Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-2.6-microblaze.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57
58 #include <asm/sections.h>
59
60 #include "lockdep_internals.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81
82 static inline bool lockdep_enabled(void)
83 {
84         if (!debug_locks)
85                 return false;
86
87         if (this_cpu_read(lockdep_recursion))
88                 return false;
89
90         if (current->lockdep_recursion)
91                 return false;
92
93         return true;
94 }
95
96 /*
97  * lockdep_lock: protects the lockdep graph, the hashes and the
98  *               class/list/hash allocators.
99  *
100  * This is one of the rare exceptions where it's justified
101  * to use a raw spinlock - we really dont want the spinlock
102  * code to recurse back into the lockdep code...
103  */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106
107 static inline void lockdep_lock(void)
108 {
109         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110
111         arch_spin_lock(&__lock);
112         __owner = current;
113         __this_cpu_inc(lockdep_recursion);
114 }
115
116 static inline void lockdep_unlock(void)
117 {
118         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
119                 return;
120
121         __this_cpu_dec(lockdep_recursion);
122         __owner = NULL;
123         arch_spin_unlock(&__lock);
124 }
125
126 static inline bool lockdep_assert_locked(void)
127 {
128         return DEBUG_LOCKS_WARN_ON(__owner != current);
129 }
130
131 static struct task_struct *lockdep_selftest_task_struct;
132
133
134 static int graph_lock(void)
135 {
136         lockdep_lock();
137         /*
138          * Make sure that if another CPU detected a bug while
139          * walking the graph we dont change it (while the other
140          * CPU is busy printing out stuff with the graph lock
141          * dropped already)
142          */
143         if (!debug_locks) {
144                 lockdep_unlock();
145                 return 0;
146         }
147         return 1;
148 }
149
150 static inline void graph_unlock(void)
151 {
152         lockdep_unlock();
153 }
154
155 /*
156  * Turn lock debugging off and return with 0 if it was off already,
157  * and also release the graph lock:
158  */
159 static inline int debug_locks_off_graph_unlock(void)
160 {
161         int ret = debug_locks_off();
162
163         lockdep_unlock();
164
165         return ret;
166 }
167
168 unsigned long nr_list_entries;
169 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
170 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
171
172 /*
173  * All data structures here are protected by the global debug_lock.
174  *
175  * nr_lock_classes is the number of elements of lock_classes[] that is
176  * in use.
177  */
178 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
179 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
180 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
181 unsigned long nr_lock_classes;
182 unsigned long nr_zapped_classes;
183 #ifndef CONFIG_DEBUG_LOCKDEP
184 static
185 #endif
186 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
187 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
188
189 static inline struct lock_class *hlock_class(struct held_lock *hlock)
190 {
191         unsigned int class_idx = hlock->class_idx;
192
193         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
194         barrier();
195
196         if (!test_bit(class_idx, lock_classes_in_use)) {
197                 /*
198                  * Someone passed in garbage, we give up.
199                  */
200                 DEBUG_LOCKS_WARN_ON(1);
201                 return NULL;
202         }
203
204         /*
205          * At this point, if the passed hlock->class_idx is still garbage,
206          * we just have to live with it
207          */
208         return lock_classes + class_idx;
209 }
210
211 #ifdef CONFIG_LOCK_STAT
212 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
213
214 static inline u64 lockstat_clock(void)
215 {
216         return local_clock();
217 }
218
219 static int lock_point(unsigned long points[], unsigned long ip)
220 {
221         int i;
222
223         for (i = 0; i < LOCKSTAT_POINTS; i++) {
224                 if (points[i] == 0) {
225                         points[i] = ip;
226                         break;
227                 }
228                 if (points[i] == ip)
229                         break;
230         }
231
232         return i;
233 }
234
235 static void lock_time_inc(struct lock_time *lt, u64 time)
236 {
237         if (time > lt->max)
238                 lt->max = time;
239
240         if (time < lt->min || !lt->nr)
241                 lt->min = time;
242
243         lt->total += time;
244         lt->nr++;
245 }
246
247 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
248 {
249         if (!src->nr)
250                 return;
251
252         if (src->max > dst->max)
253                 dst->max = src->max;
254
255         if (src->min < dst->min || !dst->nr)
256                 dst->min = src->min;
257
258         dst->total += src->total;
259         dst->nr += src->nr;
260 }
261
262 struct lock_class_stats lock_stats(struct lock_class *class)
263 {
264         struct lock_class_stats stats;
265         int cpu, i;
266
267         memset(&stats, 0, sizeof(struct lock_class_stats));
268         for_each_possible_cpu(cpu) {
269                 struct lock_class_stats *pcs =
270                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
271
272                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
273                         stats.contention_point[i] += pcs->contention_point[i];
274
275                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
276                         stats.contending_point[i] += pcs->contending_point[i];
277
278                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
279                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
280
281                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
282                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
283
284                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
285                         stats.bounces[i] += pcs->bounces[i];
286         }
287
288         return stats;
289 }
290
291 void clear_lock_stats(struct lock_class *class)
292 {
293         int cpu;
294
295         for_each_possible_cpu(cpu) {
296                 struct lock_class_stats *cpu_stats =
297                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
298
299                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
300         }
301         memset(class->contention_point, 0, sizeof(class->contention_point));
302         memset(class->contending_point, 0, sizeof(class->contending_point));
303 }
304
305 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
306 {
307         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
308 }
309
310 static void lock_release_holdtime(struct held_lock *hlock)
311 {
312         struct lock_class_stats *stats;
313         u64 holdtime;
314
315         if (!lock_stat)
316                 return;
317
318         holdtime = lockstat_clock() - hlock->holdtime_stamp;
319
320         stats = get_lock_stats(hlock_class(hlock));
321         if (hlock->read)
322                 lock_time_inc(&stats->read_holdtime, holdtime);
323         else
324                 lock_time_inc(&stats->write_holdtime, holdtime);
325 }
326 #else
327 static inline void lock_release_holdtime(struct held_lock *hlock)
328 {
329 }
330 #endif
331
332 /*
333  * We keep a global list of all lock classes. The list is only accessed with
334  * the lockdep spinlock lock held. free_lock_classes is a list with free
335  * elements. These elements are linked together by the lock_entry member in
336  * struct lock_class.
337  */
338 LIST_HEAD(all_lock_classes);
339 static LIST_HEAD(free_lock_classes);
340
341 /**
342  * struct pending_free - information about data structures about to be freed
343  * @zapped: Head of a list with struct lock_class elements.
344  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
345  *      are about to be freed.
346  */
347 struct pending_free {
348         struct list_head zapped;
349         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
350 };
351
352 /**
353  * struct delayed_free - data structures used for delayed freeing
354  *
355  * A data structure for delayed freeing of data structures that may be
356  * accessed by RCU readers at the time these were freed.
357  *
358  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
359  * @index:     Index of @pf to which freed data structures are added.
360  * @scheduled: Whether or not an RCU callback has been scheduled.
361  * @pf:        Array with information about data structures about to be freed.
362  */
363 static struct delayed_free {
364         struct rcu_head         rcu_head;
365         int                     index;
366         int                     scheduled;
367         struct pending_free     pf[2];
368 } delayed_free;
369
370 /*
371  * The lockdep classes are in a hash-table as well, for fast lookup:
372  */
373 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
374 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
375 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
376 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
377
378 static struct hlist_head classhash_table[CLASSHASH_SIZE];
379
380 /*
381  * We put the lock dependency chains into a hash-table as well, to cache
382  * their existence:
383  */
384 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
385 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
386 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
387 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
388
389 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
390
391 /*
392  * the id of held_lock
393  */
394 static inline u16 hlock_id(struct held_lock *hlock)
395 {
396         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
397
398         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
399 }
400
401 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
402 {
403         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
404 }
405
406 /*
407  * The hash key of the lock dependency chains is a hash itself too:
408  * it's a hash of all locks taken up to that lock, including that lock.
409  * It's a 64-bit hash, because it's important for the keys to be
410  * unique.
411  */
412 static inline u64 iterate_chain_key(u64 key, u32 idx)
413 {
414         u32 k0 = key, k1 = key >> 32;
415
416         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
417
418         return k0 | (u64)k1 << 32;
419 }
420
421 void lockdep_init_task(struct task_struct *task)
422 {
423         task->lockdep_depth = 0; /* no locks held yet */
424         task->curr_chain_key = INITIAL_CHAIN_KEY;
425         task->lockdep_recursion = 0;
426 }
427
428 static __always_inline void lockdep_recursion_inc(void)
429 {
430         __this_cpu_inc(lockdep_recursion);
431 }
432
433 static __always_inline void lockdep_recursion_finish(void)
434 {
435         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
436                 __this_cpu_write(lockdep_recursion, 0);
437 }
438
439 void lockdep_set_selftest_task(struct task_struct *task)
440 {
441         lockdep_selftest_task_struct = task;
442 }
443
444 /*
445  * Debugging switches:
446  */
447
448 #define VERBOSE                 0
449 #define VERY_VERBOSE            0
450
451 #if VERBOSE
452 # define HARDIRQ_VERBOSE        1
453 # define SOFTIRQ_VERBOSE        1
454 #else
455 # define HARDIRQ_VERBOSE        0
456 # define SOFTIRQ_VERBOSE        0
457 #endif
458
459 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
460 /*
461  * Quick filtering for interesting events:
462  */
463 static int class_filter(struct lock_class *class)
464 {
465 #if 0
466         /* Example */
467         if (class->name_version == 1 &&
468                         !strcmp(class->name, "lockname"))
469                 return 1;
470         if (class->name_version == 1 &&
471                         !strcmp(class->name, "&struct->lockfield"))
472                 return 1;
473 #endif
474         /* Filter everything else. 1 would be to allow everything else */
475         return 0;
476 }
477 #endif
478
479 static int verbose(struct lock_class *class)
480 {
481 #if VERBOSE
482         return class_filter(class);
483 #endif
484         return 0;
485 }
486
487 static void print_lockdep_off(const char *bug_msg)
488 {
489         printk(KERN_DEBUG "%s\n", bug_msg);
490         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
491 #ifdef CONFIG_LOCK_STAT
492         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
493 #endif
494 }
495
496 unsigned long nr_stack_trace_entries;
497
498 #ifdef CONFIG_PROVE_LOCKING
499 /**
500  * struct lock_trace - single stack backtrace
501  * @hash_entry: Entry in a stack_trace_hash[] list.
502  * @hash:       jhash() of @entries.
503  * @nr_entries: Number of entries in @entries.
504  * @entries:    Actual stack backtrace.
505  */
506 struct lock_trace {
507         struct hlist_node       hash_entry;
508         u32                     hash;
509         u32                     nr_entries;
510         unsigned long           entries[] __aligned(sizeof(unsigned long));
511 };
512 #define LOCK_TRACE_SIZE_IN_LONGS                                \
513         (sizeof(struct lock_trace) / sizeof(unsigned long))
514 /*
515  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
516  */
517 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
518 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
519
520 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
521 {
522         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
523                 memcmp(t1->entries, t2->entries,
524                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
525 }
526
527 static struct lock_trace *save_trace(void)
528 {
529         struct lock_trace *trace, *t2;
530         struct hlist_head *hash_head;
531         u32 hash;
532         int max_entries;
533
534         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
535         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
536
537         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
538         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
539                 LOCK_TRACE_SIZE_IN_LONGS;
540
541         if (max_entries <= 0) {
542                 if (!debug_locks_off_graph_unlock())
543                         return NULL;
544
545                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
546                 dump_stack();
547
548                 return NULL;
549         }
550         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
551
552         hash = jhash(trace->entries, trace->nr_entries *
553                      sizeof(trace->entries[0]), 0);
554         trace->hash = hash;
555         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
556         hlist_for_each_entry(t2, hash_head, hash_entry) {
557                 if (traces_identical(trace, t2))
558                         return t2;
559         }
560         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
561         hlist_add_head(&trace->hash_entry, hash_head);
562
563         return trace;
564 }
565
566 /* Return the number of stack traces in the stack_trace[] array. */
567 u64 lockdep_stack_trace_count(void)
568 {
569         struct lock_trace *trace;
570         u64 c = 0;
571         int i;
572
573         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
574                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
575                         c++;
576                 }
577         }
578
579         return c;
580 }
581
582 /* Return the number of stack hash chains that have at least one stack trace. */
583 u64 lockdep_stack_hash_count(void)
584 {
585         u64 c = 0;
586         int i;
587
588         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
589                 if (!hlist_empty(&stack_trace_hash[i]))
590                         c++;
591
592         return c;
593 }
594 #endif
595
596 unsigned int nr_hardirq_chains;
597 unsigned int nr_softirq_chains;
598 unsigned int nr_process_chains;
599 unsigned int max_lockdep_depth;
600
601 #ifdef CONFIG_DEBUG_LOCKDEP
602 /*
603  * Various lockdep statistics:
604  */
605 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
606 #endif
607
608 #ifdef CONFIG_PROVE_LOCKING
609 /*
610  * Locking printouts:
611  */
612
613 #define __USAGE(__STATE)                                                \
614         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
615         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
616         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
617         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
618
619 static const char *usage_str[] =
620 {
621 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
622 #include "lockdep_states.h"
623 #undef LOCKDEP_STATE
624         [LOCK_USED] = "INITIAL USE",
625         [LOCK_USED_READ] = "INITIAL READ USE",
626         /* abused as string storage for verify_lock_unused() */
627         [LOCK_USAGE_STATES] = "IN-NMI",
628 };
629 #endif
630
631 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
632 {
633         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
634 }
635
636 static inline unsigned long lock_flag(enum lock_usage_bit bit)
637 {
638         return 1UL << bit;
639 }
640
641 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
642 {
643         /*
644          * The usage character defaults to '.' (i.e., irqs disabled and not in
645          * irq context), which is the safest usage category.
646          */
647         char c = '.';
648
649         /*
650          * The order of the following usage checks matters, which will
651          * result in the outcome character as follows:
652          *
653          * - '+': irq is enabled and not in irq context
654          * - '-': in irq context and irq is disabled
655          * - '?': in irq context and irq is enabled
656          */
657         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
658                 c = '+';
659                 if (class->usage_mask & lock_flag(bit))
660                         c = '?';
661         } else if (class->usage_mask & lock_flag(bit))
662                 c = '-';
663
664         return c;
665 }
666
667 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
668 {
669         int i = 0;
670
671 #define LOCKDEP_STATE(__STATE)                                          \
672         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
673         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
674 #include "lockdep_states.h"
675 #undef LOCKDEP_STATE
676
677         usage[i] = '\0';
678 }
679
680 static void __print_lock_name(struct lock_class *class)
681 {
682         char str[KSYM_NAME_LEN];
683         const char *name;
684
685         name = class->name;
686         if (!name) {
687                 name = __get_key_name(class->key, str);
688                 printk(KERN_CONT "%s", name);
689         } else {
690                 printk(KERN_CONT "%s", name);
691                 if (class->name_version > 1)
692                         printk(KERN_CONT "#%d", class->name_version);
693                 if (class->subclass)
694                         printk(KERN_CONT "/%d", class->subclass);
695         }
696 }
697
698 static void print_lock_name(struct lock_class *class)
699 {
700         char usage[LOCK_USAGE_CHARS];
701
702         get_usage_chars(class, usage);
703
704         printk(KERN_CONT " (");
705         __print_lock_name(class);
706         printk(KERN_CONT "){%s}-{%hd:%hd}", usage,
707                         class->wait_type_outer ?: class->wait_type_inner,
708                         class->wait_type_inner);
709 }
710
711 static void print_lockdep_cache(struct lockdep_map *lock)
712 {
713         const char *name;
714         char str[KSYM_NAME_LEN];
715
716         name = lock->name;
717         if (!name)
718                 name = __get_key_name(lock->key->subkeys, str);
719
720         printk(KERN_CONT "%s", name);
721 }
722
723 static void print_lock(struct held_lock *hlock)
724 {
725         /*
726          * We can be called locklessly through debug_show_all_locks() so be
727          * extra careful, the hlock might have been released and cleared.
728          *
729          * If this indeed happens, lets pretend it does not hurt to continue
730          * to print the lock unless the hlock class_idx does not point to a
731          * registered class. The rationale here is: since we don't attempt
732          * to distinguish whether we are in this situation, if it just
733          * happened we can't count on class_idx to tell either.
734          */
735         struct lock_class *lock = hlock_class(hlock);
736
737         if (!lock) {
738                 printk(KERN_CONT "<RELEASED>\n");
739                 return;
740         }
741
742         printk(KERN_CONT "%px", hlock->instance);
743         print_lock_name(lock);
744         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
745 }
746
747 static void lockdep_print_held_locks(struct task_struct *p)
748 {
749         int i, depth = READ_ONCE(p->lockdep_depth);
750
751         if (!depth)
752                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
753         else
754                 printk("%d lock%s held by %s/%d:\n", depth,
755                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
756         /*
757          * It's not reliable to print a task's held locks if it's not sleeping
758          * and it's not the current task.
759          */
760         if (p->state == TASK_RUNNING && p != current)
761                 return;
762         for (i = 0; i < depth; i++) {
763                 printk(" #%d: ", i);
764                 print_lock(p->held_locks + i);
765         }
766 }
767
768 static void print_kernel_ident(void)
769 {
770         printk("%s %.*s %s\n", init_utsname()->release,
771                 (int)strcspn(init_utsname()->version, " "),
772                 init_utsname()->version,
773                 print_tainted());
774 }
775
776 static int very_verbose(struct lock_class *class)
777 {
778 #if VERY_VERBOSE
779         return class_filter(class);
780 #endif
781         return 0;
782 }
783
784 /*
785  * Is this the address of a static object:
786  */
787 #ifdef __KERNEL__
788 static int static_obj(const void *obj)
789 {
790         unsigned long start = (unsigned long) &_stext,
791                       end   = (unsigned long) &_end,
792                       addr  = (unsigned long) obj;
793
794         if (arch_is_kernel_initmem_freed(addr))
795                 return 0;
796
797         /*
798          * static variable?
799          */
800         if ((addr >= start) && (addr < end))
801                 return 1;
802
803         if (arch_is_kernel_data(addr))
804                 return 1;
805
806         /*
807          * in-kernel percpu var?
808          */
809         if (is_kernel_percpu_address(addr))
810                 return 1;
811
812         /*
813          * module static or percpu var?
814          */
815         return is_module_address(addr) || is_module_percpu_address(addr);
816 }
817 #endif
818
819 /*
820  * To make lock name printouts unique, we calculate a unique
821  * class->name_version generation counter. The caller must hold the graph
822  * lock.
823  */
824 static int count_matching_names(struct lock_class *new_class)
825 {
826         struct lock_class *class;
827         int count = 0;
828
829         if (!new_class->name)
830                 return 0;
831
832         list_for_each_entry(class, &all_lock_classes, lock_entry) {
833                 if (new_class->key - new_class->subclass == class->key)
834                         return class->name_version;
835                 if (class->name && !strcmp(class->name, new_class->name))
836                         count = max(count, class->name_version);
837         }
838
839         return count + 1;
840 }
841
842 /* used from NMI context -- must be lockless */
843 static __always_inline struct lock_class *
844 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
845 {
846         struct lockdep_subclass_key *key;
847         struct hlist_head *hash_head;
848         struct lock_class *class;
849
850         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
851                 debug_locks_off();
852                 printk(KERN_ERR
853                         "BUG: looking up invalid subclass: %u\n", subclass);
854                 printk(KERN_ERR
855                         "turning off the locking correctness validator.\n");
856                 dump_stack();
857                 return NULL;
858         }
859
860         /*
861          * If it is not initialised then it has never been locked,
862          * so it won't be present in the hash table.
863          */
864         if (unlikely(!lock->key))
865                 return NULL;
866
867         /*
868          * NOTE: the class-key must be unique. For dynamic locks, a static
869          * lock_class_key variable is passed in through the mutex_init()
870          * (or spin_lock_init()) call - which acts as the key. For static
871          * locks we use the lock object itself as the key.
872          */
873         BUILD_BUG_ON(sizeof(struct lock_class_key) >
874                         sizeof(struct lockdep_map));
875
876         key = lock->key->subkeys + subclass;
877
878         hash_head = classhashentry(key);
879
880         /*
881          * We do an RCU walk of the hash, see lockdep_free_key_range().
882          */
883         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
884                 return NULL;
885
886         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
887                 if (class->key == key) {
888                         /*
889                          * Huh! same key, different name? Did someone trample
890                          * on some memory? We're most confused.
891                          */
892                         WARN_ON_ONCE(class->name != lock->name &&
893                                      lock->key != &__lockdep_no_validate__);
894                         return class;
895                 }
896         }
897
898         return NULL;
899 }
900
901 /*
902  * Static locks do not have their class-keys yet - for them the key is
903  * the lock object itself. If the lock is in the per cpu area, the
904  * canonical address of the lock (per cpu offset removed) is used.
905  */
906 static bool assign_lock_key(struct lockdep_map *lock)
907 {
908         unsigned long can_addr, addr = (unsigned long)lock;
909
910 #ifdef __KERNEL__
911         /*
912          * lockdep_free_key_range() assumes that struct lock_class_key
913          * objects do not overlap. Since we use the address of lock
914          * objects as class key for static objects, check whether the
915          * size of lock_class_key objects does not exceed the size of
916          * the smallest lock object.
917          */
918         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
919 #endif
920
921         if (__is_kernel_percpu_address(addr, &can_addr))
922                 lock->key = (void *)can_addr;
923         else if (__is_module_percpu_address(addr, &can_addr))
924                 lock->key = (void *)can_addr;
925         else if (static_obj(lock))
926                 lock->key = (void *)lock;
927         else {
928                 /* Debug-check: all keys must be persistent! */
929                 debug_locks_off();
930                 pr_err("INFO: trying to register non-static key.\n");
931                 pr_err("the code is fine but needs lockdep annotation.\n");
932                 pr_err("turning off the locking correctness validator.\n");
933                 dump_stack();
934                 return false;
935         }
936
937         return true;
938 }
939
940 #ifdef CONFIG_DEBUG_LOCKDEP
941
942 /* Check whether element @e occurs in list @h */
943 static bool in_list(struct list_head *e, struct list_head *h)
944 {
945         struct list_head *f;
946
947         list_for_each(f, h) {
948                 if (e == f)
949                         return true;
950         }
951
952         return false;
953 }
954
955 /*
956  * Check whether entry @e occurs in any of the locks_after or locks_before
957  * lists.
958  */
959 static bool in_any_class_list(struct list_head *e)
960 {
961         struct lock_class *class;
962         int i;
963
964         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
965                 class = &lock_classes[i];
966                 if (in_list(e, &class->locks_after) ||
967                     in_list(e, &class->locks_before))
968                         return true;
969         }
970         return false;
971 }
972
973 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
974 {
975         struct lock_list *e;
976
977         list_for_each_entry(e, h, entry) {
978                 if (e->links_to != c) {
979                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
980                                c->name ? : "(?)",
981                                (unsigned long)(e - list_entries),
982                                e->links_to && e->links_to->name ?
