Merge branches 'acpi-pm' and 'acpi-docs'
[linux-2.6-microblaze.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57
58 #include <asm/sections.h>
59
60 #include "lockdep_internals.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81
82 static __always_inline bool lockdep_enabled(void)
83 {
84         if (!debug_locks)
85                 return false;
86
87         if (this_cpu_read(lockdep_recursion))
88                 return false;
89
90         if (current->lockdep_recursion)
91                 return false;
92
93         return true;
94 }
95
96 /*
97  * lockdep_lock: protects the lockdep graph, the hashes and the
98  *               class/list/hash allocators.
99  *
100  * This is one of the rare exceptions where it's justified
101  * to use a raw spinlock - we really dont want the spinlock
102  * code to recurse back into the lockdep code...
103  */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106
107 static inline void lockdep_lock(void)
108 {
109         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110
111         __this_cpu_inc(lockdep_recursion);
112         arch_spin_lock(&__lock);
113         __owner = current;
114 }
115
116 static inline void lockdep_unlock(void)
117 {
118         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
119
120         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
121                 return;
122
123         __owner = NULL;
124         arch_spin_unlock(&__lock);
125         __this_cpu_dec(lockdep_recursion);
126 }
127
128 static inline bool lockdep_assert_locked(void)
129 {
130         return DEBUG_LOCKS_WARN_ON(__owner != current);
131 }
132
133 static struct task_struct *lockdep_selftest_task_struct;
134
135
136 static int graph_lock(void)
137 {
138         lockdep_lock();
139         /*
140          * Make sure that if another CPU detected a bug while
141          * walking the graph we dont change it (while the other
142          * CPU is busy printing out stuff with the graph lock
143          * dropped already)
144          */
145         if (!debug_locks) {
146                 lockdep_unlock();
147                 return 0;
148         }
149         return 1;
150 }
151
152 static inline void graph_unlock(void)
153 {
154         lockdep_unlock();
155 }
156
157 /*
158  * Turn lock debugging off and return with 0 if it was off already,
159  * and also release the graph lock:
160  */
161 static inline int debug_locks_off_graph_unlock(void)
162 {
163         int ret = debug_locks_off();
164
165         lockdep_unlock();
166
167         return ret;
168 }
169
170 unsigned long nr_list_entries;
171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
173
174 /*
175  * All data structures here are protected by the global debug_lock.
176  *
177  * nr_lock_classes is the number of elements of lock_classes[] that is
178  * in use.
179  */
180 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
181 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
183 unsigned long nr_lock_classes;
184 unsigned long nr_zapped_classes;
185 #ifndef CONFIG_DEBUG_LOCKDEP
186 static
187 #endif
188 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
189 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
190
191 static inline struct lock_class *hlock_class(struct held_lock *hlock)
192 {
193         unsigned int class_idx = hlock->class_idx;
194
195         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
196         barrier();
197
198         if (!test_bit(class_idx, lock_classes_in_use)) {
199                 /*
200                  * Someone passed in garbage, we give up.
201                  */
202                 DEBUG_LOCKS_WARN_ON(1);
203                 return NULL;
204         }
205
206         /*
207          * At this point, if the passed hlock->class_idx is still garbage,
208          * we just have to live with it
209          */
210         return lock_classes + class_idx;
211 }
212
213 #ifdef CONFIG_LOCK_STAT
214 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
215
216 static inline u64 lockstat_clock(void)
217 {
218         return local_clock();
219 }
220
221 static int lock_point(unsigned long points[], unsigned long ip)
222 {
223         int i;
224
225         for (i = 0; i < LOCKSTAT_POINTS; i++) {
226                 if (points[i] == 0) {
227                         points[i] = ip;
228                         break;
229                 }
230                 if (points[i] == ip)
231                         break;
232         }
233
234         return i;
235 }
236
237 static void lock_time_inc(struct lock_time *lt, u64 time)
238 {
239         if (time > lt->max)
240                 lt->max = time;
241
242         if (time < lt->min || !lt->nr)
243                 lt->min = time;
244
245         lt->total += time;
246         lt->nr++;
247 }
248
249 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
250 {
251         if (!src->nr)
252                 return;
253
254         if (src->max > dst->max)
255                 dst->max = src->max;
256
257         if (src->min < dst->min || !dst->nr)
258                 dst->min = src->min;
259
260         dst->total += src->total;
261         dst->nr += src->nr;
262 }
263
264 struct lock_class_stats lock_stats(struct lock_class *class)
265 {
266         struct lock_class_stats stats;
267         int cpu, i;
268
269         memset(&stats, 0, sizeof(struct lock_class_stats));
270         for_each_possible_cpu(cpu) {
271                 struct lock_class_stats *pcs =
272                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
273
274                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
275                         stats.contention_point[i] += pcs->contention_point[i];
276
277                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
278                         stats.contending_point[i] += pcs->contending_point[i];
279
280                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
281                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
282
283                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
284                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
285
286                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
287                         stats.bounces[i] += pcs->bounces[i];
288         }
289
290         return stats;
291 }
292
293 void clear_lock_stats(struct lock_class *class)
294 {
295         int cpu;
296
297         for_each_possible_cpu(cpu) {
298                 struct lock_class_stats *cpu_stats =
299                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
300
301                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
302         }
303         memset(class->contention_point, 0, sizeof(class->contention_point));
304         memset(class->contending_point, 0, sizeof(class->contending_point));
305 }
306
307 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
308 {
309         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
310 }
311
312 static void lock_release_holdtime(struct held_lock *hlock)
313 {
314         struct lock_class_stats *stats;
315         u64 holdtime;
316
317         if (!lock_stat)
318                 return;
319
320         holdtime = lockstat_clock() - hlock->holdtime_stamp;
321
322         stats = get_lock_stats(hlock_class(hlock));
323         if (hlock->read)
324                 lock_time_inc(&stats->read_holdtime, holdtime);
325         else
326                 lock_time_inc(&stats->write_holdtime, holdtime);
327 }
328 #else
329 static inline void lock_release_holdtime(struct held_lock *hlock)
330 {
331 }
332 #endif
333
334 /*
335  * We keep a global list of all lock classes. The list is only accessed with
336  * the lockdep spinlock lock held. free_lock_classes is a list with free
337  * elements. These elements are linked together by the lock_entry member in
338  * struct lock_class.
339  */
340 LIST_HEAD(all_lock_classes);
341 static LIST_HEAD(free_lock_classes);
342
343 /**
344  * struct pending_free - information about data structures about to be freed
345  * @zapped: Head of a list with struct lock_class elements.
346  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
347  *      are about to be freed.
348  */
349 struct pending_free {
350         struct list_head zapped;
351         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
352 };
353
354 /**
355  * struct delayed_free - data structures used for delayed freeing
356  *
357  * A data structure for delayed freeing of data structures that may be
358  * accessed by RCU readers at the time these were freed.
359  *
360  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
361  * @index:     Index of @pf to which freed data structures are added.
362  * @scheduled: Whether or not an RCU callback has been scheduled.
363  * @pf:        Array with information about data structures about to be freed.
364  */
365 static struct delayed_free {
366         struct rcu_head         rcu_head;
367         int                     index;
368         int                     scheduled;
369         struct pending_free     pf[2];
370 } delayed_free;
371
372 /*
373  * The lockdep classes are in a hash-table as well, for fast lookup:
374  */
375 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
376 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
377 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
378 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
379
380 static struct hlist_head classhash_table[CLASSHASH_SIZE];
381
382 /*
383  * We put the lock dependency chains into a hash-table as well, to cache
384  * their existence:
385  */
386 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
387 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
388 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
389 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
390
391 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
392
393 /*
394  * the id of held_lock
395  */
396 static inline u16 hlock_id(struct held_lock *hlock)
397 {
398         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
399
400         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
401 }
402
403 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
404 {
405         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
406 }
407
408 /*
409  * The hash key of the lock dependency chains is a hash itself too:
410  * it's a hash of all locks taken up to that lock, including that lock.
411  * It's a 64-bit hash, because it's important for the keys to be
412  * unique.
413  */
414 static inline u64 iterate_chain_key(u64 key, u32 idx)
415 {
416         u32 k0 = key, k1 = key >> 32;
417
418         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
419
420         return k0 | (u64)k1 << 32;
421 }
422
423 void lockdep_init_task(struct task_struct *task)
424 {
425         task->lockdep_depth = 0; /* no locks held yet */
426         task->curr_chain_key = INITIAL_CHAIN_KEY;
427         task->lockdep_recursion = 0;
428 }
429
430 static __always_inline void lockdep_recursion_inc(void)
431 {
432         __this_cpu_inc(lockdep_recursion);
433 }
434
435 static __always_inline void lockdep_recursion_finish(void)
436 {
437         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
438                 __this_cpu_write(lockdep_recursion, 0);
439 }
440
441 void lockdep_set_selftest_task(struct task_struct *task)
442 {
443         lockdep_selftest_task_struct = task;
444 }
445
446 /*
447  * Debugging switches:
448  */
449
450 #define VERBOSE                 0
451 #define VERY_VERBOSE            0
452
453 #if VERBOSE
454 # define HARDIRQ_VERBOSE        1
455 # define SOFTIRQ_VERBOSE        1
456 #else
457 # define HARDIRQ_VERBOSE        0
458 # define SOFTIRQ_VERBOSE        0
459 #endif
460
461 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
462 /*
463  * Quick filtering for interesting events:
464  */
465 static int class_filter(struct lock_class *class)
466 {
467 #if 0
468         /* Example */
469         if (class->name_version == 1 &&
470                         !strcmp(class->name, "lockname"))
471                 return 1;
472         if (class->name_version == 1 &&
473                         !strcmp(class->name, "&struct->lockfield"))
474                 return 1;
475 #endif
476         /* Filter everything else. 1 would be to allow everything else */
477         return 0;
478 }
479 #endif
480
481 static int verbose(struct lock_class *class)
482 {
483 #if VERBOSE
484         return class_filter(class);
485 #endif
486         return 0;
487 }
488
489 static void print_lockdep_off(const char *bug_msg)
490 {
491         printk(KERN_DEBUG "%s\n", bug_msg);
492         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
493 #ifdef CONFIG_LOCK_STAT
494         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
495 #endif
496 }
497
498 unsigned long nr_stack_trace_entries;
499
500 #ifdef CONFIG_PROVE_LOCKING
501 /**
502  * struct lock_trace - single stack backtrace
503  * @hash_entry: Entry in a stack_trace_hash[] list.
504  * @hash:       jhash() of @entries.
505  * @nr_entries: Number of entries in @entries.
506  * @entries:    Actual stack backtrace.
507  */
508 struct lock_trace {
509         struct hlist_node       hash_entry;
510         u32                     hash;
511         u32                     nr_entries;
512         unsigned long           entries[] __aligned(sizeof(unsigned long));
513 };
514 #define LOCK_TRACE_SIZE_IN_LONGS                                \
515         (sizeof(struct lock_trace) / sizeof(unsigned long))
516 /*
517  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
518  */
519 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
520 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
521
522 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
523 {
524         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
525                 memcmp(t1->entries, t2->entries,
526                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
527 }
528
529 static struct lock_trace *save_trace(void)
530 {
531         struct lock_trace *trace, *t2;
532         struct hlist_head *hash_head;
533         u32 hash;
534         int max_entries;
535
536         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
537         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
538
539         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
540         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
541                 LOCK_TRACE_SIZE_IN_LONGS;
542
543         if (max_entries <= 0) {
544                 if (!debug_locks_off_graph_unlock())
545                         return NULL;
546
547                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
548                 dump_stack();
549
550                 return NULL;
551         }
552         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
553
554         hash = jhash(trace->entries, trace->nr_entries *
555                      sizeof(trace->entries[0]), 0);
556         trace->hash = hash;
557         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
558         hlist_for_each_entry(t2, hash_head, hash_entry) {
559                 if (traces_identical(trace, t2))
560                         return t2;
561         }
562         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
563         hlist_add_head(&trace->hash_entry, hash_head);
564
565         return trace;
566 }
567
568 /* Return the number of stack traces in the stack_trace[] array. */
569 u64 lockdep_stack_trace_count(void)
570 {
571         struct lock_trace *trace;
572         u64 c = 0;
573         int i;
574
575         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
576                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
577                         c++;
578                 }
579         }
580
581         return c;
582 }
583
584 /* Return the number of stack hash chains that have at least one stack trace. */
585 u64 lockdep_stack_hash_count(void)
586 {
587         u64 c = 0;
588         int i;
589
590         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
591                 if (!hlist_empty(&stack_trace_hash[i]))
592                         c++;
593
594         return c;
595 }
596 #endif
597
598 unsigned int nr_hardirq_chains;
599 unsigned int nr_softirq_chains;
600 unsigned int nr_process_chains;
601 unsigned int max_lockdep_depth;
602
603 #ifdef CONFIG_DEBUG_LOCKDEP
604 /*
605  * Various lockdep statistics:
606  */
607 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
608 #endif
609
610 #ifdef CONFIG_PROVE_LOCKING
611 /*
612  * Locking printouts:
613  */
614
615 #define __USAGE(__STATE)                                                \
616         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
617         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
618         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
619         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
620
621 static const char *usage_str[] =
622 {
623 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
624 #include "lockdep_states.h"
625 #undef LOCKDEP_STATE
626         [LOCK_USED] = "INITIAL USE",
627         [LOCK_USED_READ] = "INITIAL READ USE",
628         /* abused as string storage for verify_lock_unused() */
629         [LOCK_USAGE_STATES] = "IN-NMI",
630 };
631 #endif
632
633 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
634 {
635         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
636 }
637
638 static inline unsigned long lock_flag(enum lock_usage_bit bit)
639 {
640         return 1UL << bit;
641 }
642
643 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
644 {
645         /*
646          * The usage character defaults to '.' (i.e., irqs disabled and not in
647          * irq context), which is the safest usage category.
648          */
649         char c = '.';
650
651         /*
652          * The order of the following usage checks matters, which will
653          * result in the outcome character as follows:
654          *
655          * - '+': irq is enabled and not in irq context
656          * - '-': in irq context and irq is disabled
657          * - '?': in irq context and irq is enabled
658          */
659         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
660                 c = '+';
661                 if (class->usage_mask & lock_flag(bit))
662                         c = '?';
663         } else if (class->usage_mask & lock_flag(bit))
664                 c = '-';
665
666         return c;
667 }
668
669 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
670 {
671         int i = 0;
672
673 #define LOCKDEP_STATE(__STATE)                                          \
674         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
675         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
676 #include "lockdep_states.h"
677 #undef LOCKDEP_STATE
678
679         usage[i] = '\0';
680 }
681
682 static void __print_lock_name(struct lock_class *class)
683 {
684         char str[KSYM_NAME_LEN];
685         const char *name;
686
687         name = class->name;
688         if (!name) {
689                 name = __get_key_name(class->key, str);
690                 printk(KERN_CONT "%s", name);
691         } else {
692                 printk(KERN_CONT "%s", name);
693                 if (class->name_version > 1)
694                         printk(KERN_CONT "#%d", class->name_version);
695                 if (class->subclass)
696                         printk(KERN_CONT "/%d", class->subclass);
697         }
698 }
699
700 static void print_lock_name(struct lock_class *class)
701 {
702         char usage[LOCK_USAGE_CHARS];
703
704         get_usage_chars(class, usage);
705
706         printk(KERN_CONT " (");
707         __print_lock_name(class);
708         printk(KERN_CONT "){%s}-{%d:%d}", usage,
709                         class->wait_type_outer ?: class->wait_type_inner,
710                         class->wait_type_inner);
711 }
712
713 static void print_lockdep_cache(struct lockdep_map *lock)
714 {
715         const char *name;
716         char str[KSYM_NAME_LEN];
717
718         name = lock->name;
719         if (!name)
720                 name = __get_key_name(lock->key->subkeys, str);
721
722         printk(KERN_CONT "%s", name);
723 }
724
725 static void print_lock(struct held_lock *hlock)
726 {
727         /*
728          * We can be called locklessly through debug_show_all_locks() so be
729          * extra careful, the hlock might have been released and cleared.
730          *
731          * If this indeed happens, lets pretend it does not hurt to continue
732          * to print the lock unless the hlock class_idx does not point to a
733          * registered class. The rationale here is: since we don't attempt
734          * to distinguish whether we are in this situation, if it just
735          * happened we can't count on class_idx to tell either.
736          */
737         struct lock_class *lock = hlock_class(hlock);
738
739         if (!lock) {
740                 printk(KERN_CONT "<RELEASED>\n");
741                 return;
742         }
743
744         printk(KERN_CONT "%px", hlock->instance);
745         print_lock_name(lock);
746         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
747 }
748
749 static void lockdep_print_held_locks(struct task_struct *p)
750 {
751         int i, depth = READ_ONCE(p->lockdep_depth);
752
753         if (!depth)
754                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
755         else
756                 printk("%d lock%s held by %s/%d:\n", depth,
757                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
758         /*
759          * It's not reliable to print a task's held locks if it's not sleeping
760          * and it's not the current task.
761          */
762         if (p->state == TASK_RUNNING && p != current)
763                 return;
764         for (i = 0; i < depth; i++) {
765                 printk(" #%d: ", i);
766                 print_lock(p->held_locks + i);
767         }
768 }
769
770 static void print_kernel_ident(void)
771 {
772         printk("%s %.*s %s\n", init_utsname()->release,
773                 (int)strcspn(init_utsname()->version, " "),
774                 init_utsname()->version,
775                 print_tainted());
776 }
777
778 static int very_verbose(struct lock_class *class)
779 {
780 #if VERY_VERBOSE
781         return class_filter(class);
782 #endif
783         return 0;
784 }
785
786 /*
787  * Is this the address of a static object:
788  */
789 #ifdef __KERNEL__
790 static int static_obj(const void *obj)
791 {
792         unsigned long start = (unsigned long) &_stext,
793                       end   = (unsigned long) &_end,
794                       addr  = (unsigned long) obj;
795
796         if (arch_is_kernel_initmem_freed(addr))
797                 return 0;
798
799         /*
800          * static variable?
801          */
802         if ((addr >= start) && (addr < end))
803                 return 1;
804
805         if (arch_is_kernel_data(addr))
806                 return 1;
807
808         /*
809          * in-kernel percpu var?
810          */
811         if (is_kernel_percpu_address(addr))
812                 return 1;
813
814         /*
815          * module static or percpu var?
816          */
817         return is_module_address(addr) || is_module_percpu_address(addr);
818 }
819 #endif
820
821 /*
822  * To make lock name printouts unique, we calculate a unique
823  * class->name_version generation counter. The caller must hold the graph
824  * lock.
825  */
826 static int count_matching_names(struct lock_class *new_class)
827 {
828         struct lock_class *class;
829         int count = 0;
830
831         if (!new_class->name)
832                 return 0;
833
834         list_for_each_entry(class, &all_lock_classes, lock_entry) {
835                 if (new_class->key - new_class->subclass == class->key)
836                         return class->name_version;
837                 if (class->name && !strcmp(class->name, new_class->name))
838                         count = max(count, class->name_version);
839         }
840
841         return count + 1;
842 }
843
844 /* used from NMI context -- must be lockless */
845 static __always_inline struct lock_class *
846 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
847 {
848         struct lockdep_subclass_key *key;
849         struct hlist_head *hash_head;
850         struct lock_class *class;
851
852         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
853                 debug_locks_off();
854                 printk(KERN_ERR
855                         "BUG: looking up invalid subclass: %u\n", subclass);
856                 printk(KERN_ERR
857                         "turning off the locking correctness validator.\n");
858                 dump_stack();
859                 return NULL;
860         }
861
862         /*
863          * If it is not initialised then it has never been locked,
864          * so it won't be present in the hash table.
865          */
866         if (unlikely(!lock->key))
867                 return NULL;
868
869         /*
870          * NOTE: the class-key must be unique. For dynamic locks, a static
871          * lock_class_key variable is passed in through the mutex_init()
872          * (or spin_lock_init()) call - which acts as the key. For static
873          * locks we use the lock object itself as the key.
874          */
875         BUILD_BUG_ON(sizeof(struct lock_class_key) >
876                         sizeof(struct lockdep_map));
877
878         key = lock->key->subkeys + subclass;
879
880         hash_head = classhashentry(key);
881
882         /*
883          * We do an RCU walk of the hash, see lockdep_free_key_range().
884          */
885         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
886                 return NULL;
887
888         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
889                 if (class->key == key) {
890                         /*
891                          * Huh! same key, different name? Did someone trample
892                          * on some memory? We're most confused.
893                          */
894                         WARN_ON_ONCE(class->name != lock->name &&
895                                      lock->key != &__lockdep_no_validate__);
896                         return class;
897                 }
898         }
899
900         return NULL;
901 }
902
903 /*
904  * Static locks do not have their class-keys yet - for them the key is
905  * the lock object itself. If the lock is in the per cpu area, the
906  * canonical address of the lock (per cpu offset removed) is used.
907  */
908 static bool assign_lock_key(struct lockdep_map *lock)
909 {
910         unsigned long can_addr, addr = (unsigned long)lock;
911
912 #ifdef __KERNEL__
913         /*
914          * lockdep_free_key_range() assumes that struct lock_class_key
915          * objects do not overlap. Since we use the address of lock
916          * objects as class key for static objects, check whether the
917          * size of lock_class_key objects does not exceed the size of
918          * the smallest lock object.
919          */
920         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
921 #endif
922
923         if (__is_kernel_percpu_address(addr, &can_addr))
924                 lock->key = (void *)can_addr;
925         else if (__is_module_percpu_address(addr, &can_addr))
926                 lock->key = (void *)can_addr;
927         else if (static_obj(lock))
928                 lock->key = (void *)lock;
929         else {
930                 /* Debug-check: all keys must be persistent! */
931                 debug_locks_off();
932                 pr_err("INFO: trying to register non-static key.\n");
933                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
934                 pr_err("you didn't initialize this object before use?\n");
935                 pr_err("turning off the locking correctness validator.\n");
936                 dump_stack();
937                 return false;
938         }
939
940         return true;
941 }
942
943 #ifdef CONFIG_DEBUG_LOCKDEP
944
945 /* Check whether element @e occurs in list @h */
946 static bool in_list(struct list_head *e, struct list_head *h)
947 {
948         struct list_head *f;
949
950         list_for_each(f, h) {
951                 if (e == f)
952                         return true;
953         }
954
955         return false;
956 }
957
958 /*
959  * Check whether entry @e occurs in any of the locks_after or locks_before
960  * lists.
961  */
962 static bool in_any_class_list(struct list_head *e)
963 {
964         struct lock_class *class;
965         int i;
966
967         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
968                 class = &lock_classes[i];
969                 if (in_list(e, &class->locks_after) ||
970                     in_list(e, &class->locks_before))
971                         return true;
972         }
973         return false;
974 }
975
976 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
977 {
978         struct lock_list *e;
979
980         list_for_each_entry(e, h, entry) {
981                 if (e->links_to != c) {
982                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
983                                c->name ? : "(?)",
984                                (unsigned long)(e - list_entries),
985                                e->links_to && e->links_to->name ?
