unsigned int depth;
5694         u64 now, waittime = 0;
5695         int i, cpu;
5696
5697         depth = curr->lockdep_depth;
5698         /*
5699          * Yay, we acquired ownership of this lock we didn't try to
5700          * acquire, how the heck did that happen?
5701          */
5702         if (DEBUG_LOCKS_WARN_ON(!depth))
5703                 return;
5704
5705         hlock = find_held_lock(curr, lock, depth, &i);
5706         if (!hlock) {
5707                 print_lock_contention_bug(curr, lock, _RET_IP_);
5708                 return;
5709         }
5710
5711         if (hlock->instance != lock)
5712                 return;
5713
5714         cpu = smp_processor_id();
5715         if (hlock->waittime_stamp) {
5716                 now = lockstat_clock();
5717                 waittime = now - hlock->waittime_stamp;
5718                 hlock->holdtime_stamp = now;
5719         }
5720
5721         stats = get_lock_stats(hlock_class(hlock));
5722         if (waittime) {
5723                 if (hlock->read)
5724                         lock_time_inc(&stats->read_waittime, waittime);
5725                 else
5726                         lock_time_inc(&stats->write_waittime, waittime);
5727         }
5728         if (lock->cpu != cpu)
5729                 stats->bounces[bounce_acquired + !!hlock->read]++;
5730
5731         lock->cpu = cpu;
5732         lock->ip = ip;
5733 }
5734
5735 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5736 {
5737         unsigned long flags;
5738
5739         trace_lock_acquired(lock, ip);
5740
5741         if (unlikely(!lock_stat || !lockdep_enabled()))
5742                 return;
5743
5744         raw_local_irq_save(flags);
5745         check_flags(flags);
5746         lockdep_recursion_inc();
5747         __lock_contended(lock, ip);
5748         lockdep_recursion_finish();
5749         raw_local_irq_restore(flags);
5750 }
5751 EXPORT_SYMBOL_GPL(lock_contended);
5752
5753 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5754 {
5755         unsigned long flags;
5756
5757         trace_lock_contended(lock, ip);
5758
5759         if (unlikely(!lock_stat || !lockdep_enabled()))
5760                 return;
5761
5762         raw_local_irq_save(flags);
5763         check_flags(flags);
5764         lockdep_recursion_inc();
5765         __lock_acquired(lock, ip);
5766         lockdep_recursion_finish();
5767         raw_local_irq_restore(flags);
5768 }
5769 EXPORT_SYMBOL_GPL(lock_acquired);
5770 #endif
5771
5772 /*
5773  * Used by the testsuite, sanitize the validator state
5774  * after a simulated failure:
5775  */
5776
5777 void lockdep_reset(void)
5778 {
5779         unsigned long flags;
5780         int i;
5781
5782         raw_local_irq_save(flags);
5783         lockdep_init_task(current);
5784         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5785         nr_hardirq_chains = 0;
5786         nr_softirq_chains = 0;
5787         nr_process_chains = 0;
5788         debug_locks = 1;
5789         for (i = 0; i < CHAINHASH_SIZE; i++)
5790                 INIT_HLIST_HEAD(chainhash_table + i);
5791         raw_local_irq_restore(flags);
5792 }
5793
5794 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5795 static void remove_class_from_lock_chain(struct pending_free *pf,
5796                                          struct lock_chain *chain,
5797                                          struct lock_class *class)
5798 {
5799 #ifdef CONFIG_PROVE_LOCKING
5800         int i;
5801
5802         for (i = chain->base; i < chain->base + chain->depth; i++) {
5803                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5804                         continue;
5805                 /*
5806                  * Each lock class occurs at most once in a lock chain so once
5807                  * we found a match we can break out of this loop.
5808                  */
5809                 goto free_lock_chain;
5810         }
5811         /* Since the chain has not been modified, return. */
5812         return;
5813
5814 free_lock_chain:
5815         free_chain_hlocks(chain->base, chain->depth);
5816         /* Overwrite the chain key for concurrent RCU readers. */
5817         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5818         dec_chains(chain->irq_context);
5819
5820         /*
5821          * Note: calling hlist_del_rcu() from inside a
5822          * hlist_for_each_entry_rcu() loop is safe.
5823          */
5824         hlist_del_rcu(&chain->entry);
5825         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5826         nr_zapped_lock_chains++;
5827 #endif
5828 }
5829
5830 /* Must be called with the graph lock held. */
5831 static void remove_class_from_lock_chains(struct pending_free *pf,
5832                                           struct lock_class *class)
5833 {
5834         struct lock_chain *chain;
5835         struct hlist_head *head;
5836         int i;
5837
5838         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5839                 head = chainhash_table + i;
5840                 hlist_for_each_entry_rcu(chain, head, entry) {
5841                         remove_class_from_lock_chain(pf, chain, class);
5842                 }
5843         }
5844 }
5845
5846 /*
5847  * Remove all references to a lock class. The caller must hold the graph lock.