983                                e->links_to->name : "(?)",
984                                e->class && e->class->name ? e->class->name :
985                                "(?)");
986                         return false;
987                 }
988         }
989         return true;
990 }
991
992 #ifdef CONFIG_PROVE_LOCKING
993 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
994 #endif
995
996 static bool check_lock_chain_key(struct lock_chain *chain)
997 {
998 #ifdef CONFIG_PROVE_LOCKING
999         u64 chain_key = INITIAL_CHAIN_KEY;
1000         int i;
1001
1002         for (i = chain->base; i < chain->base + chain->depth; i++)
1003                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1004         /*
1005          * The 'unsigned long long' casts avoid that a compiler warning
1006          * is reported when building tools/lib/lockdep.
1007          */
1008         if (chain->chain_key != chain_key) {
1009                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1010                        (unsigned long long)(chain - lock_chains),
1011                        (unsigned long long)chain->chain_key,
1012                        (unsigned long long)chain_key);
1013                 return false;
1014         }
1015 #endif
1016         return true;
1017 }
1018
1019 static bool in_any_zapped_class_list(struct lock_class *class)
1020 {
1021         struct pending_free *pf;
1022         int i;
1023
1024         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1025                 if (in_list(&class->lock_entry, &pf->zapped))
1026                         return true;
1027         }
1028
1029         return false;
1030 }
1031
1032 static bool __check_data_structures(void)
1033 {
1034         struct lock_class *class;
1035         struct lock_chain *chain;
1036         struct hlist_head *head;
1037         struct lock_list *e;
1038         int i;
1039
1040         /* Check whether all classes occur in a lock list. */
1041         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1042                 class = &lock_classes[i];
1043                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1044                     !in_list(&class->lock_entry, &free_lock_classes) &&
1045                     !in_any_zapped_class_list(class)) {
1046                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1047                                class, class->name ? : "(?)");
1048                         return false;
1049                 }
1050         }
1051
1052         /* Check whether all classes have valid lock lists. */
1053         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1054                 class = &lock_classes[i];
1055                 if (!class_lock_list_valid(class, &class->locks_before))
1056                         return false;
1057                 if (!class_lock_list_valid(class, &class->locks_after))
1058                         return false;
1059         }
1060
1061         /* Check the chain_key of all lock chains. */
1062         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1063                 head = chainhash_table + i;
1064                 hlist_for_each_entry_rcu(chain, head, entry) {
1065                         if (!check_lock_chain_key(chain))
1066                                 return false;
1067                 }
1068         }
1069
1070         /*
1071          * Check whether all list entries that are in use occur in a class
1072          * lock list.
1073          */
1074         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1075                 e = list_entries + i;
1076                 if (!in_any_class_list(&e->entry)) {
1077                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1078                                (unsigned int)(e - list_entries),
1079                                e->class->name ? : "(?)",
1080                                e->links_to->name ? : "(?)");
1081                         return false;
1082                 }
1083         }
1084
1085         /*
1086          * Check whether all list entries that are not in use do not occur in
1087          * a class lock list.
1088          */
1089         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1090                 e = list_entries + i;
1091                 if (in_any_class_list(&e->entry)) {
1092                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1093                                (unsigned int)(e - list_entries),
1094                                e->class && e->class->name ? e->class->name :
1095                                "(?)",
1096                                e->links_to && e->links_to->name ?
1097                                e->links_to->name : "(?)");
1098                         return false;
1099                 }
1100         }
1101
1102         return true;
1103 }
1104
1105 int check_consistency = 0;
1106 module_param(check_consistency, int, 0644);
1107
1108 static void check_data_structures(void)
1109 {
1110         static bool once = false;
1111
1112         if (check_consistency && !once) {
1113                 if (!__check_data_structures()) {
1114                         once = true;
1115                         WARN_ON(once);
1116                 }
1117         }
1118 }
1119
1120 #else /* CONFIG_DEBUG_LOCKDEP */
1121
1122 static inline void check_data_structures(void) { }
1123
1124 #endif /* CONFIG_DEBUG_LOCKDEP */
1125
1126 static void init_chain_block_buckets(void);
1127
1128 /*
1129  * Initialize the lock_classes[] array elements, the free_lock_classes list
1130  * and also the delayed_free structure.
1131  */
1132 static void init_data_structures_once(void)
1133 {
1134         static bool __read_mostly ds_initialized, rcu_head_initialized;
1135         int i;
1136
1137         if (likely(rcu_head_initialized))
1138                 return;
1139
1140         if (system_state >= SYSTEM_SCHEDULING) {
1141                 init_rcu_head(&delayed_free.rcu_head);
1142                 rcu_head_initialized = true;
1143         }
1144
1145         if (ds_initialized)
1146                 return;
1147
1148         ds_initialized = true;
1149
1150         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1151         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1152
1153         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1154                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1155                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1156                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1157         }
1158         init_chain_block_buckets();
1159 }
1160
1161 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1162 {
1163         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1164
1165         return lock_keys_hash + hash;
1166 }
1167
1168 /* Register a dynamically allocated key. */
1169 void lockdep_register_key(struct lock_class_key *key)
1170 {
1171         struct hlist_head *hash_head;
1172         struct lock_class_key *k;
1173         unsigned long flags;
1174
1175         if (WARN_ON_ONCE(static_obj(key)))
1176                 return;
1177         hash_head = keyhashentry(key);
1178
1179         raw_local_irq_save(flags);
1180         if (!graph_lock())
1181                 goto restore_irqs;
1182         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1183                 if (WARN_ON_ONCE(k == key))
1184                         goto out_unlock;
1185         }
1186         hlist_add_head_rcu(&key->hash_entry, hash_head);
1187 out_unlock:
1188         graph_unlock();
1189 restore_irqs:
1190         raw_local_irq_restore(flags);
1191 }
1192 EXPORT_SYMBOL_GPL(lockdep_register_key);
1193
1194 /* Check whether a key has been registered as a dynamic key. */
1195 static bool is_dynamic_key(const struct lock_class_key *key)
1196 {
1197         struct hlist_head *hash_head;
1198         struct lock_class_key *k;
1199         bool found = false;
1200
1201         if (WARN_ON_ONCE(static_obj(key)))
1202                 return false;
1203
1204         /*
1205          * If lock debugging is disabled lock_keys_hash[] may contain
1206          * pointers to memory that has already been freed. Avoid triggering
1207          * a use-after-free in that case by returning early.
1208          */
1209         if (!debug_locks)
1210                 return true;
1211
1212         hash_head = keyhashentry(key);
1213
1214         rcu_read_lock();
1215         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1216                 if (k == key) {
1217                         found = true;
1218                         break;
1219                 }
1220         }
1221         rcu_read_unlock();
1222
1223         return found;
1224 }
1225
1226 /*
1227  * Register a lock's class in the hash-table, if the class is not present
1228  * yet. Otherwise we look it up. We cache the result in the lock object
1229  * itself, so actual lookup of the hash should be once per lock object.
1230  */
1231 static struct lock_class *
1232 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1233 {
1234         struct lockdep_subclass_key *key;
1235         struct hlist_head *hash_head;
1236         struct lock_class *class;
1237
1238         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1239
1240         class = look_up_lock_class(lock, subclass);
1241         if (likely(class))
1242                 goto out_set_class_cache;
1243
1244         if (!lock->key) {
1245                 if (!assign_lock_key(lock))
1246                         return NULL;
1247         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1248                 return NULL;
1249         }
1250
1251         key = lock->key->subkeys + subclass;
1252         hash_head = classhashentry(key);
1253
1254         if (!graph_lock()) {
1255                 return NULL;
1256         }
1257         /*
1258          * We have to do the hash-walk again, to avoid races
1259          * with another CPU:
1260          */
1261         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1262                 if (class->key == key)
1263                         goto out_unlock_set;
1264         }
1265
1266         init_data_structures_once();
1267
1268         /* Allocate a new lock class and add it to the hash. */
1269         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1270                                          lock_entry);
1271         if (!class) {
1272                 if (!debug_locks_off_graph_unlock()) {
1273                         return NULL;
1274                 }
1275
1276                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1277                 dump_stack();
1278                 return NULL;
1279         }
1280         nr_lock_classes++;
1281         __set_bit(class - lock_classes, lock_classes_in_use);
1282         debug_atomic_inc(nr_unused_locks);
1283         class->key = key;
1284         class->name = lock->name;
1285         class->subclass = subclass;
1286         WARN_ON_ONCE(!list_empty(&class->locks_before));
1287         WARN_ON_ONCE(!list_empty(&class->locks_after));
1288         class->name_version = count_matching_names(class);
1289         class->wait_type_inner = lock->wait_type_inner;
1290         class->wait_type_outer = lock->wait_type_outer;
1291         /*
1292          * We use RCU's safe list-add method to make
1293          * parallel walking of the hash-list safe:
1294          */
1295         hlist_add_head_rcu(&class->hash_entry, hash_head);
1296         /*
1297          * Remove the class from the free list and add it to the global list
1298          * of classes.
1299          */
1300         list_move_tail(&class->lock_entry, &all_lock_classes);
1301
1302         if (verbose(class)) {
1303                 graph_unlock();
1304
1305                 printk("\nnew class %px: %s", class->key, class->name);
1306                 if (class->name_version > 1)
1307                         printk(KERN_CONT "#%d", class->name_version);
1308                 printk(KERN_CONT "\n");
1309                 dump_stack();
1310
1311                 if (!graph_lock()) {
1312                         return NULL;
1313                 }
1314         }
1315 out_unlock_set:
1316         graph_unlock();
1317
1318 out_set_class_cache:
1319         if (!subclass || force)
1320                 lock->class_cache[0] = class;
1321         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1322                 lock->class_cache[subclass] = class;
1323
1324         /*
1325          * Hash collision, did we smoke some? We found a class with a matching
1326          * hash but the subclass -- which is hashed in -- didn't match.
1327          */
1328         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1329                 return NULL;
1330
1331         return class;
1332 }
1333
1334 #ifdef CONFIG_PROVE_LOCKING
1335 /*
1336  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1337  * with NULL on failure)
1338  */
1339 static struct lock_list *alloc_list_entry(void)
1340 {
1341         int idx = find_first_zero_bit(list_entries_in_use,
1342                                       ARRAY_SIZE(list_entries));
1343
1344         if (idx >= ARRAY_SIZE(list_entries)) {
1345                 if (!debug_locks_off_graph_unlock())
1346                         return NULL;
1347
1348                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1349                 dump_stack();
1350                 return NULL;
1351         }
1352         nr_list_entries++;
1353         __set_bit(idx, list_entries_in_use);
1354         return list_entries + idx;
1355 }
1356
1357 /*
1358  * Add a new dependency to the head of the list:
1359  */
1360 static int add_lock_to_list(struct lock_class *this,
1361                             struct lock_class *links_to, struct list_head *head,
1362                             unsigned long ip, u16 distance, u8 dep,
1363                             const struct lock_trace *trace)
1364 {
1365         struct lock_list *entry;
1366         /*
1367          * Lock not present yet - get a new dependency struct and
1368          * add it to the list:
1369          */
1370         entry = alloc_list_entry();
1371         if (!entry)
1372                 return 0;
1373
1374         entry->class = this;
1375         entry->links_to = links_to;
1376         entry->dep = dep;
1377         entry->distance = distance;
1378         entry->trace = trace;
1379         /*
1380          * Both allocation and removal are done under the graph lock; but
1381          * iteration is under RCU-sched; see look_up_lock_class() and
1382          * lockdep_free_key_range().
1383          */
1384         list_add_tail_rcu(&entry->entry, head);
1385
1386         return 1;
1387 }
1388
1389 /*
1390  * For good efficiency of modular, we use power of 2
1391  */
1392 #define MAX_CIRCULAR_QUEUE_SIZE         4096UL
1393 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1394
1395 /*
1396  * The circular_queue and helpers are used to implement graph
1397  * breadth-first search (BFS) algorithm, by which we can determine
1398  * whether there is a path from a lock to another. In deadlock checks,
1399  * a path from the next lock to be acquired to a previous held lock
1400  * indicates that adding the <prev> -> <next> lock dependency will
1401  * produce a circle in the graph. Breadth-first search instead of
1402  * depth-first search is used in order to find the shortest (circular)
1403  * path.
1404  */
1405 struct circular_queue {
1406         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1407         unsigned int  front, rear;
1408 };
1409
1410 static struct circular_queue lock_cq;
1411
1412 unsigned int max_bfs_queue_depth;
1413
1414 static unsigned int lockdep_dependency_gen_id;
1415
1416 static inline void __cq_init(struct circular_queue *cq)
1417 {
1418         cq->front = cq->rear = 0;
1419         lockdep_dependency_gen_id++;
1420 }
1421
1422 static inline int __cq_empty(struct circular_queue *cq)
1423 {
1424         return (cq->front == cq->rear);
1425 }
1426
1427 static inline int __cq_full(struct circular_queue *cq)
1428 {
1429         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1430 }
1431
1432 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1433 {
1434         if (__cq_full(cq))
1435                 return -1;
1436
1437         cq->element[cq->rear] = elem;
1438         cq->rear = (cq->rear + 1) & CQ_MASK;
1439         return 0;
1440 }
1441
1442 /*
1443  * Dequeue an element from the circular_queue, return a lock_list if
1444  * the queue is not empty, or NULL if otherwise.
1445  */
1446 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1447 {
1448         struct lock_list * lock;
1449
1450         if (__cq_empty(cq))
1451                 return NULL;
1452
1453         lock = cq->element[cq->front];
1454         cq->front = (cq->front + 1) & CQ_MASK;
1455
1456         return lock;
1457 }
1458
1459 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1460 {
1461         return (cq->rear - cq->front) & CQ_MASK;
1462 }
1463
1464 static inline void mark_lock_accessed(struct lock_list *lock)
1465 {
1466         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1467 }
1468
1469 static inline void visit_lock_entry(struct lock_list *lock,
1470                                     struct lock_list *parent)
1471 {
1472         lock->parent = parent;
1473 }
1474
1475 static inline unsigned long lock_accessed(struct lock_list *lock)
1476 {
1477         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1478 }
1479
1480 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1481 {
1482         return child->parent;
1483 }
1484
1485 static inline int get_lock_depth(struct lock_list *child)
1486 {
1487         int depth = 0;
1488         struct lock_list *parent;
1489
1490         while ((parent = get_lock_parent(child))) {
1491                 child = parent;
1492                 depth++;
1493         }
1494         return depth;
1495 }
1496
1497 /*
1498  * Return the forward or backward dependency list.
1499  *
1500  * @lock:   the lock_list to get its class's dependency list
1501  * @offset: the offset to struct lock_class to determine whether it is
1502  *          locks_after or locks_before
1503  */
1504 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1505 {
1506         void *lock_class = lock->class;
1507
1508         return lock_class + offset;
1509 }
1510 /*
1511  * Return values of a bfs search:
1512  *
1513  * BFS_E* indicates an error
1514  * BFS_R* indicates a result (match or not)
1515  *
1516  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1517  *
1518  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1519  *
1520  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1521  *             *@target_entry.
1522  *
1523  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1524  *               _unchanged_.
1525  */
1526 enum bfs_result {
1527         BFS_EINVALIDNODE = -2,
1528         BFS_EQUEUEFULL = -1,
1529         BFS_RMATCH = 0,
1530         BFS_RNOMATCH = 1,
1531 };
1532
1533 /*
1534  * bfs_result < 0 means error
1535  */
1536 static inline bool bfs_error(enum bfs_result res)
1537 {
1538         return res < 0;
1539 }
1540
1541 /*
1542  * DEP_*_BIT in lock_list::dep
1543  *
1544  * For dependency @prev -> @next:
1545  *
1546  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1547  *       (->read == 2)
1548  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1549  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1550  *   EN: @prev is exclusive locker and @next is non-recursive locker
1551  *
1552  * Note that we define the value of DEP_*_BITs so that:
1553  *   bit0 is prev->read == 0
1554  *   bit1 is next->read != 2
1555  */
1556 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1557 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1558 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1559 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1560
1561 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1562 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1563 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1564 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1565
1566 static inline unsigned int
1567 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1568 {
1569         return (prev->read == 0) + ((next->read != 2) << 1);
1570 }
1571
1572 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1573 {
1574         return 1U << __calc_dep_bit(prev, next);
1575 }
1576
1577 /*
1578  * calculate the dep_bit for backwards edges. We care about whether @prev is
1579  * shared and whether @next is recursive.
1580  */
1581 static inline unsigned int
1582 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1583 {
1584         return (next->read != 2) + ((prev->read == 0) << 1);
1585 }
1586
1587 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1588 {
1589         return 1U << __calc_dep_bitb(prev, next);
1590 }
1591
1592 /*
1593  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1594  * search.
1595  */
1596 static inline void __bfs_init_root(struct lock_list *lock,
1597                                    struct lock_class *class)
1598 {
1599         lock->class = class;
1600         lock->parent = NULL;
1601         lock->only_xr = 0;
1602 }
1603
1604 /*
1605  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1606  * root for a BFS search.
1607  *
1608  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1609  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1610  * and -(S*)->.
1611  */
1612 static inline void bfs_init_root(struct lock_list *lock,
1613                                  struct held_lock *hlock)
1614 {
1615         __bfs_init_root(lock, hlock_class(hlock));
1616         lock->only_xr = (hlock->read == 2);
1617 }
1618
1619 /*
1620  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1621  *
1622  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1623  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1624  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1625  */
1626 static inline void bfs_init_rootb(struct lock_list *lock,
1627                                   struct held_lock *hlock)
1628 {
1629         __bfs_init_root(lock, hlock_class(hlock));
1630         lock->only_xr = (hlock->read != 0);
1631 }
1632
1633 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1634 {
1635         if (!lock || !lock->parent)
1636                 return NULL;
1637
1638         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1639                                      &lock->entry, struct lock_list, entry);
1640 }
1641
1642 /*
1643  * Breadth-First Search to find a strong path in the dependency graph.
1644  *
1645  * @source_entry: the source of the path we are searching for.
1646  * @data: data used for the second parameter of @match function
1647  * @match: match function for the search
1648  * @target_entry: pointer to the target of a matched path
1649  * @offset: the offset to struct lock_class to determine whether it is
1650  *          locks_after or locks_before
1651  *
1652  * We may have multiple edges (considering different kinds of dependencies,
1653  * e.g. ER and SN) between two nodes in the dependency graph. But
1654  * only the strong dependency path in the graph is relevant to deadlocks. A
1655  * strong dependency path is a dependency path that doesn't have two adjacent
1656  * dependencies as -(*R)-> -(S*)->, please see:
1657  *
1658  *         Documentation/locking/lockdep-design.rst
1659  *
1660  * for more explanation of the definition of strong dependency paths
1661  *
1662  * In __bfs(), we only traverse in the strong dependency path:
1663  *
1664  *     In lock_list::only_xr, we record whether the previous dependency only
1665  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1666  *     filter out any -(S*)-> in the current dependency and after that, the
1667  *     ->only_xr is set according to whether we only have -(*R)-> left.
1668  */
1669 static enum bfs_result __bfs(struct lock_list *source_entry,
1670                              void *data,
1671                              bool (*match)(struct lock_list *entry, void *data),
1672                              struct lock_list **target_entry,
1673                              int offset)
1674 {
1675         struct circular_queue *cq = &lock_cq;
1676         struct lock_list *lock = NULL;
1677         struct lock_list *entry;
1678         struct list_head *head;
1679         unsigned int cq_depth;
1680         bool first;
1681
1682         lockdep_assert_locked();
1683
1684         __cq_init(cq);
1685         __cq_enqueue(cq, source_entry);
1686
1687         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1688                 if (!lock->class)
1689                         return BFS_EINVALIDNODE;
1690
1691                 /*
1692                  * Step 1: check whether we already finish on this one.
1693                  *
1694                  * If we have visited all the dependencies from this @lock to
1695                  * others (iow, if we have visited all lock_list entries in
1696                  * @lock->class->locks_{after,before}) we skip, otherwise go
1697                  * and visit all the dependencies in the list and mark this
1698                  * list accessed.
1699                  */
1700                 if (lock_accessed(lock))
1701                         continue;
1702                 else
1703                         mark_lock_accessed(lock);
1704
1705                 /*
1706                  * Step 2: check whether prev dependency and this form a strong
1707                  *         dependency path.
1708                  */
1709                 if (lock->parent) { /* Parent exists, check prev dependency */
1710                         u8 dep = lock->dep;
1711                         bool prev_only_xr = lock->parent->only_xr;
1712
1713                         /*
1714                          * Mask out all -(S*)-> if we only have *R in previous
1715                          * step, because -(*R)-> -(S*)-> don't make up a strong
1716                          * dependency.
1717                          */
1718                         if (prev_only_xr)
1719                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1720
1721                         /* If nothing left, we skip */
1722                         if (!dep)
1723                                 continue;
1724
1725                         /* If there are only -(*R)-> left, set that for the next step */
1726                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1727                 }
1728
1729                 /*
1730                  * Step 3: we haven't visited this and there is a strong
1731                  *         dependency path to this, so check with @match.
1732                  */
1733                 if (match(lock, data)) {
1734                         *target_entry = lock;
1735                         return BFS_RMATCH;
1736                 }
1737
1738                 /*
1739                  * Step 4: if not match, expand the path by adding the
1740                  *         forward or backwards dependencis in the search
1741                  *
1742                  */
1743                 first = true;
1744                 head = get_dep_list(lock, offset);
1745                 list_for_each_entry_rcu(entry, head, entry) {
1746                         visit_lock_entry(entry, lock);
1747
1748                         /*
1749                          * Note we only enqueue the first of the list into the
1750                          * queue, because we can always find a sibling
1751                          * dependency from one (see __bfs_next()), as a result
1752                          * the space of queue is saved.