986                                e->links_to->name : "(?)",
987                                e->class && e->class->name ? e->class->name :
988                                "(?)");
989                         return false;
990                 }
991         }
992         return true;
993 }
994
995 #ifdef CONFIG_PROVE_LOCKING
996 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
997 #endif
998
999 static bool check_lock_chain_key(struct lock_chain *chain)
1000 {
1001 #ifdef CONFIG_PROVE_LOCKING
1002         u64 chain_key = INITIAL_CHAIN_KEY;
1003         int i;
1004
1005         for (i = chain->base; i < chain->base + chain->depth; i++)
1006                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1007         /*
1008          * The 'unsigned long long' casts avoid that a compiler warning
1009          * is reported when building tools/lib/lockdep.
1010          */
1011         if (chain->chain_key != chain_key) {
1012                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1013                        (unsigned long long)(chain - lock_chains),
1014                        (unsigned long long)chain->chain_key,
1015                        (unsigned long long)chain_key);
1016                 return false;
1017         }
1018 #endif
1019         return true;
1020 }
1021
1022 static bool in_any_zapped_class_list(struct lock_class *class)
1023 {
1024         struct pending_free *pf;
1025         int i;
1026
1027         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1028                 if (in_list(&class->lock_entry, &pf->zapped))
1029                         return true;
1030         }
1031
1032         return false;
1033 }
1034
1035 static bool __check_data_structures(void)
1036 {
1037         struct lock_class *class;
1038         struct lock_chain *chain;
1039         struct hlist_head *head;
1040         struct lock_list *e;
1041         int i;
1042
1043         /* Check whether all classes occur in a lock list. */
1044         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1045                 class = &lock_classes[i];
1046                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1047                     !in_list(&class->lock_entry, &free_lock_classes) &&
1048                     !in_any_zapped_class_list(class)) {
1049                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1050                                class, class->name ? : "(?)");
1051                         return false;
1052                 }
1053         }
1054
1055         /* Check whether all classes have valid lock lists. */
1056         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1057                 class = &lock_classes[i];
1058                 if (!class_lock_list_valid(class, &class->locks_before))
1059                         return false;
1060                 if (!class_lock_list_valid(class, &class->locks_after))
1061                         return false;
1062         }
1063
1064         /* Check the chain_key of all lock chains. */
1065         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1066                 head = chainhash_table + i;
1067                 hlist_for_each_entry_rcu(chain, head, entry) {
1068                         if (!check_lock_chain_key(chain))
1069                                 return false;
1070                 }
1071         }
1072
1073         /*
1074          * Check whether all list entries that are in use occur in a class
1075          * lock list.
1076          */
1077         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1078                 e = list_entries + i;
1079                 if (!in_any_class_list(&e->entry)) {
1080                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1081                                (unsigned int)(e - list_entries),
1082                                e->class->name ? : "(?)",
1083                                e->links_to->name ? : "(?)");
1084                         return false;
1085                 }
1086         }
1087
1088         /*
1089          * Check whether all list entries that are not in use do not occur in
1090          * a class lock list.
1091          */
1092         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1093                 e = list_entries + i;
1094                 if (in_any_class_list(&e->entry)) {
1095                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1096                                (unsigned int)(e - list_entries),
1097                                e->class && e->class->name ? e->class->name :
1098                                "(?)",
1099                                e->links_to && e->links_to->name ?
1100                                e->links_to->name : "(?)");
1101                         return false;
1102                 }
1103         }
1104
1105         return true;
1106 }
1107
1108 int check_consistency = 0;
1109 module_param(check_consistency, int, 0644);
1110
1111 static void check_data_structures(void)
1112 {
1113         static bool once = false;
1114
1115         if (check_consistency && !once) {
1116                 if (!__check_data_structures()) {
1117                         once = true;
1118                         WARN_ON(once);
1119                 }
1120         }
1121 }
1122
1123 #else /* CONFIG_DEBUG_LOCKDEP */
1124
1125 static inline void check_data_structures(void) { }
1126
1127 #endif /* CONFIG_DEBUG_LOCKDEP */
1128
1129 static void init_chain_block_buckets(void);
1130
1131 /*
1132  * Initialize the lock_classes[] array elements, the free_lock_classes list
1133  * and also the delayed_free structure.
1134  */
1135 static void init_data_structures_once(void)
1136 {
1137         static bool __read_mostly ds_initialized, rcu_head_initialized;
1138         int i;
1139
1140         if (likely(rcu_head_initialized))
1141                 return;
1142
1143         if (system_state >= SYSTEM_SCHEDULING) {
1144                 init_rcu_head(&delayed_free.rcu_head);
1145                 rcu_head_initialized = true;
1146         }
1147
1148         if (ds_initialized)
1149                 return;
1150
1151         ds_initialized = true;
1152
1153         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1154         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1155
1156         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1157                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1158                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1159                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1160         }
1161         init_chain_block_buckets();
1162 }
1163
1164 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1165 {
1166         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1167
1168         return lock_keys_hash + hash;
1169 }
1170
1171 /* Register a dynamically allocated key. */
1172 void lockdep_register_key(struct lock_class_key *key)
1173 {
1174         struct hlist_head *hash_head;
1175         struct lock_class_key *k;
1176         unsigned long flags;
1177
1178         if (WARN_ON_ONCE(static_obj(key)))
1179                 return;
1180         hash_head = keyhashentry(key);
1181
1182         raw_local_irq_save(flags);
1183         if (!graph_lock())
1184                 goto restore_irqs;
1185         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1186                 if (WARN_ON_ONCE(k == key))
1187                         goto out_unlock;
1188         }
1189         hlist_add_head_rcu(&key->hash_entry, hash_head);
1190 out_unlock:
1191         graph_unlock();
1192 restore_irqs:
1193         raw_local_irq_restore(flags);
1194 }
1195 EXPORT_SYMBOL_GPL(lockdep_register_key);
1196
1197 /* Check whether a key has been registered as a dynamic key. */
1198 static bool is_dynamic_key(const struct lock_class_key *key)
1199 {
1200         struct hlist_head *hash_head;
1201         struct lock_class_key *k;
1202         bool found = false;
1203
1204         if (WARN_ON_ONCE(static_obj(key)))
1205                 return false;
1206
1207         /*
1208          * If lock debugging is disabled lock_keys_hash[] may contain
1209          * pointers to memory that has already been freed. Avoid triggering
1210          * a use-after-free in that case by returning early.
1211          */
1212         if (!debug_locks)
1213                 return true;
1214
1215         hash_head = keyhashentry(key);
1216
1217         rcu_read_lock();
1218         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1219                 if (k == key) {
1220                         found = true;
1221                         break;
1222                 }
1223         }
1224         rcu_read_unlock();
1225
1226         return found;
1227 }
1228
1229 /*
1230  * Register a lock's class in the hash-table, if the class is not present
1231  * yet. Otherwise we look it up. We cache the result in the lock object
1232  * itself, so actual lookup of the hash should be once per lock object.
1233  */
1234 static struct lock_class *
1235 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1236 {
1237         struct lockdep_subclass_key *key;
1238         struct hlist_head *hash_head;
1239         struct lock_class *class;
1240
1241         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1242
1243         class = look_up_lock_class(lock, subclass);
1244         if (likely(class))
1245                 goto out_set_class_cache;
1246
1247         if (!lock->key) {
1248                 if (!assign_lock_key(lock))
1249                         return NULL;
1250         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1251                 return NULL;
1252         }
1253
1254         key = lock->key->subkeys + subclass;
1255         hash_head = classhashentry(key);
1256
1257         if (!graph_lock()) {
1258                 return NULL;
1259         }
1260         /*
1261          * We have to do the hash-walk again, to avoid races
1262          * with another CPU:
1263          */
1264         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1265                 if (class->key == key)
1266                         goto out_unlock_set;
1267         }
1268
1269         init_data_structures_once();
1270
1271         /* Allocate a new lock class and add it to the hash. */
1272         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1273                                          lock_entry);
1274         if (!class) {
1275                 if (!debug_locks_off_graph_unlock()) {
1276                         return NULL;
1277                 }
1278
1279                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1280                 dump_stack();
1281                 return NULL;
1282         }
1283         nr_lock_classes++;
1284         __set_bit(class - lock_classes, lock_classes_in_use);
1285         debug_atomic_inc(nr_unused_locks);
1286         class->key = key;
1287         class->name = lock->name;
1288         class->subclass = subclass;
1289         WARN_ON_ONCE(!list_empty(&class->locks_before));
1290         WARN_ON_ONCE(!list_empty(&class->locks_after));
1291         class->name_version = count_matching_names(class);
1292         class->wait_type_inner = lock->wait_type_inner;
1293         class->wait_type_outer = lock->wait_type_outer;
1294         class->lock_type = lock->lock_type;
1295         /*
1296          * We use RCU's safe list-add method to make
1297          * parallel walking of the hash-list safe:
1298          */
1299         hlist_add_head_rcu(&class->hash_entry, hash_head);
1300         /*
1301          * Remove the class from the free list and add it to the global list
1302          * of classes.
1303          */
1304         list_move_tail(&class->lock_entry, &all_lock_classes);
1305
1306         if (verbose(class)) {
1307                 graph_unlock();
1308
1309                 printk("\nnew class %px: %s", class->key, class->name);
1310                 if (class->name_version > 1)
1311                         printk(KERN_CONT "#%d", class->name_version);
1312                 printk(KERN_CONT "\n");
1313                 dump_stack();
1314
1315                 if (!graph_lock()) {
1316                         return NULL;
1317                 }
1318         }
1319 out_unlock_set:
1320         graph_unlock();
1321
1322 out_set_class_cache:
1323         if (!subclass || force)
1324                 lock->class_cache[0] = class;
1325         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1326                 lock->class_cache[subclass] = class;
1327
1328         /*
1329          * Hash collision, did we smoke some? We found a class with a matching
1330          * hash but the subclass -- which is hashed in -- didn't match.
1331          */
1332         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1333                 return NULL;
1334
1335         return class;
1336 }
1337
1338 #ifdef CONFIG_PROVE_LOCKING
1339 /*
1340  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1341  * with NULL on failure)
1342  */
1343 static struct lock_list *alloc_list_entry(void)
1344 {
1345         int idx = find_first_zero_bit(list_entries_in_use,
1346                                       ARRAY_SIZE(list_entries));
1347
1348         if (idx >= ARRAY_SIZE(list_entries)) {
1349                 if (!debug_locks_off_graph_unlock())
1350                         return NULL;
1351
1352                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1353                 dump_stack();
1354                 return NULL;
1355         }
1356         nr_list_entries++;
1357         __set_bit(idx, list_entries_in_use);
1358         return list_entries + idx;
1359 }
1360
1361 /*
1362  * Add a new dependency to the head of the list:
1363  */
1364 static int add_lock_to_list(struct lock_class *this,
1365                             struct lock_class *links_to, struct list_head *head,
1366                             unsigned long ip, u16 distance, u8 dep,
1367                             const struct lock_trace *trace)
1368 {
1369         struct lock_list *entry;
1370         /*
1371          * Lock not present yet - get a new dependency struct and
1372          * add it to the list:
1373          */
1374         entry = alloc_list_entry();
1375         if (!entry)
1376                 return 0;
1377
1378         entry->class = this;
1379         entry->links_to = links_to;
1380         entry->dep = dep;
1381         entry->distance = distance;
1382         entry->trace = trace;
1383         /*
1384          * Both allocation and removal are done under the graph lock; but
1385          * iteration is under RCU-sched; see look_up_lock_class() and
1386          * lockdep_free_key_range().
1387          */
1388         list_add_tail_rcu(&entry->entry, head);
1389
1390         return 1;
1391 }
1392
1393 /*
1394  * For good efficiency of modular, we use power of 2
1395  */
1396 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1397 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1398
1399 /*
1400  * The circular_queue and helpers are used to implement graph
1401  * breadth-first search (BFS) algorithm, by which we can determine
1402  * whether there is a path from a lock to another. In deadlock checks,
1403  * a path from the next lock to be acquired to a previous held lock
1404  * indicates that adding the <prev> -> <next> lock dependency will
1405  * produce a circle in the graph. Breadth-first search instead of
1406  * depth-first search is used in order to find the shortest (circular)
1407  * path.
1408  */
1409 struct circular_queue {
1410         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1411         unsigned int  front, rear;
1412 };
1413
1414 static struct circular_queue lock_cq;
1415
1416 unsigned int max_bfs_queue_depth;
1417
1418 static unsigned int lockdep_dependency_gen_id;
1419
1420 static inline void __cq_init(struct circular_queue *cq)
1421 {
1422         cq->front = cq->rear = 0;
1423         lockdep_dependency_gen_id++;
1424 }
1425
1426 static inline int __cq_empty(struct circular_queue *cq)
1427 {
1428         return (cq->front == cq->rear);
1429 }
1430
1431 static inline int __cq_full(struct circular_queue *cq)
1432 {
1433         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1434 }
1435
1436 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1437 {
1438         if (__cq_full(cq))
1439                 return -1;
1440
1441         cq->element[cq->rear] = elem;
1442         cq->rear = (cq->rear + 1) & CQ_MASK;
1443         return 0;
1444 }
1445
1446 /*
1447  * Dequeue an element from the circular_queue, return a lock_list if
1448  * the queue is not empty, or NULL if otherwise.
1449  */
1450 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1451 {
1452         struct lock_list * lock;
1453
1454         if (__cq_empty(cq))
1455                 return NULL;
1456
1457         lock = cq->element[cq->front];
1458         cq->front = (cq->front + 1) & CQ_MASK;
1459
1460         return lock;
1461 }
1462
1463 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1464 {
1465         return (cq->rear - cq->front) & CQ_MASK;
1466 }
1467
1468 static inline void mark_lock_accessed(struct lock_list *lock)
1469 {
1470         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1471 }
1472
1473 static inline void visit_lock_entry(struct lock_list *lock,
1474                                     struct lock_list *parent)
1475 {
1476         lock->parent = parent;
1477 }
1478
1479 static inline unsigned long lock_accessed(struct lock_list *lock)
1480 {
1481         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1482 }
1483
1484 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1485 {
1486         return child->parent;
1487 }
1488
1489 static inline int get_lock_depth(struct lock_list *child)
1490 {
1491         int depth = 0;
1492         struct lock_list *parent;
1493
1494         while ((parent = get_lock_parent(child))) {
1495                 child = parent;
1496                 depth++;
1497         }
1498         return depth;
1499 }
1500
1501 /*
1502  * Return the forward or backward dependency list.
1503  *
1504  * @lock:   the lock_list to get its class's dependency list
1505  * @offset: the offset to struct lock_class to determine whether it is
1506  *          locks_after or locks_before
1507  */
1508 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1509 {
1510         void *lock_class = lock->class;
1511
1512         return lock_class + offset;
1513 }
1514 /*
1515  * Return values of a bfs search:
1516  *
1517  * BFS_E* indicates an error
1518  * BFS_R* indicates a result (match or not)
1519  *
1520  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1521  *
1522  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1523  *
1524  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1525  *             *@target_entry.
1526  *
1527  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1528  *               _unchanged_.
1529  */
1530 enum bfs_result {
1531         BFS_EINVALIDNODE = -2,
1532         BFS_EQUEUEFULL = -1,
1533         BFS_RMATCH = 0,
1534         BFS_RNOMATCH = 1,
1535 };
1536
1537 /*
1538  * bfs_result < 0 means error
1539  */
1540 static inline bool bfs_error(enum bfs_result res)
1541 {
1542         return res < 0;
1543 }
1544
1545 /*
1546  * DEP_*_BIT in lock_list::dep
1547  *
1548  * For dependency @prev -> @next:
1549  *
1550  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1551  *       (->read == 2)
1552  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1553  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1554  *   EN: @prev is exclusive locker and @next is non-recursive locker
1555  *
1556  * Note that we define the value of DEP_*_BITs so that:
1557  *   bit0 is prev->read == 0
1558  *   bit1 is next->read != 2
1559  */
1560 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1561 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1562 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1563 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1564
1565 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1566 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1567 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1568 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1569
1570 static inline unsigned int
1571 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1572 {
1573         return (prev->read == 0) + ((next->read != 2) << 1);
1574 }
1575
1576 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1577 {
1578         return 1U << __calc_dep_bit(prev, next);
1579 }
1580
1581 /*
1582  * calculate the dep_bit for backwards edges. We care about whether @prev is
1583  * shared and whether @next is recursive.
1584  */
1585 static inline unsigned int
1586 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1587 {
1588         return (next->read != 2) + ((prev->read == 0) << 1);
1589 }
1590
1591 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1592 {
1593         return 1U << __calc_dep_bitb(prev, next);
1594 }
1595
1596 /*
1597  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1598  * search.
1599  */
1600 static inline void __bfs_init_root(struct lock_list *lock,
1601                                    struct lock_class *class)
1602 {
1603         lock->class = class;
1604         lock->parent = NULL;
1605         lock->only_xr = 0;
1606 }
1607
1608 /*
1609  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1610  * root for a BFS search.
1611  *
1612  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1613  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1614  * and -(S*)->.
1615  */
1616 static inline void bfs_init_root(struct lock_list *lock,
1617                                  struct held_lock *hlock)
1618 {
1619         __bfs_init_root(lock, hlock_class(hlock));
1620         lock->only_xr = (hlock->read == 2);
1621 }
1622
1623 /*
1624  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1625  *
1626  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1627  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1628  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1629  */
1630 static inline void bfs_init_rootb(struct lock_list *lock,
1631                                   struct held_lock *hlock)
1632 {
1633         __bfs_init_root(lock, hlock_class(hlock));
1634         lock->only_xr = (hlock->read != 0);
1635 }
1636
1637 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1638 {
1639         if (!lock || !lock->parent)
1640                 return NULL;
1641
1642         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1643                                      &lock->entry, struct lock_list, entry);
1644 }
1645
1646 /*
1647  * Breadth-First Search to find a strong path in the dependency graph.
1648  *
1649  * @source_entry: the source of the path we are searching for.
1650  * @data: data used for the second parameter of @match function
1651  * @match: match function for the search
1652  * @target_entry: pointer to the target of a matched path
1653  * @offset: the offset to struct lock_class to determine whether it is
1654  *          locks_after or locks_before
1655  *
1656  * We may have multiple edges (considering different kinds of dependencies,
1657  * e.g. ER and SN) between two nodes in the dependency graph. But
1658  * only the strong dependency path in the graph is relevant to deadlocks. A
1659  * strong dependency path is a dependency path that doesn't have two adjacent
1660  * dependencies as -(*R)-> -(S*)->, please see:
1661  *
1662  *         Documentation/locking/lockdep-design.rst
1663  *
1664  * for more explanation of the definition of strong dependency paths
1665  *
1666  * In __bfs(), we only traverse in the strong dependency path:
1667  *
1668  *     In lock_list::only_xr, we record whether the previous dependency only
1669  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1670  *     filter out any -(S*)-> in the current dependency and after that, the
1671  *     ->only_xr is set according to whether we only have -(*R)-> left.
1672  */
1673 static enum bfs_result __bfs(struct lock_list *source_entry,
1674                              void *data,
1675                              bool (*match)(struct lock_list *entry, void *data),
1676                              bool (*skip)(struct lock_list *entry, void *data),
1677                              struct lock_list **target_entry,
1678                              int offset)
1679 {
1680         struct circular_queue *cq = &lock_cq;
1681         struct lock_list *lock = NULL;
1682         struct lock_list *entry;
1683         struct list_head *head;
1684         unsigned int cq_depth;
1685         bool first;
1686
1687         lockdep_assert_locked();
1688
1689         __cq_init(cq);
1690         __cq_enqueue(cq, source_entry);
1691
1692         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1693                 if (!lock->class)
1694                         return BFS_EINVALIDNODE;
1695
1696                 /*
1697                  * Step 1: check whether we already finish on this one.
1698                  *
1699                  * If we have visited all the dependencies from this @lock to
1700                  * others (iow, if we have visited all lock_list entries in
1701                  * @lock->class->locks_{after,before}) we skip, otherwise go
1702                  * and visit all the dependencies in the list and mark this
1703                  * list accessed.
1704                  */
1705                 if (lock_accessed(lock))
1706                         continue;
1707                 else
1708                         mark_lock_accessed(lock);
1709
1710                 /*
1711                  * Step 2: check whether prev dependency and this form a strong
1712                  *         dependency path.
1713                  */
1714                 if (lock->parent) { /* Parent exists, check prev dependency */
1715                         u8 dep = lock->dep;
1716                         bool prev_only_xr = lock->parent->only_xr;
1717
1718                         /*
1719                          * Mask out all -(S*)-> if we only have *R in previous
1720                          * step, because -(*R)-> -(S*)-> don't make up a strong
1721                          * dependency.
1722                          */
1723                         if (prev_only_xr)
1724                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1725
1726                         /* If nothing left, we skip */
1727                         if (!dep)
1728                                 continue;
1729
1730                         /* If there are only -(*R)-> left, set that for the next step */
1731                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1732                 }
1733
1734                 /*
1735                  * Step 3: we haven't visited this and there is a strong
1736                  *         dependency path to this, so check with @match.
1737                  *         If @skip is provide and returns true, we skip this
1738                  *         lock (and any path this lock is in).
1739                  */
1740                 if (skip && skip(lock, data))
1741                         continue;
1742
1743                 if (match(lock, data)) {
1744                         *target_entry = lock;
1745                         return BFS_RMATCH;
1746                 }
1747
1748                 /*
1749                  * Step 4: if not match, expand the path by adding the
1750                  *         forward or backwards dependencis in the search
1751                  *
1752                  */
1753                 first = true;
1754                 head = get_dep_list(lock, offset);
1755                 list_for_each_entry_rcu(entry, head, entry) {
1756                         visit_lock_entry(entry, lock);
1757
1758                         /*
1759                          * Note we only enqueue the first of the list into the
1760                          * queue, because we can always find a sibling
1761                          * dependency from one (see __bfs_next()), as a result
1762                          * the space of queue is saved.