5848  */
5849 static void zap_class(struct pending_free *pf, struct lock_class *class)
5850 {
5851         struct lock_list *entry;
5852         int i;
5853
5854         WARN_ON_ONCE(!class->key);
5855
5856         /*
5857          * Remove all dependencies this lock is
5858          * involved in:
5859          */
5860         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5861                 entry = list_entries + i;
5862                 if (entry->class != class && entry->links_to != class)
5863                         continue;
5864                 __clear_bit(i, list_entries_in_use);
5865                 nr_list_entries--;
5866                 list_del_rcu(&entry->entry);
5867         }
5868         if (list_empty(&class->locks_after) &&
5869             list_empty(&class->locks_before)) {
5870                 list_move_tail(&class->lock_entry, &pf->zapped);
5871                 hlist_del_rcu(&class->hash_entry);
5872                 WRITE_ONCE(class->key, NULL);
5873                 WRITE_ONCE(class->name, NULL);
5874                 nr_lock_classes--;
5875                 __clear_bit(class - lock_classes, lock_classes_in_use);
5876         } else {
5877                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5878                           class->name);
5879         }
5880
5881         remove_class_from_lock_chains(pf, class);
5882         nr_zapped_classes++;
5883 }
5884
5885 static void reinit_class(struct lock_class *class)
5886 {
5887         void *const p = class;
5888         const unsigned int offset = offsetof(struct lock_class, key);
5889
5890         WARN_ON_ONCE(!class->lock_entry.next);
5891         WARN_ON_ONCE(!list_empty(&class->locks_after));
5892         WARN_ON_ONCE(!list_empty(&class->locks_before));
5893         memset(p + offset, 0, sizeof(*class) - offset);
5894         WARN_ON_ONCE(!class->lock_entry.next);
5895         WARN_ON_ONCE(!list_empty(&class->locks_after));
5896         WARN_ON_ONCE(!list_empty(&class->locks_before));
5897 }
5898
5899 static inline int within(const void *addr, void *start, unsigned long size)
5900 {
5901         return addr >= start && addr < start + size;
5902 }
5903
5904 static bool inside_selftest(void)
5905 {
5906         return current == lockdep_selftest_task_struct;
5907 }
5908
5909 /* The caller must hold the graph lock. */
5910 static struct pending_free *get_pending_free(void)
5911 {
5912         return delayed_free.pf + delayed_free.index;
5913 }
5914
5915 static void free_zapped_rcu(struct rcu_head *cb);
5916
5917 /*
5918  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5919  * the graph lock held.
5920  */
5921 static void call_rcu_zapped(struct pending_free *pf)
5922 {
5923         WARN_ON_ONCE(inside_selftest());
5924
5925         if (list_empty(&pf->zapped))
5926                 return;
5927
5928         if (delayed_free.scheduled)
5929                 return;
5930
5931         delayed_free.scheduled = true;
5932
5933         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5934         delayed_free.index ^= 1;
5935
5936         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5937 }
5938
5939 /* The caller must hold the graph lock. May be called from RCU context. */
5940 static void __free_zapped_classes(struct pending_free *pf)
5941 {
5942         struct lock_class *class;
5943
5944         check_data_structures();
5945
5946         list_for_each_entry(class, &pf->zapped, lock_entry)
5947                 reinit_class(class);
5948
5949         list_splice_init(&pf->zapped, &free_lock_classes);
5950
5951 #ifdef CONFIG_PROVE_LOCKING
5952         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5953                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5954         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5955 #endif
5956 }
5957
5958 static void free_zapped_rcu(struct rcu_head *ch)
5959 {
5960         struct pending_free *pf;
5961         unsigned long flags;
5962
5963         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5964                 return;
5965
5966         raw_local_irq_save(flags);
5967         lockdep_lock();
5968
5969         /* closed head */
5970         pf = delayed_free.pf + (delayed_free.index ^ 1);
5971         __free_zapped_classes(pf);
5972         delayed_free.scheduled = false;
5973
5974         /*
5975          * If there's anything on the open list, close and start a new callback.