1753                          */
1754                         if (!first)
1755                                 continue;
1756
1757                         first = false;
1758
1759                         if (__cq_enqueue(cq, entry))
1760                                 return BFS_EQUEUEFULL;
1761
1762                         cq_depth = __cq_get_elem_count(cq);
1763                         if (max_bfs_queue_depth < cq_depth)
1764                                 max_bfs_queue_depth = cq_depth;
1765                 }
1766         }
1767
1768         return BFS_RNOMATCH;
1769 }
1770
1771 static inline enum bfs_result
1772 __bfs_forwards(struct lock_list *src_entry,
1773                void *data,
1774                bool (*match)(struct lock_list *entry, void *data),
1775                struct lock_list **target_entry)
1776 {
1777         return __bfs(src_entry, data, match, target_entry,
1778                      offsetof(struct lock_class, locks_after));
1779
1780 }
1781
1782 static inline enum bfs_result
1783 __bfs_backwards(struct lock_list *src_entry,
1784                 void *data,
1785                 bool (*match)(struct lock_list *entry, void *data),
1786                 struct lock_list **target_entry)
1787 {
1788         return __bfs(src_entry, data, match, target_entry,
1789                      offsetof(struct lock_class, locks_before));
1790
1791 }
1792
1793 static void print_lock_trace(const struct lock_trace *trace,
1794                              unsigned int spaces)
1795 {
1796         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1797 }
1798
1799 /*
1800  * Print a dependency chain entry (this is only done when a deadlock
1801  * has been detected):
1802  */
1803 static noinline void
1804 print_circular_bug_entry(struct lock_list *target, int depth)
1805 {
1806         if (debug_locks_silent)
1807                 return;
1808         printk("\n-> #%u", depth);
1809         print_lock_name(target->class);
1810         printk(KERN_CONT ":\n");
1811         print_lock_trace(target->trace, 6);
1812 }
1813
1814 static void
1815 print_circular_lock_scenario(struct held_lock *src,
1816                              struct held_lock *tgt,
1817                              struct lock_list *prt)
1818 {
1819         struct lock_class *source = hlock_class(src);
1820         struct lock_class *target = hlock_class(tgt);
1821         struct lock_class *parent = prt->class;
1822
1823         /*
1824          * A direct locking problem where unsafe_class lock is taken
1825          * directly by safe_class lock, then all we need to show
1826          * is the deadlock scenario, as it is obvious that the
1827          * unsafe lock is taken under the safe lock.
1828          *
1829          * But if there is a chain instead, where the safe lock takes
1830          * an intermediate lock (middle_class) where this lock is
1831          * not the same as the safe lock, then the lock chain is
1832          * used to describe the problem. Otherwise we would need
1833          * to show a different CPU case for each link in the chain
1834          * from the safe_class lock to the unsafe_class lock.
1835          */
1836         if (parent != source) {
1837                 printk("Chain exists of:\n  ");
1838                 __print_lock_name(source);
1839                 printk(KERN_CONT " --> ");
1840                 __print_lock_name(parent);
1841                 printk(KERN_CONT " --> ");
1842                 __print_lock_name(target);
1843                 printk(KERN_CONT "\n\n");
1844         }
1845
1846         printk(" Possible unsafe locking scenario:\n\n");
1847         printk("       CPU0                    CPU1\n");
1848         printk("       ----                    ----\n");
1849         printk("  lock(");
1850         __print_lock_name(target);
1851         printk(KERN_CONT ");\n");
1852         printk("                               lock(");
1853         __print_lock_name(parent);
1854         printk(KERN_CONT ");\n");
1855         printk("                               lock(");
1856         __print_lock_name(target);
1857         printk(KERN_CONT ");\n");
1858         printk("  lock(");
1859         __print_lock_name(source);
1860         printk(KERN_CONT ");\n");
1861         printk("\n *** DEADLOCK ***\n\n");
1862 }
1863
1864 /*
1865  * When a circular dependency is detected, print the
1866  * header first:
1867  */
1868 static noinline void
1869 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1870                         struct held_lock *check_src,
1871                         struct held_lock *check_tgt)
1872 {
1873         struct task_struct *curr = current;
1874
1875         if (debug_locks_silent)
1876                 return;
1877
1878         pr_warn("\n");
1879         pr_warn("======================================================\n");
1880         pr_warn("WARNING: possible circular locking dependency detected\n");
1881         print_kernel_ident();
1882         pr_warn("------------------------------------------------------\n");
1883         pr_warn("%s/%d is trying to acquire lock:\n",
1884                 curr->comm, task_pid_nr(curr));
1885         print_lock(check_src);
1886
1887         pr_warn("\nbut task is already holding lock:\n");
1888
1889         print_lock(check_tgt);
1890         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1891         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1892
1893         print_circular_bug_entry(entry, depth);
1894 }
1895
1896 /*
1897  * We are about to add A -> B into the dependency graph, and in __bfs() a
1898  * strong dependency path A -> .. -> B is found: hlock_class equals
1899  * entry->class.
1900  *
1901  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1902  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1903  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1904  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1905  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1906  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1907  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1908  *
1909  * We need to make sure both the start and the end of A -> .. -> B is not
1910  * weaker than A -> B. For the start part, please see the comment in
1911  * check_redundant(). For the end part, we need:
1912  *
1913  * Either
1914  *
1915  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1916  *
1917  * or
1918  *
1919  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1920  *
1921  */
1922 static inline bool hlock_equal(struct lock_list *entry, void *data)
1923 {
1924         struct held_lock *hlock = (struct held_lock *)data;
1925
1926         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1927                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1928                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1929 }
1930
1931 /*
1932  * We are about to add B -> A into the dependency graph, and in __bfs() a
1933  * strong dependency path A -> .. -> B is found: hlock_class equals
1934  * entry->class.
1935  *
1936  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1937  * dependency cycle, that means:
1938  *
1939  * Either
1940  *
1941  *     a) B -> A is -(E*)->
1942  *
1943  * or
1944  *
1945  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1946  *
1947  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1948  */
1949 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1950 {
1951         struct held_lock *hlock = (struct held_lock *)data;
1952
1953         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1954                (hlock->read == 0 || /* B -> A is -(E*)-> */
1955                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1956 }
1957
1958 static noinline void print_circular_bug(struct lock_list *this,
1959                                 struct lock_list *target,
1960                                 struct held_lock *check_src,
1961                                 struct held_lock *check_tgt)
1962 {
1963         struct task_struct *curr = current;
1964         struct lock_list *parent;
1965         struct lock_list *first_parent;
1966         int depth;
1967
1968         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1969                 return;
1970
1971         this->trace = save_trace();
1972         if (!this->trace)
1973                 return;
1974
1975         depth = get_lock_depth(target);
1976
1977         print_circular_bug_header(target, depth, check_src, check_tgt);
1978
1979         parent = get_lock_parent(target);
1980         first_parent = parent;
1981
1982         while (parent) {
1983                 print_circular_bug_entry(parent, --depth);
1984                 parent = get_lock_parent(parent);
1985         }
1986
1987         printk("\nother info that might help us debug this:\n\n");
1988         print_circular_lock_scenario(check_src, check_tgt,
1989                                      first_parent);
1990
1991         lockdep_print_held_locks(curr);
1992
1993         printk("\nstack backtrace:\n");
1994         dump_stack();
1995 }
1996
1997 static noinline void print_bfs_bug(int ret)
1998 {
1999         if (!debug_locks_off_graph_unlock())
2000                 return;
2001
2002         /*
2003          * Breadth-first-search failed, graph got corrupted?
2004          */
2005         WARN(1, "lockdep bfs error:%d\n", ret);
2006 }
2007
2008 static bool noop_count(struct lock_list *entry, void *data)
2009 {
2010         (*(unsigned long *)data)++;
2011         return false;
2012 }
2013
2014 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2015 {
2016         unsigned long  count = 0;
2017         struct lock_list *target_entry;
2018
2019         __bfs_forwards(this, (void *)&count, noop_count, &target_entry);
2020
2021         return count;
2022 }
2023 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2024 {
2025         unsigned long ret, flags;
2026         struct lock_list this;
2027
2028         __bfs_init_root(&this, class);
2029
2030         raw_local_irq_save(flags);
2031         lockdep_lock();
2032         ret = __lockdep_count_forward_deps(&this);
2033         lockdep_unlock();
2034         raw_local_irq_restore(flags);
2035
2036         return ret;
2037 }
2038
2039 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2040 {
2041         unsigned long  count = 0;
2042         struct lock_list *target_entry;
2043
2044         __bfs_backwards(this, (void *)&count, noop_count, &target_entry);
2045
2046         return count;
2047 }
2048
2049 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2050 {
2051         unsigned long ret, flags;
2052         struct lock_list this;
2053
2054         __bfs_init_root(&this, class);
2055
2056         raw_local_irq_save(flags);
2057         lockdep_lock();
2058         ret = __lockdep_count_backward_deps(&this);
2059         lockdep_unlock();
2060         raw_local_irq_restore(flags);
2061
2062         return ret;
2063 }
2064
2065 /*
2066  * Check that the dependency graph starting at <src> can lead to
2067  * <target> or not.
2068  */
2069 static noinline enum bfs_result
2070 check_path(struct held_lock *target, struct lock_list *src_entry,
2071            bool (*match)(struct lock_list *entry, void *data),
2072            struct lock_list **target_entry)
2073 {
2074         enum bfs_result ret;
2075
2076         ret = __bfs_forwards(src_entry, target, match, target_entry);
2077
2078         if (unlikely(bfs_error(ret)))
2079                 print_bfs_bug(ret);
2080
2081         return ret;
2082 }
2083
2084 /*
2085  * Prove that the dependency graph starting at <src> can not
2086  * lead to <target>. If it can, there is a circle when adding
2087  * <target> -> <src> dependency.
2088  *
2089  * Print an error and return BFS_RMATCH if it does.
2090  */
2091 static noinline enum bfs_result
2092 check_noncircular(struct held_lock *src, struct held_lock *target,
2093                   struct lock_trace **const trace)
2094 {
2095         enum bfs_result ret;
2096         struct lock_list *target_entry;
2097         struct lock_list src_entry;
2098
2099         bfs_init_root(&src_entry, src);
2100
2101         debug_atomic_inc(nr_cyclic_checks);
2102
2103         ret = check_path(target, &src_entry, hlock_conflict, &target_entry);
2104
2105         if (unlikely(ret == BFS_RMATCH)) {
2106                 if (!*trace) {
2107                         /*
2108                          * If save_trace fails here, the printing might
2109                          * trigger a WARN but because of the !nr_entries it
2110                          * should not do bad things.
2111                          */
2112                         *trace = save_trace();
2113                 }
2114
2115                 print_circular_bug(&src_entry, target_entry, src, target);
2116         }
2117
2118         return ret;
2119 }
2120
2121 #ifdef CONFIG_LOCKDEP_SMALL
2122 /*
2123  * Check that the dependency graph starting at <src> can lead to
2124  * <target> or not. If it can, <src> -> <target> dependency is already
2125  * in the graph.
2126  *
2127  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2128  * any error appears in the bfs search.
2129  */
2130 static noinline enum bfs_result
2131 check_redundant(struct held_lock *src, struct held_lock *target)
2132 {
2133         enum bfs_result ret;
2134         struct lock_list *target_entry;
2135         struct lock_list src_entry;
2136
2137         bfs_init_root(&src_entry, src);
2138         /*
2139          * Special setup for check_redundant().
2140          *
2141          * To report redundant, we need to find a strong dependency path that
2142          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2143          * we need to let __bfs() only search for a path starting at a -(E*)->,
2144          * we achieve this by setting the initial node's ->only_xr to true in
2145          * that case. And if <prev> is S, we set initial ->only_xr to false
2146          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2147          */
2148         src_entry.only_xr = src->read == 0;
2149
2150         debug_atomic_inc(nr_redundant_checks);
2151
2152         ret = check_path(target, &src_entry, hlock_equal, &target_entry);
2153
2154         if (ret == BFS_RMATCH)
2155                 debug_atomic_inc(nr_redundant);
2156
2157         return ret;
2158 }
2159 #endif
2160
2161 #ifdef CONFIG_TRACE_IRQFLAGS
2162
2163 /*
2164  * Forwards and backwards subgraph searching, for the purposes of
2165  * proving that two subgraphs can be connected by a new dependency
2166  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2167  *
2168  * A irq safe->unsafe deadlock happens with the following conditions:
2169  *
2170  * 1) We have a strong dependency path A -> ... -> B
2171  *
2172  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2173  *    irq can create a new dependency B -> A (consider the case that a holder
2174  *    of B gets interrupted by an irq whose handler will try to acquire A).
2175  *
2176  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2177  *    strong circle:
2178  *
2179  *      For the usage bits of B:
2180  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2181  *           ENABLED_IRQ usage suffices.
2182  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2183  *           ENABLED_IRQ_*_READ usage suffices.
2184  *
2185  *      For the usage bits of A:
2186  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2187  *           USED_IN_IRQ usage suffices.
2188  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2189  *           USED_IN_IRQ_*_READ usage suffices.
2190  */
2191
2192 /*
2193  * There is a strong dependency path in the dependency graph: A -> B, and now
2194  * we need to decide which usage bit of A should be accumulated to detect
2195  * safe->unsafe bugs.
2196  *
2197  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2198  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2199  *
2200  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2201  * path, any usage of A should be considered. Otherwise, we should only
2202  * consider _READ usage.
2203  */
2204 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2205 {
2206         if (!entry->only_xr)
2207                 *(unsigned long *)mask |= entry->class->usage_mask;
2208         else /* Mask out _READ usage bits */
2209                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2210
2211         return false;
2212 }
2213
2214 /*
2215  * There is a strong dependency path in the dependency graph: A -> B, and now
2216  * we need to decide which usage bit of B conflicts with the usage bits of A,
2217  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2218  *
2219  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2220  * path, any usage of B should be considered. Otherwise, we should only
2221  * consider _READ usage.
2222  */
2223 static inline bool usage_match(struct lock_list *entry, void *mask)
2224 {
2225         if (!entry->only_xr)
2226                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2227         else /* Mask out _READ usage bits */
2228                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2229 }
2230
2231 /*
2232  * Find a node in the forwards-direction dependency sub-graph starting
2233  * at @root->class that matches @bit.
2234  *
2235  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2236  * into *@target_entry.
2237  */
2238 static enum bfs_result
2239 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2240                         struct lock_list **target_entry)
2241 {
2242         enum bfs_result result;
2243
2244         debug_atomic_inc(nr_find_usage_forwards_checks);
2245
2246         result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
2247
2248         return result;
2249 }
2250
2251 /*
2252  * Find a node in the backwards-direction dependency sub-graph starting
2253  * at @root->class that matches @bit.
2254  */
2255 static enum bfs_result
2256 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2257                         struct lock_list **target_entry)
2258 {
2259         enum bfs_result result;
2260
2261         debug_atomic_inc(nr_find_usage_backwards_checks);
2262
2263         result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
2264
2265         return result;
2266 }
2267
2268 static void print_lock_class_header(struct lock_class *class, int depth)
2269 {
2270         int bit;
2271
2272         printk("%*s->", depth, "");
2273         print_lock_name(class);
2274 #ifdef CONFIG_DEBUG_LOCKDEP
2275         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2276 #endif
2277         printk(KERN_CONT " {\n");
2278
2279         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2280                 if (class->usage_mask & (1 << bit)) {
2281                         int len = depth;
2282
2283                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2284                         len += printk(KERN_CONT " at:\n");
2285                         print_lock_trace(class->usage_traces[bit], len);
2286                 }
2287         }
2288         printk("%*s }\n", depth, "");
2289
2290         printk("%*s ... key      at: [<%px>] %pS\n",
2291                 depth, "", class->key, class->key);
2292 }
2293
2294 /*
2295  * printk the shortest lock dependencies from @start to @end in reverse order:
2296  */
2297 static void __used
2298 print_shortest_lock_dependencies(struct lock_list *leaf,
2299                                  struct lock_list *root)
2300 {
2301         struct lock_list *entry = leaf;
2302         int depth;
2303
2304         /*compute depth from generated tree by BFS*/
2305         depth = get_lock_depth(leaf);
2306
2307         do {
2308                 print_lock_class_header(entry->class, depth);
2309                 printk("%*s ... acquired at:\n", depth, "");
2310                 print_lock_trace(entry->trace, 2);
2311                 printk("\n");
2312
2313                 if (depth == 0 && (entry != root)) {
2314                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2315                         break;
2316                 }
2317
2318                 entry = get_lock_parent(entry);
2319                 depth--;
2320         } while (entry && (depth >= 0));
2321 }
2322
2323 static void
2324 print_irq_lock_scenario(struct lock_list *safe_entry,
2325                         struct lock_list *unsafe_entry,
2326                         struct lock_class *prev_class,
2327                         struct lock_class *next_class)
2328 {
2329         struct lock_class *safe_class = safe_entry->class;
2330         struct lock_class *unsafe_class = unsafe_entry->class;
2331         struct lock_class *middle_class = prev_class;
2332
2333         if (middle_class == safe_class)
2334                 middle_class = next_class;
2335
2336         /*
2337          * A direct locking problem where unsafe_class lock is taken
2338          * directly by safe_class lock, then all we need to show
2339          * is the deadlock scenario, as it is obvious that the
2340          * unsafe lock is taken under the safe lock.
2341          *
2342          * But if there is a chain instead, where the safe lock takes
2343          * an intermediate lock (middle_class) where this lock is
2344          * not the same as the safe lock, then the lock chain is
2345          * used to describe the problem. Otherwise we would need
2346          * to show a different CPU case for each link in the chain
2347          * from the safe_class lock to the unsafe_class lock.
2348          */
2349         if (middle_class != unsafe_class) {
2350                 printk("Chain exists of:\n  ");
2351                 __print_lock_name(safe_class);
2352                 printk(KERN_CONT " --> ");
2353                 __print_lock_name(middle_class);
2354                 printk(KERN_CONT " --> ");
2355                 __print_lock_name(unsafe_class);
2356                 printk(KERN_CONT "\n\n");
2357         }
2358
2359         printk(" Possible interrupt unsafe locking scenario:\n\n");
2360         printk("       CPU0                    CPU1\n");
2361         printk("       ----                    ----\n");
2362         printk("  lock(");
2363         __print_lock_name(unsafe_class);
2364         printk(KERN_CONT ");\n");
2365         printk("                               local_irq_disable();\n");
2366         printk("                               lock(");
2367         __print_lock_name(safe_class);
2368         printk(KERN_CONT ");\n");
2369         printk("                               lock(");
2370         __print_lock_name(middle_class);
2371         printk(KERN_CONT ");\n");
2372         printk("  <Interrupt>\n");
2373         printk("    lock(");
2374         __print_lock_name(safe_class);
2375         printk(KERN_CONT ");\n");
2376         printk("\n *** DEADLOCK ***\n\n");
2377 }
2378
2379 static void
2380 print_bad_irq_dependency(struct task_struct *curr,
2381                          struct lock_list *prev_root,
2382                          struct lock_list *next_root,
2383                          struct lock_list *backwards_entry,
2384                          struct lock_list *forwards_entry,
2385                          struct held_lock *prev,
2386                          struct held_lock *next,
2387                          enum lock_usage_bit bit1,
2388                          enum lock_usage_bit bit2,
2389                          const char *irqclass)
2390 {
2391         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2392                 return;
2393
2394         pr_warn("\n");
2395         pr_warn("=====================================================\n");
2396         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2397                 irqclass, irqclass);
2398         print_kernel_ident();
2399         pr_warn("-----------------------------------------------------\n");
2400         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2401                 curr->comm, task_pid_nr(curr),
2402                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2403                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2404                 lockdep_hardirqs_enabled(),
2405                 curr->softirqs_enabled);
2406         print_lock(next);
2407
2408         pr_warn("\nand this task is already holding:\n");
2409         print_lock(prev);
2410         pr_warn("which would create a new lock dependency:\n");
2411         print_lock_name(hlock_class(prev));
2412         pr_cont(" ->");
2413         print_lock_name(hlock_class(next));
2414         pr_cont("\n");
2415
2416         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2417                 irqclass);
2418         print_lock_name(backwards_entry->class);
2419         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2420
2421         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2422
2423         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2424         print_lock_name(forwards_entry->class);
2425         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2426         pr_warn("...");
2427
2428         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2429
2430         pr_warn("\nother info that might help us debug this:\n\n");
2431         print_irq_lock_scenario(backwards_entry, forwards_entry,
2432                                 hlock_class(prev), hlock_class(next));
2433
2434         lockdep_print_held_locks(curr);
2435
2436         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2437         prev_root->trace = save_trace();
2438         if (!prev_root->trace)
2439                 return;
2440         print_shortest_lock_dependencies(backwards_entry, prev_root);
2441
2442         pr_warn("\nthe dependencies between the lock to be acquired");
2443         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2444         next_root->trace = save_trace();
2445         if (!next_root->trace)
2446                 return;
2447         print_shortest_lock_dependencies(forwards_entry, next_root);
2448
2449         pr_warn("\nstack backtrace:\n");
2450         dump_stack();
2451 }
2452
2453 static const char *state_names[] = {
2454 #define LOCKDEP_STATE(__STATE) \
2455         __stringify(__STATE),
2456 #include "lockdep_states.h"
2457 #undef LOCKDEP_STATE
2458 };
2459
2460 static const char *state_rnames[] = {
2461 #define LOCKDEP_STATE(__STATE) \
2462         __stringify(__STATE)"-READ",
2463 #include "lockdep_states.h"
2464 #undef LOCKDEP_STATE
2465 };
2466
2467 static inline const char *state_name(enum lock_usage_bit bit)
2468 {
2469         if (bit & LOCK_USAGE_READ_MASK)
2470                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2471         else
2472                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2473 }
2474
2475 /*
2476  * The bit number is encoded like:
2477  *
2478  *  bit0: 0 exclusive, 1 read lock
2479  *  bit1: 0 used in irq, 1 irq enabled
2480  *  bit2-n: state
2481  */
2482 static int exclusive_bit(int new_bit)
2483 {
2484         int state = new_bit & LOCK_USAGE_STATE_MASK;
2485         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2486
2487         /*
2488          * keep state, bit flip the direction and strip read.
2489          */
2490         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2491 }
2492
2493 /*
2494  * Observe that when given a bitmask where each bitnr is encoded as above, a
2495  * right shift of the mask transforms the individual bitnrs as -1 and
2496  * conversely, a left shift transforms into +1 for the individual bitnrs.
2497  *
2498  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2499  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2500  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2501  *
2502  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2503  *
2504  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2505  * all bits set) and recompose with bitnr1 flipped.
2506  */
2507 static unsigned long invert_dir_mask(unsigned long mask)
2508 {
2509         unsigned long excl = 0;
2510
2511         /* Invert dir */
2512         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2513         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2514
2515         return excl;
2516 }
2517
2518 /*
2519  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2520  * usage may cause deadlock too, for example:
2521  *
2522  * P1                           P2
2523  * <irq disabled>
2524  * write_lock(l1);              <irq enabled>
2525  *                              read_lock(l2);
2526  * write_lock(l2);
2527  *                              <in irq>
2528  *                              read_lock(l1);
2529  *
2530  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2531  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2532  * deadlock.