1763                          */
1764                         if (!first)
1765                                 continue;
1766
1767                         first = false;
1768
1769                         if (__cq_enqueue(cq, entry))
1770                                 return BFS_EQUEUEFULL;
1771
1772                         cq_depth = __cq_get_elem_count(cq);
1773                         if (max_bfs_queue_depth < cq_depth)
1774                                 max_bfs_queue_depth = cq_depth;
1775                 }
1776         }
1777
1778         return BFS_RNOMATCH;
1779 }
1780
1781 static inline enum bfs_result
1782 __bfs_forwards(struct lock_list *src_entry,
1783                void *data,
1784                bool (*match)(struct lock_list *entry, void *data),
1785                bool (*skip)(struct lock_list *entry, void *data),
1786                struct lock_list **target_entry)
1787 {
1788         return __bfs(src_entry, data, match, skip, target_entry,
1789                      offsetof(struct lock_class, locks_after));
1790
1791 }
1792
1793 static inline enum bfs_result
1794 __bfs_backwards(struct lock_list *src_entry,
1795                 void *data,
1796                 bool (*match)(struct lock_list *entry, void *data),
1797                bool (*skip)(struct lock_list *entry, void *data),
1798                 struct lock_list **target_entry)
1799 {
1800         return __bfs(src_entry, data, match, skip, target_entry,
1801                      offsetof(struct lock_class, locks_before));
1802
1803 }
1804
1805 static void print_lock_trace(const struct lock_trace *trace,
1806                              unsigned int spaces)
1807 {
1808         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1809 }
1810
1811 /*
1812  * Print a dependency chain entry (this is only done when a deadlock
1813  * has been detected):
1814  */
1815 static noinline void
1816 print_circular_bug_entry(struct lock_list *target, int depth)
1817 {
1818         if (debug_locks_silent)
1819                 return;
1820         printk("\n-> #%u", depth);
1821         print_lock_name(target->class);
1822         printk(KERN_CONT ":\n");
1823         print_lock_trace(target->trace, 6);
1824 }
1825
1826 static void
1827 print_circular_lock_scenario(struct held_lock *src,
1828                              struct held_lock *tgt,
1829                              struct lock_list *prt)
1830 {
1831         struct lock_class *source = hlock_class(src);
1832         struct lock_class *target = hlock_class(tgt);
1833         struct lock_class *parent = prt->class;
1834
1835         /*
1836          * A direct locking problem where unsafe_class lock is taken
1837          * directly by safe_class lock, then all we need to show
1838          * is the deadlock scenario, as it is obvious that the
1839          * unsafe lock is taken under the safe lock.
1840          *
1841          * But if there is a chain instead, where the safe lock takes
1842          * an intermediate lock (middle_class) where this lock is
1843          * not the same as the safe lock, then the lock chain is
1844          * used to describe the problem. Otherwise we would need
1845          * to show a different CPU case for each link in the chain
1846          * from the safe_class lock to the unsafe_class lock.
1847          */
1848         if (parent != source) {
1849                 printk("Chain exists of:\n  ");
1850                 __print_lock_name(source);
1851                 printk(KERN_CONT " --> ");
1852                 __print_lock_name(parent);
1853                 printk(KERN_CONT " --> ");
1854                 __print_lock_name(target);
1855                 printk(KERN_CONT "\n\n");
1856         }
1857
1858         printk(" Possible unsafe locking scenario:\n\n");
1859         printk("       CPU0                    CPU1\n");
1860         printk("       ----                    ----\n");
1861         printk("  lock(");
1862         __print_lock_name(target);
1863         printk(KERN_CONT ");\n");
1864         printk("                               lock(");
1865         __print_lock_name(parent);
1866         printk(KERN_CONT ");\n");
1867         printk("                               lock(");
1868         __print_lock_name(target);
1869         printk(KERN_CONT ");\n");
1870         printk("  lock(");
1871         __print_lock_name(source);
1872         printk(KERN_CONT ");\n");
1873         printk("\n *** DEADLOCK ***\n\n");
1874 }
1875
1876 /*
1877  * When a circular dependency is detected, print the
1878  * header first:
1879  */
1880 static noinline void
1881 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1882                         struct held_lock *check_src,
1883                         struct held_lock *check_tgt)
1884 {
1885         struct task_struct *curr = current;
1886
1887         if (debug_locks_silent)
1888                 return;
1889
1890         pr_warn("\n");
1891         pr_warn("======================================================\n");
1892         pr_warn("WARNING: possible circular locking dependency detected\n");
1893         print_kernel_ident();
1894         pr_warn("------------------------------------------------------\n");
1895         pr_warn("%s/%d is trying to acquire lock:\n",
1896                 curr->comm, task_pid_nr(curr));
1897         print_lock(check_src);
1898
1899         pr_warn("\nbut task is already holding lock:\n");
1900
1901         print_lock(check_tgt);
1902         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1903         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1904
1905         print_circular_bug_entry(entry, depth);
1906 }
1907
1908 /*
1909  * We are about to add A -> B into the dependency graph, and in __bfs() a
1910  * strong dependency path A -> .. -> B is found: hlock_class equals
1911  * entry->class.
1912  *
1913  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1914  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1915  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1916  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1917  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1918  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1919  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1920  *
1921  * We need to make sure both the start and the end of A -> .. -> B is not
1922  * weaker than A -> B. For the start part, please see the comment in
1923  * check_redundant(). For the end part, we need:
1924  *
1925  * Either
1926  *
1927  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1928  *
1929  * or
1930  *
1931  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1932  *
1933  */
1934 static inline bool hlock_equal(struct lock_list *entry, void *data)
1935 {
1936         struct held_lock *hlock = (struct held_lock *)data;
1937
1938         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1939                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1940                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1941 }
1942
1943 /*
1944  * We are about to add B -> A into the dependency graph, and in __bfs() a
1945  * strong dependency path A -> .. -> B is found: hlock_class equals
1946  * entry->class.
1947  *
1948  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1949  * dependency cycle, that means:
1950  *
1951  * Either
1952  *
1953  *     a) B -> A is -(E*)->
1954  *
1955  * or
1956  *
1957  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1958  *
1959  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1960  */
1961 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1962 {
1963         struct held_lock *hlock = (struct held_lock *)data;
1964
1965         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1966                (hlock->read == 0 || /* B -> A is -(E*)-> */
1967                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1968 }
1969
1970 static noinline void print_circular_bug(struct lock_list *this,
1971                                 struct lock_list *target,
1972                                 struct held_lock *check_src,
1973                                 struct held_lock *check_tgt)
1974 {
1975         struct task_struct *curr = current;
1976         struct lock_list *parent;
1977         struct lock_list *first_parent;
1978         int depth;
1979
1980         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1981                 return;
1982
1983         this->trace = save_trace();
1984         if (!this->trace)
1985                 return;
1986
1987         depth = get_lock_depth(target);
1988
1989         print_circular_bug_header(target, depth, check_src, check_tgt);
1990
1991         parent = get_lock_parent(target);
1992         first_parent = parent;
1993
1994         while (parent) {
1995                 print_circular_bug_entry(parent, --depth);
1996                 parent = get_lock_parent(parent);
1997         }
1998
1999         printk("\nother info that might help us debug this:\n\n");
2000         print_circular_lock_scenario(check_src, check_tgt,
2001                                      first_parent);
2002
2003         lockdep_print_held_locks(curr);
2004
2005         printk("\nstack backtrace:\n");
2006         dump_stack();
2007 }
2008
2009 static noinline void print_bfs_bug(int ret)
2010 {
2011         if (!debug_locks_off_graph_unlock())
2012                 return;
2013
2014         /*
2015          * Breadth-first-search failed, graph got corrupted?
2016          */
2017         WARN(1, "lockdep bfs error:%d\n", ret);
2018 }
2019
2020 static bool noop_count(struct lock_list *entry, void *data)
2021 {
2022         (*(unsigned long *)data)++;
2023         return false;
2024 }
2025
2026 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2027 {
2028         unsigned long  count = 0;
2029         struct lock_list *target_entry;
2030
2031         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2032
2033         return count;
2034 }
2035 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2036 {
2037         unsigned long ret, flags;
2038         struct lock_list this;
2039
2040         __bfs_init_root(&this, class);
2041
2042         raw_local_irq_save(flags);
2043         lockdep_lock();
2044         ret = __lockdep_count_forward_deps(&this);
2045         lockdep_unlock();
2046         raw_local_irq_restore(flags);
2047
2048         return ret;
2049 }
2050
2051 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2052 {
2053         unsigned long  count = 0;
2054         struct lock_list *target_entry;
2055
2056         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2057
2058         return count;
2059 }
2060
2061 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2062 {
2063         unsigned long ret, flags;
2064         struct lock_list this;
2065
2066         __bfs_init_root(&this, class);
2067
2068         raw_local_irq_save(flags);
2069         lockdep_lock();
2070         ret = __lockdep_count_backward_deps(&this);
2071         lockdep_unlock();
2072         raw_local_irq_restore(flags);
2073
2074         return ret;
2075 }
2076
2077 /*
2078  * Check that the dependency graph starting at <src> can lead to
2079  * <target> or not.
2080  */
2081 static noinline enum bfs_result
2082 check_path(struct held_lock *target, struct lock_list *src_entry,
2083            bool (*match)(struct lock_list *entry, void *data),
2084            bool (*skip)(struct lock_list *entry, void *data),
2085            struct lock_list **target_entry)
2086 {
2087         enum bfs_result ret;
2088
2089         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2090
2091         if (unlikely(bfs_error(ret)))
2092                 print_bfs_bug(ret);
2093
2094         return ret;
2095 }
2096
2097 /*
2098  * Prove that the dependency graph starting at <src> can not
2099  * lead to <target>. If it can, there is a circle when adding
2100  * <target> -> <src> dependency.
2101  *
2102  * Print an error and return BFS_RMATCH if it does.
2103  */
2104 static noinline enum bfs_result
2105 check_noncircular(struct held_lock *src, struct held_lock *target,
2106                   struct lock_trace **const trace)
2107 {
2108         enum bfs_result ret;
2109         struct lock_list *target_entry;
2110         struct lock_list src_entry;
2111
2112         bfs_init_root(&src_entry, src);
2113
2114         debug_atomic_inc(nr_cyclic_checks);
2115
2116         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2117
2118         if (unlikely(ret == BFS_RMATCH)) {
2119                 if (!*trace) {
2120                         /*
2121                          * If save_trace fails here, the printing might
2122                          * trigger a WARN but because of the !nr_entries it
2123                          * should not do bad things.
2124                          */
2125                         *trace = save_trace();
2126                 }
2127
2128                 print_circular_bug(&src_entry, target_entry, src, target);
2129         }
2130
2131         return ret;
2132 }
2133
2134 #ifdef CONFIG_TRACE_IRQFLAGS
2135
2136 /*
2137  * Forwards and backwards subgraph searching, for the purposes of
2138  * proving that two subgraphs can be connected by a new dependency
2139  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2140  *
2141  * A irq safe->unsafe deadlock happens with the following conditions:
2142  *
2143  * 1) We have a strong dependency path A -> ... -> B
2144  *
2145  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2146  *    irq can create a new dependency B -> A (consider the case that a holder
2147  *    of B gets interrupted by an irq whose handler will try to acquire A).
2148  *
2149  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2150  *    strong circle:
2151  *
2152  *      For the usage bits of B:
2153  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2154  *           ENABLED_IRQ usage suffices.
2155  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2156  *           ENABLED_IRQ_*_READ usage suffices.
2157  *
2158  *      For the usage bits of A:
2159  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2160  *           USED_IN_IRQ usage suffices.
2161  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2162  *           USED_IN_IRQ_*_READ usage suffices.
2163  */
2164
2165 /*
2166  * There is a strong dependency path in the dependency graph: A -> B, and now
2167  * we need to decide which usage bit of A should be accumulated to detect
2168  * safe->unsafe bugs.
2169  *
2170  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2171  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2172  *
2173  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2174  * path, any usage of A should be considered. Otherwise, we should only
2175  * consider _READ usage.
2176  */
2177 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2178 {
2179         if (!entry->only_xr)
2180                 *(unsigned long *)mask |= entry->class->usage_mask;
2181         else /* Mask out _READ usage bits */
2182                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2183
2184         return false;
2185 }
2186
2187 /*
2188  * There is a strong dependency path in the dependency graph: A -> B, and now
2189  * we need to decide which usage bit of B conflicts with the usage bits of A,
2190  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2191  *
2192  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2193  * path, any usage of B should be considered. Otherwise, we should only
2194  * consider _READ usage.
2195  */
2196 static inline bool usage_match(struct lock_list *entry, void *mask)
2197 {
2198         if (!entry->only_xr)
2199                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2200         else /* Mask out _READ usage bits */
2201                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2202 }
2203
2204 static inline bool usage_skip(struct lock_list *entry, void *mask)
2205 {
2206         /*
2207          * Skip local_lock() for irq inversion detection.
2208          *
2209          * For !RT, local_lock() is not a real lock, so it won't carry any
2210          * dependency.
2211          *
2212          * For RT, an irq inversion happens when we have lock A and B, and on
2213          * some CPU we can have:
2214          *
2215          *      lock(A);
2216          *      <interrupted>
2217          *        lock(B);
2218          *
2219          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2220          *
2221          * Now we prove local_lock() cannot exist in that dependency. First we
2222          * have the observation for any lock chain L1 -> ... -> Ln, for any
2223          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2224          * wait context check will complain. And since B is not a sleep lock,
2225          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2226          * local_lock() is 3, which is greater than 2, therefore there is no
2227          * way the local_lock() exists in the dependency B -> ... -> A.
2228          *
2229          * As a result, we will skip local_lock(), when we search for irq
2230          * inversion bugs.
2231          */
2232         if (entry->class->lock_type == LD_LOCK_PERCPU) {
2233                 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2234                         return false;
2235
2236                 return true;
2237         }
2238
2239         return false;
2240 }
2241
2242 /*
2243  * Find a node in the forwards-direction dependency sub-graph starting
2244  * at @root->class that matches @bit.
2245  *
2246  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2247  * into *@target_entry.
2248  */
2249 static enum bfs_result
2250 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2251                         struct lock_list **target_entry)
2252 {
2253         enum bfs_result result;
2254
2255         debug_atomic_inc(nr_find_usage_forwards_checks);
2256
2257         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2258
2259         return result;
2260 }
2261
2262 /*
2263  * Find a node in the backwards-direction dependency sub-graph starting
2264  * at @root->class that matches @bit.
2265  */
2266 static enum bfs_result
2267 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2268                         struct lock_list **target_entry)
2269 {
2270         enum bfs_result result;
2271
2272         debug_atomic_inc(nr_find_usage_backwards_checks);
2273
2274         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2275
2276         return result;
2277 }
2278
2279 static void print_lock_class_header(struct lock_class *class, int depth)
2280 {
2281         int bit;
2282
2283         printk("%*s->", depth, "");
2284         print_lock_name(class);
2285 #ifdef CONFIG_DEBUG_LOCKDEP
2286         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2287 #endif
2288         printk(KERN_CONT " {\n");
2289
2290         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2291                 if (class->usage_mask & (1 << bit)) {
2292                         int len = depth;
2293
2294                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2295                         len += printk(KERN_CONT " at:\n");
2296                         print_lock_trace(class->usage_traces[bit], len);
2297                 }
2298         }
2299         printk("%*s }\n", depth, "");
2300
2301         printk("%*s ... key      at: [<%px>] %pS\n",
2302                 depth, "", class->key, class->key);
2303 }
2304
2305 /*
2306  * printk the shortest lock dependencies from @start to @end in reverse order:
2307  */
2308 static void __used
2309 print_shortest_lock_dependencies(struct lock_list *leaf,
2310                                  struct lock_list *root)
2311 {
2312         struct lock_list *entry = leaf;
2313         int depth;
2314
2315         /*compute depth from generated tree by BFS*/
2316         depth = get_lock_depth(leaf);
2317
2318         do {
2319                 print_lock_class_header(entry->class, depth);
2320                 printk("%*s ... acquired at:\n", depth, "");
2321                 print_lock_trace(entry->trace, 2);
2322                 printk("\n");
2323
2324                 if (depth == 0 && (entry != root)) {
2325                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2326                         break;
2327                 }
2328
2329                 entry = get_lock_parent(entry);
2330                 depth--;
2331         } while (entry && (depth >= 0));
2332 }
2333
2334 static void
2335 print_irq_lock_scenario(struct lock_list *safe_entry,
2336                         struct lock_list *unsafe_entry,
2337                         struct lock_class *prev_class,
2338                         struct lock_class *next_class)
2339 {
2340         struct lock_class *safe_class = safe_entry->class;
2341         struct lock_class *unsafe_class = unsafe_entry->class;
2342         struct lock_class *middle_class = prev_class;
2343
2344         if (middle_class == safe_class)
2345                 middle_class = next_class;
2346
2347         /*
2348          * A direct locking problem where unsafe_class lock is taken
2349          * directly by safe_class lock, then all we need to show
2350          * is the deadlock scenario, as it is obvious that the
2351          * unsafe lock is taken under the safe lock.
2352          *
2353          * But if there is a chain instead, where the safe lock takes
2354          * an intermediate lock (middle_class) where this lock is
2355          * not the same as the safe lock, then the lock chain is
2356          * used to describe the problem. Otherwise we would need
2357          * to show a different CPU case for each link in the chain
2358          * from the safe_class lock to the unsafe_class lock.
2359          */
2360         if (middle_class != unsafe_class) {
2361                 printk("Chain exists of:\n  ");
2362                 __print_lock_name(safe_class);
2363                 printk(KERN_CONT " --> ");
2364                 __print_lock_name(middle_class);
2365                 printk(KERN_CONT " --> ");
2366                 __print_lock_name(unsafe_class);
2367                 printk(KERN_CONT "\n\n");
2368         }
2369
2370         printk(" Possible interrupt unsafe locking scenario:\n\n");
2371         printk("       CPU0                    CPU1\n");
2372         printk("       ----                    ----\n");
2373         printk("  lock(");
2374         __print_lock_name(unsafe_class);
2375         printk(KERN_CONT ");\n");
2376         printk("                               local_irq_disable();\n");
2377         printk("                               lock(");
2378         __print_lock_name(safe_class);
2379         printk(KERN_CONT ");\n");
2380         printk("                               lock(");
2381         __print_lock_name(middle_class);
2382         printk(KERN_CONT ");\n");
2383         printk("  <Interrupt>\n");
2384         printk("    lock(");
2385         __print_lock_name(safe_class);
2386         printk(KERN_CONT ");\n");
2387         printk("\n *** DEADLOCK ***\n\n");
2388 }
2389
2390 static void
2391 print_bad_irq_dependency(struct task_struct *curr,
2392                          struct lock_list *prev_root,
2393                          struct lock_list *next_root,
2394                          struct lock_list *backwards_entry,
2395                          struct lock_list *forwards_entry,
2396                          struct held_lock *prev,
2397                          struct held_lock *next,
2398                          enum lock_usage_bit bit1,
2399                          enum lock_usage_bit bit2,
2400                          const char *irqclass)
2401 {
2402         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2403                 return;
2404
2405         pr_warn("\n");
2406         pr_warn("=====================================================\n");
2407         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2408                 irqclass, irqclass);
2409         print_kernel_ident();
2410         pr_warn("-----------------------------------------------------\n");
2411         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2412                 curr->comm, task_pid_nr(curr),
2413                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2414                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2415                 lockdep_hardirqs_enabled(),
2416                 curr->softirqs_enabled);
2417         print_lock(next);
2418
2419         pr_warn("\nand this task is already holding:\n");
2420         print_lock(prev);
2421         pr_warn("which would create a new lock dependency:\n");
2422         print_lock_name(hlock_class(prev));
2423         pr_cont(" ->");
2424         print_lock_name(hlock_class(next));
2425         pr_cont("\n");
2426
2427         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2428                 irqclass);
2429         print_lock_name(backwards_entry->class);
2430         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2431
2432         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2433
2434         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2435         print_lock_name(forwards_entry->class);
2436         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2437         pr_warn("...");
2438
2439         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2440
2441         pr_warn("\nother info that might help us debug this:\n\n");
2442         print_irq_lock_scenario(backwards_entry, forwards_entry,
2443                                 hlock_class(prev), hlock_class(next));
2444
2445         lockdep_print_held_locks(curr);
2446
2447         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2448         prev_root->trace = save_trace();
2449         if (!prev_root->trace)
2450                 return;
2451         print_shortest_lock_dependencies(backwards_entry, prev_root);
2452
2453         pr_warn("\nthe dependencies between the lock to be acquired");
2454         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2455         next_root->trace = save_trace();
2456         if (!next_root->trace)
2457                 return;
2458         print_shortest_lock_dependencies(forwards_entry, next_root);
2459
2460         pr_warn("\nstack backtrace:\n");
2461         dump_stack();
2462 }
2463
2464 static const char *state_names[] = {
2465 #define LOCKDEP_STATE(__STATE) \
2466         __stringify(__STATE),
2467 #include "lockdep_states.h"
2468 #undef LOCKDEP_STATE
2469 };
2470
2471 static const char *state_rnames[] = {
2472 #define LOCKDEP_STATE(__STATE) \
2473         __stringify(__STATE)"-READ",
2474 #include "lockdep_states.h"
2475 #undef LOCKDEP_STATE
2476 };
2477
2478 static inline const char *state_name(enum lock_usage_bit bit)
2479 {
2480         if (bit & LOCK_USAGE_READ_MASK)
2481                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2482         else
2483                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2484 }
2485
2486 /*
2487  * The bit number is encoded like:
2488  *
2489  *  bit0: 0 exclusive, 1 read lock
2490  *  bit1: 0 used in irq, 1 irq enabled
2491  *  bit2-n: state
2492  */
2493 static int exclusive_bit(int new_bit)
2494 {
2495         int state = new_bit & LOCK_USAGE_STATE_MASK;
2496         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2497
2498         /*
2499          * keep state, bit flip the direction and strip read.
2500          */
2501         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2502 }
2503
2504 /*
2505  * Observe that when given a bitmask where each bitnr is encoded as above, a
2506  * right shift of the mask transforms the individual bitnrs as -1 and
2507  * conversely, a left shift transforms into +1 for the individual bitnrs.
2508  *
2509  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2510  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2511  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2512  *
2513  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2514  *
2515  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2516  * all bits set) and recompose with bitnr1 flipped.
2517  */
2518 static unsigned long invert_dir_mask(unsigned long mask)
2519 {
2520         unsigned long excl = 0;
2521
2522         /* Invert dir */
2523         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2524         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2525
2526         return excl;
2527 }
2528
2529 /*
2530  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2531  * usage may cause deadlock too, for example:
2532  *
2533  * P1                           P2
2534  * <irq disabled>
2535  * write_lock(l1);              <irq enabled>
2536  *                              read_lock(l2);
2537  * write_lock(l2);
2538  *                              <in irq>
2539  *                              read_lock(l1);
2540  *
2541  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2542  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2543  * deadlock.
2544  *
2545  * In fact, all of the following cases may cause deadlocks:
2546  *
2547  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2548  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2549  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2550  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2551  *
2552  * As a result, to calculate the "exclusive mask", first we invert the
2553  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2554  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2555  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2556  */
2557 static unsigned long exclusive_mask(unsigned long mask)
2558 {
2559         unsigned long excl = invert_dir_mask(mask);
2560
2561         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2562         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2563
2564         return excl;
2565 }
2566
2567 /*
2568  * Retrieve the _possible_ original mask to which @mask is
2569  * exclusive. Ie: this is the opposite of exclusive_mask().
2570  * Note that 2 possible original bits can match an exclusive
2571  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2572  * cleared. So both are returned for each exclusive bit.