5976          */
5977         call_rcu_zapped(delayed_free.pf + delayed_free.index);
5978
5979         lockdep_unlock();
5980         raw_local_irq_restore(flags);
5981 }
5982
5983 /*
5984  * Remove all lock classes from the class hash table and from the
5985  * all_lock_classes list whose key or name is in the address range [start,
5986  * start + size). Move these lock classes to the zapped_classes list. Must
5987  * be called with the graph lock held.
5988  */
5989 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5990                                      unsigned long size)
5991 {
5992         struct lock_class *class;
5993         struct hlist_head *head;
5994         int i;
5995
5996         /* Unhash all classes that were created by a module. */
5997         for (i = 0; i < CLASSHASH_SIZE; i++) {
5998                 head = classhash_table + i;
5999                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6000                         if (!within(class->key, start, size) &&
6001                             !within(class->name, start, size))
6002                                 continue;
6003                         zap_class(pf, class);
6004                 }
6005         }
6006 }
6007
6008 /*
6009  * Used in module.c to remove lock classes from memory that is going to be
6010  * freed; and possibly re-used by other modules.
6011  *
6012  * We will have had one synchronize_rcu() before getting here, so we're
6013  * guaranteed nobody will look up these exact classes -- they're properly dead
6014  * but still allocated.
6015  */
6016 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6017 {
6018         struct pending_free *pf;
6019         unsigned long flags;
6020
6021         init_data_structures_once();
6022
6023         raw_local_irq_save(flags);
6024         lockdep_lock();
6025         pf = get_pending_free();
6026         __lockdep_free_key_range(pf, start, size);
6027         call_rcu_zapped(pf);
6028         lockdep_unlock();
6029         raw_local_irq_restore(flags);
6030
6031         /*
6032          * Wait for any possible iterators from look_up_lock_class() to pass
6033          * before continuing to free the memory they refer to.
6034          */
6035         synchronize_rcu();
6036 }
6037
6038 /*
6039  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6040  * Ignores debug_locks. Must only be used by the lockdep selftests.
6041  */
6042 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6043 {
6044         struct pending_free *pf = delayed_free.pf;
6045         unsigned long flags;
6046
6047         init_data_structures_once();
6048
6049         raw_local_irq_save(flags);
6050         lockdep_lock();
6051         __lockdep_free_key_range(pf, start, size);
6052         __free_zapped_classes(pf);
6053         lockdep_unlock();
6054         raw_local_irq_restore(flags);
6055 }
6056
6057 void lockdep_free_key_range(void *start, unsigned long size)
6058 {
6059         init_data_structures_once();
6060
6061         if (inside_selftest())
6062                 lockdep_free_key_range_imm(start, size);
6063         else
6064                 lockdep_free_key_range_reg(start, size);
6065 }
6066
6067 /*
6068  * Check whether any element of the @lock->class_cache[] array refers to a
6069  * registered lock class. The caller must hold either the graph lock or the
6070  * RCU read lock.
6071  */
6072 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6073 {
6074         struct lock_class *class;
6075         struct hlist_head *head;
6076         int i, j;
6077
6078         for (i = 0; i < CLASSHASH_SIZE; i++) {
6079                 head = classhash_table + i;
6080                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6081                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6082                                 if (lock->class_cache[j] == class)
6083                                         return true;
6084                 }
6085         }
6086         return false;
6087 }
6088
6089 /* The caller must hold the graph lock. Does not sleep. */
6090 static void __lockdep_reset_lock(struct pending_free *pf,
6091                                  struct lockdep_map *lock)
6092 {
6093         struct lock_class *class;
6094         int j;
6095
6096         /*
6097          * Remove all classes this lock might have:
6098          */
6099         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6100                 /*
6101                  * If the class exists we look it up and zap it:
6102                  */
6103                 class = look_up_lock_class(lock, j);
6104                 if (class)
6105                         zap_class(pf, class);
6106         }
6107         /*
6108          * Debug check: in the end all mapped classes should
6109          * be gone.
6110          */
6111         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6112                 debug_locks_off();
6113 }
6114
6115 /*
6116  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6117  * released data structures from RCU context.
6118  */
6119 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6120 {
6121         struct pending_free *pf;
6122         unsigned long flags;
6123         int locked;
6124
6125         raw_local_irq_save(flags);
6126         locked = graph_lock();
6127         if (!locked)
6128                 goto out_irq;
6129
6130         pf = get_pending_free();
6131         __lockdep_reset_lock(pf, lock);
6132         call_rcu_zapped(pf);
6133
6134         graph_unlock();
6135 out_irq:
6136         raw_local_irq_restore(flags);
6137 }
6138
6139 /*
6140  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6141  * lockdep selftests.