2533  *
2534  * In fact, all of the following cases may cause deadlocks:
2535  *
2536  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2537  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2538  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2539  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2540  *
2541  * As a result, to calculate the "exclusive mask", first we invert the
2542  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2543  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2544  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2545  */
2546 static unsigned long exclusive_mask(unsigned long mask)
2547 {
2548         unsigned long excl = invert_dir_mask(mask);
2549
2550         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2551         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2552
2553         return excl;
2554 }
2555
2556 /*
2557  * Retrieve the _possible_ original mask to which @mask is
2558  * exclusive. Ie: this is the opposite of exclusive_mask().
2559  * Note that 2 possible original bits can match an exclusive
2560  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2561  * cleared. So both are returned for each exclusive bit.
2562  */
2563 static unsigned long original_mask(unsigned long mask)
2564 {
2565         unsigned long excl = invert_dir_mask(mask);
2566
2567         /* Include read in existing usages */
2568         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2569         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2570
2571         return excl;
2572 }
2573
2574 /*
2575  * Find the first pair of bit match between an original
2576  * usage mask and an exclusive usage mask.
2577  */
2578 static int find_exclusive_match(unsigned long mask,
2579                                 unsigned long excl_mask,
2580                                 enum lock_usage_bit *bitp,
2581                                 enum lock_usage_bit *excl_bitp)
2582 {
2583         int bit, excl, excl_read;
2584
2585         for_each_set_bit(bit, &mask, LOCK_USED) {
2586                 /*
2587                  * exclusive_bit() strips the read bit, however,
2588                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2589                  * to search excl | LOCK_USAGE_READ_MASK as well.
2590                  */
2591                 excl = exclusive_bit(bit);
2592                 excl_read = excl | LOCK_USAGE_READ_MASK;
2593                 if (excl_mask & lock_flag(excl)) {
2594                         *bitp = bit;
2595                         *excl_bitp = excl;
2596                         return 0;
2597                 } else if (excl_mask & lock_flag(excl_read)) {
2598                         *bitp = bit;
2599                         *excl_bitp = excl_read;
2600                         return 0;
2601                 }
2602         }
2603         return -1;
2604 }
2605
2606 /*
2607  * Prove that the new dependency does not connect a hardirq-safe(-read)
2608  * lock with a hardirq-unsafe lock - to achieve this we search
2609  * the backwards-subgraph starting at <prev>, and the
2610  * forwards-subgraph starting at <next>:
2611  */
2612 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2613                            struct held_lock *next)
2614 {
2615         unsigned long usage_mask = 0, forward_mask, backward_mask;
2616         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2617         struct lock_list *target_entry1;
2618         struct lock_list *target_entry;
2619         struct lock_list this, that;
2620         enum bfs_result ret;
2621
2622         /*
2623          * Step 1: gather all hard/soft IRQs usages backward in an
2624          * accumulated usage mask.
2625          */
2626         bfs_init_rootb(&this, prev);
2627
2628         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2629         if (bfs_error(ret)) {
2630                 print_bfs_bug(ret);
2631                 return 0;
2632         }
2633
2634         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2635         if (!usage_mask)
2636                 return 1;
2637
2638         /*
2639          * Step 2: find exclusive uses forward that match the previous
2640          * backward accumulated mask.
2641          */
2642         forward_mask = exclusive_mask(usage_mask);
2643
2644         bfs_init_root(&that, next);
2645
2646         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2647         if (bfs_error(ret)) {
2648                 print_bfs_bug(ret);
2649                 return 0;
2650         }
2651         if (ret == BFS_RNOMATCH)
2652                 return 1;
2653
2654         /*
2655          * Step 3: we found a bad match! Now retrieve a lock from the backward
2656          * list whose usage mask matches the exclusive usage mask from the
2657          * lock found on the forward list.
2658          */
2659         backward_mask = original_mask(target_entry1->class->usage_mask);
2660
2661         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2662         if (bfs_error(ret)) {
2663                 print_bfs_bug(ret);
2664                 return 0;
2665         }
2666         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2667                 return 1;
2668
2669         /*
2670          * Step 4: narrow down to a pair of incompatible usage bits
2671          * and report it.
2672          */
2673         ret = find_exclusive_match(target_entry->class->usage_mask,
2674                                    target_entry1->class->usage_mask,
2675                                    &backward_bit, &forward_bit);
2676         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2677                 return 1;
2678
2679         print_bad_irq_dependency(curr, &this, &that,
2680                                  target_entry, target_entry1,
2681                                  prev, next,
2682                                  backward_bit, forward_bit,
2683                                  state_name(backward_bit));
2684
2685         return 0;
2686 }
2687
2688 #else
2689
2690 static inline int check_irq_usage(struct task_struct *curr,
2691                                   struct held_lock *prev, struct held_lock *next)
2692 {
2693         return 1;
2694 }
2695 #endif /* CONFIG_TRACE_IRQFLAGS */
2696
2697 static void inc_chains(int irq_context)
2698 {
2699         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2700                 nr_hardirq_chains++;
2701         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2702                 nr_softirq_chains++;
2703         else
2704                 nr_process_chains++;
2705 }
2706
2707 static void dec_chains(int irq_context)
2708 {
2709         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2710                 nr_hardirq_chains--;
2711         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2712                 nr_softirq_chains--;
2713         else
2714                 nr_process_chains--;
2715 }
2716
2717 static void
2718 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2719 {
2720         struct lock_class *next = hlock_class(nxt);
2721         struct lock_class *prev = hlock_class(prv);
2722
2723         printk(" Possible unsafe locking scenario:\n\n");
2724         printk("       CPU0\n");
2725         printk("       ----\n");
2726         printk("  lock(");
2727         __print_lock_name(prev);
2728         printk(KERN_CONT ");\n");
2729         printk("  lock(");
2730         __print_lock_name(next);
2731         printk(KERN_CONT ");\n");
2732         printk("\n *** DEADLOCK ***\n\n");
2733         printk(" May be due to missing lock nesting notation\n\n");
2734 }
2735
2736 static void
2737 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2738                    struct held_lock *next)
2739 {
2740         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2741                 return;
2742
2743         pr_warn("\n");
2744         pr_warn("============================================\n");
2745         pr_warn("WARNING: possible recursive locking detected\n");
2746         print_kernel_ident();
2747         pr_warn("--------------------------------------------\n");
2748         pr_warn("%s/%d is trying to acquire lock:\n",
2749                 curr->comm, task_pid_nr(curr));
2750         print_lock(next);
2751         pr_warn("\nbut task is already holding lock:\n");
2752         print_lock(prev);
2753
2754         pr_warn("\nother info that might help us debug this:\n");
2755         print_deadlock_scenario(next, prev);
2756         lockdep_print_held_locks(curr);
2757
2758         pr_warn("\nstack backtrace:\n");
2759         dump_stack();
2760 }
2761
2762 /*
2763  * Check whether we are holding such a class already.
2764  *
2765  * (Note that this has to be done separately, because the graph cannot
2766  * detect such classes of deadlocks.)
2767  *
2768  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2769  * lock class is held but nest_lock is also held, i.e. we rely on the
2770  * nest_lock to avoid the deadlock.
2771  */
2772 static int
2773 check_deadlock(struct task_struct *curr, struct held_lock *next)
2774 {
2775         struct held_lock *prev;
2776         struct held_lock *nest = NULL;
2777         int i;
2778
2779         for (i = 0; i < curr->lockdep_depth; i++) {
2780                 prev = curr->held_locks + i;
2781
2782                 if (prev->instance == next->nest_lock)
2783                         nest = prev;
2784
2785                 if (hlock_class(prev) != hlock_class(next))
2786                         continue;
2787
2788                 /*
2789                  * Allow read-after-read recursion of the same
2790                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
2791                  */
2792                 if ((next->read == 2) && prev->read)
2793                         continue;
2794
2795                 /*
2796                  * We're holding the nest_lock, which serializes this lock's
2797                  * nesting behaviour.
2798                  */
2799                 if (nest)
2800                         return 2;
2801
2802                 print_deadlock_bug(curr, prev, next);
2803                 return 0;
2804         }
2805         return 1;
2806 }
2807
2808 /*
2809  * There was a chain-cache miss, and we are about to add a new dependency
2810  * to a previous lock. We validate the following rules:
2811  *
2812  *  - would the adding of the <prev> -> <next> dependency create a
2813  *    circular dependency in the graph? [== circular deadlock]
2814  *
2815  *  - does the new prev->next dependency connect any hardirq-safe lock
2816  *    (in the full backwards-subgraph starting at <prev>) with any
2817  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2818  *    <next>)? [== illegal lock inversion with hardirq contexts]
2819  *
2820  *  - does the new prev->next dependency connect any softirq-safe lock
2821  *    (in the full backwards-subgraph starting at <prev>) with any
2822  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2823  *    <next>)? [== illegal lock inversion with softirq contexts]
2824  *
2825  * any of these scenarios could lead to a deadlock.
2826  *
2827  * Then if all the validations pass, we add the forwards and backwards
2828  * dependency.
2829  */
2830 static int
2831 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2832                struct held_lock *next, u16 distance,
2833                struct lock_trace **const trace)
2834 {
2835         struct lock_list *entry;
2836         enum bfs_result ret;
2837
2838         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2839                 /*
2840                  * The warning statements below may trigger a use-after-free
2841                  * of the class name. It is better to trigger a use-after free
2842                  * and to have the class name most of the time instead of not
2843                  * having the class name available.
2844                  */
2845                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2846                           "Detected use-after-free of lock class %px/%s\n",
2847                           hlock_class(prev),
2848                           hlock_class(prev)->name);
2849                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2850                           "Detected use-after-free of lock class %px/%s\n",
2851                           hlock_class(next),
2852                           hlock_class(next)->name);
2853                 return 2;
2854         }
2855
2856         /*
2857          * Prove that the new <prev> -> <next> dependency would not
2858          * create a circular dependency in the graph. (We do this by
2859          * a breadth-first search into the graph starting at <next>,
2860          * and check whether we can reach <prev>.)
2861          *
2862          * The search is limited by the size of the circular queue (i.e.,
2863          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2864          * in the graph whose neighbours are to be checked.
2865          */
2866         ret = check_noncircular(next, prev, trace);
2867         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2868                 return 0;
2869
2870         if (!check_irq_usage(curr, prev, next))
2871                 return 0;
2872
2873         /*
2874          * Is the <prev> -> <next> dependency already present?
2875          *
2876          * (this may occur even though this is a new chain: consider
2877          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2878          *  chains - the second one will be new, but L1 already has
2879          *  L2 added to its dependency list, due to the first chain.)
2880          */
2881         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2882                 if (entry->class == hlock_class(next)) {
2883                         if (distance == 1)
2884                                 entry->distance = 1;
2885                         entry->dep |= calc_dep(prev, next);
2886
2887                         /*
2888                          * Also, update the reverse dependency in @next's
2889                          * ->locks_before list.
2890                          *
2891                          *  Here we reuse @entry as the cursor, which is fine
2892                          *  because we won't go to the next iteration of the
2893                          *  outer loop:
2894                          *
2895                          *  For normal cases, we return in the inner loop.
2896                          *
2897                          *  If we fail to return, we have inconsistency, i.e.
2898                          *  <prev>::locks_after contains <next> while
2899                          *  <next>::locks_before doesn't contain <prev>. In
2900                          *  that case, we return after the inner and indicate
2901                          *  something is wrong.
2902                          */
2903                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
2904                                 if (entry->class == hlock_class(prev)) {
2905                                         if (distance == 1)
2906                                                 entry->distance = 1;
2907                                         entry->dep |= calc_depb(prev, next);
2908                                         return 1;
2909                                 }
2910                         }
2911
2912                         /* <prev> is not found in <next>::locks_before */
2913                         return 0;
2914                 }
2915         }
2916
2917 #ifdef CONFIG_LOCKDEP_SMALL
2918         /*
2919          * Is the <prev> -> <next> link redundant?
2920          */
2921         ret = check_redundant(prev, next);
2922         if (bfs_error(ret))
2923                 return 0;
2924         else if (ret == BFS_RMATCH)
2925                 return 2;
2926 #endif
2927
2928         if (!*trace) {
2929                 *trace = save_trace();
2930                 if (!*trace)
2931                         return 0;
2932         }
2933
2934         /*
2935          * Ok, all validations passed, add the new lock
2936          * to the previous lock's dependency list:
2937          */
2938         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2939                                &hlock_class(prev)->locks_after,
2940                                next->acquire_ip, distance,
2941                                calc_dep(prev, next),
2942                                *trace);
2943
2944         if (!ret)
2945                 return 0;
2946
2947         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2948                                &hlock_class(next)->locks_before,
2949                                next->acquire_ip, distance,
2950                                calc_depb(prev, next),
2951                                *trace);
2952         if (!ret)
2953                 return 0;
2954
2955         return 2;
2956 }
2957
2958 /*
2959  * Add the dependency to all directly-previous locks that are 'relevant'.
2960  * The ones that are relevant are (in increasing distance from curr):
2961  * all consecutive trylock entries and the final non-trylock entry - or
2962  * the end of this context's lock-chain - whichever comes first.
2963  */
2964 static int
2965 check_prevs_add(struct task_struct *curr, struct held_lock *next)
2966 {
2967         struct lock_trace *trace = NULL;
2968         int depth = curr->lockdep_depth;
2969         struct held_lock *hlock;
2970
2971         /*
2972          * Debugging checks.
2973          *
2974          * Depth must not be zero for a non-head lock:
2975          */
2976         if (!depth)
2977                 goto out_bug;
2978         /*
2979          * At least two relevant locks must exist for this
2980          * to be a head:
2981          */
2982         if (curr->held_locks[depth].irq_context !=
2983                         curr->held_locks[depth-1].irq_context)
2984                 goto out_bug;
2985
2986         for (;;) {
2987                 u16 distance = curr->lockdep_depth - depth + 1;
2988                 hlock = curr->held_locks + depth - 1;
2989
2990                 if (hlock->check) {
2991                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
2992                         if (!ret)
2993                                 return 0;
2994
2995                         /*
2996                          * Stop after the first non-trylock entry,
2997                          * as non-trylock entries have added their
2998                          * own direct dependencies already, so this
2999                          * lock is connected to them indirectly:
3000                          */
3001                         if (!hlock->trylock)
3002                                 break;
3003                 }
3004
3005                 depth--;
3006                 /*
3007                  * End of lock-stack?
3008                  */
3009                 if (!depth)
3010                         break;
3011                 /*
3012                  * Stop the search if we cross into another context:
3013                  */
3014                 if (curr->held_locks[depth].irq_context !=
3015                                 curr->held_locks[depth-1].irq_context)
3016                         break;
3017         }
3018         return 1;
3019 out_bug:
3020         if (!debug_locks_off_graph_unlock())
3021                 return 0;
3022
3023         /*
3024          * Clearly we all shouldn't be here, but since we made it we
3025          * can reliable say we messed up our state. See the above two
3026          * gotos for reasons why we could possibly end up here.
3027          */
3028         WARN_ON(1);
3029
3030         return 0;
3031 }
3032
3033 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3034 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3035 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3036 unsigned long nr_zapped_lock_chains;
3037 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3038 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3039 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3040
3041 /*
3042  * The first 2 chain_hlocks entries in the chain block in the bucket
3043  * list contains the following meta data:
3044  *
3045  *   entry[0]:
3046  *     Bit    15 - always set to 1 (it is not a class index)
3047  *     Bits 0-14 - upper 15 bits of the next block index
3048  *   entry[1]    - lower 16 bits of next block index
3049  *
3050  * A next block index of all 1 bits means it is the end of the list.
3051  *
3052  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3053  * the chain block size:
3054  *
3055  *   entry[2] - upper 16 bits of the chain block size
3056  *   entry[3] - lower 16 bits of the chain block size
3057  */
3058 #define MAX_CHAIN_BUCKETS       16
3059 #define CHAIN_BLK_FLAG          (1U << 15)
3060 #define CHAIN_BLK_LIST_END      0xFFFFU
3061
3062 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3063
3064 static inline int size_to_bucket(int size)
3065 {
3066         if (size > MAX_CHAIN_BUCKETS)
3067                 return 0;
3068
3069         return size - 1;
3070 }
3071
3072 /*
3073  * Iterate all the chain blocks in a bucket.
3074  */
3075 #define for_each_chain_block(bucket, prev, curr)                \
3076         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3077              (curr) >= 0;                                       \
3078              (prev) = (curr), (curr) = chain_block_next(curr))
3079
3080 /*
3081  * next block or -1
3082  */
3083 static inline int chain_block_next(int offset)
3084 {
3085         int next = chain_hlocks[offset];
3086
3087         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3088
3089         if (next == CHAIN_BLK_LIST_END)
3090                 return -1;
3091
3092         next &= ~CHAIN_BLK_FLAG;
3093         next <<= 16;
3094         next |= chain_hlocks[offset + 1];
3095
3096         return next;
3097 }
3098
3099 /*
3100  * bucket-0 only
3101  */
3102 static inline int chain_block_size(int offset)
3103 {
3104         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3105 }
3106
3107 static inline void init_chain_block(int offset, int next, int bucket, int size)
3108 {
3109         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3110         chain_hlocks[offset + 1] = (u16)next;
3111
3112         if (size && !bucket) {
3113                 chain_hlocks[offset + 2] = size >> 16;
3114                 chain_hlocks[offset + 3] = (u16)size;
3115         }
3116 }
3117
3118 static inline void add_chain_block(int offset, int size)
3119 {
3120         int bucket = size_to_bucket(size);
3121         int next = chain_block_buckets[bucket];
3122         int prev, curr;
3123
3124         if (unlikely(size < 2)) {
3125                 /*
3126                  * We can't store single entries on the freelist. Leak them.
3127                  *
3128                  * One possible way out would be to uniquely mark them, other
3129                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3130                  * the block before it is re-added.
3131                  */
3132                 if (size)
3133                         nr_lost_chain_hlocks++;
3134                 return;
3135         }
3136
3137         nr_free_chain_hlocks += size;
3138         if (!bucket) {
3139                 nr_large_chain_blocks++;
3140
3141                 /*
3142                  * Variable sized, sort large to small.
3143                  */
3144                 for_each_chain_block(0, prev, curr) {
3145                         if (size >= chain_block_size(curr))
3146                                 break;
3147                 }
3148                 init_chain_block(offset, curr, 0, size);
3149                 if (prev < 0)
3150                         chain_block_buckets[0] = offset;
3151                 else
3152                         init_chain_block(prev, offset, 0, 0);
3153                 return;
3154         }
3155         /*
3156          * Fixed size, add to head.
3157          */
3158         init_chain_block(offset, next, bucket, size);
3159         chain_block_buckets[bucket] = offset;
3160 }
3161
3162 /*
3163  * Only the first block in the list can be deleted.
3164  *
3165  * For the variable size bucket[0], the first block (the largest one) is
3166  * returned, broken up and put back into the pool. So if a chain block of
3167  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3168  * queued up after the primordial chain block and never be used until the
3169  * hlock entries in the primordial chain block is almost used up. That
3170  * causes fragmentation and reduce allocation efficiency. That can be
3171  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3172  */
3173 static inline void del_chain_block(int bucket, int size, int next)
3174 {
3175         nr_free_chain_hlocks -= size;
3176         chain_block_buckets[bucket] = next;
3177
3178         if (!bucket)
3179                 nr_large_chain_blocks--;
3180 }
3181
3182 static void init_chain_block_buckets(void)
3183 {
3184         int i;
3185
3186         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3187                 chain_block_buckets[i] = -1;
3188
3189         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3190 }
3191
3192 /*
3193  * Return offset of a chain block of the right size or -1 if not found.
3194  *
3195  * Fairly simple worst-fit allocator with the addition of a number of size
3196  * specific free lists.
3197  */
3198 static int alloc_chain_hlocks(int req)
3199 {
3200         int bucket, curr, size;
3201
3202         /*
3203          * We rely on the MSB to act as an escape bit to denote freelist
3204          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3205          */
3206         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3207
3208         init_data_structures_once();
3209
3210         if (nr_free_chain_hlocks < req)
3211                 return -1;
3212
3213         /*
3214          * We require a minimum of 2 (u16) entries to encode a freelist
3215          * 'pointer'.
3216          */
3217         req = max(req, 2);
3218         bucket = size_to_bucket(req);
3219         curr = chain_block_buckets[bucket];
3220
3221         if (bucket) {
3222                 if (curr >= 0) {
3223                         del_chain_block(bucket, req, chain_block_next(curr));
3224                         return curr;
3225                 }
3226                 /* Try bucket 0 */
3227                 curr = chain_block_buckets[0];
3228         }
3229
3230         /*
3231          * The variable sized freelist is sorted by size; the first entry is
3232          * the largest. Use it if it fits.
3233          */
3234         if (curr >= 0) {
3235                 size = chain_block_size(curr);
3236                 if (likely(size >= req)) {
3237                         del_chain_block(0, size, chain_block_next(curr));
3238                         add_chain_block(curr + req, size - req);
3239                         return curr;
3240                 }
3241         }
3242
3243         /*
3244          * Last resort, split a block in a larger sized bucket.
3245          */
3246         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3247                 bucket = size_to_bucket(size);
3248                 curr = chain_block_buckets[bucket];
3249                 if (curr < 0)
3250                         continue;
3251
3252                 del_chain_block(bucket, size, chain_block_next(curr));
3253                 add_chain_block(curr + req, size - req);
3254                 return curr;
3255         }
3256
3257         return -1;
3258 }
3259
3260 static inline void free_chain_hlocks(int base, int size)
3261 {
3262         add_chain_block(base, max(size, 2));
3263 }
3264
3265 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3266 {
3267         u16 chain_hlock = chain_hlocks[chain->base + i];
3268         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3269
3270         return lock_classes + class_idx - 1;
3271 }
3272
3273 /*
3274  * Returns the index of the first held_lock of the current chain
3275  */
3276 static inline int get_first_held_lock(struct task_struct *curr,
3277                                         struct held_lock *hlock)
3278 {
3279         int i;
3280         struct held_lock *hlock_curr;
3281
3282         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3283                 hlock_curr = curr->held_locks + i;
3284                 if (hlock_curr->irq_context != hlock->irq_context)
3285                         break;
3286
3287         }
3288
3289         return ++i;
3290 }
3291
3292 #ifdef CONFIG_DEBUG_LOCKDEP
3293 /*
3294  * Returns the next chain_key iteration
3295  */
3296 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3297 {
3298         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3299
3300         printk(" hlock_id:%d -> chain_key:%016Lx",
3301                 (unsigned int)hlock_id,
3302                 (unsigned long long)new_chain_key);
3303         return new_chain_key;
3304 }
3305
3306 static void
3307 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3308 {
3309         struct held_lock *hlock;
3310         u64 chain_key = INITIAL_CHAIN_KEY;
3311         int depth = curr->lockdep_depth;
3312         int i = get_first_held_lock(curr, hlock_next);
3313
3314         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3315                 hlock_next->irq_context);
3316         for (; i < depth; i++) {
3317                 hlock = curr->held_locks + i;
3318                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3319
3320                 print_lock(hlock);
3321         }
3322
3323         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3324         print_lock(hlock_next);
3325 }
3326
3327 static void print_chain_keys_chain(struct lock_chain *chain)
3328 {
3329         int i;
3330         u64 chain_key = INITIAL_CHAIN_KEY;
3331         u16 hlock_id;
3332
3333         printk("depth: %u\n", chain->depth);
3334         for (i = 0; i < chain->depth; i++) {
3335                 hlock_id = chain_hlocks[chain->base + i];
3336                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3337
3338                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3339                 printk("\n");
3340         }
3341 }
3342
3343 static void print_collision(struct task_struct *curr,
3344                         struct held_lock *hlock_next,
3345                         struct lock_chain *chain)
3346 {
3347         pr_warn("\n");
3348         pr_warn("============================\n");
3349         pr_warn("WARNING: chain_key collision\n");
3350         print_kernel_ident();
3351         pr_warn("----------------------------\n");
3352         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3353         pr_warn("Hash chain already cached but the contents don't match!\n");
3354
3355         pr_warn("Held locks:");
3356         print_chain_keys_held_locks(curr, hlock_next);
3357
3358         pr_warn("Locks in cached chain:");
3359         print_chain_keys_chain(chain);
3360
3361         pr_warn("\nstack backtrace:\n");
3362         dump_stack();
3363 }
3364 #endif
3365
3366 /*
3367  * Checks whether the chain and the current held locks are consistent
3368  * in depth and also in content. If they are not it most likely means
3369  * that there was a collision during the calculation of the chain_key.