2573  */
2574 static unsigned long original_mask(unsigned long mask)
2575 {
2576         unsigned long excl = invert_dir_mask(mask);
2577
2578         /* Include read in existing usages */
2579         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2580         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2581
2582         return excl;
2583 }
2584
2585 /*
2586  * Find the first pair of bit match between an original
2587  * usage mask and an exclusive usage mask.
2588  */
2589 static int find_exclusive_match(unsigned long mask,
2590                                 unsigned long excl_mask,
2591                                 enum lock_usage_bit *bitp,
2592                                 enum lock_usage_bit *excl_bitp)
2593 {
2594         int bit, excl, excl_read;
2595
2596         for_each_set_bit(bit, &mask, LOCK_USED) {
2597                 /*
2598                  * exclusive_bit() strips the read bit, however,
2599                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2600                  * to search excl | LOCK_USAGE_READ_MASK as well.
2601                  */
2602                 excl = exclusive_bit(bit);
2603                 excl_read = excl | LOCK_USAGE_READ_MASK;
2604                 if (excl_mask & lock_flag(excl)) {
2605                         *bitp = bit;
2606                         *excl_bitp = excl;
2607                         return 0;
2608                 } else if (excl_mask & lock_flag(excl_read)) {
2609                         *bitp = bit;
2610                         *excl_bitp = excl_read;
2611                         return 0;
2612                 }
2613         }
2614         return -1;
2615 }
2616
2617 /*
2618  * Prove that the new dependency does not connect a hardirq-safe(-read)
2619  * lock with a hardirq-unsafe lock - to achieve this we search
2620  * the backwards-subgraph starting at <prev>, and the
2621  * forwards-subgraph starting at <next>:
2622  */
2623 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2624                            struct held_lock *next)
2625 {
2626         unsigned long usage_mask = 0, forward_mask, backward_mask;
2627         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2628         struct lock_list *target_entry1;
2629         struct lock_list *target_entry;
2630         struct lock_list this, that;
2631         enum bfs_result ret;
2632
2633         /*
2634          * Step 1: gather all hard/soft IRQs usages backward in an
2635          * accumulated usage mask.
2636          */
2637         bfs_init_rootb(&this, prev);
2638
2639         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2640         if (bfs_error(ret)) {
2641                 print_bfs_bug(ret);
2642                 return 0;
2643         }
2644
2645         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2646         if (!usage_mask)
2647                 return 1;
2648
2649         /*
2650          * Step 2: find exclusive uses forward that match the previous
2651          * backward accumulated mask.
2652          */
2653         forward_mask = exclusive_mask(usage_mask);
2654
2655         bfs_init_root(&that, next);
2656
2657         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2658         if (bfs_error(ret)) {
2659                 print_bfs_bug(ret);
2660                 return 0;
2661         }
2662         if (ret == BFS_RNOMATCH)
2663                 return 1;
2664
2665         /*
2666          * Step 3: we found a bad match! Now retrieve a lock from the backward
2667          * list whose usage mask matches the exclusive usage mask from the
2668          * lock found on the forward list.
2669          */
2670         backward_mask = original_mask(target_entry1->class->usage_mask);
2671
2672         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2673         if (bfs_error(ret)) {
2674                 print_bfs_bug(ret);
2675                 return 0;
2676         }
2677         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2678                 return 1;
2679
2680         /*
2681          * Step 4: narrow down to a pair of incompatible usage bits
2682          * and report it.
2683          */
2684         ret = find_exclusive_match(target_entry->class->usage_mask,
2685                                    target_entry1->class->usage_mask,
2686                                    &backward_bit, &forward_bit);
2687         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2688                 return 1;
2689
2690         print_bad_irq_dependency(curr, &this, &that,
2691                                  target_entry, target_entry1,
2692                                  prev, next,
2693                                  backward_bit, forward_bit,
2694                                  state_name(backward_bit));
2695
2696         return 0;
2697 }
2698
2699 #else
2700
2701 static inline int check_irq_usage(struct task_struct *curr,
2702                                   struct held_lock *prev, struct held_lock *next)
2703 {
2704         return 1;
2705 }
2706
2707 static inline bool usage_skip(struct lock_list *entry, void *mask)
2708 {
2709         return false;
2710 }
2711
2712 #endif /* CONFIG_TRACE_IRQFLAGS */
2713
2714 #ifdef CONFIG_LOCKDEP_SMALL
2715 /*
2716  * Check that the dependency graph starting at <src> can lead to
2717  * <target> or not. If it can, <src> -> <target> dependency is already
2718  * in the graph.
2719  *
2720  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2721  * any error appears in the bfs search.
2722  */
2723 static noinline enum bfs_result
2724 check_redundant(struct held_lock *src, struct held_lock *target)
2725 {
2726         enum bfs_result ret;
2727         struct lock_list *target_entry;
2728         struct lock_list src_entry;
2729
2730         bfs_init_root(&src_entry, src);
2731         /*
2732          * Special setup for check_redundant().
2733          *
2734          * To report redundant, we need to find a strong dependency path that
2735          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2736          * we need to let __bfs() only search for a path starting at a -(E*)->,
2737          * we achieve this by setting the initial node's ->only_xr to true in
2738          * that case. And if <prev> is S, we set initial ->only_xr to false
2739          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2740          */
2741         src_entry.only_xr = src->read == 0;
2742
2743         debug_atomic_inc(nr_redundant_checks);
2744
2745         /*
2746          * Note: we skip local_lock() for redundant check, because as the
2747          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2748          * the same.
2749          */
2750         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2751
2752         if (ret == BFS_RMATCH)
2753                 debug_atomic_inc(nr_redundant);
2754
2755         return ret;
2756 }
2757
2758 #else
2759
2760 static inline enum bfs_result
2761 check_redundant(struct held_lock *src, struct held_lock *target)
2762 {
2763         return BFS_RNOMATCH;
2764 }
2765
2766 #endif
2767
2768 static void inc_chains(int irq_context)
2769 {
2770         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2771                 nr_hardirq_chains++;
2772         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2773                 nr_softirq_chains++;
2774         else
2775                 nr_process_chains++;
2776 }
2777
2778 static void dec_chains(int irq_context)
2779 {
2780         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2781                 nr_hardirq_chains--;
2782         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2783                 nr_softirq_chains--;
2784         else
2785                 nr_process_chains--;
2786 }
2787
2788 static void
2789 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2790 {
2791         struct lock_class *next = hlock_class(nxt);
2792         struct lock_class *prev = hlock_class(prv);
2793
2794         printk(" Possible unsafe locking scenario:\n\n");
2795         printk("       CPU0\n");
2796         printk("       ----\n");
2797         printk("  lock(");
2798         __print_lock_name(prev);
2799         printk(KERN_CONT ");\n");
2800         printk("  lock(");
2801         __print_lock_name(next);
2802         printk(KERN_CONT ");\n");
2803         printk("\n *** DEADLOCK ***\n\n");
2804         printk(" May be due to missing lock nesting notation\n\n");
2805 }
2806
2807 static void
2808 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2809                    struct held_lock *next)
2810 {
2811         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2812                 return;
2813
2814         pr_warn("\n");
2815         pr_warn("============================================\n");
2816         pr_warn("WARNING: possible recursive locking detected\n");
2817         print_kernel_ident();
2818         pr_warn("--------------------------------------------\n");
2819         pr_warn("%s/%d is trying to acquire lock:\n",
2820                 curr->comm, task_pid_nr(curr));
2821         print_lock(next);
2822         pr_warn("\nbut task is already holding lock:\n");
2823         print_lock(prev);
2824
2825         pr_warn("\nother info that might help us debug this:\n");
2826         print_deadlock_scenario(next, prev);
2827         lockdep_print_held_locks(curr);
2828
2829         pr_warn("\nstack backtrace:\n");
2830         dump_stack();
2831 }
2832
2833 /*
2834  * Check whether we are holding such a class already.
2835  *
2836  * (Note that this has to be done separately, because the graph cannot
2837  * detect such classes of deadlocks.)
2838  *
2839  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2840  * lock class is held but nest_lock is also held, i.e. we rely on the
2841  * nest_lock to avoid the deadlock.
2842  */
2843 static int
2844 check_deadlock(struct task_struct *curr, struct held_lock *next)
2845 {
2846         struct held_lock *prev;
2847         struct held_lock *nest = NULL;
2848         int i;
2849
2850         for (i = 0; i < curr->lockdep_depth; i++) {
2851                 prev = curr->held_locks + i;
2852
2853                 if (prev->instance == next->nest_lock)
2854                         nest = prev;
2855
2856                 if (hlock_class(prev) != hlock_class(next))
2857                         continue;
2858
2859                 /*
2860                  * Allow read-after-read recursion of the same
2861                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2862                  */
2863                 if ((next->read == 2) && prev->read)
2864                         continue;
2865
2866                 /*
2867                  * We're holding the nest_lock, which serializes this lock's
2868                  * nesting behaviour.
2869                  */
2870                 if (nest)
2871                         return 2;
2872
2873                 print_deadlock_bug(curr, prev, next);
2874                 return 0;
2875         }
2876         return 1;
2877 }
2878
2879 /*
2880  * There was a chain-cache miss, and we are about to add a new dependency
2881  * to a previous lock. We validate the following rules:
2882  *
2883  *  - would the adding of the <prev> -> <next> dependency create a
2884  *    circular dependency in the graph? [== circular deadlock]
2885  *
2886  *  - does the new prev->next dependency connect any hardirq-safe lock
2887  *    (in the full backwards-subgraph starting at <prev>) with any
2888  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2889  *    <next>)? [== illegal lock inversion with hardirq contexts]
2890  *
2891  *  - does the new prev->next dependency connect any softirq-safe lock
2892  *    (in the full backwards-subgraph starting at <prev>) with any
2893  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2894  *    <next>)? [== illegal lock inversion with softirq contexts]
2895  *
2896  * any of these scenarios could lead to a deadlock.
2897  *
2898  * Then if all the validations pass, we add the forwards and backwards
2899  * dependency.
2900  */
2901 static int
2902 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2903                struct held_lock *next, u16 distance,
2904                struct lock_trace **const trace)
2905 {
2906         struct lock_list *entry;
2907         enum bfs_result ret;
2908
2909         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2910                 /*
2911                  * The warning statements below may trigger a use-after-free
2912                  * of the class name. It is better to trigger a use-after free
2913                  * and to have the class name most of the time instead of not
2914                  * having the class name available.
2915                  */
2916                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2917                           "Detected use-after-free of lock class %px/%s\n",
2918                           hlock_class(prev),
2919                           hlock_class(prev)->name);
2920                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2921                           "Detected use-after-free of lock class %px/%s\n",
2922                           hlock_class(next),
2923                           hlock_class(next)->name);
2924                 return 2;
2925         }
2926
2927         /*
2928          * Prove that the new <prev> -> <next> dependency would not
2929          * create a circular dependency in the graph. (We do this by
2930          * a breadth-first search into the graph starting at <next>,
2931          * and check whether we can reach <prev>.)
2932          *
2933          * The search is limited by the size of the circular queue (i.e.,
2934          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2935          * in the graph whose neighbours are to be checked.
2936          */
2937         ret = check_noncircular(next, prev, trace);
2938         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2939                 return 0;
2940
2941         if (!check_irq_usage(curr, prev, next))
2942                 return 0;
2943
2944         /*
2945          * Is the <prev> -> <next> dependency already present?
2946          *
2947          * (this may occur even though this is a new chain: consider
2948          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2949          *  chains - the second one will be new, but L1 already has
2950          *  L2 added to its dependency list, due to the first chain.)
2951          */
2952         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2953                 if (entry->class == hlock_class(next)) {
2954                         if (distance == 1)
2955                                 entry->distance = 1;
2956                         entry->dep |= calc_dep(prev, next);
2957
2958                         /*
2959                          * Also, update the reverse dependency in @next's
2960                          * ->locks_before list.
2961                          *
2962                          *  Here we reuse @entry as the cursor, which is fine
2963                          *  because we won't go to the next iteration of the
2964                          *  outer loop:
2965                          *
2966                          *  For normal cases, we return in the inner loop.
2967                          *
2968                          *  If we fail to return, we have inconsistency, i.e.
2969                          *  <prev>::locks_after contains <next> while
2970                          *  <next>::locks_before doesn't contain <prev>. In
2971                          *  that case, we return after the inner and indicate
2972                          *  something is wrong.
2973                          */
2974                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
2975                                 if (entry->class == hlock_class(prev)) {
2976                                         if (distance == 1)
2977                                                 entry->distance = 1;
2978                                         entry->dep |= calc_depb(prev, next);
2979                                         return 1;
2980                                 }
2981                         }
2982
2983                         /* <prev> is not found in <next>::locks_before */
2984                         return 0;
2985                 }
2986         }
2987
2988         /*
2989          * Is the <prev> -> <next> link redundant?
2990          */
2991         ret = check_redundant(prev, next);
2992         if (bfs_error(ret))
2993                 return 0;
2994         else if (ret == BFS_RMATCH)
2995                 return 2;
2996
2997         if (!*trace) {
2998                 *trace = save_trace();
2999                 if (!*trace)
3000                         return 0;
3001         }
3002
3003         /*
3004          * Ok, all validations passed, add the new lock
3005          * to the previous lock's dependency list:
3006          */
3007         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3008                                &hlock_class(prev)->locks_after,
3009                                next->acquire_ip, distance,
3010                                calc_dep(prev, next),
3011                                *trace);
3012
3013         if (!ret)
3014                 return 0;
3015
3016         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3017                                &hlock_class(next)->locks_before,
3018                                next->acquire_ip, distance,
3019                                calc_depb(prev, next),
3020                                *trace);
3021         if (!ret)
3022                 return 0;
3023
3024         return 2;
3025 }
3026
3027 /*
3028  * Add the dependency to all directly-previous locks that are 'relevant'.
3029  * The ones that are relevant are (in increasing distance from curr):
3030  * all consecutive trylock entries and the final non-trylock entry - or
3031  * the end of this context's lock-chain - whichever comes first.
3032  */
3033 static int
3034 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3035 {
3036         struct lock_trace *trace = NULL;
3037         int depth = curr->lockdep_depth;
3038         struct held_lock *hlock;
3039
3040         /*
3041          * Debugging checks.
3042          *
3043          * Depth must not be zero for a non-head lock:
3044          */
3045         if (!depth)
3046                 goto out_bug;
3047         /*
3048          * At least two relevant locks must exist for this
3049          * to be a head:
3050          */
3051         if (curr->held_locks[depth].irq_context !=
3052                         curr->held_locks[depth-1].irq_context)
3053                 goto out_bug;
3054
3055         for (;;) {
3056                 u16 distance = curr->lockdep_depth - depth + 1;
3057                 hlock = curr->held_locks + depth - 1;
3058
3059                 if (hlock->check) {
3060                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3061                         if (!ret)
3062                                 return 0;
3063
3064                         /*
3065                          * Stop after the first non-trylock entry,
3066                          * as non-trylock entries have added their
3067                          * own direct dependencies already, so this
3068                          * lock is connected to them indirectly:
3069                          */
3070                         if (!hlock->trylock)
3071                                 break;
3072                 }
3073
3074                 depth--;
3075                 /*
3076                  * End of lock-stack?
3077                  */
3078                 if (!depth)
3079                         break;
3080                 /*
3081                  * Stop the search if we cross into another context:
3082                  */
3083                 if (curr->held_locks[depth].irq_context !=
3084                                 curr->held_locks[depth-1].irq_context)
3085                         break;
3086         }
3087         return 1;
3088 out_bug:
3089         if (!debug_locks_off_graph_unlock())
3090                 return 0;
3091
3092         /*
3093          * Clearly we all shouldn't be here, but since we made it we
3094          * can reliable say we messed up our state. See the above two
3095          * gotos for reasons why we could possibly end up here.
3096          */
3097         WARN_ON(1);
3098
3099         return 0;
3100 }
3101
3102 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3103 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3104 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3105 unsigned long nr_zapped_lock_chains;
3106 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3107 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3108 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3109
3110 /*
3111  * The first 2 chain_hlocks entries in the chain block in the bucket
3112  * list contains the following meta data:
3113  *
3114  *   entry[0]:
3115  *     Bit    15 - always set to 1 (it is not a class index)
3116  *     Bits 0-14 - upper 15 bits of the next block index
3117  *   entry[1]    - lower 16 bits of next block index
3118  *
3119  * A next block index of all 1 bits means it is the end of the list.
3120  *
3121  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3122  * the chain block size:
3123  *
3124  *   entry[2] - upper 16 bits of the chain block size
3125  *   entry[3] - lower 16 bits of the chain block size
3126  */
3127 #define MAX_CHAIN_BUCKETS       16
3128 #define CHAIN_BLK_FLAG          (1U << 15)
3129 #define CHAIN_BLK_LIST_END      0xFFFFU
3130
3131 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3132
3133 static inline int size_to_bucket(int size)
3134 {
3135         if (size > MAX_CHAIN_BUCKETS)
3136                 return 0;
3137
3138         return size - 1;
3139 }
3140
3141 /*
3142  * Iterate all the chain blocks in a bucket.
3143  */
3144 #define for_each_chain_block(bucket, prev, curr)                \
3145         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3146              (curr) >= 0;                                       \
3147              (prev) = (curr), (curr) = chain_block_next(curr))
3148
3149 /*
3150  * next block or -1
3151  */
3152 static inline int chain_block_next(int offset)
3153 {
3154         int next = chain_hlocks[offset];
3155
3156         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3157
3158         if (next == CHAIN_BLK_LIST_END)
3159                 return -1;
3160
3161         next &= ~CHAIN_BLK_FLAG;
3162         next <<= 16;
3163         next |= chain_hlocks[offset + 1];
3164
3165         return next;
3166 }
3167
3168 /*
3169  * bucket-0 only
3170  */
3171 static inline int chain_block_size(int offset)
3172 {
3173         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3174 }
3175
3176 static inline void init_chain_block(int offset, int next, int bucket, int size)
3177 {
3178         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3179         chain_hlocks[offset + 1] = (u16)next;
3180
3181         if (size && !bucket) {
3182                 chain_hlocks[offset + 2] = size >> 16;
3183                 chain_hlocks[offset + 3] = (u16)size;
3184         }
3185 }
3186
3187 static inline void add_chain_block(int offset, int size)
3188 {
3189         int bucket = size_to_bucket(size);
3190         int next = chain_block_buckets[bucket];
3191         int prev, curr;
3192
3193         if (unlikely(size < 2)) {
3194                 /*
3195                  * We can't store single entries on the freelist. Leak them.
3196                  *
3197                  * One possible way out would be to uniquely mark them, other
3198                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3199                  * the block before it is re-added.
3200                  */
3201                 if (size)
3202                         nr_lost_chain_hlocks++;
3203                 return;
3204         }
3205
3206         nr_free_chain_hlocks += size;
3207         if (!bucket) {
3208                 nr_large_chain_blocks++;
3209
3210                 /*
3211                  * Variable sized, sort large to small.
3212                  */
3213                 for_each_chain_block(0, prev, curr) {
3214                         if (size >= chain_block_size(curr))
3215                                 break;
3216                 }
3217                 init_chain_block(offset, curr, 0, size);
3218                 if (prev < 0)
3219                         chain_block_buckets[0] = offset;
3220                 else
3221                         init_chain_block(prev, offset, 0, 0);
3222                 return;
3223         }
3224         /*
3225          * Fixed size, add to head.
3226          */
3227         init_chain_block(offset, next, bucket, size);
3228         chain_block_buckets[bucket] = offset;
3229 }
3230
3231 /*
3232  * Only the first block in the list can be deleted.
3233  *
3234  * For the variable size bucket[0], the first block (the largest one) is
3235  * returned, broken up and put back into the pool. So if a chain block of
3236  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3237  * queued up after the primordial chain block and never be used until the
3238  * hlock entries in the primordial chain block is almost used up. That
3239  * causes fragmentation and reduce allocation efficiency. That can be
3240  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3241  */
3242 static inline void del_chain_block(int bucket, int size, int next)
3243 {
3244         nr_free_chain_hlocks -= size;
3245         chain_block_buckets[bucket] = next;
3246
3247         if (!bucket)
3248                 nr_large_chain_blocks--;
3249 }
3250
3251 static void init_chain_block_buckets(void)
3252 {
3253         int i;
3254
3255         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3256                 chain_block_buckets[i] = -1;
3257
3258         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3259 }
3260
3261 /*
3262  * Return offset of a chain block of the right size or -1 if not found.
3263  *
3264  * Fairly simple worst-fit allocator with the addition of a number of size
3265  * specific free lists.
3266  */
3267 static int alloc_chain_hlocks(int req)
3268 {
3269         int bucket, curr, size;
3270
3271         /*
3272          * We rely on the MSB to act as an escape bit to denote freelist
3273          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3274          */
3275         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3276
3277         init_data_structures_once();
3278
3279         if (nr_free_chain_hlocks < req)
3280                 return -1;
3281
3282         /*
3283          * We require a minimum of 2 (u16) entries to encode a freelist
3284          * 'pointer'.
3285          */
3286         req = max(req, 2);
3287         bucket = size_to_bucket(req);
3288         curr = chain_block_buckets[bucket];
3289
3290         if (bucket) {
3291                 if (curr >= 0) {
3292                         del_chain_block(bucket, req, chain_block_next(curr));
3293                         return curr;
3294                 }
3295                 /* Try bucket 0 */
3296                 curr = chain_block_buckets[0];
3297         }
3298
3299         /*
3300          * The variable sized freelist is sorted by size; the first entry is
3301          * the largest. Use it if it fits.
3302          */
3303         if (curr >= 0) {
3304                 size = chain_block_size(curr);
3305                 if (likely(size >= req)) {
3306                         del_chain_block(0, size, chain_block_next(curr));
3307                         add_chain_block(curr + req, size - req);
3308                         return curr;
3309                 }
3310         }
3311
3312         /*
3313          * Last resort, split a block in a larger sized bucket.