6142  */
6143 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6144 {
6145         struct pending_free *pf = delayed_free.pf;
6146         unsigned long flags;
6147
6148         raw_local_irq_save(flags);
6149         lockdep_lock();
6150         __lockdep_reset_lock(pf, lock);
6151         __free_zapped_classes(pf);
6152         lockdep_unlock();
6153         raw_local_irq_restore(flags);
6154 }
6155
6156 void lockdep_reset_lock(struct lockdep_map *lock)
6157 {
6158         init_data_structures_once();
6159
6160         if (inside_selftest())
6161                 lockdep_reset_lock_imm(lock);
6162         else
6163                 lockdep_reset_lock_reg(lock);
6164 }
6165
6166 /* Unregister a dynamically allocated key. */
6167 void lockdep_unregister_key(struct lock_class_key *key)
6168 {
6169         struct hlist_head *hash_head = keyhashentry(key);
6170         struct lock_class_key *k;
6171         struct pending_free *pf;
6172         unsigned long flags;
6173         bool found = false;
6174
6175         might_sleep();
6176
6177         if (WARN_ON_ONCE(static_obj(key)))
6178                 return;
6179
6180         raw_local_irq_save(flags);
6181         if (!graph_lock())
6182                 goto out_irq;
6183
6184         pf = get_pending_free();
6185         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6186                 if (k == key) {
6187                         hlist_del_rcu(&k->hash_entry);
6188                         found = true;
6189                         break;
6190                 }
6191         }
6192         WARN_ON_ONCE(!found);
6193         __lockdep_free_key_range(pf, key, 1);
6194         call_rcu_zapped(pf);
6195         graph_unlock();
6196 out_irq:
6197         raw_local_irq_restore(flags);
6198
6199         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6200         synchronize_rcu();
6201 }
6202 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6203
6204 void __init lockdep_init(void)
6205 {
6206         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6207
6208         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6209         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6210         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6211         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6212         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6213         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6214         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6215
6216         printk(" memory used by lock dependency info: %zu kB\n",
6217                (sizeof(lock_classes) +
6218                 sizeof(lock_classes_in_use) +
6219                 sizeof(classhash_table) +
6220                 sizeof(list_entries) +
6221                 sizeof(list_entries_in_use) +
6222                 sizeof(chainhash_table) +
6223                 sizeof(delayed_free)
6224 #ifdef CONFIG_PROVE_LOCKING
6225                 + sizeof(lock_cq)
6226                 + sizeof(lock_chains)
6227                 + sizeof(lock_chains_in_use)
6228                 + sizeof(chain_hlocks)
6229 #endif
6230                 ) / 1024
6231                 );
6232
6233 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6234         printk(" memory used for stack traces: %zu kB\n",
6235                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6236                );
6237 #endif
6238
6239         printk(" per task-struct memory footprint: %zu bytes\n",
6240                sizeof(((struct task_struct *)NULL)->held_locks));
6241 }
6242
6243 static void
6244 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6245                      const void *mem_to, struct held_lock *hlock)
6246 {
6247         if (!debug_locks_off())
6248                 return;
6249         if (debug_locks_silent)
6250                 return;
6251
6252         pr_warn("\n");
6253         pr_warn("=========================\n");
6254         pr_warn("WARNING: held lock freed!\n");
6255         print_kernel_ident();
6256         pr_warn("-------------------------\n");
6257         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6258                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6259         print_lock(hlock);
6260         lockdep_print_held_locks(curr);
6261
6262         pr_warn("\nstack backtrace:\n");
6263         dump_stack();
6264 }
6265
6266 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6267                                 const void* lock_from, unsigned long lock_len)
6268 {
6269         return lock_from + lock_len <= mem_from ||
6270                 mem_from + mem_len <= lock_from;
6271 }
6272
6273 /*
6274  * Called when kernel memory is freed (or unmapped), or if a lock
6275  * is destroyed or reinitialized - this code checks whether there is
6276  * any held lock in the memory range of <from> to <to>:
6277  */
6278 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6279 {
6280         struct task_struct *curr = current;
6281         struct held_lock *hlock;
6282         unsigned long flags;
6283         int i;
6284
6285         if (unlikely(!debug_locks))
6286                 return;
6287
6288         raw_local_irq_save(flags);
6289         for (i = 0; i < curr->lockdep_depth; i++) {
6290                 hlock = curr->held_locks + i;
6291
6292                 if (not_in_range(mem_from, mem_len, hlock->instance,
6293                                         sizeof(*hlock->instance)))
6294                         continue;
6295
6296                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6297                 break;