3370  * Returns: 0 not passed, 1 passed
3371  */
3372 static int check_no_collision(struct task_struct *curr,
3373                         struct held_lock *hlock,
3374                         struct lock_chain *chain)
3375 {
3376 #ifdef CONFIG_DEBUG_LOCKDEP
3377         int i, j, id;
3378
3379         i = get_first_held_lock(curr, hlock);
3380
3381         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3382                 print_collision(curr, hlock, chain);
3383                 return 0;
3384         }
3385
3386         for (j = 0; j < chain->depth - 1; j++, i++) {
3387                 id = hlock_id(&curr->held_locks[i]);
3388
3389                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3390                         print_collision(curr, hlock, chain);
3391                         return 0;
3392                 }
3393         }
3394 #endif
3395         return 1;
3396 }
3397
3398 /*
3399  * Given an index that is >= -1, return the index of the next lock chain.
3400  * Return -2 if there is no next lock chain.
3401  */
3402 long lockdep_next_lockchain(long i)
3403 {
3404         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3405         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3406 }
3407
3408 unsigned long lock_chain_count(void)
3409 {
3410         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3411 }
3412
3413 /* Must be called with the graph lock held. */
3414 static struct lock_chain *alloc_lock_chain(void)
3415 {
3416         int idx = find_first_zero_bit(lock_chains_in_use,
3417                                       ARRAY_SIZE(lock_chains));
3418
3419         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3420                 return NULL;
3421         __set_bit(idx, lock_chains_in_use);
3422         return lock_chains + idx;
3423 }
3424
3425 /*
3426  * Adds a dependency chain into chain hashtable. And must be called with
3427  * graph_lock held.
3428  *
3429  * Return 0 if fail, and graph_lock is released.
3430  * Return 1 if succeed, with graph_lock held.
3431  */
3432 static inline int add_chain_cache(struct task_struct *curr,
3433                                   struct held_lock *hlock,
3434                                   u64 chain_key)
3435 {
3436         struct hlist_head *hash_head = chainhashentry(chain_key);
3437         struct lock_chain *chain;
3438         int i, j;
3439
3440         /*
3441          * The caller must hold the graph lock, ensure we've got IRQs
3442          * disabled to make this an IRQ-safe lock.. for recursion reasons
3443          * lockdep won't complain about its own locking errors.
3444          */
3445         if (lockdep_assert_locked())
3446                 return 0;
3447
3448         chain = alloc_lock_chain();
3449         if (!chain) {
3450                 if (!debug_locks_off_graph_unlock())
3451                         return 0;
3452
3453                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3454                 dump_stack();
3455                 return 0;
3456         }
3457         chain->chain_key = chain_key;
3458         chain->irq_context = hlock->irq_context;
3459         i = get_first_held_lock(curr, hlock);
3460         chain->depth = curr->lockdep_depth + 1 - i;
3461
3462         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3463         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3464         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3465
3466         j = alloc_chain_hlocks(chain->depth);
3467         if (j < 0) {
3468                 if (!debug_locks_off_graph_unlock())
3469                         return 0;
3470
3471                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3472                 dump_stack();
3473                 return 0;
3474         }
3475
3476         chain->base = j;
3477         for (j = 0; j < chain->depth - 1; j++, i++) {
3478                 int lock_id = hlock_id(curr->held_locks + i);
3479
3480                 chain_hlocks[chain->base + j] = lock_id;
3481         }
3482         chain_hlocks[chain->base + j] = hlock_id(hlock);
3483         hlist_add_head_rcu(&chain->entry, hash_head);
3484         debug_atomic_inc(chain_lookup_misses);
3485         inc_chains(chain->irq_context);
3486
3487         return 1;
3488 }
3489
3490 /*
3491  * Look up a dependency chain. Must be called with either the graph lock or
3492  * the RCU read lock held.
3493  */
3494 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3495 {
3496         struct hlist_head *hash_head = chainhashentry(chain_key);
3497         struct lock_chain *chain;
3498
3499         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3500                 if (READ_ONCE(chain->chain_key) == chain_key) {
3501                         debug_atomic_inc(chain_lookup_hits);
3502                         return chain;
3503                 }
3504         }
3505         return NULL;
3506 }
3507
3508 /*
3509  * If the key is not present yet in dependency chain cache then
3510  * add it and return 1 - in this case the new dependency chain is
3511  * validated. If the key is already hashed, return 0.
3512  * (On return with 1 graph_lock is held.)
3513  */
3514 static inline int lookup_chain_cache_add(struct task_struct *curr,
3515                                          struct held_lock *hlock,
3516                                          u64 chain_key)
3517 {
3518         struct lock_class *class = hlock_class(hlock);
3519         struct lock_chain *chain = lookup_chain_cache(chain_key);
3520
3521         if (chain) {
3522 cache_hit:
3523                 if (!check_no_collision(curr, hlock, chain))
3524                         return 0;
3525
3526                 if (very_verbose(class)) {
3527                         printk("\nhash chain already cached, key: "
3528                                         "%016Lx tail class: [%px] %s\n",
3529                                         (unsigned long long)chain_key,
3530                                         class->key, class->name);
3531                 }
3532
3533                 return 0;
3534         }
3535
3536         if (very_verbose(class)) {
3537                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3538                         (unsigned long long)chain_key, class->key, class->name);
3539         }
3540
3541         if (!graph_lock())
3542                 return 0;
3543
3544         /*
3545          * We have to walk the chain again locked - to avoid duplicates:
3546          */
3547         chain = lookup_chain_cache(chain_key);
3548         if (chain) {
3549                 graph_unlock();
3550                 goto cache_hit;
3551         }
3552
3553         if (!add_chain_cache(curr, hlock, chain_key))
3554                 return 0;
3555
3556         return 1;
3557 }
3558
3559 static int validate_chain(struct task_struct *curr,
3560                           struct held_lock *hlock,
3561                           int chain_head, u64 chain_key)
3562 {
3563         /*
3564          * Trylock needs to maintain the stack of held locks, but it
3565          * does not add new dependencies, because trylock can be done
3566          * in any order.
3567          *
3568          * We look up the chain_key and do the O(N^2) check and update of
3569          * the dependencies only if this is a new dependency chain.
3570          * (If lookup_chain_cache_add() return with 1 it acquires
3571          * graph_lock for us)
3572          */
3573         if (!hlock->trylock && hlock->check &&
3574             lookup_chain_cache_add(curr, hlock, chain_key)) {
3575                 /*
3576                  * Check whether last held lock:
3577                  *
3578                  * - is irq-safe, if this lock is irq-unsafe
3579                  * - is softirq-safe, if this lock is hardirq-unsafe
3580                  *
3581                  * And check whether the new lock's dependency graph
3582                  * could lead back to the previous lock:
3583                  *
3584                  * - within the current held-lock stack
3585                  * - across our accumulated lock dependency records
3586                  *
3587                  * any of these scenarios could lead to a deadlock.
3588                  */
3589                 /*
3590                  * The simple case: does the current hold the same lock
3591                  * already?
3592                  */
3593                 int ret = check_deadlock(curr, hlock);
3594
3595                 if (!ret)
3596                         return 0;
3597                 /*
3598                  * Add dependency only if this lock is not the head
3599                  * of the chain, and if the new lock introduces no more
3600                  * lock dependency (because we already hold a lock with the
3601                  * same lock class) nor deadlock (because the nest_lock
3602                  * serializes nesting locks), see the comments for
3603                  * check_deadlock().
3604                  */
3605                 if (!chain_head && ret != 2) {
3606                         if (!check_prevs_add(curr, hlock))
3607                                 return 0;
3608                 }
3609
3610                 graph_unlock();
3611         } else {
3612                 /* after lookup_chain_cache_add(): */
3613                 if (unlikely(!debug_locks))
3614                         return 0;
3615         }
3616
3617         return 1;
3618 }
3619 #else
3620 static inline int validate_chain(struct task_struct *curr,
3621                                  struct held_lock *hlock,
3622                                  int chain_head, u64 chain_key)
3623 {
3624         return 1;
3625 }
3626
3627 static void init_chain_block_buckets(void)      { }
3628 #endif /* CONFIG_PROVE_LOCKING */
3629
3630 /*
3631  * We are building curr_chain_key incrementally, so double-check
3632  * it from scratch, to make sure that it's done correctly:
3633  */
3634 static void check_chain_key(struct task_struct *curr)
3635 {
3636 #ifdef CONFIG_DEBUG_LOCKDEP
3637         struct held_lock *hlock, *prev_hlock = NULL;
3638         unsigned int i;
3639         u64 chain_key = INITIAL_CHAIN_KEY;
3640
3641         for (i = 0; i < curr->lockdep_depth; i++) {
3642                 hlock = curr->held_locks + i;
3643                 if (chain_key != hlock->prev_chain_key) {
3644                         debug_locks_off();
3645                         /*
3646                          * We got mighty confused, our chain keys don't match
3647                          * with what we expect, someone trample on our task state?
3648                          */
3649                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3650                                 curr->lockdep_depth, i,
3651                                 (unsigned long long)chain_key,
3652                                 (unsigned long long)hlock->prev_chain_key);
3653                         return;
3654                 }
3655
3656                 /*
3657                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3658                  * it registered lock class index?
3659                  */
3660                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3661                         return;
3662
3663                 if (prev_hlock && (prev_hlock->irq_context !=
3664                                                         hlock->irq_context))
3665                         chain_key = INITIAL_CHAIN_KEY;
3666                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3667                 prev_hlock = hlock;
3668         }
3669         if (chain_key != curr->curr_chain_key) {
3670                 debug_locks_off();
3671                 /*
3672                  * More smoking hash instead of calculating it, damn see these
3673                  * numbers float.. I bet that a pink elephant stepped on my memory.
3674                  */
3675                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3676                         curr->lockdep_depth, i,
3677                         (unsigned long long)chain_key,
3678                         (unsigned long long)curr->curr_chain_key);
3679         }
3680 #endif
3681 }
3682
3683 #ifdef CONFIG_PROVE_LOCKING
3684 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3685                      enum lock_usage_bit new_bit);
3686
3687 static void print_usage_bug_scenario(struct held_lock *lock)
3688 {
3689         struct lock_class *class = hlock_class(lock);
3690
3691         printk(" Possible unsafe locking scenario:\n\n");
3692         printk("       CPU0\n");
3693         printk("       ----\n");
3694         printk("  lock(");
3695         __print_lock_name(class);
3696         printk(KERN_CONT ");\n");
3697         printk("  <Interrupt>\n");
3698         printk("    lock(");
3699         __print_lock_name(class);
3700         printk(KERN_CONT ");\n");
3701         printk("\n *** DEADLOCK ***\n\n");
3702 }
3703
3704 static void
3705 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3706                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3707 {
3708         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3709                 return;
3710
3711         pr_warn("\n");
3712         pr_warn("================================\n");
3713         pr_warn("WARNING: inconsistent lock state\n");
3714         print_kernel_ident();
3715         pr_warn("--------------------------------\n");
3716
3717         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3718                 usage_str[prev_bit], usage_str[new_bit]);
3719
3720         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3721                 curr->comm, task_pid_nr(curr),
3722                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3723                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3724                 lockdep_hardirqs_enabled(),
3725                 lockdep_softirqs_enabled(curr));
3726         print_lock(this);
3727
3728         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3729         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3730
3731         print_irqtrace_events(curr);
3732         pr_warn("\nother info that might help us debug this:\n");
3733         print_usage_bug_scenario(this);
3734
3735         lockdep_print_held_locks(curr);
3736
3737         pr_warn("\nstack backtrace:\n");
3738         dump_stack();
3739 }
3740
3741 /*
3742  * Print out an error if an invalid bit is set:
3743  */
3744 static inline int
3745 valid_state(struct task_struct *curr, struct held_lock *this,
3746             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3747 {
3748         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3749                 print_usage_bug(curr, this, bad_bit, new_bit);
3750                 return 0;
3751         }
3752         return 1;
3753 }
3754
3755
3756 /*
3757  * print irq inversion bug:
3758  */
3759 static void
3760 print_irq_inversion_bug(struct task_struct *curr,
3761                         struct lock_list *root, struct lock_list *other,
3762                         struct held_lock *this, int forwards,
3763                         const char *irqclass)
3764 {
3765         struct lock_list *entry = other;
3766         struct lock_list *middle = NULL;
3767         int depth;
3768
3769         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3770                 return;
3771
3772         pr_warn("\n");
3773         pr_warn("========================================================\n");
3774         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3775         print_kernel_ident();
3776         pr_warn("--------------------------------------------------------\n");
3777         pr_warn("%s/%d just changed the state of lock:\n",
3778                 curr->comm, task_pid_nr(curr));
3779         print_lock(this);
3780         if (forwards)
3781                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3782         else
3783                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3784         print_lock_name(other->class);
3785         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3786
3787         pr_warn("\nother info that might help us debug this:\n");
3788
3789         /* Find a middle lock (if one exists) */
3790         depth = get_lock_depth(other);
3791         do {
3792                 if (depth == 0 && (entry != root)) {
3793                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3794                         break;
3795                 }
3796                 middle = entry;
3797                 entry = get_lock_parent(entry);
3798                 depth--;
3799         } while (entry && entry != root && (depth >= 0));
3800         if (forwards)
3801                 print_irq_lock_scenario(root, other,
3802                         middle ? middle->class : root->class, other->class);
3803         else
3804                 print_irq_lock_scenario(other, root,
3805                         middle ? middle->class : other->class, root->class);
3806
3807         lockdep_print_held_locks(curr);
3808
3809         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3810         root->trace = save_trace();
3811         if (!root->trace)
3812                 return;
3813         print_shortest_lock_dependencies(other, root);
3814
3815         pr_warn("\nstack backtrace:\n");
3816         dump_stack();
3817 }
3818
3819 /*
3820  * Prove that in the forwards-direction subgraph starting at <this>
3821  * there is no lock matching <mask>:
3822  */
3823 static int
3824 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3825                      enum lock_usage_bit bit)
3826 {
3827         enum bfs_result ret;
3828         struct lock_list root;
3829         struct lock_list *target_entry;
3830         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3831         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3832
3833         bfs_init_root(&root, this);
3834         ret = find_usage_forwards(&root, usage_mask, &target_entry);
3835         if (bfs_error(ret)) {
3836                 print_bfs_bug(ret);
3837                 return 0;
3838         }
3839         if (ret == BFS_RNOMATCH)
3840                 return 1;
3841
3842         /* Check whether write or read usage is the match */
3843         if (target_entry->class->usage_mask & lock_flag(bit)) {
3844                 print_irq_inversion_bug(curr, &root, target_entry,
3845                                         this, 1, state_name(bit));
3846         } else {
3847                 print_irq_inversion_bug(curr, &root, target_entry,
3848                                         this, 1, state_name(read_bit));
3849         }
3850
3851         return 0;
3852 }
3853
3854 /*
3855  * Prove that in the backwards-direction subgraph starting at <this>
3856  * there is no lock matching <mask>:
3857  */
3858 static int
3859 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3860                       enum lock_usage_bit bit)
3861 {
3862         enum bfs_result ret;
3863         struct lock_list root;
3864         struct lock_list *target_entry;
3865         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3866         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3867
3868         bfs_init_rootb(&root, this);
3869         ret = find_usage_backwards(&root, usage_mask, &target_entry);
3870         if (bfs_error(ret)) {
3871                 print_bfs_bug(ret);
3872                 return 0;
3873         }
3874         if (ret == BFS_RNOMATCH)
3875                 return 1;
3876
3877         /* Check whether write or read usage is the match */
3878         if (target_entry->class->usage_mask & lock_flag(bit)) {
3879                 print_irq_inversion_bug(curr, &root, target_entry,
3880                                         this, 0, state_name(bit));
3881         } else {
3882                 print_irq_inversion_bug(curr, &root, target_entry,
3883                                         this, 0, state_name(read_bit));
3884         }
3885
3886         return 0;
3887 }
3888
3889 void print_irqtrace_events(struct task_struct *curr)
3890 {
3891         const struct irqtrace_events *trace = &curr->irqtrace;
3892
3893         printk("irq event stamp: %u\n", trace->irq_events);
3894         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3895                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3896                 (void *)trace->hardirq_enable_ip);
3897         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3898                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3899                 (void *)trace->hardirq_disable_ip);
3900         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3901                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3902                 (void *)trace->softirq_enable_ip);
3903         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3904                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3905                 (void *)trace->softirq_disable_ip);
3906 }
3907
3908 static int HARDIRQ_verbose(struct lock_class *class)
3909 {
3910 #if HARDIRQ_VERBOSE
3911         return class_filter(class);
3912 #endif
3913         return 0;
3914 }
3915
3916 static int SOFTIRQ_verbose(struct lock_class *class)
3917 {
3918 #if SOFTIRQ_VERBOSE
3919         return class_filter(class);
3920 #endif
3921         return 0;
3922 }
3923
3924 static int (*state_verbose_f[])(struct lock_class *class) = {
3925 #define LOCKDEP_STATE(__STATE) \
3926         __STATE##_verbose,
3927 #include "lockdep_states.h"
3928 #undef LOCKDEP_STATE
3929 };
3930
3931 static inline int state_verbose(enum lock_usage_bit bit,
3932                                 struct lock_class *class)
3933 {
3934         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3935 }
3936
3937 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3938                              enum lock_usage_bit bit, const char *name);
3939
3940 static int
3941 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3942                 enum lock_usage_bit new_bit)
3943 {
3944         int excl_bit = exclusive_bit(new_bit);
3945         int read = new_bit & LOCK_USAGE_READ_MASK;
3946         int dir = new_bit & LOCK_USAGE_DIR_MASK;
3947
3948         /*
3949          * Validate that this particular lock does not have conflicting
3950          * usage states.
3951          */
3952         if (!valid_state(curr, this, new_bit, excl_bit))
3953                 return 0;
3954
3955         /*
3956          * Check for read in write conflicts
3957          */
3958         if (!read && !valid_state(curr, this, new_bit,
3959                                   excl_bit + LOCK_USAGE_READ_MASK))
3960                 return 0;
3961
3962
3963         /*
3964          * Validate that the lock dependencies don't have conflicting usage
3965          * states.
3966          */
3967         if (dir) {
3968                 /*
3969                  * mark ENABLED has to look backwards -- to ensure no dependee
3970                  * has USED_IN state, which, again, would allow  recursion deadlocks.
3971                  */
3972                 if (!check_usage_backwards(curr, this, excl_bit))
3973                         return 0;
3974         } else {
3975                 /*
3976                  * mark USED_IN has to look forwards -- to ensure no dependency
3977                  * has ENABLED state, which would allow recursion deadlocks.
3978                  */
3979                 if (!check_usage_forwards(curr, this, excl_bit))
3980                         return 0;
3981         }
3982
3983         if (state_verbose(new_bit, hlock_class(this)))
3984                 return 2;
3985
3986         return 1;
3987 }
3988
3989 /*
3990  * Mark all held locks with a usage bit:
3991  */
3992 static int
3993 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3994 {
3995         struct held_lock *hlock;
3996         int i;
3997
3998         for (i = 0; i < curr->lockdep_depth; i++) {
3999                 enum lock_usage_bit hlock_bit = base_bit;
4000                 hlock = curr->held_locks + i;
4001
4002                 if (hlock->read)
4003                         hlock_bit += LOCK_USAGE_READ_MASK;
4004
4005                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4006
4007                 if (!hlock->check)
4008                         continue;
4009
4010                 if (!mark_lock(curr, hlock, hlock_bit))
4011                         return 0;
4012         }
4013
4014         return 1;
4015 }
4016
4017 /*
4018  * Hardirqs will be enabled:
4019  */
4020 static void __trace_hardirqs_on_caller(void)
4021 {
4022         struct task_struct *curr = current;
4023
4024         /*
4025          * We are going to turn hardirqs on, so set the
4026          * usage bit for all held locks:
4027          */
4028         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4029                 return;
4030         /*
4031          * If we have softirqs enabled, then set the usage
4032          * bit for all held locks. (disabled hardirqs prevented
4033          * this bit from being set before)
4034          */
4035         if (curr->softirqs_enabled)
4036                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4037 }
4038
4039 /**
4040  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4041  * @ip:         Caller address
4042  *
4043  * Invoked before a possible transition to RCU idle from exit to user or
4044  * guest mode. This ensures that all RCU operations are done before RCU
4045  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4046  * invoked to set the final state.
4047  */
4048 void lockdep_hardirqs_on_prepare(unsigned long ip)
4049 {
4050         if (unlikely(!debug_locks))
4051                 return;
4052
4053         /*
4054          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4055          */
4056         if (unlikely(in_nmi()))
4057                 return;
4058
4059         if (unlikely(this_cpu_read(lockdep_recursion)))
4060                 return;
4061
4062         if (unlikely(lockdep_hardirqs_enabled())) {
4063                 /*
4064                  * Neither irq nor preemption are disabled here
4065                  * so this is racy by nature but losing one hit
4066                  * in a stat is not a big deal.