3314          */
3315         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3316                 bucket = size_to_bucket(size);
3317                 curr = chain_block_buckets[bucket];
3318                 if (curr < 0)
3319                         continue;
3320
3321                 del_chain_block(bucket, size, chain_block_next(curr));
3322                 add_chain_block(curr + req, size - req);
3323                 return curr;
3324         }
3325
3326         return -1;
3327 }
3328
3329 static inline void free_chain_hlocks(int base, int size)
3330 {
3331         add_chain_block(base, max(size, 2));
3332 }
3333
3334 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3335 {
3336         u16 chain_hlock = chain_hlocks[chain->base + i];
3337         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3338
3339         return lock_classes + class_idx - 1;
3340 }
3341
3342 /*
3343  * Returns the index of the first held_lock of the current chain
3344  */
3345 static inline int get_first_held_lock(struct task_struct *curr,
3346                                         struct held_lock *hlock)
3347 {
3348         int i;
3349         struct held_lock *hlock_curr;
3350
3351         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3352                 hlock_curr = curr->held_locks + i;
3353                 if (hlock_curr->irq_context != hlock->irq_context)
3354                         break;
3355
3356         }
3357
3358         return ++i;
3359 }
3360
3361 #ifdef CONFIG_DEBUG_LOCKDEP
3362 /*
3363  * Returns the next chain_key iteration
3364  */
3365 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3366 {
3367         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3368
3369         printk(" hlock_id:%d -> chain_key:%016Lx",
3370                 (unsigned int)hlock_id,
3371                 (unsigned long long)new_chain_key);
3372         return new_chain_key;
3373 }
3374
3375 static void
3376 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3377 {
3378         struct held_lock *hlock;
3379         u64 chain_key = INITIAL_CHAIN_KEY;
3380         int depth = curr->lockdep_depth;
3381         int i = get_first_held_lock(curr, hlock_next);
3382
3383         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3384                 hlock_next->irq_context);
3385         for (; i < depth; i++) {
3386                 hlock = curr->held_locks + i;
3387                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3388
3389                 print_lock(hlock);
3390         }
3391
3392         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3393         print_lock(hlock_next);
3394 }
3395
3396 static void print_chain_keys_chain(struct lock_chain *chain)
3397 {
3398         int i;
3399         u64 chain_key = INITIAL_CHAIN_KEY;
3400         u16 hlock_id;
3401
3402         printk("depth: %u\n", chain->depth);
3403         for (i = 0; i < chain->depth; i++) {
3404                 hlock_id = chain_hlocks[chain->base + i];
3405                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3406
3407                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3408                 printk("\n");
3409         }
3410 }
3411
3412 static void print_collision(struct task_struct *curr,
3413                         struct held_lock *hlock_next,
3414                         struct lock_chain *chain)
3415 {
3416         pr_warn("\n");
3417         pr_warn("============================\n");
3418         pr_warn("WARNING: chain_key collision\n");
3419         print_kernel_ident();
3420         pr_warn("----------------------------\n");
3421         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3422         pr_warn("Hash chain already cached but the contents don't match!\n");
3423
3424         pr_warn("Held locks:");
3425         print_chain_keys_held_locks(curr, hlock_next);
3426
3427         pr_warn("Locks in cached chain:");
3428         print_chain_keys_chain(chain);
3429
3430         pr_warn("\nstack backtrace:\n");
3431         dump_stack();
3432 }
3433 #endif
3434
3435 /*
3436  * Checks whether the chain and the current held locks are consistent
3437  * in depth and also in content. If they are not it most likely means
3438  * that there was a collision during the calculation of the chain_key.
3439  * Returns: 0 not passed, 1 passed
3440  */
3441 static int check_no_collision(struct task_struct *curr,
3442                         struct held_lock *hlock,
3443                         struct lock_chain *chain)
3444 {
3445 #ifdef CONFIG_DEBUG_LOCKDEP
3446         int i, j, id;
3447
3448         i = get_first_held_lock(curr, hlock);
3449
3450         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3451                 print_collision(curr, hlock, chain);
3452                 return 0;
3453         }
3454
3455         for (j = 0; j < chain->depth - 1; j++, i++) {
3456                 id = hlock_id(&curr->held_locks[i]);
3457
3458                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3459                         print_collision(curr, hlock, chain);
3460                         return 0;
3461                 }
3462         }
3463 #endif
3464         return 1;
3465 }
3466
3467 /*
3468  * Given an index that is >= -1, return the index of the next lock chain.
3469  * Return -2 if there is no next lock chain.
3470  */
3471 long lockdep_next_lockchain(long i)
3472 {
3473         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3474         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3475 }
3476
3477 unsigned long lock_chain_count(void)
3478 {
3479         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3480 }
3481
3482 /* Must be called with the graph lock held. */
3483 static struct lock_chain *alloc_lock_chain(void)
3484 {
3485         int idx = find_first_zero_bit(lock_chains_in_use,
3486                                       ARRAY_SIZE(lock_chains));
3487
3488         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3489                 return NULL;
3490         __set_bit(idx, lock_chains_in_use);
3491         return lock_chains + idx;
3492 }
3493
3494 /*
3495  * Adds a dependency chain into chain hashtable. And must be called with
3496  * graph_lock held.
3497  *
3498  * Return 0 if fail, and graph_lock is released.
3499  * Return 1 if succeed, with graph_lock held.
3500  */
3501 static inline int add_chain_cache(struct task_struct *curr,
3502                                   struct held_lock *hlock,
3503                                   u64 chain_key)
3504 {
3505         struct hlist_head *hash_head = chainhashentry(chain_key);
3506         struct lock_chain *chain;
3507         int i, j;
3508
3509         /*
3510          * The caller must hold the graph lock, ensure we've got IRQs
3511          * disabled to make this an IRQ-safe lock.. for recursion reasons
3512          * lockdep won't complain about its own locking errors.
3513          */
3514         if (lockdep_assert_locked())
3515                 return 0;
3516
3517         chain = alloc_lock_chain();
3518         if (!chain) {
3519                 if (!debug_locks_off_graph_unlock())
3520                         return 0;
3521
3522                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3523                 dump_stack();
3524                 return 0;
3525         }
3526         chain->chain_key = chain_key;
3527         chain->irq_context = hlock->irq_context;
3528         i = get_first_held_lock(curr, hlock);
3529         chain->depth = curr->lockdep_depth + 1 - i;
3530
3531         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3532         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3533         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3534
3535         j = alloc_chain_hlocks(chain->depth);
3536         if (j < 0) {
3537                 if (!debug_locks_off_graph_unlock())
3538                         return 0;
3539
3540                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3541                 dump_stack();
3542                 return 0;
3543         }
3544
3545         chain->base = j;
3546         for (j = 0; j < chain->depth - 1; j++, i++) {
3547                 int lock_id = hlock_id(curr->held_locks + i);
3548
3549                 chain_hlocks[chain->base + j] = lock_id;
3550         }
3551         chain_hlocks[chain->base + j] = hlock_id(hlock);
3552         hlist_add_head_rcu(&chain->entry, hash_head);
3553         debug_atomic_inc(chain_lookup_misses);
3554         inc_chains(chain->irq_context);
3555
3556         return 1;
3557 }
3558
3559 /*
3560  * Look up a dependency chain. Must be called with either the graph lock or
3561  * the RCU read lock held.
3562  */
3563 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3564 {
3565         struct hlist_head *hash_head = chainhashentry(chain_key);
3566         struct lock_chain *chain;
3567
3568         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3569                 if (READ_ONCE(chain->chain_key) == chain_key) {
3570                         debug_atomic_inc(chain_lookup_hits);
3571                         return chain;
3572                 }
3573         }
3574         return NULL;
3575 }
3576
3577 /*
3578  * If the key is not present yet in dependency chain cache then
3579  * add it and return 1 - in this case the new dependency chain is
3580  * validated. If the key is already hashed, return 0.
3581  * (On return with 1 graph_lock is held.)
3582  */
3583 static inline int lookup_chain_cache_add(struct task_struct *curr,
3584                                          struct held_lock *hlock,
3585                                          u64 chain_key)
3586 {
3587         struct lock_class *class = hlock_class(hlock);
3588         struct lock_chain *chain = lookup_chain_cache(chain_key);
3589
3590         if (chain) {
3591 cache_hit:
3592                 if (!check_no_collision(curr, hlock, chain))
3593                         return 0;
3594
3595                 if (very_verbose(class)) {
3596                         printk("\nhash chain already cached, key: "
3597                                         "%016Lx tail class: [%px] %s\n",
3598                                         (unsigned long long)chain_key,
3599                                         class->key, class->name);
3600                 }
3601
3602                 return 0;
3603         }
3604
3605         if (very_verbose(class)) {
3606                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3607                         (unsigned long long)chain_key, class->key, class->name);
3608         }
3609
3610         if (!graph_lock())
3611                 return 0;
3612
3613         /*
3614          * We have to walk the chain again locked - to avoid duplicates:
3615          */
3616         chain = lookup_chain_cache(chain_key);
3617         if (chain) {
3618                 graph_unlock();
3619                 goto cache_hit;
3620         }
3621
3622         if (!add_chain_cache(curr, hlock, chain_key))
3623                 return 0;
3624
3625         return 1;
3626 }
3627
3628 static int validate_chain(struct task_struct *curr,
3629                           struct held_lock *hlock,
3630                           int chain_head, u64 chain_key)
3631 {
3632         /*
3633          * Trylock needs to maintain the stack of held locks, but it
3634          * does not add new dependencies, because trylock can be done
3635          * in any order.
3636          *
3637          * We look up the chain_key and do the O(N^2) check and update of
3638          * the dependencies only if this is a new dependency chain.
3639          * (If lookup_chain_cache_add() return with 1 it acquires
3640          * graph_lock for us)
3641          */
3642         if (!hlock->trylock && hlock->check &&
3643             lookup_chain_cache_add(curr, hlock, chain_key)) {
3644                 /*
3645                  * Check whether last held lock:
3646                  *
3647                  * - is irq-safe, if this lock is irq-unsafe
3648                  * - is softirq-safe, if this lock is hardirq-unsafe
3649                  *
3650                  * And check whether the new lock's dependency graph
3651                  * could lead back to the previous lock:
3652                  *
3653                  * - within the current held-lock stack
3654                  * - across our accumulated lock dependency records
3655                  *
3656                  * any of these scenarios could lead to a deadlock.
3657                  */
3658                 /*
3659                  * The simple case: does the current hold the same lock
3660                  * already?
3661                  */
3662                 int ret = check_deadlock(curr, hlock);
3663
3664                 if (!ret)
3665                         return 0;
3666                 /*
3667                  * Add dependency only if this lock is not the head
3668                  * of the chain, and if the new lock introduces no more
3669                  * lock dependency (because we already hold a lock with the
3670                  * same lock class) nor deadlock (because the nest_lock
3671                  * serializes nesting locks), see the comments for
3672                  * check_deadlock().
3673                  */
3674                 if (!chain_head && ret != 2) {
3675                         if (!check_prevs_add(curr, hlock))
3676                                 return 0;
3677                 }
3678
3679                 graph_unlock();
3680         } else {
3681                 /* after lookup_chain_cache_add(): */
3682                 if (unlikely(!debug_locks))
3683                         return 0;
3684         }
3685
3686         return 1;
3687 }
3688 #else
3689 static inline int validate_chain(struct task_struct *curr,
3690                                  struct held_lock *hlock,
3691                                  int chain_head, u64 chain_key)
3692 {
3693         return 1;
3694 }
3695
3696 static void init_chain_block_buckets(void)      { }
3697 #endif /* CONFIG_PROVE_LOCKING */
3698
3699 /*
3700  * We are building curr_chain_key incrementally, so double-check
3701  * it from scratch, to make sure that it's done correctly:
3702  */
3703 static void check_chain_key(struct task_struct *curr)
3704 {
3705 #ifdef CONFIG_DEBUG_LOCKDEP
3706         struct held_lock *hlock, *prev_hlock = NULL;
3707         unsigned int i;
3708         u64 chain_key = INITIAL_CHAIN_KEY;
3709
3710         for (i = 0; i < curr->lockdep_depth; i++) {
3711                 hlock = curr->held_locks + i;
3712                 if (chain_key != hlock->prev_chain_key) {
3713                         debug_locks_off();
3714                         /*
3715                          * We got mighty confused, our chain keys don't match
3716                          * with what we expect, someone trample on our task state?
3717                          */
3718                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3719                                 curr->lockdep_depth, i,
3720                                 (unsigned long long)chain_key,
3721                                 (unsigned long long)hlock->prev_chain_key);
3722                         return;
3723                 }
3724
3725                 /*
3726                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3727                  * it registered lock class index?
3728                  */
3729                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3730                         return;
3731
3732                 if (prev_hlock && (prev_hlock->irq_context !=
3733                                                         hlock->irq_context))
3734                         chain_key = INITIAL_CHAIN_KEY;
3735                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3736                 prev_hlock = hlock;
3737         }
3738         if (chain_key != curr->curr_chain_key) {
3739                 debug_locks_off();
3740                 /*
3741                  * More smoking hash instead of calculating it, damn see these
3742                  * numbers float.. I bet that a pink elephant stepped on my memory.
3743                  */
3744                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3745                         curr->lockdep_depth, i,
3746                         (unsigned long long)chain_key,
3747                         (unsigned long long)curr->curr_chain_key);
3748         }
3749 #endif
3750 }
3751
3752 #ifdef CONFIG_PROVE_LOCKING
3753 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3754                      enum lock_usage_bit new_bit);
3755
3756 static void print_usage_bug_scenario(struct held_lock *lock)
3757 {
3758         struct lock_class *class = hlock_class(lock);
3759
3760         printk(" Possible unsafe locking scenario:\n\n");
3761         printk("       CPU0\n");
3762         printk("       ----\n");
3763         printk("  lock(");
3764         __print_lock_name(class);
3765         printk(KERN_CONT ");\n");
3766         printk("  <Interrupt>\n");
3767         printk("    lock(");
3768         __print_lock_name(class);
3769         printk(KERN_CONT ");\n");
3770         printk("\n *** DEADLOCK ***\n\n");
3771 }
3772
3773 static void
3774 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3775                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3776 {
3777         if (!debug_locks_off() || debug_locks_silent)
3778                 return;
3779
3780         pr_warn("\n");
3781         pr_warn("================================\n");
3782         pr_warn("WARNING: inconsistent lock state\n");
3783         print_kernel_ident();
3784         pr_warn("--------------------------------\n");
3785
3786         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3787                 usage_str[prev_bit], usage_str[new_bit]);
3788
3789         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3790                 curr->comm, task_pid_nr(curr),
3791                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3792                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3793                 lockdep_hardirqs_enabled(),
3794                 lockdep_softirqs_enabled(curr));
3795         print_lock(this);
3796
3797         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3798         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3799
3800         print_irqtrace_events(curr);
3801         pr_warn("\nother info that might help us debug this:\n");
3802         print_usage_bug_scenario(this);
3803
3804         lockdep_print_held_locks(curr);
3805
3806         pr_warn("\nstack backtrace:\n");
3807         dump_stack();
3808 }
3809
3810 /*
3811  * Print out an error if an invalid bit is set:
3812  */
3813 static inline int
3814 valid_state(struct task_struct *curr, struct held_lock *this,
3815             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3816 {
3817         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3818                 graph_unlock();
3819                 print_usage_bug(curr, this, bad_bit, new_bit);
3820                 return 0;
3821         }
3822         return 1;
3823 }
3824
3825
3826 /*
3827  * print irq inversion bug:
3828  */
3829 static void
3830 print_irq_inversion_bug(struct task_struct *curr,
3831                         struct lock_list *root, struct lock_list *other,
3832                         struct held_lock *this, int forwards,
3833                         const char *irqclass)
3834 {
3835         struct lock_list *entry = other;
3836         struct lock_list *middle = NULL;
3837         int depth;
3838
3839         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3840                 return;
3841
3842         pr_warn("\n");
3843         pr_warn("========================================================\n");
3844         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3845         print_kernel_ident();
3846         pr_warn("--------------------------------------------------------\n");
3847         pr_warn("%s/%d just changed the state of lock:\n",
3848                 curr->comm, task_pid_nr(curr));
3849         print_lock(this);
3850         if (forwards)
3851                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3852         else
3853                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3854         print_lock_name(other->class);
3855         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3856
3857         pr_warn("\nother info that might help us debug this:\n");
3858
3859         /* Find a middle lock (if one exists) */
3860         depth = get_lock_depth(other);
3861         do {
3862                 if (depth == 0 && (entry != root)) {
3863                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3864                         break;
3865                 }
3866                 middle = entry;
3867                 entry = get_lock_parent(entry);
3868                 depth--;
3869         } while (entry && entry != root && (depth >= 0));
3870         if (forwards)
3871                 print_irq_lock_scenario(root, other,
3872                         middle ? middle->class : root->class, other->class);
3873         else
3874                 print_irq_lock_scenario(other, root,
3875                         middle ? middle->class : other->class, root->class);
3876
3877         lockdep_print_held_locks(curr);
3878
3879         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3880         root->trace = save_trace();
3881         if (!root->trace)
3882                 return;
3883         print_shortest_lock_dependencies(other, root);
3884
3885         pr_warn("\nstack backtrace:\n");
3886         dump_stack();
3887 }
3888
3889 /*
3890  * Prove that in the forwards-direction subgraph starting at <this>
3891  * there is no lock matching <mask>:
3892  */
3893 static int
3894 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3895                      enum lock_usage_bit bit)
3896 {
3897         enum bfs_result ret;
3898         struct lock_list root;
3899         struct lock_list *target_entry;
3900         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3901         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3902
3903         bfs_init_root(&root, this);
3904         ret = find_usage_forwards(&root, usage_mask, &target_entry);
3905         if (bfs_error(ret)) {
3906                 print_bfs_bug(ret);
3907                 return 0;
3908         }
3909         if (ret == BFS_RNOMATCH)
3910                 return 1;
3911
3912         /* Check whether write or read usage is the match */
3913         if (target_entry->class->usage_mask & lock_flag(bit)) {
3914                 print_irq_inversion_bug(curr, &root, target_entry,
3915                                         this, 1, state_name(bit));
3916         } else {
3917                 print_irq_inversion_bug(curr, &root, target_entry,
3918                                         this, 1, state_name(read_bit));
3919         }
3920
3921         return 0;
3922 }
3923
3924 /*
3925  * Prove that in the backwards-direction subgraph starting at <this>
3926  * there is no lock matching <mask>:
3927  */
3928 static int
3929 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3930                       enum lock_usage_bit bit)
3931 {
3932         enum bfs_result ret;
3933         struct lock_list root;
3934         struct lock_list *target_entry;
3935         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3936         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3937
3938         bfs_init_rootb(&root, this);
3939         ret = find_usage_backwards(&root, usage_mask, &target_entry);
3940         if (bfs_error(ret)) {
3941                 print_bfs_bug(ret);
3942                 return 0;
3943         }
3944         if (ret == BFS_RNOMATCH)
3945                 return 1;
3946
3947         /* Check whether write or read usage is the match */
3948         if (target_entry->class->usage_mask & lock_flag(bit)) {
3949                 print_irq_inversion_bug(curr, &root, target_entry,
3950                                         this, 0, state_name(bit));
3951         } else {
3952                 print_irq_inversion_bug(curr, &root, target_entry,
3953                                         this, 0, state_name(read_bit));
3954         }
3955
3956         return 0;
3957 }
3958
3959 void print_irqtrace_events(struct task_struct *curr)
3960 {
3961         const struct irqtrace_events *trace = &curr->irqtrace;
3962
3963         printk("irq event stamp: %u\n", trace->irq_events);
3964         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3965                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3966                 (void *)trace->hardirq_enable_ip);
3967         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3968                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3969                 (void *)trace->hardirq_disable_ip);
3970         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3971                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3972                 (void *)trace->softirq_enable_ip);
3973         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3974                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3975                 (void *)trace->softirq_disable_ip);
3976 }
3977
3978 static int HARDIRQ_verbose(struct lock_class *class)
3979 {
3980 #if HARDIRQ_VERBOSE
3981         return class_filter(class);
3982 #endif
3983         return 0;
3984 }
3985
3986 static int SOFTIRQ_verbose(struct lock_class *class)
3987 {
3988 #if SOFTIRQ_VERBOSE
3989         return class_filter(class);
3990 #endif
3991         return 0;
3992 }
3993
3994 static int (*state_verbose_f[])(struct lock_class *class) = {
3995 #define LOCKDEP_STATE(__STATE) \
3996         __STATE##_verbose,
3997 #include "lockdep_states.h"
3998 #undef LOCKDEP_STATE
3999 };
4000
4001 static inline int state_verbose(enum lock_usage_bit bit,
4002                                 struct lock_class *class)
4003 {
4004         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4005 }
4006
4007 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4008                              enum lock_usage_bit bit, const char *name);
4009
4010 static int
4011 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4012                 enum lock_usage_bit new_bit)
4013 {
4014         int excl_bit = exclusive_bit(new_bit);
4015         int read = new_bit & LOCK_USAGE_READ_MASK;
4016         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4017
4018         /*
4019          * Validate that this particular lock does not have conflicting
4020          * usage states.
4021          */
4022         if (!valid_state(curr, this, new_bit, excl_bit))
4023                 return 0;
4024
4025         /*
4026          * Check for read in write conflicts
4027          */
4028         if (!read && !valid_state(curr, this, new_bit,
4029                                   excl_bit + LOCK_USAGE_READ_MASK))
4030                 return 0;
4031
4032
4033         /*
4034          * Validate that the lock dependencies don't have conflicting usage
4035          * states.
4036          */
4037         if (dir) {
4038                 /*
4039                  * mark ENABLED has to look backwards -- to ensure no dependee
4040                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4041                  */
4042                 if (!check_usage_backwards(curr, this, excl_bit))
4043                         return 0;
4044         } else {
4045                 /*
4046                  * mark USED_IN has to look forwards -- to ensure no dependency
4047                  * has ENABLED state, which would allow recursion deadlocks.
4048                  */
4049                 if (!check_usage_forwards(curr, this, excl_bit))
4050                         return 0;
4051         }
4052
4053         if (state_verbose(new_bit, hlock_class(this)))
4054                 return 2;
4055
4056         return 1;
4057 }
4058
4059 /*
4060  * Mark all held locks with a usage bit:
4061  */
4062 static int
4063 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4064 {
4065         struct held_lock *hlock;
4066         int i;
4067
4068         for (i = 0; i < curr->lockdep_depth; i++) {
4069                 enum lock_usage_bit hlock_bit = base_bit;
4070                 hlock = curr->held_locks + i;
4071
4072                 if (hlock->read)
4073                         hlock_bit += LOCK_USAGE_READ_MASK;
4074
4075                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4076
4077                 if (!hlock->check)
4078                         continue;
4079
4080                 if (!mark_lock(curr, hlock, hlock_bit))
4081                         return 0;
4082         }
4083
4084         return 1;
4085 }
4086
4087 /*
4088  * Hardirqs will be enabled:
4089  */
4090 static void __trace_hardirqs_on_caller(void)
4091 {
4092         struct task_struct *curr = current;
4093
4094         /*
4095          * We are going to turn hardirqs on, so set the
4096          * usage bit for all held locks:
4097          */
4098         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4099                 return;
4100         /*
4101          * If we have softirqs enabled, then set the usage
4102          * bit for all held locks. (disabled hardirqs prevented
4103          * this bit from being set before)
4104          */
4105         if (curr->softirqs_enabled)
4106                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4107 }
4108
4109 /**
4110  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4111  * @ip:         Caller address
4112  *
4113  * Invoked before a possible transition to RCU idle from exit to user or
4114  * guest mode. This ensures that all RCU operations are done before RCU
4115  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4116  * invoked to set the final state.
