dt-bindings: soc: bcm: use absolute path to other schema
[linux-2.6-microblaze.git] / kernel / locking / lockdep.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #include <trace/events/lock.h>
64
65 #ifdef CONFIG_PROVE_LOCKING
66 static int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71
72 #ifdef CONFIG_LOCK_STAT
73 static int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78
79 #ifdef CONFIG_SYSCTL
80 static struct ctl_table kern_lockdep_table[] = {
81 #ifdef CONFIG_PROVE_LOCKING
82         {
83                 .procname       = "prove_locking",
84                 .data           = &prove_locking,
85                 .maxlen         = sizeof(int),
86                 .mode           = 0644,
87                 .proc_handler   = proc_dointvec,
88         },
89 #endif /* CONFIG_PROVE_LOCKING */
90 #ifdef CONFIG_LOCK_STAT
91         {
92                 .procname       = "lock_stat",
93                 .data           = &lock_stat,
94                 .maxlen         = sizeof(int),
95                 .mode           = 0644,
96                 .proc_handler   = proc_dointvec,
97         },
98 #endif /* CONFIG_LOCK_STAT */
99         { }
100 };
101
102 static __init int kernel_lockdep_sysctls_init(void)
103 {
104         register_sysctl_init("kernel", kern_lockdep_table);
105         return 0;
106 }
107 late_initcall(kernel_lockdep_sysctls_init);
108 #endif /* CONFIG_SYSCTL */
109
110 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
111 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
112
113 static __always_inline bool lockdep_enabled(void)
114 {
115         if (!debug_locks)
116                 return false;
117
118         if (this_cpu_read(lockdep_recursion))
119                 return false;
120
121         if (current->lockdep_recursion)
122                 return false;
123
124         return true;
125 }
126
127 /*
128  * lockdep_lock: protects the lockdep graph, the hashes and the
129  *               class/list/hash allocators.
130  *
131  * This is one of the rare exceptions where it's justified
132  * to use a raw spinlock - we really dont want the spinlock
133  * code to recurse back into the lockdep code...
134  */
135 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
136 static struct task_struct *__owner;
137
138 static inline void lockdep_lock(void)
139 {
140         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
141
142         __this_cpu_inc(lockdep_recursion);
143         arch_spin_lock(&__lock);
144         __owner = current;
145 }
146
147 static inline void lockdep_unlock(void)
148 {
149         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
150
151         if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
152                 return;
153
154         __owner = NULL;
155         arch_spin_unlock(&__lock);
156         __this_cpu_dec(lockdep_recursion);
157 }
158
159 static inline bool lockdep_assert_locked(void)
160 {
161         return DEBUG_LOCKS_WARN_ON(__owner != current);
162 }
163
164 static struct task_struct *lockdep_selftest_task_struct;
165
166
167 static int graph_lock(void)
168 {
169         lockdep_lock();
170         /*
171          * Make sure that if another CPU detected a bug while
172          * walking the graph we dont change it (while the other
173          * CPU is busy printing out stuff with the graph lock
174          * dropped already)
175          */
176         if (!debug_locks) {
177                 lockdep_unlock();
178                 return 0;
179         }
180         return 1;
181 }
182
183 static inline void graph_unlock(void)
184 {
185         lockdep_unlock();
186 }
187
188 /*
189  * Turn lock debugging off and return with 0 if it was off already,
190  * and also release the graph lock:
191  */
192 static inline int debug_locks_off_graph_unlock(void)
193 {
194         int ret = debug_locks_off();
195
196         lockdep_unlock();
197
198         return ret;
199 }
200
201 unsigned long nr_list_entries;
202 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
203 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
204
205 /*
206  * All data structures here are protected by the global debug_lock.
207  *
208  * nr_lock_classes is the number of elements of lock_classes[] that is
209  * in use.
210  */
211 #define KEYHASH_BITS            (MAX_LOCKDEP_KEYS_BITS - 1)
212 #define KEYHASH_SIZE            (1UL << KEYHASH_BITS)
213 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
214 unsigned long nr_lock_classes;
215 unsigned long nr_zapped_classes;
216 unsigned long max_lock_class_idx;
217 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
218 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
219
220 static inline struct lock_class *hlock_class(struct held_lock *hlock)
221 {
222         unsigned int class_idx = hlock->class_idx;
223
224         /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
225         barrier();
226
227         if (!test_bit(class_idx, lock_classes_in_use)) {
228                 /*
229                  * Someone passed in garbage, we give up.