6298         }
6299         raw_local_irq_restore(flags);
6300 }
6301 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6302
6303 static void print_held_locks_bug(void)
6304 {
6305         if (!debug_locks_off())
6306                 return;
6307         if (debug_locks_silent)
6308                 return;
6309
6310         pr_warn("\n");
6311         pr_warn("====================================\n");
6312         pr_warn("WARNING: %s/%d still has locks held!\n",
6313                current->comm, task_pid_nr(current));
6314         print_kernel_ident();
6315         pr_warn("------------------------------------\n");
6316         lockdep_print_held_locks(current);
6317         pr_warn("\nstack backtrace:\n");
6318         dump_stack();
6319 }
6320
6321 void debug_check_no_locks_held(void)
6322 {
6323         if (unlikely(current->lockdep_depth > 0))
6324                 print_held_locks_bug();
6325 }
6326 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6327
6328 #ifdef __KERNEL__
6329 void debug_show_all_locks(void)
6330 {
6331         struct task_struct *g, *p;
6332
6333         if (unlikely(!debug_locks)) {
6334                 pr_warn("INFO: lockdep is turned off.\n");
6335                 return;
6336         }
6337         pr_warn("\nShowing all locks held in the system:\n");
6338
6339         rcu_read_lock();
6340         for_each_process_thread(g, p) {
6341                 if (!p->lockdep_depth)
6342                         continue;
6343                 lockdep_print_held_locks(p);
6344                 touch_nmi_watchdog();
6345                 touch_all_softlockup_watchdogs();
6346         }
6347         rcu_read_unlock();
6348
6349         pr_warn("\n");
6350         pr_warn("=============================================\n\n");
6351 }
6352 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6353 #endif
6354
6355 /*
6356  * Careful: only use this function if you are sure that
6357  * the task cannot run in parallel!
6358  */
6359 void debug_show_held_locks(struct task_struct *task)
6360 {
6361         if (unlikely(!debug_locks)) {
6362                 printk("INFO: lockdep is turned off.\n");
6363                 return;
6364         }
6365         lockdep_print_held_locks(task);
6366 }
6367 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6368
6369 asmlinkage __visible void lockdep_sys_exit(void)
6370 {
6371         struct task_struct *curr = current;
6372
6373         if (unlikely(curr->lockdep_depth)) {
6374                 if (!debug_locks_off())
6375                         return;
6376                 pr_warn("\n");
6377                 pr_warn("================================================\n");
6378                 pr_warn("WARNING: lock held when returning to user space!\n");
6379                 print_kernel_ident();
6380                 pr_warn("------------------------------------------------\n");
6381                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6382                                 curr->comm, curr->pid);
6383                 lockdep_print_held_locks(curr);
6384         }
6385
6386         /*
6387          * The lock history for each syscall should be independent. So wipe the
6388          * slate clean on return to userspace.
6389          */
6390         lockdep_invariant_state(false);
6391 }
6392
6393 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6394 {
6395         struct task_struct *curr = current;
6396
6397         /* Note: the following can be executed concurrently, so be careful. */
6398         pr_warn("\n");
6399         pr_warn("=============================\n");
6400         pr_warn("WARNING: suspicious RCU usage\n");
6401         print_kernel_ident();
6402         pr_warn("-----------------------------\n");
6403         pr_warn("%s:%d %s!\n", file, line, s);
6404         pr_warn("\nother info that might help us debug this:\n\n");
6405         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6406                !rcu_lockdep_current_cpu_online()
6407                         ? "RCU used illegally from offline CPU!\n"
6408                         : "",
6409                rcu_scheduler_active, debug_locks);
6410
6411         /*
6412          * If a CPU is in the RCU-free window in idle (ie: in the section
6413          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6414          * considers that CPU to be in an "extended quiescent state",
6415          * which means that RCU will be completely ignoring that CPU.
6416          * Therefore, rcu_read_lock() and friends have absolutely no
6417          * effect on a CPU running in that state. In other words, even if
6418          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6419          * delete data structures out from under it.  RCU really has no
6420          * choice here: we need to keep an RCU-free window in idle where
6421          * the CPU may possibly enter into low power mode. This way we can
6422          * notice an extended quiescent state to other CPUs that started a grace
6423          * period. Otherwise we would delay any grace period as long as we run
6424          * in the idle task.
6425          *
6426          * So complain bitterly if someone does call rcu_read_lock(),
6427          * rcu_read_lock_bh() and so on from extended quiescent states.
6428          */
6429         if (!rcu_is_watching())
6430                 pr_warn("RCU used illegally from extended quiescent state!\n");
6431
6432         lockdep_print_held_locks(curr);
6433         pr_warn("\nstack backtrace:\n");
6434         dump_stack();
6435 }
6436 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);