4117  */
4118 void lockdep_hardirqs_on_prepare(unsigned long ip)
4119 {
4120         if (unlikely(!debug_locks))
4121                 return;
4122
4123         /*
4124          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4125          */
4126         if (unlikely(in_nmi()))
4127                 return;
4128
4129         if (unlikely(this_cpu_read(lockdep_recursion)))
4130                 return;
4131
4132         if (unlikely(lockdep_hardirqs_enabled())) {
4133                 /*
4134                  * Neither irq nor preemption are disabled here
4135                  * so this is racy by nature but losing one hit
4136                  * in a stat is not a big deal.
4137                  */
4138                 __debug_atomic_inc(redundant_hardirqs_on);
4139                 return;
4140         }
4141
4142         /*
4143          * We're enabling irqs and according to our state above irqs weren't
4144          * already enabled, yet we find the hardware thinks they are in fact
4145          * enabled.. someone messed up their IRQ state tracing.
4146          */
4147         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4148                 return;
4149
4150         /*
4151          * See the fine text that goes along with this variable definition.
4152          */
4153         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4154                 return;
4155
4156         /*
4157          * Can't allow enabling interrupts while in an interrupt handler,
4158          * that's general bad form and such. Recursion, limited stack etc..
4159          */
4160         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4161                 return;
4162
4163         current->hardirq_chain_key = current->curr_chain_key;
4164
4165         lockdep_recursion_inc();
4166         __trace_hardirqs_on_caller();
4167         lockdep_recursion_finish();
4168 }
4169 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4170
4171 void noinstr lockdep_hardirqs_on(unsigned long ip)
4172 {
4173         struct irqtrace_events *trace = &current->irqtrace;
4174
4175         if (unlikely(!debug_locks))
4176                 return;
4177
4178         /*
4179          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4180          * tracking state and hardware state are out of sync.
4181          *
4182          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4183          * and not rely on hardware state like normal interrupts.
4184          */
4185         if (unlikely(in_nmi())) {
4186                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4187                         return;
4188
4189                 /*
4190                  * Skip:
4191                  *  - recursion check, because NMI can hit lockdep;
4192                  *  - hardware state check, because above;
4193                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4194                  */
4195                 goto skip_checks;
4196         }
4197
4198         if (unlikely(this_cpu_read(lockdep_recursion)))
4199                 return;
4200
4201         if (lockdep_hardirqs_enabled()) {
4202                 /*
4203                  * Neither irq nor preemption are disabled here
4204                  * so this is racy by nature but losing one hit
4205                  * in a stat is not a big deal.
4206                  */
4207                 __debug_atomic_inc(redundant_hardirqs_on);
4208                 return;
4209         }
4210
4211         /*
4212          * We're enabling irqs and according to our state above irqs weren't
4213          * already enabled, yet we find the hardware thinks they are in fact
4214          * enabled.. someone messed up their IRQ state tracing.
4215          */
4216         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4217                 return;
4218
4219         /*
4220          * Ensure the lock stack remained unchanged between
4221          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4222          */
4223         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4224                             current->curr_chain_key);
4225
4226 skip_checks:
4227         /* we'll do an OFF -> ON transition: */
4228         __this_cpu_write(hardirqs_enabled, 1);
4229         trace->hardirq_enable_ip = ip;
4230         trace->hardirq_enable_event = ++trace->irq_events;
4231         debug_atomic_inc(hardirqs_on_events);
4232 }
4233 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4234
4235 /*
4236  * Hardirqs were disabled:
4237  */
4238 void noinstr lockdep_hardirqs_off(unsigned long ip)
4239 {
4240         if (unlikely(!debug_locks))
4241                 return;
4242
4243         /*
4244          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4245          * they will restore the software state. This ensures the software
4246          * state is consistent inside NMIs as well.
4247          */
4248         if (in_nmi()) {
4249                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4250                         return;
4251         } else if (__this_cpu_read(lockdep_recursion))
4252                 return;
4253
4254         /*
4255          * So we're supposed to get called after you mask local IRQs, but for
4256          * some reason the hardware doesn't quite think you did a proper job.
4257          */
4258         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4259                 return;
4260
4261         if (lockdep_hardirqs_enabled()) {
4262                 struct irqtrace_events *trace = &current->irqtrace;
4263
4264                 /*
4265                  * We have done an ON -> OFF transition:
4266                  */
4267                 __this_cpu_write(hardirqs_enabled, 0);
4268                 trace->hardirq_disable_ip = ip;
4269                 trace->hardirq_disable_event = ++trace->irq_events;
4270                 debug_atomic_inc(hardirqs_off_events);
4271         } else {
4272                 debug_atomic_inc(redundant_hardirqs_off);
4273         }
4274 }
4275 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4276
4277 /*
4278  * Softirqs will be enabled:
4279  */
4280 void lockdep_softirqs_on(unsigned long ip)
4281 {
4282         struct irqtrace_events *trace = &current->irqtrace;
4283
4284         if (unlikely(!lockdep_enabled()))
4285                 return;
4286
4287         /*
4288          * We fancy IRQs being disabled here, see softirq.c, avoids
4289          * funny state and nesting things.
4290          */
4291         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4292                 return;
4293
4294         if (current->softirqs_enabled) {
4295                 debug_atomic_inc(redundant_softirqs_on);
4296                 return;
4297         }
4298
4299         lockdep_recursion_inc();
4300         /*
4301          * We'll do an OFF -> ON transition:
4302          */
4303         current->softirqs_enabled = 1;
4304         trace->softirq_enable_ip = ip;
4305         trace->softirq_enable_event = ++trace->irq_events;
4306         debug_atomic_inc(softirqs_on_events);
4307         /*
4308          * We are going to turn softirqs on, so set the
4309          * usage bit for all held locks, if hardirqs are
4310          * enabled too:
4311          */
4312         if (lockdep_hardirqs_enabled())
4313                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4314         lockdep_recursion_finish();
4315 }
4316
4317 /*
4318  * Softirqs were disabled:
4319  */
4320 void lockdep_softirqs_off(unsigned long ip)
4321 {
4322         if (unlikely(!lockdep_enabled()))
4323                 return;
4324
4325         /*
4326          * We fancy IRQs being disabled here, see softirq.c
4327          */
4328         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4329                 return;
4330
4331         if (current->softirqs_enabled) {
4332                 struct irqtrace_events *trace = &current->irqtrace;
4333
4334                 /*
4335                  * We have done an ON -> OFF transition:
4336                  */
4337                 current->softirqs_enabled = 0;
4338                 trace->softirq_disable_ip = ip;
4339                 trace->softirq_disable_event = ++trace->irq_events;
4340                 debug_atomic_inc(softirqs_off_events);
4341                 /*
4342                  * Whoops, we wanted softirqs off, so why aren't they?
4343                  */
4344                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4345         } else
4346                 debug_atomic_inc(redundant_softirqs_off);
4347 }
4348
4349 static int
4350 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4351 {
4352         if (!check)
4353                 goto lock_used;
4354
4355         /*
4356          * If non-trylock use in a hardirq or softirq context, then
4357          * mark the lock as used in these contexts:
4358          */
4359         if (!hlock->trylock) {
4360                 if (hlock->read) {
4361                         if (lockdep_hardirq_context())
4362                                 if (!mark_lock(curr, hlock,
4363                                                 LOCK_USED_IN_HARDIRQ_READ))
4364                                         return 0;
4365                         if (curr->softirq_context)
4366                                 if (!mark_lock(curr, hlock,
4367                                                 LOCK_USED_IN_SOFTIRQ_READ))
4368                                         return 0;
4369                 } else {
4370                         if (lockdep_hardirq_context())
4371                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4372                                         return 0;
4373                         if (curr->softirq_context)
4374                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4375                                         return 0;
4376                 }
4377         }
4378         if (!hlock->hardirqs_off) {
4379                 if (hlock->read) {
4380                         if (!mark_lock(curr, hlock,
4381                                         LOCK_ENABLED_HARDIRQ_READ))
4382                                 return 0;
4383                         if (curr->softirqs_enabled)
4384                                 if (!mark_lock(curr, hlock,
4385                                                 LOCK_ENABLED_SOFTIRQ_READ))
4386                                         return 0;
4387                 } else {
4388                         if (!mark_lock(curr, hlock,
4389                                         LOCK_ENABLED_HARDIRQ))
4390                                 return 0;
4391                         if (curr->softirqs_enabled)
4392                                 if (!mark_lock(curr, hlock,
4393                                                 LOCK_ENABLED_SOFTIRQ))
4394                                         return 0;
4395                 }
4396         }
4397
4398 lock_used:
4399         /* mark it as used: */
4400         if (!mark_lock(curr, hlock, LOCK_USED))
4401                 return 0;
4402
4403         return 1;
4404 }
4405
4406 static inline unsigned int task_irq_context(struct task_struct *task)
4407 {
4408         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4409                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4410 }
4411
4412 static int separate_irq_context(struct task_struct *curr,
4413                 struct held_lock *hlock)
4414 {
4415         unsigned int depth = curr->lockdep_depth;
4416
4417         /*
4418          * Keep track of points where we cross into an interrupt context:
4419          */
4420         if (depth) {
4421                 struct held_lock *prev_hlock;
4422
4423                 prev_hlock = curr->held_locks + depth-1;
4424                 /*
4425                  * If we cross into another context, reset the
4426                  * hash key (this also prevents the checking and the
4427                  * adding of the dependency to 'prev'):
4428                  */
4429                 if (prev_hlock->irq_context != hlock->irq_context)
4430                         return 1;
4431         }
4432         return 0;
4433 }
4434
4435 /*
4436  * Mark a lock with a usage bit, and validate the state transition:
4437  */
4438 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4439                              enum lock_usage_bit new_bit)
4440 {
4441         unsigned int new_mask, ret = 1;
4442
4443         if (new_bit >= LOCK_USAGE_STATES) {
4444                 DEBUG_LOCKS_WARN_ON(1);
4445                 return 0;
4446         }
4447
4448         if (new_bit == LOCK_USED && this->read)
4449                 new_bit = LOCK_USED_READ;
4450
4451         new_mask = 1 << new_bit;
4452
4453         /*
4454          * If already set then do not dirty the cacheline,
4455          * nor do any checks:
4456          */
4457         if (likely(hlock_class(this)->usage_mask & new_mask))
4458                 return 1;
4459
4460         if (!graph_lock())
4461                 return 0;
4462         /*
4463          * Make sure we didn't race:
4464          */
4465         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4466                 goto unlock;
4467
4468         if (!hlock_class(this)->usage_mask)
4469                 debug_atomic_dec(nr_unused_locks);
4470
4471         hlock_class(this)->usage_mask |= new_mask;
4472
4473         if (new_bit < LOCK_TRACE_STATES) {
4474                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4475                         return 0;
4476         }
4477
4478         if (new_bit < LOCK_USED) {
4479                 ret = mark_lock_irq(curr, this, new_bit);
4480                 if (!ret)
4481                         return 0;
4482         }
4483
4484 unlock:
4485         graph_unlock();
4486
4487         /*
4488          * We must printk outside of the graph_lock:
4489          */
4490         if (ret == 2) {
4491                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4492                 print_lock(this);
4493                 print_irqtrace_events(curr);
4494                 dump_stack();
4495         }
4496
4497         return ret;
4498 }
4499
4500 static inline short task_wait_context(struct task_struct *curr)
4501 {
4502         /*
4503          * Set appropriate wait type for the context; for IRQs we have to take
4504          * into account force_irqthread as that is implied by PREEMPT_RT.
4505          */
4506         if (lockdep_hardirq_context()) {
4507                 /*
4508                  * Check if force_irqthreads will run us threaded.
4509                  */
4510                 if (curr->hardirq_threaded || curr->irq_config)
4511                         return LD_WAIT_CONFIG;
4512
4513                 return LD_WAIT_SPIN;
4514         } else if (curr->softirq_context) {
4515                 /*
4516                  * Softirqs are always threaded.
4517                  */
4518                 return LD_WAIT_CONFIG;
4519         }
4520
4521         return LD_WAIT_MAX;
4522 }
4523
4524 static int
4525 print_lock_invalid_wait_context(struct task_struct *curr,
4526                                 struct held_lock *hlock)
4527 {
4528         short curr_inner;
4529
4530         if (!debug_locks_off())
4531                 return 0;
4532         if (debug_locks_silent)
4533                 return 0;
4534
4535         pr_warn("\n");
4536         pr_warn("=============================\n");
4537         pr_warn("[ BUG: Invalid wait context ]\n");
4538         print_kernel_ident();
4539         pr_warn("-----------------------------\n");
4540
4541         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4542         print_lock(hlock);
4543
4544         pr_warn("other info that might help us debug this:\n");
4545
4546         curr_inner = task_wait_context(curr);
4547         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4548
4549         lockdep_print_held_locks(curr);
4550
4551         pr_warn("stack backtrace:\n");
4552         dump_stack();
4553
4554         return 0;
4555 }
4556
4557 /*
4558  * Verify the wait_type context.
4559  *
4560  * This check validates we takes locks in the right wait-type order; that is it
4561  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4562  * acquire spinlocks inside raw_spinlocks and the sort.
4563  *
4564  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4565  * can be taken from (pretty much) any context but also has constraints.
4566  * However when taken in a stricter environment the RCU lock does not loosen
4567  * the constraints.
4568  *
4569  * Therefore we must look for the strictest environment in the lock stack and
4570  * compare that to the lock we're trying to acquire.
4571  */
4572 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4573 {
4574         u8 next_inner = hlock_class(next)->wait_type_inner;
4575         u8 next_outer = hlock_class(next)->wait_type_outer;
4576         u8 curr_inner;
4577         int depth;
4578
4579         if (!curr->lockdep_depth || !next_inner || next->trylock)
4580                 return 0;
4581
4582         if (!next_outer)
4583                 next_outer = next_inner;
4584
4585         /*
4586          * Find start of current irq_context..
4587          */
4588         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4589                 struct held_lock *prev = curr->held_locks + depth;
4590                 if (prev->irq_context != next->irq_context)
4591                         break;
4592         }
4593         depth++;
4594
4595         curr_inner = task_wait_context(curr);
4596
4597         for (; depth < curr->lockdep_depth; depth++) {
4598                 struct held_lock *prev = curr->held_locks + depth;
4599                 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4600
4601                 if (prev_inner) {
4602                         /*
4603                          * We can have a bigger inner than a previous one
4604                          * when outer is smaller than inner, as with RCU.
4605                          *
4606                          * Also due to trylocks.
4607                          */
4608                         curr_inner = min(curr_inner, prev_inner);
4609                 }
4610         }
4611
4612         if (next_outer > curr_inner)
4613                 return print_lock_invalid_wait_context(curr, next);
4614
4615         return 0;
4616 }
4617
4618 #else /* CONFIG_PROVE_LOCKING */
4619
4620 static inline int
4621 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4622 {
4623         return 1;
4624 }
4625
4626 static inline unsigned int task_irq_context(struct task_struct *task)
4627 {
4628         return 0;
4629 }
4630
4631 static inline int separate_irq_context(struct task_struct *curr,
4632                 struct held_lock *hlock)
4633 {
4634         return 0;
4635 }
4636
4637 static inline int check_wait_context(struct task_struct *curr,
4638                                      struct held_lock *next)
4639 {
4640         return 0;
4641 }
4642
4643 #endif /* CONFIG_PROVE_LOCKING */
4644
4645 /*
4646  * Initialize a lock instance's lock-class mapping info:
4647  */
4648 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4649                             struct lock_class_key *key, int subclass,
4650                             u8 inner, u8 outer, u8 lock_type)
4651 {
4652         int i;
4653
4654         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4655                 lock->class_cache[i] = NULL;
4656
4657 #ifdef CONFIG_LOCK_STAT
4658         lock->cpu = raw_smp_processor_id();
4659 #endif
4660
4661         /*
4662          * Can't be having no nameless bastards around this place!
4663          */
4664         if (DEBUG_LOCKS_WARN_ON(!name)) {
4665                 lock->name = "NULL";
4666                 return;
4667         }
4668
4669         lock->name = name;
4670
4671         lock->wait_type_outer = outer;
4672         lock->wait_type_inner = inner;
4673         lock->lock_type = lock_type;
4674
4675         /*
4676          * No key, no joy, we need to hash something.
4677          */
4678         if (DEBUG_LOCKS_WARN_ON(!key))
4679                 return;
4680         /*
4681          * Sanity check, the lock-class key must either have been allocated
4682          * statically or must have been registered as a dynamic key.
4683          */
4684         if (!static_obj(key) && !is_dynamic_key(key)) {
4685                 if (debug_locks)
4686                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4687                 DEBUG_LOCKS_WARN_ON(1);
4688                 return;
4689         }
4690         lock->key = key;
4691
4692         if (unlikely(!debug_locks))
4693                 return;
4694
4695         if (subclass) {
4696                 unsigned long flags;
4697
4698                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4699                         return;
4700
4701                 raw_local_irq_save(flags);
4702                 lockdep_recursion_inc();
4703                 register_lock_class(lock, subclass, 1);
4704                 lockdep_recursion_finish();
4705                 raw_local_irq_restore(flags);
4706         }
4707 }
4708 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4709
4710 struct lock_class_key __lockdep_no_validate__;
4711 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4712
4713 static void
4714 print_lock_nested_lock_not_held(struct task_struct *curr,
4715                                 struct held_lock *hlock,
4716                                 unsigned long ip)
4717 {
4718         if (!debug_locks_off())
4719                 return;
4720         if (debug_locks_silent)
4721                 return;
4722
4723         pr_warn("\n");
4724         pr_warn("==================================\n");
4725         pr_warn("WARNING: Nested lock was not taken\n");
4726         print_kernel_ident();
4727         pr_warn("----------------------------------\n");
4728
4729         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4730         print_lock(hlock);
4731
4732         pr_warn("\nbut this task is not holding:\n");
4733         pr_warn("%s\n", hlock->nest_lock->name);
4734
4735         pr_warn("\nstack backtrace:\n");
4736         dump_stack();
4737
4738         pr_warn("\nother info that might help us debug this:\n");
4739         lockdep_print_held_locks(curr);
4740
4741         pr_warn("\nstack backtrace:\n");
4742         dump_stack();
4743 }
4744
4745 static int __lock_is_held(const struct lockdep_map *lock, int read);
4746
4747 /*
4748  * This gets called for every mutex_lock*()/spin_lock*() operation.
4749  * We maintain the dependency maps and validate the locking attempt:
4750  *
4751  * The callers must make sure that IRQs are disabled before calling it,
4752  * otherwise we could get an interrupt which would want to take locks,
4753  * which would end up in lockdep again.
4754  */
4755 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4756                           int trylock, int read, int check, int hardirqs_off,
4757                           struct lockdep_map *nest_lock, unsigned long ip,
4758                           int references, int pin_count)
4759 {
4760         struct task_struct *curr = current;
4761         struct lock_class *class = NULL;
4762         struct held_lock *hlock;
4763         unsigned int depth;
4764         int chain_head = 0;
4765         int class_idx;
4766         u64 chain_key;
4767
4768         if (unlikely(!debug_locks))
4769                 return 0;
4770
4771         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4772                 check = 0;
4773
4774         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4775                 class = lock->class_cache[subclass];
4776         /*
4777          * Not cached?
4778          */
4779         if (unlikely(!class)) {
4780                 class = register_lock_class(lock, subclass, 0);
4781                 if (!class)
4782                         return 0;
4783         }
4784
4785         debug_class_ops_inc(class);
4786
4787         if (very_verbose(class)) {
4788                 printk("\nacquire class [%px] %s", class->key, class->name);
4789                 if (class->name_version > 1)
4790                         printk(KERN_CONT "#%d", class->name_version);
4791                 printk(KERN_CONT "\n");
4792                 dump_stack();
4793         }
4794
4795         /*
4796          * Add the lock to the list of currently held locks.
4797          * (we dont increase the depth just yet, up until the
4798          * dependency checks are done)
4799          */
4800         depth = curr->lockdep_depth;
4801         /*
4802          * Ran out of static storage for our per-task lock stack again have we?
4803          */
4804         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4805                 return 0;
4806
4807         class_idx = class - lock_classes;
4808
4809         if (depth) { /* we're holding locks */
4810                 hlock = curr->held_locks + depth - 1;
4811                 if (hlock->class_idx == class_idx && nest_lock) {
4812                         if (!references)
4813                                 references++;
4814
4815                         if (!hlock->references)
4816                                 hlock->references++;
4817
4818                         hlock->references += references;
4819
4820                         /* Overflow */
4821                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4822                                 return 0;
4823
4824                         return 2;
4825                 }
4826         }
4827
4828         hlock = curr->held_locks + depth;
4829         /*
4830          * Plain impossible, we just registered it and checked it weren't no
4831          * NULL like.. I bet this mushroom I ate was good!
4832          */
4833         if (DEBUG_LOCKS_WARN_ON(!class))
4834                 return 0;
4835         hlock->class_idx = class_idx;
4836         hlock->acquire_ip = ip;
4837         hlock->instance = lock;
4838         hlock->nest_lock = nest_lock;
4839         hlock->irq_context = task_irq_context(curr);
4840         hlock->trylock = trylock;
4841         hlock->read = read;
4842         hlock->check = check;
4843         hlock->hardirqs_off = !!hardirqs_off;
4844         hlock->references = references;
4845 #ifdef CONFIG_LOCK_STAT
4846         hlock->waittime_stamp = 0;
4847         hlock->holdtime_stamp = lockstat_clock();
4848 #endif
4849         hlock->pin_count = pin_count;
4850
4851         if (check_wait_context(curr, hlock))
4852                 return 0;
4853
4854         /* Initialize the lock usage bit */
4855         if (!mark_usage(curr, hlock, check))
4856                 return 0;
4857
4858         /*
4859          * Calculate the chain hash: it's the combined hash of all the
4860          * lock keys along the dependency chain. We save the hash value
4861          * at every step so that we can get the current hash easily
4862          * after unlock. The chain hash is then used to cache dependency
4863          * results.
4864          *
4865          * The 'key ID' is what is the most compact key value to drive
4866          * the hash, not class->key.
4867          */
4868         /*
4869          * Whoops, we did it again.. class_idx is invalid.
4870          */
4871         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4872                 return 0;
4873
4874         chain_key = curr->curr_chain_key;
4875         if (!depth) {
4876                 /*
4877                  * How can we have a chain hash when we ain't got no keys?!