4067                  */
4068                 __debug_atomic_inc(redundant_hardirqs_on);
4069                 return;
4070         }
4071
4072         /*
4073          * We're enabling irqs and according to our state above irqs weren't
4074          * already enabled, yet we find the hardware thinks they are in fact
4075          * enabled.. someone messed up their IRQ state tracing.
4076          */
4077         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4078                 return;
4079
4080         /*
4081          * See the fine text that goes along with this variable definition.
4082          */
4083         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4084                 return;
4085
4086         /*
4087          * Can't allow enabling interrupts while in an interrupt handler,
4088          * that's general bad form and such. Recursion, limited stack etc..
4089          */
4090         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4091                 return;
4092
4093         current->hardirq_chain_key = current->curr_chain_key;
4094
4095         lockdep_recursion_inc();
4096         __trace_hardirqs_on_caller();
4097         lockdep_recursion_finish();
4098 }
4099 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4100
4101 void noinstr lockdep_hardirqs_on(unsigned long ip)
4102 {
4103         struct irqtrace_events *trace = &current->irqtrace;
4104
4105         if (unlikely(!debug_locks))
4106                 return;
4107
4108         /*
4109          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4110          * tracking state and hardware state are out of sync.
4111          *
4112          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4113          * and not rely on hardware state like normal interrupts.
4114          */
4115         if (unlikely(in_nmi())) {
4116                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4117                         return;
4118
4119                 /*
4120                  * Skip:
4121                  *  - recursion check, because NMI can hit lockdep;
4122                  *  - hardware state check, because above;
4123                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4124                  */
4125                 goto skip_checks;
4126         }
4127
4128         if (unlikely(this_cpu_read(lockdep_recursion)))
4129                 return;
4130
4131         if (lockdep_hardirqs_enabled()) {
4132                 /*
4133                  * Neither irq nor preemption are disabled here
4134                  * so this is racy by nature but losing one hit
4135                  * in a stat is not a big deal.
4136                  */
4137                 __debug_atomic_inc(redundant_hardirqs_on);
4138                 return;
4139         }
4140
4141         /*
4142          * We're enabling irqs and according to our state above irqs weren't
4143          * already enabled, yet we find the hardware thinks they are in fact
4144          * enabled.. someone messed up their IRQ state tracing.
4145          */
4146         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4147                 return;
4148
4149         /*
4150          * Ensure the lock stack remained unchanged between
4151          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4152          */
4153         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4154                             current->curr_chain_key);
4155
4156 skip_checks:
4157         /* we'll do an OFF -> ON transition: */
4158         __this_cpu_write(hardirqs_enabled, 1);
4159         trace->hardirq_enable_ip = ip;
4160         trace->hardirq_enable_event = ++trace->irq_events;
4161         debug_atomic_inc(hardirqs_on_events);
4162 }
4163 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4164
4165 /*
4166  * Hardirqs were disabled:
4167  */
4168 void noinstr lockdep_hardirqs_off(unsigned long ip)
4169 {
4170         if (unlikely(!debug_locks))
4171                 return;
4172
4173         /*
4174          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4175          * they will restore the software state. This ensures the software
4176          * state is consistent inside NMIs as well.
4177          */
4178         if (in_nmi()) {
4179                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4180                         return;
4181         } else if (__this_cpu_read(lockdep_recursion))
4182                 return;
4183
4184         /*
4185          * So we're supposed to get called after you mask local IRQs, but for
4186          * some reason the hardware doesn't quite think you did a proper job.
4187          */
4188         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4189                 return;
4190
4191         if (lockdep_hardirqs_enabled()) {
4192                 struct irqtrace_events *trace = &current->irqtrace;
4193
4194                 /*
4195                  * We have done an ON -> OFF transition:
4196                  */
4197                 __this_cpu_write(hardirqs_enabled, 0);
4198                 trace->hardirq_disable_ip = ip;
4199                 trace->hardirq_disable_event = ++trace->irq_events;
4200                 debug_atomic_inc(hardirqs_off_events);
4201         } else {
4202                 debug_atomic_inc(redundant_hardirqs_off);
4203         }
4204 }
4205 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4206
4207 /*
4208  * Softirqs will be enabled:
4209  */
4210 void lockdep_softirqs_on(unsigned long ip)
4211 {
4212         struct irqtrace_events *trace = &current->irqtrace;
4213
4214         if (unlikely(!lockdep_enabled()))
4215                 return;
4216
4217         /*
4218          * We fancy IRQs being disabled here, see softirq.c, avoids
4219          * funny state and nesting things.
4220          */
4221         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4222                 return;
4223
4224         if (current->softirqs_enabled) {
4225                 debug_atomic_inc(redundant_softirqs_on);
4226                 return;
4227         }
4228
4229         lockdep_recursion_inc();
4230         /*
4231          * We'll do an OFF -> ON transition:
4232          */
4233         current->softirqs_enabled = 1;
4234         trace->softirq_enable_ip = ip;
4235         trace->softirq_enable_event = ++trace->irq_events;
4236         debug_atomic_inc(softirqs_on_events);
4237         /*
4238          * We are going to turn softirqs on, so set the
4239          * usage bit for all held locks, if hardirqs are
4240          * enabled too:
4241          */
4242         if (lockdep_hardirqs_enabled())
4243                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4244         lockdep_recursion_finish();
4245 }
4246
4247 /*
4248  * Softirqs were disabled:
4249  */
4250 void lockdep_softirqs_off(unsigned long ip)
4251 {
4252         if (unlikely(!lockdep_enabled()))
4253                 return;
4254
4255         /*
4256          * We fancy IRQs being disabled here, see softirq.c
4257          */
4258         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4259                 return;
4260
4261         if (current->softirqs_enabled) {
4262                 struct irqtrace_events *trace = &current->irqtrace;
4263
4264                 /*
4265                  * We have done an ON -> OFF transition:
4266                  */
4267                 current->softirqs_enabled = 0;
4268                 trace->softirq_disable_ip = ip;
4269                 trace->softirq_disable_event = ++trace->irq_events;
4270                 debug_atomic_inc(softirqs_off_events);
4271                 /*
4272                  * Whoops, we wanted softirqs off, so why aren't they?
4273                  */
4274                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4275         } else
4276                 debug_atomic_inc(redundant_softirqs_off);
4277 }
4278
4279 static int
4280 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4281 {
4282         if (!check)
4283                 goto lock_used;
4284
4285         /*
4286          * If non-trylock use in a hardirq or softirq context, then
4287          * mark the lock as used in these contexts:
4288          */
4289         if (!hlock->trylock) {
4290                 if (hlock->read) {
4291                         if (lockdep_hardirq_context())
4292                                 if (!mark_lock(curr, hlock,
4293                                                 LOCK_USED_IN_HARDIRQ_READ))
4294                                         return 0;
4295                         if (curr->softirq_context)
4296                                 if (!mark_lock(curr, hlock,
4297                                                 LOCK_USED_IN_SOFTIRQ_READ))
4298                                         return 0;
4299                 } else {
4300                         if (lockdep_hardirq_context())
4301                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4302                                         return 0;
4303                         if (curr->softirq_context)
4304                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4305                                         return 0;
4306                 }
4307         }
4308         if (!hlock->hardirqs_off) {
4309                 if (hlock->read) {
4310                         if (!mark_lock(curr, hlock,
4311                                         LOCK_ENABLED_HARDIRQ_READ))
4312                                 return 0;
4313                         if (curr->softirqs_enabled)
4314                                 if (!mark_lock(curr, hlock,
4315                                                 LOCK_ENABLED_SOFTIRQ_READ))
4316                                         return 0;
4317                 } else {
4318                         if (!mark_lock(curr, hlock,
4319                                         LOCK_ENABLED_HARDIRQ))
4320                                 return 0;
4321                         if (curr->softirqs_enabled)
4322                                 if (!mark_lock(curr, hlock,
4323                                                 LOCK_ENABLED_SOFTIRQ))
4324                                         return 0;
4325                 }
4326         }
4327
4328 lock_used:
4329         /* mark it as used: */
4330         if (!mark_lock(curr, hlock, LOCK_USED))
4331                 return 0;
4332
4333         return 1;
4334 }
4335
4336 static inline unsigned int task_irq_context(struct task_struct *task)
4337 {
4338         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4339                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4340 }
4341
4342 static int separate_irq_context(struct task_struct *curr,
4343                 struct held_lock *hlock)
4344 {
4345         unsigned int depth = curr->lockdep_depth;
4346
4347         /*
4348          * Keep track of points where we cross into an interrupt context:
4349          */
4350         if (depth) {
4351                 struct held_lock *prev_hlock;
4352
4353                 prev_hlock = curr->held_locks + depth-1;
4354                 /*
4355                  * If we cross into another context, reset the
4356                  * hash key (this also prevents the checking and the
4357                  * adding of the dependency to 'prev'):
4358                  */
4359                 if (prev_hlock->irq_context != hlock->irq_context)
4360                         return 1;
4361         }
4362         return 0;
4363 }
4364
4365 /*
4366  * Mark a lock with a usage bit, and validate the state transition:
4367  */
4368 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4369                              enum lock_usage_bit new_bit)
4370 {
4371         unsigned int new_mask, ret = 1;
4372
4373         if (new_bit >= LOCK_USAGE_STATES) {
4374                 DEBUG_LOCKS_WARN_ON(1);
4375                 return 0;
4376         }
4377
4378         if (new_bit == LOCK_USED && this->read)
4379                 new_bit = LOCK_USED_READ;
4380
4381         new_mask = 1 << new_bit;
4382
4383         /*
4384          * If already set then do not dirty the cacheline,
4385          * nor do any checks:
4386          */
4387         if (likely(hlock_class(this)->usage_mask & new_mask))
4388                 return 1;
4389
4390         if (!graph_lock())
4391                 return 0;
4392         /*
4393          * Make sure we didn't race:
4394          */
4395         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4396                 goto unlock;
4397
4398         if (!hlock_class(this)->usage_mask)
4399                 debug_atomic_dec(nr_unused_locks);
4400
4401         hlock_class(this)->usage_mask |= new_mask;
4402
4403         if (new_bit < LOCK_TRACE_STATES) {
4404                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4405                         return 0;
4406         }
4407
4408         if (new_bit < LOCK_USED) {
4409                 ret = mark_lock_irq(curr, this, new_bit);
4410                 if (!ret)
4411                         return 0;
4412         }
4413
4414 unlock:
4415         graph_unlock();
4416
4417         /*
4418          * We must printk outside of the graph_lock:
4419          */
4420         if (ret == 2) {
4421                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4422                 print_lock(this);
4423                 print_irqtrace_events(curr);
4424                 dump_stack();
4425         }
4426
4427         return ret;
4428 }
4429
4430 static inline short task_wait_context(struct task_struct *curr)
4431 {
4432         /*
4433          * Set appropriate wait type for the context; for IRQs we have to take
4434          * into account force_irqthread as that is implied by PREEMPT_RT.
4435          */
4436         if (lockdep_hardirq_context()) {
4437                 /*
4438                  * Check if force_irqthreads will run us threaded.
4439                  */
4440                 if (curr->hardirq_threaded || curr->irq_config)
4441                         return LD_WAIT_CONFIG;
4442
4443                 return LD_WAIT_SPIN;
4444         } else if (curr->softirq_context) {
4445                 /*
4446                  * Softirqs are always threaded.
4447                  */
4448                 return LD_WAIT_CONFIG;
4449         }
4450
4451         return LD_WAIT_MAX;
4452 }
4453
4454 static int
4455 print_lock_invalid_wait_context(struct task_struct *curr,
4456                                 struct held_lock *hlock)
4457 {
4458         short curr_inner;
4459
4460         if (!debug_locks_off())
4461                 return 0;
4462         if (debug_locks_silent)
4463                 return 0;
4464
4465         pr_warn("\n");
4466         pr_warn("=============================\n");
4467         pr_warn("[ BUG: Invalid wait context ]\n");
4468         print_kernel_ident();
4469         pr_warn("-----------------------------\n");
4470
4471         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4472         print_lock(hlock);
4473
4474         pr_warn("other info that might help us debug this:\n");
4475
4476         curr_inner = task_wait_context(curr);
4477         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4478
4479         lockdep_print_held_locks(curr);
4480
4481         pr_warn("stack backtrace:\n");
4482         dump_stack();
4483
4484         return 0;
4485 }
4486
4487 /*
4488  * Verify the wait_type context.
4489  *
4490  * This check validates we takes locks in the right wait-type order; that is it
4491  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4492  * acquire spinlocks inside raw_spinlocks and the sort.
4493  *
4494  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4495  * can be taken from (pretty much) any context but also has constraints.
4496  * However when taken in a stricter environment the RCU lock does not loosen
4497  * the constraints.
4498  *
4499  * Therefore we must look for the strictest environment in the lock stack and
4500  * compare that to the lock we're trying to acquire.
4501  */
4502 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4503 {
4504         short next_inner = hlock_class(next)->wait_type_inner;
4505         short next_outer = hlock_class(next)->wait_type_outer;
4506         short curr_inner;
4507         int depth;
4508
4509         if (!curr->lockdep_depth || !next_inner || next->trylock)
4510                 return 0;
4511
4512         if (!next_outer)
4513                 next_outer = next_inner;
4514
4515         /*
4516          * Find start of current irq_context..
4517          */
4518         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4519                 struct held_lock *prev = curr->held_locks + depth;
4520                 if (prev->irq_context != next->irq_context)
4521                         break;
4522         }
4523         depth++;
4524
4525         curr_inner = task_wait_context(curr);
4526
4527         for (; depth < curr->lockdep_depth; depth++) {
4528                 struct held_lock *prev = curr->held_locks + depth;
4529                 short prev_inner = hlock_class(prev)->wait_type_inner;
4530
4531                 if (prev_inner) {
4532                         /*
4533                          * We can have a bigger inner than a previous one
4534                          * when outer is smaller than inner, as with RCU.
4535                          *
4536                          * Also due to trylocks.
4537                          */
4538                         curr_inner = min(curr_inner, prev_inner);
4539                 }
4540         }
4541
4542         if (next_outer > curr_inner)
4543                 return print_lock_invalid_wait_context(curr, next);
4544
4545         return 0;
4546 }
4547
4548 #else /* CONFIG_PROVE_LOCKING */
4549
4550 static inline int
4551 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4552 {
4553         return 1;
4554 }
4555
4556 static inline unsigned int task_irq_context(struct task_struct *task)
4557 {
4558         return 0;
4559 }
4560
4561 static inline int separate_irq_context(struct task_struct *curr,
4562                 struct held_lock *hlock)
4563 {
4564         return 0;
4565 }
4566
4567 static inline int check_wait_context(struct task_struct *curr,
4568                                      struct held_lock *next)
4569 {
4570         return 0;
4571 }
4572
4573 #endif /* CONFIG_PROVE_LOCKING */
4574
4575 /*
4576  * Initialize a lock instance's lock-class mapping info:
4577  */
4578 void lockdep_init_map_waits(struct lockdep_map *lock, const char *name,
4579                             struct lock_class_key *key, int subclass,
4580                             short inner, short outer)
4581 {
4582         int i;
4583
4584         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4585                 lock->class_cache[i] = NULL;
4586
4587 #ifdef CONFIG_LOCK_STAT
4588         lock->cpu = raw_smp_processor_id();
4589 #endif
4590
4591         /*
4592          * Can't be having no nameless bastards around this place!
4593          */
4594         if (DEBUG_LOCKS_WARN_ON(!name)) {
4595                 lock->name = "NULL";
4596                 return;
4597         }
4598
4599         lock->name = name;
4600
4601         lock->wait_type_outer = outer;
4602         lock->wait_type_inner = inner;
4603
4604         /*
4605          * No key, no joy, we need to hash something.
4606          */
4607         if (DEBUG_LOCKS_WARN_ON(!key))
4608                 return;
4609         /*
4610          * Sanity check, the lock-class key must either have been allocated
4611          * statically or must have been registered as a dynamic key.
4612          */
4613         if (!static_obj(key) && !is_dynamic_key(key)) {
4614                 if (debug_locks)
4615                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4616                 DEBUG_LOCKS_WARN_ON(1);
4617                 return;
4618         }
4619         lock->key = key;
4620
4621         if (unlikely(!debug_locks))
4622                 return;
4623
4624         if (subclass) {
4625                 unsigned long flags;
4626
4627                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4628                         return;
4629
4630                 raw_local_irq_save(flags);
4631                 lockdep_recursion_inc();
4632                 register_lock_class(lock, subclass, 1);
4633                 lockdep_recursion_finish();
4634                 raw_local_irq_restore(flags);
4635         }
4636 }
4637 EXPORT_SYMBOL_GPL(lockdep_init_map_waits);
4638
4639 struct lock_class_key __lockdep_no_validate__;
4640 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4641
4642 static void
4643 print_lock_nested_lock_not_held(struct task_struct *curr,
4644                                 struct held_lock *hlock,
4645                                 unsigned long ip)
4646 {
4647         if (!debug_locks_off())
4648                 return;
4649         if (debug_locks_silent)
4650                 return;
4651
4652         pr_warn("\n");
4653         pr_warn("==================================\n");
4654         pr_warn("WARNING: Nested lock was not taken\n");
4655         print_kernel_ident();
4656         pr_warn("----------------------------------\n");
4657
4658         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4659         print_lock(hlock);
4660
4661         pr_warn("\nbut this task is not holding:\n");
4662         pr_warn("%s\n", hlock->nest_lock->name);
4663
4664         pr_warn("\nstack backtrace:\n");
4665         dump_stack();
4666
4667         pr_warn("\nother info that might help us debug this:\n");
4668         lockdep_print_held_locks(curr);
4669
4670         pr_warn("\nstack backtrace:\n");
4671         dump_stack();
4672 }
4673
4674 static int __lock_is_held(const struct lockdep_map *lock, int read);
4675
4676 /*
4677  * This gets called for every mutex_lock*()/spin_lock*() operation.
4678  * We maintain the dependency maps and validate the locking attempt:
4679  *
4680  * The callers must make sure that IRQs are disabled before calling it,
4681  * otherwise we could get an interrupt which would want to take locks,
4682  * which would end up in lockdep again.
4683  */
4684 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4685                           int trylock, int read, int check, int hardirqs_off,
4686                           struct lockdep_map *nest_lock, unsigned long ip,
4687                           int references, int pin_count)
4688 {
4689         struct task_struct *curr = current;
4690         struct lock_class *class = NULL;
4691         struct held_lock *hlock;
4692         unsigned int depth;
4693         int chain_head = 0;
4694         int class_idx;
4695         u64 chain_key;
4696
4697         if (unlikely(!debug_locks))
4698                 return 0;
4699
4700         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4701                 check = 0;
4702
4703         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4704                 class = lock->class_cache[subclass];
4705         /*
4706          * Not cached?
4707          */
4708         if (unlikely(!class)) {
4709                 class = register_lock_class(lock, subclass, 0);
4710                 if (!class)
4711                         return 0;
4712         }
4713
4714         debug_class_ops_inc(class);
4715
4716         if (very_verbose(class)) {
4717                 printk("\nacquire class [%px] %s", class->key, class->name);
4718                 if (class->name_version > 1)
4719                         printk(KERN_CONT "#%d", class->name_version);
4720                 printk(KERN_CONT "\n");
4721                 dump_stack();
4722         }
4723
4724         /*
4725          * Add the lock to the list of currently held locks.
4726          * (we dont increase the depth just yet, up until the
4727          * dependency checks are done)
4728          */
4729         depth = curr->lockdep_depth;
4730         /*
4731          * Ran out of static storage for our per-task lock stack again have we?
4732          */
4733         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4734                 return 0;
4735
4736         class_idx = class - lock_classes;
4737
4738         if (depth) { /* we're holding locks */
4739                 hlock = curr->held_locks + depth - 1;
4740                 if (hlock->class_idx == class_idx && nest_lock) {
4741                         if (!references)
4742                                 references++;
4743
4744                         if (!hlock->references)
4745                                 hlock->references++;
4746
4747                         hlock->references += references;
4748
4749                         /* Overflow */
4750                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4751                                 return 0;
4752
4753                         return 2;
4754                 }
4755         }
4756
4757         hlock = curr->held_locks + depth;
4758         /*
4759          * Plain impossible, we just registered it and checked it weren't no
4760          * NULL like.. I bet this mushroom I ate was good!
4761          */
4762         if (DEBUG_LOCKS_WARN_ON(!class))
4763                 return 0;
4764         hlock->class_idx = class_idx;
4765         hlock->acquire_ip = ip;
4766         hlock->instance = lock;
4767         hlock->nest_lock = nest_lock;
4768         hlock->irq_context = task_irq_context(curr);
4769         hlock->trylock = trylock;
4770         hlock->read = read;
4771         hlock->check = check;
4772         hlock->hardirqs_off = !!hardirqs_off;
4773         hlock->references = references;
4774 #ifdef CONFIG_LOCK_STAT
4775         hlock->waittime_stamp = 0;
4776         hlock->holdtime_stamp = lockstat_clock();
4777 #endif
4778         hlock->pin_count = pin_count;
4779
4780         if (check_wait_context(curr, hlock))
4781                 return 0;
4782
4783         /* Initialize the lock usage bit */
4784         if (!mark_usage(curr, hlock, check))
4785                 return 0;
4786
4787         /*
4788          * Calculate the chain hash: it's the combined hash of all the
4789          * lock keys along the dependency chain. We save the hash value
4790          * at every step so that we can get the current hash easily
4791          * after unlock. The chain hash is then used to cache dependency
4792          * results.
4793          *
4794          * The 'key ID' is what is the most compact key value to drive
4795          * the hash, not class->key.
4796          */
4797         /*
4798          * Whoops, we did it again.. class_idx is invalid.
4799          */
4800         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4801                 return 0;
4802
4803         chain_key = curr->curr_chain_key;
4804         if (!depth) {
4805                 /*
4806                  * How can we have a chain hash when we ain't got no keys?!