230                  */
231                 DEBUG_LOCKS_WARN_ON(1);
232                 return NULL;
233         }
234
235         /*
236          * At this point, if the passed hlock->class_idx is still garbage,
237          * we just have to live with it
238          */
239         return lock_classes + class_idx;
240 }
241
242 #ifdef CONFIG_LOCK_STAT
243 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
244
245 static inline u64 lockstat_clock(void)
246 {
247         return local_clock();
248 }
249
250 static int lock_point(unsigned long points[], unsigned long ip)
251 {
252         int i;
253
254         for (i = 0; i < LOCKSTAT_POINTS; i++) {
255                 if (points[i] == 0) {
256                         points[i] = ip;
257                         break;
258                 }
259                 if (points[i] == ip)
260                         break;
261         }
262
263         return i;
264 }
265
266 static void lock_time_inc(struct lock_time *lt, u64 time)
267 {
268         if (time > lt->max)
269                 lt->max = time;
270
271         if (time < lt->min || !lt->nr)
272                 lt->min = time;
273
274         lt->total += time;
275         lt->nr++;
276 }
277
278 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
279 {
280         if (!src->nr)
281                 return;
282
283         if (src->max > dst->max)
284                 dst->max = src->max;
285
286         if (src->min < dst->min || !dst->nr)
287                 dst->min = src->min;
288
289         dst->total += src->total;
290         dst->nr += src->nr;
291 }
292
293 struct lock_class_stats lock_stats(struct lock_class *class)
294 {
295         struct lock_class_stats stats;
296         int cpu, i;
297
298         memset(&stats, 0, sizeof(struct lock_class_stats));
299         for_each_possible_cpu(cpu) {
300                 struct lock_class_stats *pcs =
301                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
302
303                 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
304                         stats.contention_point[i] += pcs->contention_point[i];
305
306                 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
307                         stats.contending_point[i] += pcs->contending_point[i];
308
309                 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
310                 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
311
312                 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
313                 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
314
315                 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
316                         stats.bounces[i] += pcs->bounces[i];
317         }
318
319         return stats;
320 }
321
322 void clear_lock_stats(struct lock_class *class)
323 {
324         int cpu;
325
326         for_each_possible_cpu(cpu) {
327                 struct lock_class_stats *cpu_stats =
328                         &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
329
330                 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
331         }
332         memset(class->contention_point, 0, sizeof(class->contention_point));
333         memset(class->contending_point, 0, sizeof(class->contending_point));
334 }
335
336 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
337 {
338         return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
339 }
340
341 static void lock_release_holdtime(struct held_lock *hlock)
342 {
343         struct lock_class_stats *stats;
344         u64 holdtime;
345
346         if (!lock_stat)
347                 return;
348
349         holdtime = lockstat_clock() - hlock->holdtime_stamp;
350
351         stats = get_lock_stats(hlock_class(hlock));
352         if (hlock->read)
353                 lock_time_inc(&stats->read_holdtime, holdtime);
354         else
355                 lock_time_inc(&stats->write_holdtime, holdtime);
356 }
357 #else
358 static inline void lock_release_holdtime(struct held_lock *hlock)
359 {
360 }
361 #endif
362
363 /*
364  * We keep a global list of all lock classes. The list is only accessed with
365  * the lockdep spinlock lock held. free_lock_classes is a list with free
366  * elements. These elements are linked together by the lock_entry member in
367  * struct lock_class.
368  */
369 static LIST_HEAD(all_lock_classes);
370 static LIST_HEAD(free_lock_classes);
371
372 /**
373  * struct pending_free - information about data structures about to be freed
374  * @zapped: Head of a list with struct lock_class elements.
375  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
376  *      are about to be freed.
377  */
378 struct pending_free {
379         struct list_head zapped;
380         DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
381 };
382
383 /**
384  * struct delayed_free - data structures used for delayed freeing
385  *
386  * A data structure for delayed freeing of data structures that may be
387  * accessed by RCU readers at the time these were freed.