4878                  */
4879                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4880                         return 0;
4881                 chain_head = 1;
4882         }
4883
4884         hlock->prev_chain_key = chain_key;
4885         if (separate_irq_context(curr, hlock)) {
4886                 chain_key = INITIAL_CHAIN_KEY;
4887                 chain_head = 1;
4888         }
4889         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4890
4891         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4892                 print_lock_nested_lock_not_held(curr, hlock, ip);
4893                 return 0;
4894         }
4895
4896         if (!debug_locks_silent) {
4897                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4898                 WARN_ON_ONCE(!hlock_class(hlock)->key);
4899         }
4900
4901         if (!validate_chain(curr, hlock, chain_head, chain_key))
4902                 return 0;
4903
4904         curr->curr_chain_key = chain_key;
4905         curr->lockdep_depth++;
4906         check_chain_key(curr);
4907 #ifdef CONFIG_DEBUG_LOCKDEP
4908         if (unlikely(!debug_locks))
4909                 return 0;
4910 #endif
4911         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4912                 debug_locks_off();
4913                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4914                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4915                        curr->lockdep_depth, MAX_LOCK_DEPTH);
4916
4917                 lockdep_print_held_locks(current);
4918                 debug_show_all_locks();
4919                 dump_stack();
4920
4921                 return 0;
4922         }
4923
4924         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4925                 max_lockdep_depth = curr->lockdep_depth;
4926
4927         return 1;
4928 }
4929
4930 static void print_unlock_imbalance_bug(struct task_struct *curr,
4931                                        struct lockdep_map *lock,
4932                                        unsigned long ip)
4933 {
4934         if (!debug_locks_off())
4935                 return;
4936         if (debug_locks_silent)
4937                 return;
4938
4939         pr_warn("\n");
4940         pr_warn("=====================================\n");
4941         pr_warn("WARNING: bad unlock balance detected!\n");
4942         print_kernel_ident();
4943         pr_warn("-------------------------------------\n");
4944         pr_warn("%s/%d is trying to release lock (",
4945                 curr->comm, task_pid_nr(curr));
4946         print_lockdep_cache(lock);
4947         pr_cont(") at:\n");
4948         print_ip_sym(KERN_WARNING, ip);
4949         pr_warn("but there are no more locks to release!\n");
4950         pr_warn("\nother info that might help us debug this:\n");
4951         lockdep_print_held_locks(curr);
4952
4953         pr_warn("\nstack backtrace:\n");
4954         dump_stack();
4955 }
4956
4957 static noinstr int match_held_lock(const struct held_lock *hlock,
4958                                    const struct lockdep_map *lock)
4959 {
4960         if (hlock->instance == lock)
4961                 return 1;
4962
4963         if (hlock->references) {
4964                 const struct lock_class *class = lock->class_cache[0];
4965
4966                 if (!class)
4967                         class = look_up_lock_class(lock, 0);
4968
4969                 /*
4970                  * If look_up_lock_class() failed to find a class, we're trying
4971                  * to test if we hold a lock that has never yet been acquired.
4972                  * Clearly if the lock hasn't been acquired _ever_, we're not
4973                  * holding it either, so report failure.
4974                  */
4975                 if (!class)
4976                         return 0;
4977
4978                 /*
4979                  * References, but not a lock we're actually ref-counting?
4980                  * State got messed up, follow the sites that change ->references
4981                  * and try to make sense of it.
4982                  */
4983                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4984                         return 0;
4985
4986                 if (hlock->class_idx == class - lock_classes)
4987                         return 1;
4988         }
4989
4990         return 0;
4991 }
4992
4993 /* @depth must not be zero */
4994 static struct held_lock *find_held_lock(struct task_struct *curr,
4995                                         struct lockdep_map *lock,
4996                                         unsigned int depth, int *idx)
4997 {
4998         struct held_lock *ret, *hlock, *prev_hlock;
4999         int i;
5000
5001         i = depth - 1;
5002         hlock = curr->held_locks + i;
5003         ret = hlock;
5004         if (match_held_lock(hlock, lock))
5005                 goto out;
5006
5007         ret = NULL;
5008         for (i--, prev_hlock = hlock--;
5009              i >= 0;
5010              i--, prev_hlock = hlock--) {
5011                 /*
5012                  * We must not cross into another context:
5013                  */
5014                 if (prev_hlock->irq_context != hlock->irq_context) {
5015                         ret = NULL;
5016                         break;
5017                 }
5018                 if (match_held_lock(hlock, lock)) {
5019                         ret = hlock;
5020                         break;
5021                 }
5022         }
5023
5024 out:
5025         *idx = i;
5026         return ret;
5027 }
5028
5029 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5030                                 int idx, unsigned int *merged)
5031 {
5032         struct held_lock *hlock;
5033         int first_idx = idx;
5034
5035         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5036                 return 0;
5037
5038         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5039                 switch (__lock_acquire(hlock->instance,
5040                                     hlock_class(hlock)->subclass,
5041                                     hlock->trylock,
5042                                     hlock->read, hlock->check,
5043                                     hlock->hardirqs_off,
5044                                     hlock->nest_lock, hlock->acquire_ip,
5045                                     hlock->references, hlock->pin_count)) {
5046                 case 0:
5047                         return 1;
5048                 case 1:
5049                         break;
5050                 case 2:
5051                         *merged += (idx == first_idx);
5052                         break;
5053                 default:
5054                         WARN_ON(1);
5055                         return 0;
5056                 }
5057         }
5058         return 0;
5059 }
5060
5061 static int
5062 __lock_set_class(struct lockdep_map *lock, const char *name,
5063                  struct lock_class_key *key, unsigned int subclass,
5064                  unsigned long ip)
5065 {
5066         struct task_struct *curr = current;
5067         unsigned int depth, merged = 0;
5068         struct held_lock *hlock;
5069         struct lock_class *class;
5070         int i;
5071
5072         if (unlikely(!debug_locks))
5073                 return 0;
5074
5075         depth = curr->lockdep_depth;
5076         /*
5077          * This function is about (re)setting the class of a held lock,
5078          * yet we're not actually holding any locks. Naughty user!
5079          */
5080         if (DEBUG_LOCKS_WARN_ON(!depth))
5081                 return 0;
5082
5083         hlock = find_held_lock(curr, lock, depth, &i);
5084         if (!hlock) {
5085                 print_unlock_imbalance_bug(curr, lock, ip);
5086                 return 0;
5087         }
5088
5089         lockdep_init_map_waits(lock, name, key, 0,
5090                                lock->wait_type_inner,
5091                                lock->wait_type_outer);
5092         class = register_lock_class(lock, subclass, 0);
5093         hlock->class_idx = class - lock_classes;
5094
5095         curr->lockdep_depth = i;
5096         curr->curr_chain_key = hlock->prev_chain_key;
5097
5098         if (reacquire_held_locks(curr, depth, i, &merged))
5099                 return 0;
5100
5101         /*
5102          * I took it apart and put it back together again, except now I have
5103          * these 'spare' parts.. where shall I put them.
5104          */
5105         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5106                 return 0;
5107         return 1;
5108 }
5109
5110 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5111 {
5112         struct task_struct *curr = current;
5113         unsigned int depth, merged = 0;
5114         struct held_lock *hlock;
5115         int i;
5116
5117         if (unlikely(!debug_locks))
5118                 return 0;
5119
5120         depth = curr->lockdep_depth;
5121         /*
5122          * This function is about (re)setting the class of a held lock,
5123          * yet we're not actually holding any locks. Naughty user!
5124          */
5125         if (DEBUG_LOCKS_WARN_ON(!depth))
5126                 return 0;
5127
5128         hlock = find_held_lock(curr, lock, depth, &i);
5129         if (!hlock) {
5130                 print_unlock_imbalance_bug(curr, lock, ip);
5131                 return 0;
5132         }
5133
5134         curr->lockdep_depth = i;
5135         curr->curr_chain_key = hlock->prev_chain_key;
5136
5137         WARN(hlock->read, "downgrading a read lock");
5138         hlock->read = 1;
5139         hlock->acquire_ip = ip;
5140
5141         if (reacquire_held_locks(curr, depth, i, &merged))
5142                 return 0;
5143
5144         /* Merging can't happen with unchanged classes.. */
5145         if (DEBUG_LOCKS_WARN_ON(merged))
5146                 return 0;
5147
5148         /*
5149          * I took it apart and put it back together again, except now I have
5150          * these 'spare' parts.. where shall I put them.
5151          */
5152         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5153                 return 0;
5154
5155         return 1;
5156 }
5157
5158 /*
5159  * Remove the lock from the list of currently held locks - this gets
5160  * called on mutex_unlock()/spin_unlock*() (or on a failed
5161  * mutex_lock_interruptible()).
5162  */
5163 static int
5164 __lock_release(struct lockdep_map *lock, unsigned long ip)
5165 {
5166         struct task_struct *curr = current;
5167         unsigned int depth, merged = 1;
5168         struct held_lock *hlock;
5169         int i;
5170
5171         if (unlikely(!debug_locks))
5172                 return 0;
5173
5174         depth = curr->lockdep_depth;
5175         /*
5176          * So we're all set to release this lock.. wait what lock? We don't
5177          * own any locks, you've been drinking again?
5178          */
5179         if (depth <= 0) {
5180                 print_unlock_imbalance_bug(curr, lock, ip);
5181                 return 0;
5182         }
5183
5184         /*
5185          * Check whether the lock exists in the current stack
5186          * of held locks:
5187          */
5188         hlock = find_held_lock(curr, lock, depth, &i);
5189         if (!hlock) {
5190                 print_unlock_imbalance_bug(curr, lock, ip);
5191                 return 0;
5192         }
5193
5194         if (hlock->instance == lock)
5195                 lock_release_holdtime(hlock);
5196
5197         WARN(hlock->pin_count, "releasing a pinned lock\n");
5198
5199         if (hlock->references) {
5200                 hlock->references--;
5201                 if (hlock->references) {
5202                         /*
5203                          * We had, and after removing one, still have
5204                          * references, the current lock stack is still
5205                          * valid. We're done!
5206                          */
5207                         return 1;
5208                 }
5209         }
5210
5211         /*
5212          * We have the right lock to unlock, 'hlock' points to it.
5213          * Now we remove it from the stack, and add back the other
5214          * entries (if any), recalculating the hash along the way:
5215          */
5216
5217         curr->lockdep_depth = i;
5218         curr->curr_chain_key = hlock->prev_chain_key;
5219
5220         /*
5221          * The most likely case is when the unlock is on the innermost
5222          * lock. In this case, we are done!
5223          */
5224         if (i == depth-1)
5225                 return 1;
5226
5227         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5228                 return 0;
5229
5230         /*
5231          * We had N bottles of beer on the wall, we drank one, but now
5232          * there's not N-1 bottles of beer left on the wall...
5233          * Pouring two of the bottles together is acceptable.
5234          */
5235         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5236
5237         /*
5238          * Since reacquire_held_locks() would have called check_chain_key()
5239          * indirectly via __lock_acquire(), we don't need to do it again
5240          * on return.
5241          */
5242         return 0;
5243 }
5244
5245 static __always_inline
5246 int __lock_is_held(const struct lockdep_map *lock, int read)
5247 {
5248         struct task_struct *curr = current;
5249         int i;
5250
5251         for (i = 0; i < curr->lockdep_depth; i++) {
5252                 struct held_lock *hlock = curr->held_locks + i;
5253
5254                 if (match_held_lock(hlock, lock)) {
5255                         if (read == -1 || hlock->read == read)
5256                                 return 1;
5257
5258                         return 0;
5259                 }
5260         }
5261
5262         return 0;
5263 }
5264
5265 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5266 {
5267         struct pin_cookie cookie = NIL_COOKIE;
5268         struct task_struct *curr = current;
5269         int i;
5270
5271         if (unlikely(!debug_locks))
5272                 return cookie;
5273
5274         for (i = 0; i < curr->lockdep_depth; i++) {
5275                 struct held_lock *hlock = curr->held_locks + i;
5276
5277                 if (match_held_lock(hlock, lock)) {
5278                         /*
5279                          * Grab 16bits of randomness; this is sufficient to not
5280                          * be guessable and still allows some pin nesting in
5281                          * our u32 pin_count.
5282                          */
5283                         cookie.val = 1 + (prandom_u32() >> 16);
5284                         hlock->pin_count += cookie.val;
5285                         return cookie;
5286                 }
5287         }
5288
5289         WARN(1, "pinning an unheld lock\n");
5290         return cookie;
5291 }
5292
5293 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5294 {
5295         struct task_struct *curr = current;
5296         int i;
5297
5298         if (unlikely(!debug_locks))
5299                 return;
5300
5301         for (i = 0; i < curr->lockdep_depth; i++) {
5302                 struct held_lock *hlock = curr->held_locks + i;
5303
5304                 if (match_held_lock(hlock, lock)) {
5305                         hlock->pin_count += cookie.val;
5306                         return;
5307                 }
5308         }
5309
5310         WARN(1, "pinning an unheld lock\n");
5311 }
5312
5313 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5314 {
5315         struct task_struct *curr = current;
5316         int i;
5317
5318         if (unlikely(!debug_locks))
5319                 return;
5320
5321         for (i = 0; i < curr->lockdep_depth; i++) {
5322                 struct held_lock *hlock = curr->held_locks + i;
5323
5324                 if (match_held_lock(hlock, lock)) {
5325                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5326                                 return;
5327
5328                         hlock->pin_count -= cookie.val;
5329
5330                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5331                                 hlock->pin_count = 0;
5332
5333                         return;
5334                 }
5335         }
5336
5337         WARN(1, "unpinning an unheld lock\n");
5338 }
5339
5340 /*
5341  * Check whether we follow the irq-flags state precisely:
5342  */
5343 static noinstr void check_flags(unsigned long flags)
5344 {
5345 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5346         if (!debug_locks)
5347                 return;
5348
5349         /* Get the warning out..  */
5350         instrumentation_begin();
5351
5352         if (irqs_disabled_flags(flags)) {
5353                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5354                         printk("possible reason: unannotated irqs-off.\n");
5355                 }
5356         } else {
5357                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5358                         printk("possible reason: unannotated irqs-on.\n");
5359                 }
5360         }
5361
5362         /*
5363          * We dont accurately track softirq state in e.g.
5364          * hardirq contexts (such as on 4KSTACKS), so only
5365          * check if not in hardirq contexts:
5366          */
5367         if (!hardirq_count()) {
5368                 if (softirq_count()) {
5369                         /* like the above, but with softirqs */
5370                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5371                 } else {
5372                         /* lick the above, does it taste good? */
5373                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5374                 }
5375         }
5376
5377         if (!debug_locks)
5378                 print_irqtrace_events(current);
5379
5380         instrumentation_end();
5381 #endif
5382 }
5383
5384 void lock_set_class(struct lockdep_map *lock, const char *name,
5385                     struct lock_class_key *key, unsigned int subclass,
5386                     unsigned long ip)
5387 {
5388         unsigned long flags;
5389
5390         if (unlikely(!lockdep_enabled()))
5391                 return;
5392
5393         raw_local_irq_save(flags);
5394         lockdep_recursion_inc();
5395         check_flags(flags);
5396         if (__lock_set_class(lock, name, key, subclass, ip))
5397                 check_chain_key(current);
5398         lockdep_recursion_finish();
5399         raw_local_irq_restore(flags);
5400 }
5401 EXPORT_SYMBOL_GPL(lock_set_class);
5402
5403 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5404 {
5405         unsigned long flags;
5406
5407         if (unlikely(!lockdep_enabled()))
5408                 return;
5409
5410         raw_local_irq_save(flags);
5411         lockdep_recursion_inc();
5412         check_flags(flags);
5413         if (__lock_downgrade(lock, ip))
5414                 check_chain_key(current);
5415         lockdep_recursion_finish();
5416         raw_local_irq_restore(flags);
5417 }
5418 EXPORT_SYMBOL_GPL(lock_downgrade);
5419
5420 /* NMI context !!! */
5421 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5422 {
5423 #ifdef CONFIG_PROVE_LOCKING
5424         struct lock_class *class = look_up_lock_class(lock, subclass);
5425         unsigned long mask = LOCKF_USED;
5426
5427         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5428         if (!class)
5429                 return;
5430
5431         /*
5432          * READ locks only conflict with USED, such that if we only ever use
5433          * READ locks, there is no deadlock possible -- RCU.
5434          */
5435         if (!hlock->read)
5436                 mask |= LOCKF_USED_READ;
5437
5438         if (!(class->usage_mask & mask))
5439                 return;
5440
5441         hlock->class_idx = class - lock_classes;
5442
5443         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5444 #endif
5445 }
5446
5447 static bool lockdep_nmi(void)
5448 {
5449         if (raw_cpu_read(lockdep_recursion))
5450                 return false;
5451
5452         if (!in_nmi())
5453                 return false;
5454
5455         return true;
5456 }
5457
5458 /*
5459  * read_lock() is recursive if:
5460  * 1. We force lockdep think this way in selftests or
5461  * 2. The implementation is not queued read/write lock or
5462  * 3. The locker is at an in_interrupt() context.
5463  */
5464 bool read_lock_is_recursive(void)
5465 {
5466         return force_read_lock_recursive ||
5467                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5468                in_interrupt();
5469 }
5470 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5471
5472 /*
5473  * We are not always called with irqs disabled - do that here,
5474  * and also avoid lockdep recursion:
5475  */
5476 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5477                           int trylock, int read, int check,
5478                           struct lockdep_map *nest_lock, unsigned long ip)
5479 {
5480         unsigned long flags;
5481
5482         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5483
5484         if (!debug_locks)
5485                 return;
5486
5487         if (unlikely(!lockdep_enabled())) {
5488                 /* XXX allow trylock from NMI ?!? */
5489                 if (lockdep_nmi() && !trylock) {
5490                         struct held_lock hlock;
5491
5492                         hlock.acquire_ip = ip;
5493                         hlock.instance = lock;
5494                         hlock.nest_lock = nest_lock;
5495                         hlock.irq_context = 2; // XXX
5496                         hlock.trylock = trylock;
5497                         hlock.read = read;
5498                         hlock.check = check;
5499                         hlock.hardirqs_off = true;
5500                         hlock.references = 0;
5501
5502                         verify_lock_unused(lock, &hlock, subclass);
5503                 }
5504                 return;
5505         }
5506
5507         raw_local_irq_save(flags);
5508         check_flags(flags);
5509
5510         lockdep_recursion_inc();
5511         __lock_acquire(lock, subclass, trylock, read, check,
5512                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5513         lockdep_recursion_finish();
5514         raw_local_irq_restore(flags);
5515 }
5516 EXPORT_SYMBOL_GPL(lock_acquire);
5517
5518 void lock_release(struct lockdep_map *lock, unsigned long ip)
5519 {
5520         unsigned long flags;
5521
5522         trace_lock_release(lock, ip);
5523
5524         if (unlikely(!lockdep_enabled()))
5525                 return;
5526
5527         raw_local_irq_save(flags);
5528         check_flags(flags);
5529
5530         lockdep_recursion_inc();
5531         if (__lock_release(lock, ip))
5532                 check_chain_key(current);
5533         lockdep_recursion_finish();
5534         raw_local_irq_restore(flags);
5535 }
5536 EXPORT_SYMBOL_GPL(lock_release);
5537
5538 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5539 {
5540         unsigned long flags;
5541         int ret = 0;
5542
5543         if (unlikely(!lockdep_enabled()))
5544                 return 1; /* avoid false negative lockdep_assert_held() */
5545
5546         raw_local_irq_save(flags);
5547         check_flags(flags);
5548
5549         lockdep_recursion_inc();
5550         ret = __lock_is_held(lock, read);
5551         lockdep_recursion_finish();
5552         raw_local_irq_restore(flags);
5553
5554         return ret;
5555 }
5556 EXPORT_SYMBOL_GPL(lock_is_held_type);
5557 NOKPROBE_SYMBOL(lock_is_held_type);
5558
5559 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5560 {
5561         struct pin_cookie cookie = NIL_COOKIE;
5562         unsigned long flags;
5563
5564         if (unlikely(!lockdep_enabled()))
5565                 return cookie;
5566
5567         raw_local_irq_save(flags);
5568         check_flags(flags);
5569
5570         lockdep_recursion_inc();
5571         cookie = __lock_pin_lock(lock);
5572         lockdep_recursion_finish();
5573         raw_local_irq_restore(flags);
5574
5575         return cookie;
5576 }
5577 EXPORT_SYMBOL_GPL(lock_pin_lock);
5578
5579 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5580 {
5581         unsigned long flags;
5582
5583         if (unlikely(!lockdep_enabled()))
5584                 return;
5585
5586         raw_local_irq_save(flags);
5587         check_flags(flags);
5588
5589         lockdep_recursion_inc();
5590         __lock_repin_lock(lock, cookie);
5591         lockdep_recursion_finish();
5592         raw_local_irq_restore(flags);
5593 }
5594 EXPORT_SYMBOL_GPL(lock_repin_lock);
5595
5596 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5597 {
5598         unsigned long flags;
5599
5600         if (unlikely(!lockdep_enabled()))
5601                 return;
5602
5603         raw_local_irq_save(flags);
5604         check_flags(flags);
5605
5606         lockdep_recursion_inc();
5607         __lock_unpin_lock(lock, cookie);
5608         lockdep_recursion_finish();
5609         raw_local_irq_restore(flags);
5610 }
5611 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5612
5613 #ifdef CONFIG_LOCK_STAT
5614 static void print_lock_contention_bug(struct task_struct *curr,
5615                                       struct lockdep_map *lock,
5616                                       unsigned long ip)
5617 {
5618         if (!debug_locks_off())
5619                 return;
5620         if (debug_locks_silent)
5621                 return;
5622
5623         pr_warn("\n");
5624         pr_warn("=================================\n");
5625         pr_warn("WARNING: bad contention detected!\n");
5626         print_kernel_ident();
5627         pr_warn("---------------------------------\n");
5628         pr_warn("%s/%d is trying to contend lock (",
5629                 curr->comm, task_pid_nr(curr));
5630         print_lockdep_cache(lock);
5631         pr_cont(") at:\n");
5632         print_ip_sym(KERN_WARNING, ip);
5633         pr_warn("but there are no locks held!\n");
5634         pr_warn("\nother info that might help us debug this:\n");
5635         lockdep_print_held_locks(curr);
5636
5637         pr_warn("\nstack backtrace:\n");
5638         dump_stack();
5639 }
5640
5641 static void
5642 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5643 {
5644         struct task_struct *curr = current;
5645         struct held_lock *hlock;
5646         struct lock_class_stats *stats;
5647         unsigned int depth;
5648         int i, contention_point, contending_point;
5649
5650         depth = curr->lockdep_depth;
5651         /*
5652          * Whee, we contended on this lock, except it seems we're not
5653          * actually trying to acquire anything much at all..