4807                  */
4808                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4809                         return 0;
4810                 chain_head = 1;
4811         }
4812
4813         hlock->prev_chain_key = chain_key;
4814         if (separate_irq_context(curr, hlock)) {
4815                 chain_key = INITIAL_CHAIN_KEY;
4816                 chain_head = 1;
4817         }
4818         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4819
4820         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4821                 print_lock_nested_lock_not_held(curr, hlock, ip);
4822                 return 0;
4823         }
4824
4825         if (!debug_locks_silent) {
4826                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4827                 WARN_ON_ONCE(!hlock_class(hlock)->key);
4828         }
4829
4830         if (!validate_chain(curr, hlock, chain_head, chain_key))
4831                 return 0;
4832
4833         curr->curr_chain_key = chain_key;
4834         curr->lockdep_depth++;
4835         check_chain_key(curr);
4836 #ifdef CONFIG_DEBUG_LOCKDEP
4837         if (unlikely(!debug_locks))
4838                 return 0;
4839 #endif
4840         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4841                 debug_locks_off();
4842                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4843                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4844                        curr->lockdep_depth, MAX_LOCK_DEPTH);
4845
4846                 lockdep_print_held_locks(current);
4847                 debug_show_all_locks();
4848                 dump_stack();
4849
4850                 return 0;
4851         }
4852
4853         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4854                 max_lockdep_depth = curr->lockdep_depth;
4855
4856         return 1;
4857 }
4858
4859 static void print_unlock_imbalance_bug(struct task_struct *curr,
4860                                        struct lockdep_map *lock,
4861                                        unsigned long ip)
4862 {
4863         if (!debug_locks_off())
4864                 return;
4865         if (debug_locks_silent)
4866                 return;
4867
4868         pr_warn("\n");
4869         pr_warn("=====================================\n");
4870         pr_warn("WARNING: bad unlock balance detected!\n");
4871         print_kernel_ident();
4872         pr_warn("-------------------------------------\n");
4873         pr_warn("%s/%d is trying to release lock (",
4874                 curr->comm, task_pid_nr(curr));
4875         print_lockdep_cache(lock);
4876         pr_cont(") at:\n");
4877         print_ip_sym(KERN_WARNING, ip);
4878         pr_warn("but there are no more locks to release!\n");
4879         pr_warn("\nother info that might help us debug this:\n");
4880         lockdep_print_held_locks(curr);
4881
4882         pr_warn("\nstack backtrace:\n");
4883         dump_stack();
4884 }
4885
4886 static noinstr int match_held_lock(const struct held_lock *hlock,
4887                                    const struct lockdep_map *lock)
4888 {
4889         if (hlock->instance == lock)
4890                 return 1;
4891
4892         if (hlock->references) {
4893                 const struct lock_class *class = lock->class_cache[0];
4894
4895                 if (!class)
4896                         class = look_up_lock_class(lock, 0);
4897
4898                 /*
4899                  * If look_up_lock_class() failed to find a class, we're trying
4900                  * to test if we hold a lock that has never yet been acquired.
4901                  * Clearly if the lock hasn't been acquired _ever_, we're not
4902                  * holding it either, so report failure.
4903                  */
4904                 if (!class)
4905                         return 0;
4906
4907                 /*
4908                  * References, but not a lock we're actually ref-counting?
4909                  * State got messed up, follow the sites that change ->references
4910                  * and try to make sense of it.
4911                  */
4912                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4913                         return 0;
4914
4915                 if (hlock->class_idx == class - lock_classes)
4916                         return 1;
4917         }
4918
4919         return 0;
4920 }
4921
4922 /* @depth must not be zero */
4923 static struct held_lock *find_held_lock(struct task_struct *curr,
4924                                         struct lockdep_map *lock,
4925                                         unsigned int depth, int *idx)
4926 {
4927         struct held_lock *ret, *hlock, *prev_hlock;
4928         int i;
4929
4930         i = depth - 1;
4931         hlock = curr->held_locks + i;
4932         ret = hlock;
4933         if (match_held_lock(hlock, lock))
4934                 goto out;
4935
4936         ret = NULL;
4937         for (i--, prev_hlock = hlock--;
4938              i >= 0;
4939              i--, prev_hlock = hlock--) {
4940                 /*
4941                  * We must not cross into another context:
4942                  */
4943                 if (prev_hlock->irq_context != hlock->irq_context) {
4944                         ret = NULL;
4945                         break;
4946                 }
4947                 if (match_held_lock(hlock, lock)) {
4948                         ret = hlock;
4949                         break;
4950                 }
4951         }
4952
4953 out:
4954         *idx = i;
4955         return ret;
4956 }
4957
4958 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4959                                 int idx, unsigned int *merged)
4960 {
4961         struct held_lock *hlock;
4962         int first_idx = idx;
4963
4964         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4965                 return 0;
4966
4967         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4968                 switch (__lock_acquire(hlock->instance,
4969                                     hlock_class(hlock)->subclass,
4970                                     hlock->trylock,
4971                                     hlock->read, hlock->check,
4972                                     hlock->hardirqs_off,
4973                                     hlock->nest_lock, hlock->acquire_ip,
4974                                     hlock->references, hlock->pin_count)) {
4975                 case 0:
4976                         return 1;
4977                 case 1:
4978                         break;
4979                 case 2:
4980                         *merged += (idx == first_idx);
4981                         break;
4982                 default:
4983                         WARN_ON(1);
4984                         return 0;
4985                 }
4986         }
4987         return 0;
4988 }
4989
4990 static int
4991 __lock_set_class(struct lockdep_map *lock, const char *name,
4992                  struct lock_class_key *key, unsigned int subclass,
4993                  unsigned long ip)
4994 {
4995         struct task_struct *curr = current;
4996         unsigned int depth, merged = 0;
4997         struct held_lock *hlock;
4998         struct lock_class *class;
4999         int i;
5000
5001         if (unlikely(!debug_locks))
5002                 return 0;
5003
5004         depth = curr->lockdep_depth;
5005         /*
5006          * This function is about (re)setting the class of a held lock,
5007          * yet we're not actually holding any locks. Naughty user!
5008          */
5009         if (DEBUG_LOCKS_WARN_ON(!depth))
5010                 return 0;
5011
5012         hlock = find_held_lock(curr, lock, depth, &i);
5013         if (!hlock) {
5014                 print_unlock_imbalance_bug(curr, lock, ip);
5015                 return 0;
5016         }
5017
5018         lockdep_init_map_waits(lock, name, key, 0,
5019                                lock->wait_type_inner,
5020                                lock->wait_type_outer);
5021         class = register_lock_class(lock, subclass, 0);
5022         hlock->class_idx = class - lock_classes;
5023
5024         curr->lockdep_depth = i;
5025         curr->curr_chain_key = hlock->prev_chain_key;
5026
5027         if (reacquire_held_locks(curr, depth, i, &merged))
5028                 return 0;
5029
5030         /*
5031          * I took it apart and put it back together again, except now I have
5032          * these 'spare' parts.. where shall I put them.
5033          */
5034         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5035                 return 0;
5036         return 1;
5037 }
5038
5039 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5040 {
5041         struct task_struct *curr = current;
5042         unsigned int depth, merged = 0;
5043         struct held_lock *hlock;
5044         int i;
5045
5046         if (unlikely(!debug_locks))
5047                 return 0;
5048
5049         depth = curr->lockdep_depth;
5050         /*
5051          * This function is about (re)setting the class of a held lock,
5052          * yet we're not actually holding any locks. Naughty user!
5053          */
5054         if (DEBUG_LOCKS_WARN_ON(!depth))
5055                 return 0;
5056
5057         hlock = find_held_lock(curr, lock, depth, &i);
5058         if (!hlock) {
5059                 print_unlock_imbalance_bug(curr, lock, ip);
5060                 return 0;
5061         }
5062
5063         curr->lockdep_depth = i;
5064         curr->curr_chain_key = hlock->prev_chain_key;
5065
5066         WARN(hlock->read, "downgrading a read lock");
5067         hlock->read = 1;
5068         hlock->acquire_ip = ip;
5069
5070         if (reacquire_held_locks(curr, depth, i, &merged))
5071                 return 0;
5072
5073         /* Merging can't happen with unchanged classes.. */
5074         if (DEBUG_LOCKS_WARN_ON(merged))
5075                 return 0;
5076
5077         /*
5078          * I took it apart and put it back together again, except now I have
5079          * these 'spare' parts.. where shall I put them.
5080          */
5081         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5082                 return 0;
5083
5084         return 1;
5085 }
5086
5087 /*
5088  * Remove the lock from the list of currently held locks - this gets
5089  * called on mutex_unlock()/spin_unlock*() (or on a failed
5090  * mutex_lock_interruptible()).
5091  */
5092 static int
5093 __lock_release(struct lockdep_map *lock, unsigned long ip)
5094 {
5095         struct task_struct *curr = current;
5096         unsigned int depth, merged = 1;
5097         struct held_lock *hlock;
5098         int i;
5099
5100         if (unlikely(!debug_locks))
5101                 return 0;
5102
5103         depth = curr->lockdep_depth;
5104         /*
5105          * So we're all set to release this lock.. wait what lock? We don't
5106          * own any locks, you've been drinking again?
5107          */
5108         if (depth <= 0) {
5109                 print_unlock_imbalance_bug(curr, lock, ip);
5110                 return 0;
5111         }
5112
5113         /*
5114          * Check whether the lock exists in the current stack
5115          * of held locks:
5116          */
5117         hlock = find_held_lock(curr, lock, depth, &i);
5118         if (!hlock) {
5119                 print_unlock_imbalance_bug(curr, lock, ip);
5120                 return 0;
5121         }
5122
5123         if (hlock->instance == lock)
5124                 lock_release_holdtime(hlock);
5125
5126         WARN(hlock->pin_count, "releasing a pinned lock\n");
5127
5128         if (hlock->references) {
5129                 hlock->references--;
5130                 if (hlock->references) {
5131                         /*
5132                          * We had, and after removing one, still have
5133                          * references, the current lock stack is still
5134                          * valid. We're done!
5135                          */
5136                         return 1;
5137                 }
5138         }
5139
5140         /*
5141          * We have the right lock to unlock, 'hlock' points to it.
5142          * Now we remove it from the stack, and add back the other
5143          * entries (if any), recalculating the hash along the way:
5144          */
5145
5146         curr->lockdep_depth = i;
5147         curr->curr_chain_key = hlock->prev_chain_key;
5148
5149         /*
5150          * The most likely case is when the unlock is on the innermost
5151          * lock. In this case, we are done!
5152          */
5153         if (i == depth-1)
5154                 return 1;
5155
5156         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5157                 return 0;
5158
5159         /*
5160          * We had N bottles of beer on the wall, we drank one, but now
5161          * there's not N-1 bottles of beer left on the wall...
5162          * Pouring two of the bottles together is acceptable.
5163          */
5164         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5165
5166         /*
5167          * Since reacquire_held_locks() would have called check_chain_key()
5168          * indirectly via __lock_acquire(), we don't need to do it again
5169          * on return.
5170          */
5171         return 0;
5172 }
5173
5174 static __always_inline
5175 int __lock_is_held(const struct lockdep_map *lock, int read)
5176 {
5177         struct task_struct *curr = current;
5178         int i;
5179
5180         for (i = 0; i < curr->lockdep_depth; i++) {
5181                 struct held_lock *hlock = curr->held_locks + i;
5182
5183                 if (match_held_lock(hlock, lock)) {
5184                         if (read == -1 || hlock->read == read)
5185                                 return 1;
5186
5187                         return 0;
5188                 }
5189         }
5190
5191         return 0;
5192 }
5193
5194 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5195 {
5196         struct pin_cookie cookie = NIL_COOKIE;
5197         struct task_struct *curr = current;
5198         int i;
5199
5200         if (unlikely(!debug_locks))
5201                 return cookie;
5202
5203         for (i = 0; i < curr->lockdep_depth; i++) {
5204                 struct held_lock *hlock = curr->held_locks + i;
5205
5206                 if (match_held_lock(hlock, lock)) {
5207                         /*
5208                          * Grab 16bits of randomness; this is sufficient to not
5209                          * be guessable and still allows some pin nesting in
5210                          * our u32 pin_count.
5211                          */
5212                         cookie.val = 1 + (prandom_u32() >> 16);
5213                         hlock->pin_count += cookie.val;
5214                         return cookie;
5215                 }
5216         }
5217
5218         WARN(1, "pinning an unheld lock\n");
5219         return cookie;
5220 }
5221
5222 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5223 {
5224         struct task_struct *curr = current;
5225         int i;
5226
5227         if (unlikely(!debug_locks))
5228                 return;
5229
5230         for (i = 0; i < curr->lockdep_depth; i++) {
5231                 struct held_lock *hlock = curr->held_locks + i;
5232
5233                 if (match_held_lock(hlock, lock)) {
5234                         hlock->pin_count += cookie.val;
5235                         return;
5236                 }
5237         }
5238
5239         WARN(1, "pinning an unheld lock\n");
5240 }
5241
5242 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5243 {
5244         struct task_struct *curr = current;
5245         int i;
5246
5247         if (unlikely(!debug_locks))
5248                 return;
5249
5250         for (i = 0; i < curr->lockdep_depth; i++) {
5251                 struct held_lock *hlock = curr->held_locks + i;
5252
5253                 if (match_held_lock(hlock, lock)) {
5254                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5255                                 return;
5256
5257                         hlock->pin_count -= cookie.val;
5258
5259                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5260                                 hlock->pin_count = 0;
5261
5262                         return;
5263                 }
5264         }
5265
5266         WARN(1, "unpinning an unheld lock\n");
5267 }
5268
5269 /*
5270  * Check whether we follow the irq-flags state precisely:
5271  */
5272 static void check_flags(unsigned long flags)
5273 {
5274 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5275         if (!debug_locks)
5276                 return;
5277
5278         if (irqs_disabled_flags(flags)) {
5279                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5280                         printk("possible reason: unannotated irqs-off.\n");
5281                 }
5282         } else {
5283                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5284                         printk("possible reason: unannotated irqs-on.\n");
5285                 }
5286         }
5287
5288         /*
5289          * We dont accurately track softirq state in e.g.
5290          * hardirq contexts (such as on 4KSTACKS), so only
5291          * check if not in hardirq contexts:
5292          */
5293         if (!hardirq_count()) {
5294                 if (softirq_count()) {
5295                         /* like the above, but with softirqs */
5296                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5297                 } else {
5298                         /* lick the above, does it taste good? */
5299                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5300                 }
5301         }
5302
5303         if (!debug_locks)
5304                 print_irqtrace_events(current);
5305 #endif
5306 }
5307
5308 void lock_set_class(struct lockdep_map *lock, const char *name,
5309                     struct lock_class_key *key, unsigned int subclass,
5310                     unsigned long ip)
5311 {
5312         unsigned long flags;
5313
5314         if (unlikely(!lockdep_enabled()))
5315                 return;
5316
5317         raw_local_irq_save(flags);
5318         lockdep_recursion_inc();
5319         check_flags(flags);
5320         if (__lock_set_class(lock, name, key, subclass, ip))
5321                 check_chain_key(current);
5322         lockdep_recursion_finish();
5323         raw_local_irq_restore(flags);
5324 }
5325 EXPORT_SYMBOL_GPL(lock_set_class);
5326
5327 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5328 {
5329         unsigned long flags;
5330
5331         if (unlikely(!lockdep_enabled()))
5332                 return;
5333
5334         raw_local_irq_save(flags);
5335         lockdep_recursion_inc();
5336         check_flags(flags);
5337         if (__lock_downgrade(lock, ip))
5338                 check_chain_key(current);
5339         lockdep_recursion_finish();
5340         raw_local_irq_restore(flags);
5341 }
5342 EXPORT_SYMBOL_GPL(lock_downgrade);
5343
5344 /* NMI context !!! */
5345 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5346 {
5347 #ifdef CONFIG_PROVE_LOCKING
5348         struct lock_class *class = look_up_lock_class(lock, subclass);
5349         unsigned long mask = LOCKF_USED;
5350
5351         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5352         if (!class)
5353                 return;
5354
5355         /*
5356          * READ locks only conflict with USED, such that if we only ever use
5357          * READ locks, there is no deadlock possible -- RCU.
5358          */
5359         if (!hlock->read)
5360                 mask |= LOCKF_USED_READ;
5361
5362         if (!(class->usage_mask & mask))
5363                 return;
5364
5365         hlock->class_idx = class - lock_classes;
5366
5367         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5368 #endif
5369 }
5370
5371 static bool lockdep_nmi(void)
5372 {
5373         if (raw_cpu_read(lockdep_recursion))
5374                 return false;
5375
5376         if (!in_nmi())
5377                 return false;
5378
5379         return true;
5380 }
5381
5382 /*
5383  * read_lock() is recursive if:
5384  * 1. We force lockdep think this way in selftests or
5385  * 2. The implementation is not queued read/write lock or
5386  * 3. The locker is at an in_interrupt() context.
5387  */
5388 bool read_lock_is_recursive(void)
5389 {
5390         return force_read_lock_recursive ||
5391                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5392                in_interrupt();
5393 }
5394 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5395
5396 /*
5397  * We are not always called with irqs disabled - do that here,
5398  * and also avoid lockdep recursion:
5399  */
5400 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5401                           int trylock, int read, int check,
5402                           struct lockdep_map *nest_lock, unsigned long ip)
5403 {
5404         unsigned long flags;
5405
5406         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5407
5408         if (!debug_locks)
5409                 return;
5410
5411         if (unlikely(!lockdep_enabled())) {
5412                 /* XXX allow trylock from NMI ?!? */
5413                 if (lockdep_nmi() && !trylock) {
5414                         struct held_lock hlock;
5415
5416                         hlock.acquire_ip = ip;
5417                         hlock.instance = lock;
5418                         hlock.nest_lock = nest_lock;
5419                         hlock.irq_context = 2; // XXX
5420                         hlock.trylock = trylock;
5421                         hlock.read = read;
5422                         hlock.check = check;
5423                         hlock.hardirqs_off = true;
5424                         hlock.references = 0;
5425
5426                         verify_lock_unused(lock, &hlock, subclass);
5427                 }
5428                 return;
5429         }
5430
5431         raw_local_irq_save(flags);
5432         check_flags(flags);
5433
5434         lockdep_recursion_inc();
5435         __lock_acquire(lock, subclass, trylock, read, check,
5436                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5437         lockdep_recursion_finish();
5438         raw_local_irq_restore(flags);
5439 }
5440 EXPORT_SYMBOL_GPL(lock_acquire);
5441
5442 void lock_release(struct lockdep_map *lock, unsigned long ip)
5443 {
5444         unsigned long flags;
5445
5446         trace_lock_release(lock, ip);
5447
5448         if (unlikely(!lockdep_enabled()))
5449                 return;
5450
5451         raw_local_irq_save(flags);
5452         check_flags(flags);
5453
5454         lockdep_recursion_inc();
5455         if (__lock_release(lock, ip))
5456                 check_chain_key(current);
5457         lockdep_recursion_finish();
5458         raw_local_irq_restore(flags);
5459 }
5460 EXPORT_SYMBOL_GPL(lock_release);
5461
5462 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5463 {
5464         unsigned long flags;
5465         int ret = 0;
5466
5467         if (unlikely(!lockdep_enabled()))
5468                 return 1; /* avoid false negative lockdep_assert_held() */
5469
5470         raw_local_irq_save(flags);
5471         check_flags(flags);
5472
5473         lockdep_recursion_inc();
5474         ret = __lock_is_held(lock, read);
5475         lockdep_recursion_finish();
5476         raw_local_irq_restore(flags);
5477
5478         return ret;
5479 }
5480 EXPORT_SYMBOL_GPL(lock_is_held_type);
5481 NOKPROBE_SYMBOL(lock_is_held_type);
5482
5483 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5484 {
5485         struct pin_cookie cookie = NIL_COOKIE;
5486         unsigned long flags;
5487
5488         if (unlikely(!lockdep_enabled()))
5489                 return cookie;
5490
5491         raw_local_irq_save(flags);
5492         check_flags(flags);
5493
5494         lockdep_recursion_inc();
5495         cookie = __lock_pin_lock(lock);
5496         lockdep_recursion_finish();
5497         raw_local_irq_restore(flags);
5498
5499         return cookie;
5500 }
5501 EXPORT_SYMBOL_GPL(lock_pin_lock);
5502
5503 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5504 {
5505         unsigned long flags;
5506
5507         if (unlikely(!lockdep_enabled()))
5508                 return;
5509
5510         raw_local_irq_save(flags);
5511         check_flags(flags);
5512
5513         lockdep_recursion_inc();
5514         __lock_repin_lock(lock, cookie);
5515         lockdep_recursion_finish();
5516         raw_local_irq_restore(flags);
5517 }
5518 EXPORT_SYMBOL_GPL(lock_repin_lock);
5519
5520 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5521 {
5522         unsigned long flags;
5523
5524         if (unlikely(!lockdep_enabled()))
5525                 return;
5526
5527         raw_local_irq_save(flags);
5528         check_flags(flags);
5529
5530         lockdep_recursion_inc();
5531         __lock_unpin_lock(lock, cookie);
5532         lockdep_recursion_finish();
5533         raw_local_irq_restore(flags);
5534 }
5535 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5536
5537 #ifdef CONFIG_LOCK_STAT
5538 static void print_lock_contention_bug(struct task_struct *curr,
5539                                       struct lockdep_map *lock,
5540                                       unsigned long ip)
5541 {
5542         if (!debug_locks_off())
5543                 return;
5544         if (debug_locks_silent)
5545                 return;
5546
5547         pr_warn("\n");
5548         pr_warn("=================================\n");
5549         pr_warn("WARNING: bad contention detected!\n");
5550         print_kernel_ident();
5551         pr_warn("---------------------------------\n");
5552         pr_warn("%s/%d is trying to contend lock (",
5553                 curr->comm, task_pid_nr(curr));
5554         print_lockdep_cache(lock);
5555         pr_cont(") at:\n");
5556         print_ip_sym(KERN_WARNING, ip);
5557         pr_warn("but there are no locks held!\n");
5558         pr_warn("\nother info that might help us debug this:\n");
5559         lockdep_print_held_locks(curr);
5560
5561         pr_warn("\nstack backtrace:\n");
5562         dump_stack();
5563 }
5564
5565 static void
5566 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5567 {
5568         struct task_struct *curr = current;
5569         struct held_lock *hlock;
5570         struct lock_class_stats *stats;
5571         unsigned int depth;
5572         int i, contention_point, contending_point;
5573
5574         depth = curr->lockdep_depth;
5575         /*
5576          * Whee, we contended on this lock, except it seems we're not
5577          * actually trying to acquire anything much at all..
5578          */
5579         if (DEBUG_LOCKS_WARN_ON(!depth))
5580                 return;
5581
5582         hlock = find_held_lock(curr, lock, depth, &i);
5583         if (!hlock) {
5584                 print_lock_contention_bug(curr, lock, ip);
5585                 return;
5586         }
5587
5588         if (hlock->instance != lock)
5589                 return;
5590
5591         hlock->waittime_stamp = lockstat_clock();
5592
5593         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5594         contending_point = lock_point(hlock_class(hlock)->contending_point,
5595                                       lock->ip);
5596
5597         stats = get_lock_stats(hlock_class(hlock));
5598         if (contention_point < LOCKSTAT_POINTS)
5599                 stats->contention_point[contention_point]++;
5600         if (contending_point < LOCKSTAT_POINTS)
5601                 stats->contending_point[contending_point]++;
5602         if (lock->cpu != smp_processor_id())
5603                 stats->bounces[bounce_contended + !!hlock->read]++;
5604 }
5605
5606 static void
5607 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5608 {
5609         struct task_struct *curr = current;
5610         struct held_lock *hlock;
5611         struct lock_class_stats *stats;
5612         unsigned int depth;
5613         u64 now, waittime = 0;
5614         int i, cpu;
5615
5616         depth = curr->lockdep_depth;
5617         /*
5618          * Yay, we acquired ownership of this lock we didn't try to
5619          * acquire, how the heck did that happen?
5620          */
5621         if (DEBUG_LOCKS_WARN_ON(!depth))
5622                 return;
5623
5624         hlock = find_held_lock(curr, lock, depth, &i);
5625         if (!hlock) {
5626                 print_lock_contention_bug(curr, lock, _RET_IP_);
5627                 return;
5628         }
5629
5630         if (hlock->instance != lock)
5631                 return;
5632
5633         cpu = smp_processor_id();
5634         if (hlock->waittime_stamp) {
5635                 now = lockstat_clock();
5636                 waittime = now - hlock->waittime_stamp;
5637                 hlock->holdtime_stamp = now;
5638         }
5639
5640         stats = get_lock_stats(hlock_class(hlock));
5641         if (waittime) {
5642                 if (hlock->read)
5643                         lock_time_inc(&stats->read_waittime, waittime);
5644                 else
5645                         lock_time_inc(&stats->write_waittime, waittime);
5646         }
5647         if (lock->cpu != cpu)
5648                 stats->bounces[bounce_acquired + !!hlock->read]++;
5649
5650         lock->cpu = cpu;
5651         lock->ip = ip;
5652 }
5653
5654 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5655 {
5656         unsigned long flags;
5657
5658         trace_lock_acquired(lock, ip);
5659
5660         if (unlikely(!lock_stat || !lockdep_enabled()))
5661                 return;
5662
5663         raw_local_irq_save(flags);
5664         check_flags(flags);
5665         lockdep_recursion_inc();
5666         __lock_contended(lock, ip);
5667         lockdep_recursion_finish();
5668         raw_local_irq_restore(flags);
5669 }
5670 EXPORT_SYMBOL_GPL(lock_contended);
5671
5672 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5673 {
5674         unsigned long flags;
5675
5676         trace_lock_contended(lock, ip);
5677
5678         if (unlikely(!lock_stat || !lockdep_enabled()))
5679                 return;
5680
5681         raw_local_irq_save(flags);
5682         check_flags(flags);
5683         lockdep_recursion_inc();
5684         __lock_acquired(lock, ip);
5685         lockdep_recursion_finish();
5686         raw_local_irq_restore(flags);
5687 }
5688 EXPORT_SYMBOL_GPL(lock_acquired);
5689 #endif
5690
5691 /*
5692  * Used by the testsuite, sanitize the validator state
5693  * after a simulated failure:
5694  */
5695
5696 void lockdep_reset(void)
5697 {
5698         unsigned long flags;
5699         int i;
5700
5701         raw_local_irq_save(flags);
5702         lockdep_init_task(current);
5703         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5704         nr_hardirq_chains = 0;
5705         nr_softirq_chains = 0;
5706         nr_process_chains = 0;
5707         debug_locks = 1;
5708         for (i = 0; i < CHAINHASH_SIZE; i++)
5709                 INIT_HLIST_HEAD(chainhash_table + i);
5710         raw_local_irq_restore(flags);
5711 }
5712
5713 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5714 static void remove_class_from_lock_chain(struct pending_free *pf,
5715                                          struct lock_chain *chain,
5716                                          struct lock_class *class)
5717 {
5718 #ifdef CONFIG_PROVE_LOCKING
5719         int i;
5720
5721         for (i = chain->base; i < chain->base + chain->depth; i++) {
5722                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5723                         continue;
5724                 /*
5725                  * Each lock class occurs at most once in a lock chain so once
5726                  * we found a match we can break out of this loop.
5727                  */
5728                 goto free_lock_chain;
5729         }
5730         /* Since the chain has not been modified, return. */
5731         return;
5732
5733 free_lock_chain:
5734         free_chain_hlocks(chain->base, chain->depth);
5735         /* Overwrite the chain key for concurrent RCU readers. */
5736         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5737         dec_chains(chain->irq_context);
5738
5739         /*
5740          * Note: calling hlist_del_rcu() from inside a
5741          * hlist_for_each_entry_rcu() loop is safe.
5742          */
5743         hlist_del_rcu(&chain->entry);
5744         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5745         nr_zapped_lock_chains++;
5746 #endif
5747 }
5748
5749 /* Must be called with the graph lock held. */
5750 static void remove_class_from_lock_chains(struct pending_free *pf,
5751                                           struct lock_class *class)
5752 {
5753         struct lock_chain *chain;
5754         struct hlist_head *head;
5755         int i;
5756
5757         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5758                 head = chainhash_table + i;
5759                 hlist_for_each_entry_rcu(chain, head, entry) {
5760                         remove_class_from_lock_chain(pf, chain, class);
5761                 }
5762         }
5763 }
5764
5765 /*
5766  * Remove all references to a lock class. The caller must hold the graph lock.
5767  */
5768 static void zap_class(struct pending_free *pf, struct lock_class *class)
5769 {
5770         struct lock_list *entry;
5771         int i;
5772
5773         WARN_ON_ONCE(!class->key);
5774
5775         /*
5776          * Remove all dependencies this lock is
5777          * involved in:
5778          */
5779         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5780                 entry = list_entries + i;
5781                 if (entry->class != class && entry->links_to != class)
5782                         continue;
5783                 __clear_bit(i, list_entries_in_use);
5784                 nr_list_entries--;
5785                 list_del_rcu(&entry->entry);
5786         }
5787         if (list_empty(&class->locks_after) &&
5788             list_empty(&class->locks_before)) {
5789                 list_move_tail(&class->lock_entry, &pf->zapped);
5790                 hlist_del_rcu(&class->hash_entry);
5791                 WRITE_ONCE(class->key, NULL);
5792                 WRITE_ONCE(class->name, NULL);
5793                 nr_lock_classes--;
5794                 __clear_bit(class - lock_classes, lock_classes_in_use);
5795         } else {
5796                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5797                           class->name);
5798         }
5799
5800         remove_class_from_lock_chains(pf, class);
5801         nr_zapped_classes++;
5802 }
5803
5804 static void reinit_class(struct lock_class *class)
5805 {
5806         void *const p = class;
5807         const unsigned int offset = offsetof(struct lock_class, key);
5808
5809         WARN_ON_ONCE(!class->lock_entry.next);
5810         WARN_ON_ONCE(!list_empty(&class->locks_after));
5811         WARN_ON_ONCE(!list_empty(&class->locks_before));
5812         memset(p + offset, 0, sizeof(*class) - offset);
5813         WARN_ON_ONCE(!class->lock_entry.next);
5814         WARN_ON_ONCE(!list_empty(&class->locks_after));
5815         WARN_ON_ONCE(!list_empty(&class->locks_before));
5816 }
5817
5818 static inline int within(const void *addr, void *start, unsigned long size)
5819 {
5820         return addr >= start && addr < start + size;
5821 }
5822
5823 static bool inside_selftest(void)
5824 {
5825         return current == lockdep_selftest_task_struct;
5826 }
5827
5828 /* The caller must hold the graph lock. */
5829 static struct pending_free *get_pending_free(void)
5830 {
5831         return delayed_free.pf + delayed_free.index;
5832 }
5833
5834 static void free_zapped_rcu(struct rcu_head *cb);
5835
5836 /*
5837  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5838  * the graph lock held.
5839  */
5840 static void call_rcu_zapped(struct pending_free *pf)
5841 {
5842         WARN_ON_ONCE(inside_selftest());
5843
5844         if (list_empty(&pf->zapped))
5845                 return;
5846
5847         if (delayed_free.scheduled)
5848                 return;
5849
5850         delayed_free.scheduled = true;
5851
5852         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5853         delayed_free.index ^= 1;
5854
5855         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5856 }
5857
5858 /* The caller must hold the graph lock. May be called from RCU context. */
5859 static void __free_zapped_classes(struct pending_free *pf)
5860 {
5861         struct lock_class *class;
5862
5863         check_data_structures();
5864
5865         list_for_each_entry(class, &pf->zapped, lock_entry)
5866                 reinit_class(class);
5867
5868         list_splice_init(&pf->zapped, &free_lock_classes);
5869
5870 #ifdef CONFIG_PROVE_LOCKING
5871         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5872                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5873         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5874 #endif
5875 }
5876
5877 static void free_zapped_rcu(struct rcu_head *ch)
5878 {
5879         struct pending_free *pf;
5880         unsigned long flags;
5881
5882         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5883                 return;
5884
5885         raw_local_irq_save(flags);
5886         lockdep_lock();
5887
5888         /* closed head */
5889         pf = delayed_free.pf + (delayed_free.index ^ 1);
5890         __free_zapped_classes(pf);
5891         delayed_free.scheduled = false;
5892
5893         /*
5894          * If there's anything on the open list, close and start a new callback.
5895          */
5896         call_rcu_zapped(delayed_free.pf + delayed_free.index);
5897
5898         lockdep_unlock();
5899         raw_local_irq_restore(flags);
5900 }
5901
5902 /*
5903  * Remove all lock classes from the class hash table and from the
5904  * all_lock_classes list whose key or name is in the address range [start,
5905  * start + size). Move these lock classes to the zapped_classes list. Must
5906  * be called with the graph lock held.
5907  */
5908 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5909                                      unsigned long size)
5910 {
5911         struct lock_class *class;
5912         struct hlist_head *head;
5913         int i;
5914
5915         /* Unhash all classes that were created by a module. */
5916         for (i = 0; i < CLASSHASH_SIZE; i++) {
5917                 head = classhash_table + i;
5918                 hlist_for_each_entry_rcu(class, head, hash_entry) {
5919                         if (!within(class->key, start, size) &&
5920                             !within(class->name, start, size))
5921                                 continue;
5922                         zap_class(pf, class);
5923                 }
5924         }
5925 }
5926
5927 /*
5928  * Used in module.c to remove lock classes from memory that is going to be
5929  * freed; and possibly re-used by other modules.
5930  *
5931  * We will have had one synchronize_rcu() before getting here, so we're
5932  * guaranteed nobody will look up these exact classes -- they're properly dead
5933  * but still allocated.
5934  */
5935 static void lockdep_free_key_range_reg(void *start, unsigned long size)
5936 {
5937         struct pending_free *pf;
5938         unsigned long flags;
5939
5940         init_data_structures_once();
5941
5942         raw_local_irq_save(flags);
5943         lockdep_lock();
5944         pf = get_pending_free();
5945         __lockdep_free_key_range(pf, start, size);
5946         call_rcu_zapped(pf);
5947         lockdep_unlock();
5948         raw_local_irq_restore(flags);
5949
5950         /*
5951          * Wait for any possible iterators from look_up_lock_class() to pass
5952          * before continuing to free the memory they refer to.
5953          */
5954         synchronize_rcu();
5955 }
5956
5957 /*
5958  * Free all lockdep keys in the range [start, start+size). Does not sleep.
5959  * Ignores debug_locks. Must only be used by the lockdep selftests.
5960  */
5961 static void lockdep_free_key_range_imm(void *start, unsigned long size)
5962 {
5963         struct pending_free *pf = delayed_free.pf;
5964         unsigned long flags;
5965
5966         init_data_structures_once();
5967
5968         raw_local_irq_save(flags);
5969         lockdep_lock();
5970         __lockdep_free_key_range(pf, start, size);
5971         __free_zapped_classes(pf);
5972         lockdep_unlock();
5973         raw_local_irq_restore(flags);
5974 }
5975
5976 void lockdep_free_key_range(void *start, unsigned long size)
5977 {
5978         init_data_structures_once();
5979
5980         if (inside_selftest())
5981                 lockdep_free_key_range_imm(start, size);
5982         else
5983                 lockdep_free_key_range_reg(start, size);
5984 }
5985
5986 /*
5987  * Check whether any element of the @lock->class_cache[] array refers to a
5988  * registered lock class. The caller must hold either the graph lock or the
5989  * RCU read lock.
5990  */
5991 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5992 {
5993         struct lock_class *class;
5994         struct hlist_head *head;
5995         int i, j;
5996
5997         for (i = 0; i < CLASSHASH_SIZE; i++) {
5998                 head = classhash_table + i;
5999                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6000                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6001                                 if (lock->class_cache[j] == class)
6002                                         return true;
6003                 }
6004         }
6005         return false;
6006 }
6007
6008 /* The caller must hold the graph lock. Does not sleep. */
6009 static void __lockdep_reset_lock(struct pending_free *pf,
6010                                  struct lockdep_map *lock)
6011 {
6012         struct lock_class *class;
6013         int j;
6014
6015         /*
6016          * Remove all classes this lock might have:
6017          */
6018         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6019                 /*
6020                  * If the class exists we look it up and zap it:
6021                  */
6022                 class = look_up_lock_class(lock, j);
6023                 if (class)
6024                         zap_class(pf, class);
6025         }
6026         /*
6027          * Debug check: in the end all mapped classes should
6028          * be gone.
6029          */
6030         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6031                 debug_locks_off();
6032 }
6033
6034 /*
6035  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6036  * released data structures from RCU context.
6037  */
6038 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6039 {
6040         struct pending_free *pf;
6041         unsigned long flags;
6042         int locked;
6043
6044         raw_local_irq_save(flags);
6045         locked = graph_lock();
6046         if (!locked)
6047                 goto out_irq;
6048
6049         pf = get_pending_free();
6050         __lockdep_reset_lock(pf, lock);
6051         call_rcu_zapped(pf);
6052
6053         graph_unlock();
6054 out_irq:
6055         raw_local_irq_restore(flags);
6056 }
6057
6058 /*
6059  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6060  * lockdep selftests.
6061  */
6062 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6063 {
6064         struct pending_free *pf = delayed_free.pf;
6065         unsigned long flags;
6066
6067         raw_local_irq_save(flags);
6068         lockdep_lock();
6069         __lockdep_reset_lock(pf, lock);
6070         __free_zapped_classes(pf);
6071         lockdep_unlock();
6072         raw_local_irq_restore(flags);
6073 }
6074
6075 void lockdep_reset_lock(struct lockdep_map *lock)
6076 {
6077         init_data_structures_once();
6078
6079         if (inside_selftest())
6080                 lockdep_reset_lock_imm(lock);
6081         else
6082                 lockdep_reset_lock_reg(lock);
6083 }
6084
6085 /* Unregister a dynamically allocated key. */
6086 void lockdep_unregister_key(struct lock_class_key *key)
6087 {
6088         struct hlist_head *hash_head = keyhashentry(key);
6089         struct lock_class_key *k;
6090         struct pending_free *pf;
6091         unsigned long flags;
6092         bool found = false;
6093
6094         might_sleep();
6095
6096         if (WARN_ON_ONCE(static_obj(key)))
6097                 return;
6098
6099         raw_local_irq_save(flags);
6100         if (!graph_lock())
6101                 goto out_irq;
6102
6103         pf = get_pending_free();
6104         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6105                 if (k == key) {
6106                         hlist_del_rcu(&k->hash_entry);
6107                         found = true;
6108                         break;
6109                 }
6110         }
6111         WARN_ON_ONCE(!found);
6112         __lockdep_free_key_range(pf, key, 1);
6113         call_rcu_zapped(pf);
6114         graph_unlock();
6115 out_irq:
6116         raw_local_irq_restore(flags);
6117
6118         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6119         synchronize_rcu();
6120 }
6121 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6122
6123 void __init lockdep_init(void)
6124 {
6125         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6126
6127         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6128         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6129         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6130         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6131         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6132         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6133         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6134
6135         printk(" memory used by lock dependency info: %zu kB\n",
6136                (sizeof(lock_classes) +
6137                 sizeof(lock_classes_in_use) +
6138                 sizeof(classhash_table) +
6139                 sizeof(list_entries) +
6140                 sizeof(list_entries_in_use) +
6141                 sizeof(chainhash_table) +
6142                 sizeof(delayed_free)
6143 #ifdef CONFIG_PROVE_LOCKING
6144                 + sizeof(lock_cq)
6145                 + sizeof(lock_chains)
6146                 + sizeof(lock_chains_in_use)
6147                 + sizeof(chain_hlocks)
6148 #endif
6149                 ) / 1024
6150                 );
6151
6152 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6153         printk(" memory used for stack traces: %zu kB\n",
6154                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6155                );
6156 #endif
6157
6158         printk(" per task-struct memory footprint: %zu bytes\n",
6159                sizeof(((struct task_struct *)NULL)->held_locks));
6160 }
6161
6162 static void
6163 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6164                      const void *mem_to, struct held_lock *hlock)
6165 {
6166         if (!debug_locks_off())
6167                 return;
6168         if (debug_locks_silent)
6169                 return;
6170
6171         pr_warn("\n");
6172         pr_warn("=========================\n");
6173         pr_warn("WARNING: held lock freed!\n");
6174         print_kernel_ident();
6175         pr_warn("-------------------------\n");
6176         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6177                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6178         print_lock(hlock);
6179         lockdep_print_held_locks(curr);
6180
6181         pr_warn("\nstack backtrace:\n");
6182         dump_stack();
6183 }
6184
6185 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6186                                 const void* lock_from, unsigned long lock_len)
6187 {
6188         return lock_from + lock_len <= mem_from ||
6189                 mem_from + mem_len <= lock_from;
6190 }
6191
6192 /*
6193  * Called when kernel memory is freed (or unmapped), or if a lock
6194  * is destroyed or reinitialized - this code checks whether there is
6195  * any held lock in the memory range of <from> to <to>:
6196  */
6197 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6198 {
6199         struct task_struct *curr = current;
6200         struct held_lock *hlock;
6201         unsigned long flags;
6202         int i;
6203
6204         if (unlikely(!debug_locks))
6205                 return;
6206
6207         raw_local_irq_save(flags);
6208         for (i = 0; i < curr->lockdep_depth; i++) {
6209                 hlock = curr->held_locks + i;
6210
6211                 if (not_in_range(mem_from, mem_len, hlock->instance,
6212                                         sizeof(*hlock->instance)))
6213                         continue;
6214
6215                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6216                 break;
6217         }
6218         raw_local_irq_restore(flags);
6219 }
6220 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6221
6222 static void print_held_locks_bug(void)
6223 {
6224         if (!debug_locks_off())
6225                 return;
6226         if (debug_locks_silent)
6227                 return;
6228
6229         pr_warn("\n");
6230         pr_warn("====================================\n");
6231         pr_warn("WARNING: %s/%d still has locks held!\n",
6232                current->comm, task_pid_nr(current));
6233         print_kernel_ident();
6234         pr_warn("------------------------------------\n");
6235         lockdep_print_held_locks(current);
6236         pr_warn("\nstack backtrace:\n");
6237         dump_stack();
6238 }
6239
6240 void debug_check_no_locks_held(void)
6241 {
6242         if (unlikely(current->lockdep_depth > 0))
6243                 print_held_locks_bug();
6244 }
6245 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6246
6247 #ifdef __KERNEL__
6248 void debug_show_all_locks(void)
6249 {
6250         struct task_struct *g, *p;
6251
6252         if (unlikely(!debug_locks)) {
6253                 pr_warn("INFO: lockdep is turned off.\n");
6254                 return;
6255         }
6256         pr_warn("\nShowing all locks held in the system:\n");
6257
6258         rcu_read_lock();
6259         for_each_process_thread(g, p) {
6260                 if (!p->lockdep_depth)
6261                         continue;
6262                 lockdep_print_held_locks(p);
6263                 touch_nmi_watchdog();
6264                 touch_all_softlockup_watchdogs();
6265         }
6266         rcu_read_unlock();
6267
6268         pr_warn("\n");
6269         pr_warn("=============================================\n\n");
6270 }
6271 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6272 #endif
6273
6274 /*
6275  * Careful: only use this function if you are sure that
6276  * the task cannot run in parallel!
6277  */
6278 void debug_show_held_locks(struct task_struct *task)
6279 {
6280         if (unlikely(!debug_locks)) {
6281                 printk("INFO: lockdep is turned off.\n");
6282                 return;
6283         }
6284         lockdep_print_held_locks(task);
6285 }
6286 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6287
6288 asmlinkage __visible void lockdep_sys_exit(void)
6289 {
6290         struct task_struct *curr = current;
6291
6292         if (unlikely(curr->lockdep_depth)) {
6293                 if (!debug_locks_off())
6294                         return;
6295                 pr_warn("\n");
6296                 pr_warn("================================================\n");
6297                 pr_warn("WARNING: lock held when returning to user space!\n");
6298                 print_kernel_ident();
6299                 pr_warn("------------------------------------------------\n");
6300                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6301                                 curr->comm, curr->pid);
6302                 lockdep_print_held_locks(curr);
6303         }
6304
6305         /*
6306          * The lock history for each syscall should be independent. So wipe the
6307          * slate clean on return to userspace.
6308          */
6309         lockdep_invariant_state(false);
6310 }
6311
6312 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6313 {
6314         struct task_struct *curr = current;
6315
6316         /* Note: the following can be executed concurrently, so be careful. */
6317         pr_warn("\n");
6318         pr_warn("=============================\n");
6319         pr_warn("WARNING: suspicious RCU usage\n");
6320         print_kernel_ident();
6321         pr_warn("-----------------------------\n");
6322         pr_warn("%s:%d %s!\n", file, line, s);
6323         pr_warn("\nother info that might help us debug this:\n\n");
6324         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6325                !rcu_lockdep_current_cpu_online()
6326                         ? "RCU used illegally from offline CPU!\n"
6327                         : "",
6328                rcu_scheduler_active, debug_locks);
6329
6330         /*
6331          * If a CPU is in the RCU-free window in idle (ie: in the section
6332          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6333          * considers that CPU to be in an "extended quiescent state",
6334          * which means that RCU will be completely ignoring that CPU.
6335          * Therefore, rcu_read_lock() and friends have absolutely no
6336          * effect on a CPU running in that state. In other words, even if
6337          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6338          * delete data structures out from under it.  RCU really has no
6339          * choice here: we need to keep an RCU-free window in idle where
6340          * the CPU may possibly enter into low power mode. This way we can
6341          * notice an extended quiescent state to other CPUs that started a grace
6342          * period. Otherwise we would delay any grace period as long as we run
6343          * in the idle task.
6344          *
6345          * So complain bitterly if someone does call rcu_read_lock(),
6346          * rcu_read_lock_bh() and so on from extended quiescent states.
6347          */
6348         if (!rcu_is_watching())
6349                 pr_warn("RCU used illegally from extended quiescent state!\n");
6350
6351         lockdep_print_held_locks(curr);
6352         pr_warn("\nstack backtrace:\n");
6353         dump_stack();
6354 }
6355 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);