5654          */
5655         if (DEBUG_LOCKS_WARN_ON(!depth))
5656                 return;
5657
5658         hlock = find_held_lock(curr, lock, depth, &i);
5659         if (!hlock) {
5660                 print_lock_contention_bug(curr, lock, ip);
5661                 return;
5662         }
5663
5664         if (hlock->instance != lock)
5665                 return;
5666
5667         hlock->waittime_stamp = lockstat_clock();
5668
5669         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5670         contending_point = lock_point(hlock_class(hlock)->contending_point,
5671                                       lock->ip);
5672
5673         stats = get_lock_stats(hlock_class(hlock));
5674         if (contention_point < LOCKSTAT_POINTS)
5675                 stats->contention_point[contention_point]++;
5676         if (contending_point < LOCKSTAT_POINTS)
5677                 stats->contending_point[contending_point]++;
5678         if (lock->cpu != smp_processor_id())
5679                 stats->bounces[bounce_contended + !!hlock->read]++;
5680 }
5681
5682 static void
5683 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5684 {
5685         struct task_struct *curr = current;
5686         struct held_lock *hlock;
5687         struct lock_class_stats *stats;
5688         unsigned int depth;
5689         u64 now, waittime = 0;
5690         int i, cpu;
5691
5692         depth = curr->lockdep_depth;
5693         /*
5694          * Yay, we acquired ownership of this lock we didn't try to
5695          * acquire, how the heck did that happen?
5696          */
5697         if (DEBUG_LOCKS_WARN_ON(!depth))
5698                 return;
5699
5700         hlock = find_held_lock(curr, lock, depth, &i);
5701         if (!hlock) {
5702                 print_lock_contention_bug(curr, lock, _RET_IP_);
5703                 return;
5704         }
5705
5706         if (hlock->instance != lock)
5707                 return;
5708
5709         cpu = smp_processor_id();
5710         if (hlock->waittime_stamp) {
5711                 now = lockstat_clock();
5712                 waittime = now - hlock->waittime_stamp;
5713                 hlock->holdtime_stamp = now;
5714         }
5715
5716         stats = get_lock_stats(hlock_class(hlock));
5717         if (waittime) {
5718                 if (hlock->read)
5719                         lock_time_inc(&stats->read_waittime, waittime);
5720                 else
5721                         lock_time_inc(&stats->write_waittime, waittime);
5722         }
5723         if (lock->cpu != cpu)
5724                 stats->bounces[bounce_acquired + !!hlock->read]++;
5725
5726         lock->cpu = cpu;
5727         lock->ip = ip;
5728 }
5729
5730 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5731 {
5732         unsigned long flags;
5733
5734         trace_lock_acquired(lock, ip);
5735
5736         if (unlikely(!lock_stat || !lockdep_enabled()))
5737                 return;
5738
5739         raw_local_irq_save(flags);
5740         check_flags(flags);
5741         lockdep_recursion_inc();
5742         __lock_contended(lock, ip);
5743         lockdep_recursion_finish();
5744         raw_local_irq_restore(flags);
5745 }
5746 EXPORT_SYMBOL_GPL(lock_contended);
5747
5748 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5749 {
5750         unsigned long flags;
5751
5752         trace_lock_contended(lock, ip);
5753
5754         if (unlikely(!lock_stat || !lockdep_enabled()))
5755                 return;
5756
5757         raw_local_irq_save(flags);
5758         check_flags(flags);
5759         lockdep_recursion_inc();
5760         __lock_acquired(lock, ip);
5761         lockdep_recursion_finish();
5762         raw_local_irq_restore(flags);
5763 }
5764 EXPORT_SYMBOL_GPL(lock_acquired);
5765 #endif
5766
5767 /*
5768  * Used by the testsuite, sanitize the validator state
5769  * after a simulated failure:
5770  */
5771
5772 void lockdep_reset(void)
5773 {
5774         unsigned long flags;
5775         int i;
5776
5777         raw_local_irq_save(flags);
5778         lockdep_init_task(current);
5779         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5780         nr_hardirq_chains = 0;
5781         nr_softirq_chains = 0;
5782         nr_process_chains = 0;
5783         debug_locks = 1;
5784         for (i = 0; i < CHAINHASH_SIZE; i++)
5785                 INIT_HLIST_HEAD(chainhash_table + i);
5786         raw_local_irq_restore(flags);
5787 }
5788
5789 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5790 static void remove_class_from_lock_chain(struct pending_free *pf,
5791                                          struct lock_chain *chain,
5792                                          struct lock_class *class)
5793 {
5794 #ifdef CONFIG_PROVE_LOCKING
5795         int i;
5796
5797         for (i = chain->base; i < chain->base + chain->depth; i++) {
5798                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5799                         continue;
5800                 /*
5801                  * Each lock class occurs at most once in a lock chain so once
5802                  * we found a match we can break out of this loop.
5803                  */
5804                 goto free_lock_chain;
5805         }
5806         /* Since the chain has not been modified, return. */
5807         return;
5808
5809 free_lock_chain:
5810         free_chain_hlocks(chain->base, chain->depth);
5811         /* Overwrite the chain key for concurrent RCU readers. */
5812         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5813         dec_chains(chain->irq_context);
5814
5815         /*
5816          * Note: calling hlist_del_rcu() from inside a
5817          * hlist_for_each_entry_rcu() loop is safe.
5818          */
5819         hlist_del_rcu(&chain->entry);
5820         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5821         nr_zapped_lock_chains++;
5822 #endif
5823 }
5824
5825 /* Must be called with the graph lock held. */
5826 static void remove_class_from_lock_chains(struct pending_free *pf,
5827                                           struct lock_class *class)
5828 {
5829         struct lock_chain *chain;
5830         struct hlist_head *head;
5831         int i;
5832
5833         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5834                 head = chainhash_table + i;
5835                 hlist_for_each_entry_rcu(chain, head, entry) {
5836                         remove_class_from_lock_chain(pf, chain, class);
5837                 }
5838         }
5839 }
5840
5841 /*
5842  * Remove all references to a lock class. The caller must hold the graph lock.
5843  */
5844 static void zap_class(struct pending_free *pf, struct lock_class *class)
5845 {
5846         struct lock_list *entry;
5847         int i;
5848
5849         WARN_ON_ONCE(!class->key);
5850
5851         /*
5852          * Remove all dependencies this lock is
5853          * involved in:
5854          */
5855         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5856                 entry = list_entries + i;
5857                 if (entry->class != class && entry->links_to != class)
5858                         continue;
5859                 __clear_bit(i, list_entries_in_use);
5860                 nr_list_entries--;
5861                 list_del_rcu(&entry->entry);
5862         }
5863         if (list_empty(&class->locks_after) &&
5864             list_empty(&class->locks_before)) {
5865                 list_move_tail(&class->lock_entry, &pf->zapped);
5866                 hlist_del_rcu(&class->hash_entry);
5867                 WRITE_ONCE(class->key, NULL);
5868                 WRITE_ONCE(class->name, NULL);
5869                 nr_lock_classes--;
5870                 __clear_bit(class - lock_classes, lock_classes_in_use);
5871         } else {
5872                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5873                           class->name);
5874         }
5875
5876         remove_class_from_lock_chains(pf, class);
5877         nr_zapped_classes++;
5878 }
5879
5880 static void reinit_class(struct lock_class *class)
5881 {
5882         void *const p = class;
5883         const unsigned int offset = offsetof(struct lock_class, key);
5884
5885         WARN_ON_ONCE(!class->lock_entry.next);
5886         WARN_ON_ONCE(!list_empty(&class->locks_after));
5887         WARN_ON_ONCE(!list_empty(&class->locks_before));
5888         memset(p + offset, 0, sizeof(*class) - offset);
5889         WARN_ON_ONCE(!class->lock_entry.next);
5890         WARN_ON_ONCE(!list_empty(&class->locks_after));
5891         WARN_ON_ONCE(!list_empty(&class->locks_before));
5892 }
5893
5894 static inline int within(const void *addr, void *start, unsigned long size)
5895 {
5896         return addr >= start && addr < start + size;
5897 }
5898
5899 static bool inside_selftest(void)
5900 {
5901         return current == lockdep_selftest_task_struct;
5902 }
5903
5904 /* The caller must hold the graph lock. */
5905 static struct pending_free *get_pending_free(void)
5906 {
5907         return delayed_free.pf + delayed_free.index;
5908 }
5909
5910 static void free_zapped_rcu(struct rcu_head *cb);
5911
5912 /*
5913  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5914  * the graph lock held.
5915  */
5916 static void call_rcu_zapped(struct pending_free *pf)
5917 {
5918         WARN_ON_ONCE(inside_selftest());
5919
5920         if (list_empty(&pf->zapped))
5921                 return;
5922
5923         if (delayed_free.scheduled)
5924                 return;
5925
5926         delayed_free.scheduled = true;
5927
5928         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5929         delayed_free.index ^= 1;
5930
5931         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5932 }
5933
5934 /* The caller must hold the graph lock. May be called from RCU context. */
5935 static void __free_zapped_classes(struct pending_free *pf)
5936 {
5937         struct lock_class *class;
5938
5939         check_data_structures();
5940
5941         list_for_each_entry(class, &pf->zapped, lock_entry)
5942                 reinit_class(class);
5943
5944         list_splice_init(&pf->zapped, &free_lock_classes);
5945
5946 #ifdef CONFIG_PROVE_LOCKING
5947         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5948                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5949         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5950 #endif
5951 }
5952
5953 static void free_zapped_rcu(struct rcu_head *ch)
5954 {
5955         struct pending_free *pf;
5956         unsigned long flags;
5957
5958         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5959                 return;
5960
5961         raw_local_irq_save(flags);
5962         lockdep_lock();
5963
5964         /* closed head */
5965         pf = delayed_free.pf + (delayed_free.index ^ 1);
5966         __free_zapped_classes(pf);
5967         delayed_free.scheduled = false;
5968
5969         /*
5970          * If there's anything on the open list, close and start a new callback.
5971          */
5972         call_rcu_zapped(delayed_free.pf + delayed_free.index);
5973
5974         lockdep_unlock();
5975         raw_local_irq_restore(flags);
5976 }
5977
5978 /*
5979  * Remove all lock classes from the class hash table and from the
5980  * all_lock_classes list whose key or name is in the address range [start,
5981  * start + size). Move these lock classes to the zapped_classes list. Must
5982  * be called with the graph lock held.
5983  */
5984 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5985                                      unsigned long size)
5986 {
5987         struct lock_class *class;
5988         struct hlist_head *head;
5989         int i;
5990
5991         /* Unhash all classes that were created by a module. */
5992         for (i = 0; i < CLASSHASH_SIZE; i++) {
5993                 head = classhash_table + i;
5994                 hlist_for_each_entry_rcu(class, head, hash_entry) {
5995                         if (!within(class->key, start, size) &&
5996                             !within(class->name, start, size))
5997                                 continue;
5998                         zap_class(pf, class);
5999                 }
6000         }
6001 }
6002
6003 /*
6004  * Used in module.c to remove lock classes from memory that is going to be
6005  * freed; and possibly re-used by other modules.
6006  *
6007  * We will have had one synchronize_rcu() before getting here, so we're
6008  * guaranteed nobody will look up these exact classes -- they're properly dead
6009  * but still allocated.
6010  */
6011 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6012 {
6013         struct pending_free *pf;
6014         unsigned long flags;
6015
6016         init_data_structures_once();
6017
6018         raw_local_irq_save(flags);
6019         lockdep_lock();
6020         pf = get_pending_free();
6021         __lockdep_free_key_range(pf, start, size);
6022         call_rcu_zapped(pf);
6023         lockdep_unlock();
6024         raw_local_irq_restore(flags);
6025
6026         /*
6027          * Wait for any possible iterators from look_up_lock_class() to pass
6028          * before continuing to free the memory they refer to.
6029          */
6030         synchronize_rcu();
6031 }
6032
6033 /*
6034  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6035  * Ignores debug_locks. Must only be used by the lockdep selftests.
6036  */
6037 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6038 {
6039         struct pending_free *pf = delayed_free.pf;
6040         unsigned long flags;
6041
6042         init_data_structures_once();
6043
6044         raw_local_irq_save(flags);
6045         lockdep_lock();
6046         __lockdep_free_key_range(pf, start, size);
6047         __free_zapped_classes(pf);
6048         lockdep_unlock();
6049         raw_local_irq_restore(flags);
6050 }
6051
6052 void lockdep_free_key_range(void *start, unsigned long size)
6053 {
6054         init_data_structures_once();
6055
6056         if (inside_selftest())
6057                 lockdep_free_key_range_imm(start, size);
6058         else
6059                 lockdep_free_key_range_reg(start, size);
6060 }
6061
6062 /*
6063  * Check whether any element of the @lock->class_cache[] array refers to a
6064  * registered lock class. The caller must hold either the graph lock or the
6065  * RCU read lock.
6066  */
6067 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6068 {
6069         struct lock_class *class;
6070         struct hlist_head *head;
6071         int i, j;
6072
6073         for (i = 0; i < CLASSHASH_SIZE; i++) {
6074                 head = classhash_table + i;
6075                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6076                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6077                                 if (lock->class_cache[j] == class)
6078                                         return true;
6079                 }
6080         }
6081         return false;
6082 }
6083
6084 /* The caller must hold the graph lock. Does not sleep. */
6085 static void __lockdep_reset_lock(struct pending_free *pf,
6086                                  struct lockdep_map *lock)
6087 {
6088         struct lock_class *class;
6089         int j;
6090
6091         /*
6092          * Remove all classes this lock might have:
6093          */
6094         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6095                 /*
6096                  * If the class exists we look it up and zap it:
6097                  */
6098                 class = look_up_lock_class(lock, j);
6099                 if (class)
6100                         zap_class(pf, class);
6101         }
6102         /*
6103          * Debug check: in the end all mapped classes should
6104          * be gone.
6105          */
6106         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6107                 debug_locks_off();
6108 }
6109
6110 /*
6111  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6112  * released data structures from RCU context.
6113  */
6114 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6115 {
6116         struct pending_free *pf;
6117         unsigned long flags;
6118         int locked;
6119
6120         raw_local_irq_save(flags);
6121         locked = graph_lock();
6122         if (!locked)
6123                 goto out_irq;
6124
6125         pf = get_pending_free();
6126         __lockdep_reset_lock(pf, lock);
6127         call_rcu_zapped(pf);
6128
6129         graph_unlock();
6130 out_irq:
6131         raw_local_irq_restore(flags);
6132 }
6133
6134 /*
6135  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6136  * lockdep selftests.
6137  */
6138 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6139 {
6140         struct pending_free *pf = delayed_free.pf;
6141         unsigned long flags;
6142
6143         raw_local_irq_save(flags);
6144         lockdep_lock();
6145         __lockdep_reset_lock(pf, lock);
6146         __free_zapped_classes(pf);
6147         lockdep_unlock();
6148         raw_local_irq_restore(flags);
6149 }
6150
6151 void lockdep_reset_lock(struct lockdep_map *lock)
6152 {
6153         init_data_structures_once();
6154
6155         if (inside_selftest())
6156                 lockdep_reset_lock_imm(lock);
6157         else
6158                 lockdep_reset_lock_reg(lock);
6159 }
6160
6161 /* Unregister a dynamically allocated key. */
6162 void lockdep_unregister_key(struct lock_class_key *key)
6163 {
6164         struct hlist_head *hash_head = keyhashentry(key);
6165         struct lock_class_key *k;
6166         struct pending_free *pf;
6167         unsigned long flags;
6168         bool found = false;
6169
6170         might_sleep();
6171
6172         if (WARN_ON_ONCE(static_obj(key)))
6173                 return;
6174
6175         raw_local_irq_save(flags);
6176         if (!graph_lock())
6177                 goto out_irq;
6178
6179         pf = get_pending_free();
6180         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6181                 if (k == key) {
6182                         hlist_del_rcu(&k->hash_entry);
6183                         found = true;
6184                         break;
6185                 }
6186         }
6187         WARN_ON_ONCE(!found);
6188         __lockdep_free_key_range(pf, key, 1);
6189         call_rcu_zapped(pf);
6190         graph_unlock();
6191 out_irq:
6192         raw_local_irq_restore(flags);
6193
6194         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6195         synchronize_rcu();
6196 }
6197 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6198
6199 void __init lockdep_init(void)
6200 {
6201         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6202
6203         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6204         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6205         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6206         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6207         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6208         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6209         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6210
6211         printk(" memory used by lock dependency info: %zu kB\n",
6212                (sizeof(lock_classes) +
6213                 sizeof(lock_classes_in_use) +
6214                 sizeof(classhash_table) +
6215                 sizeof(list_entries) +
6216                 sizeof(list_entries_in_use) +
6217                 sizeof(chainhash_table) +
6218                 sizeof(delayed_free)
6219 #ifdef CONFIG_PROVE_LOCKING
6220                 + sizeof(lock_cq)
6221                 + sizeof(lock_chains)
6222                 + sizeof(lock_chains_in_use)
6223                 + sizeof(chain_hlocks)
6224 #endif
6225                 ) / 1024
6226                 );
6227
6228 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6229         printk(" memory used for stack traces: %zu kB\n",
6230                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6231                );
6232 #endif
6233
6234         printk(" per task-struct memory footprint: %zu bytes\n",
6235                sizeof(((struct task_struct *)NULL)->held_locks));
6236 }
6237
6238 static void
6239 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6240                      const void *mem_to, struct held_lock *hlock)
6241 {
6242         if (!debug_locks_off())
6243                 return;
6244         if (debug_locks_silent)
6245                 return;
6246
6247         pr_warn("\n");
6248         pr_warn("=========================\n");
6249         pr_warn("WARNING: held lock freed!\n");
6250         print_kernel_ident();
6251         pr_warn("-------------------------\n");
6252         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6253                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6254         print_lock(hlock);
6255         lockdep_print_held_locks(curr);
6256
6257         pr_warn("\nstack backtrace:\n");
6258         dump_stack();
6259 }
6260
6261 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6262                                 const void* lock_from, unsigned long lock_len)
6263 {
6264         return lock_from + lock_len <= mem_from ||
6265                 mem_from + mem_len <= lock_from;
6266 }
6267
6268 /*
6269  * Called when kernel memory is freed (or unmapped), or if a lock
6270  * is destroyed or reinitialized - this code checks whether there is
6271  * any held lock in the memory range of <from> to <to>:
6272  */
6273 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6274 {
6275         struct task_struct *curr = current;
6276         struct held_lock *hlock;
6277         unsigned long flags;
6278         int i;
6279
6280         if (unlikely(!debug_locks))
6281                 return;
6282
6283         raw_local_irq_save(flags);
6284         for (i = 0; i < curr->lockdep_depth; i++) {
6285                 hlock = curr->held_locks + i;
6286
6287                 if (not_in_range(mem_from, mem_len, hlock->instance,
6288                                         sizeof(*hlock->instance)))
6289                         continue;
6290
6291                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6292                 break;
6293         }
6294         raw_local_irq_restore(flags);
6295 }
6296 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6297
6298 static void print_held_locks_bug(void)
6299 {
6300         if (!debug_locks_off())
6301                 return;
6302         if (debug_locks_silent)
6303                 return;
6304
6305         pr_warn("\n");
6306         pr_warn("====================================\n");
6307         pr_warn("WARNING: %s/%d still has locks held!\n",
6308                current->comm, task_pid_nr(current));
6309         print_kernel_ident();
6310         pr_warn("------------------------------------\n");
6311         lockdep_print_held_locks(current);
6312         pr_warn("\nstack backtrace:\n");
6313         dump_stack();
6314 }
6315
6316 void debug_check_no_locks_held(void)
6317 {
6318         if (unlikely(current->lockdep_depth > 0))
6319                 print_held_locks_bug();
6320 }
6321 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6322
6323 #ifdef __KERNEL__
6324 void debug_show_all_locks(void)
6325 {
6326         struct task_struct *g, *p;
6327
6328         if (unlikely(!debug_locks)) {
6329                 pr_warn("INFO: lockdep is turned off.\n");
6330                 return;
6331         }
6332         pr_warn("\nShowing all locks held in the system:\n");
6333
6334         rcu_read_lock();
6335         for_each_process_thread(g, p) {
6336                 if (!p->lockdep_depth)
6337                         continue;
6338                 lockdep_print_held_locks(p);
6339                 touch_nmi_watchdog();
6340                 touch_all_softlockup_watchdogs();
6341         }
6342         rcu_read_unlock();
6343
6344         pr_warn("\n");
6345         pr_warn("=============================================\n\n");
6346 }
6347 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6348 #endif
6349
6350 /*
6351  * Careful: only use this function if you are sure that
6352  * the task cannot run in parallel!
6353  */
6354 void debug_show_held_locks(struct task_struct *task)
6355 {
6356         if (unlikely(!debug_locks)) {
6357                 printk("INFO: lockdep is turned off.\n");
6358                 return;
6359         }
6360         lockdep_print_held_locks(task);
6361 }
6362 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6363
6364 asmlinkage __visible void lockdep_sys_exit(void)
6365 {
6366         struct task_struct *curr = current;
6367
6368         if (unlikely(curr->lockdep_depth)) {
6369                 if (!debug_locks_off())
6370                         return;
6371                 pr_warn("\n");
6372                 pr_warn("================================================\n");
6373                 pr_warn("WARNING: lock held when returning to user space!\n");
6374                 print_kernel_ident();
6375                 pr_warn("------------------------------------------------\n");
6376                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6377                                 curr->comm, curr->pid);
6378                 lockdep_print_held_locks(curr);
6379         }
6380
6381         /*
6382          * The lock history for each syscall should be independent. So wipe the
6383          * slate clean on return to userspace.
6384          */
6385         lockdep_invariant_state(false);
6386 }
6387
6388 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6389 {
6390         struct task_struct *curr = current;
6391
6392         /* Note: the following can be executed concurrently, so be careful. */
6393         pr_warn("\n");
6394         pr_warn("=============================\n");
6395         pr_warn("WARNING: suspicious RCU usage\n");
6396         print_kernel_ident();
6397         pr_warn("-----------------------------\n");
6398         pr_warn("%s:%d %s!\n", file, line, s);
6399         pr_warn("\nother info that might help us debug this:\n\n");
6400         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6401                !rcu_lockdep_current_cpu_online()
6402                         ? "RCU used illegally from offline CPU!\n"
6403                         : "",
6404                rcu_scheduler_active, debug_locks);
6405
6406         /*
6407          * If a CPU is in the RCU-free window in idle (ie: in the section
6408          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6409          * considers that CPU to be in an "extended quiescent state",
6410          * which means that RCU will be completely ignoring that CPU.
6411          * Therefore, rcu_read_lock() and friends have absolutely no
6412          * effect on a CPU running in that state. In other words, even if
6413          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6414          * delete data structures out from under it.  RCU really has no
6415          * choice here: we need to keep an RCU-free window in idle where
6416          * the CPU may possibly enter into low power mode. This way we can
6417          * notice an extended quiescent state to other CPUs that started a grace
6418          * period. Otherwise we would delay any grace period as long as we run
6419          * in the idle task.
6420          *
6421          * So complain bitterly if someone does call rcu_read_lock(),
6422          * rcu_read_lock_bh() and so on from extended quiescent states.
6423          */
6424         if (!rcu_is_watching())
6425                 pr_warn("RCU used illegally from extended quiescent state!\n");
6426
6427         lockdep_print_held_locks(curr);
6428         pr_warn("\nstack backtrace:\n");
6429         dump_stack();
6430 }
6431 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);