388  *
389  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
390  * @index:     Index of @pf to which freed data structures are added.
391  * @scheduled: Whether or not an RCU callback has been scheduled.
392  * @pf:        Array with information about data structures about to be freed.
393  */
394 static struct delayed_free {
395         struct rcu_head         rcu_head;
396         int                     index;
397         int                     scheduled;
398         struct pending_free     pf[2];
399 } delayed_free;
400
401 /*
402  * The lockdep classes are in a hash-table as well, for fast lookup:
403  */
404 #define CLASSHASH_BITS          (MAX_LOCKDEP_KEYS_BITS - 1)
405 #define CLASSHASH_SIZE          (1UL << CLASSHASH_BITS)
406 #define __classhashfn(key)      hash_long((unsigned long)key, CLASSHASH_BITS)
407 #define classhashentry(key)     (classhash_table + __classhashfn((key)))
408
409 static struct hlist_head classhash_table[CLASSHASH_SIZE];
410
411 /*
412  * We put the lock dependency chains into a hash-table as well, to cache
413  * their existence:
414  */
415 #define CHAINHASH_BITS          (MAX_LOCKDEP_CHAINS_BITS-1)
416 #define CHAINHASH_SIZE          (1UL << CHAINHASH_BITS)
417 #define __chainhashfn(chain)    hash_long(chain, CHAINHASH_BITS)
418 #define chainhashentry(chain)   (chainhash_table + __chainhashfn((chain)))
419
420 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
421
422 /*
423  * the id of held_lock
424  */
425 static inline u16 hlock_id(struct held_lock *hlock)
426 {
427         BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
428
429         return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
430 }
431
432 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
433 {
434         return hlock_id & (MAX_LOCKDEP_KEYS - 1);
435 }
436
437 /*
438  * The hash key of the lock dependency chains is a hash itself too:
439  * it's a hash of all locks taken up to that lock, including that lock.
440  * It's a 64-bit hash, because it's important for the keys to be
441  * unique.
442  */
443 static inline u64 iterate_chain_key(u64 key, u32 idx)
444 {
445         u32 k0 = key, k1 = key >> 32;
446
447         __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
448
449         return k0 | (u64)k1 << 32;
450 }
451
452 void lockdep_init_task(struct task_struct *task)
453 {
454         task->lockdep_depth = 0; /* no locks held yet */
455         task->curr_chain_key = INITIAL_CHAIN_KEY;
456         task->lockdep_recursion = 0;
457 }
458
459 static __always_inline void lockdep_recursion_inc(void)
460 {
461         __this_cpu_inc(lockdep_recursion);
462 }
463
464 static __always_inline void lockdep_recursion_finish(void)
465 {
466         if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
467                 __this_cpu_write(lockdep_recursion, 0);
468 }
469
470 void lockdep_set_selftest_task(struct task_struct *task)
471 {
472         lockdep_selftest_task_struct = task;
473 }
474
475 /*
476  * Debugging switches:
477  */
478
479 #define VERBOSE                 0
480 #define VERY_VERBOSE            0
481
482 #if VERBOSE
483 # define HARDIRQ_VERBOSE        1
484 # define SOFTIRQ_VERBOSE        1
485 #else
486 # define HARDIRQ_VERBOSE        0
487 # define SOFTIRQ_VERBOSE        0
488 #endif
489
490 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
491 /*
492  * Quick filtering for interesting events:
493  */
494 static int class_filter(struct lock_class *class)
495 {
496 #if 0
497         /* Example */
498         if (class->name_version == 1 &&
499                         !strcmp(class->name, "lockname"))
500                 return 1;
501         if (class->name_version == 1 &&
502                         !strcmp(class->name, "&struct->lockfield"))
503                 return 1;
504 #endif
505         /* Filter everything else. 1 would be to allow everything else */
506         return 0;
507 }
508 #endif
509
510 static int verbose(struct lock_class *class)
511 {
512 #if VERBOSE
513         return class_filter(class);
514 #endif
515         return 0;
516 }
517
518 static void print_lockdep_off(const char *bug_msg)
519 {
520         printk(KERN_DEBUG "%s\n", bug_msg);
521         printk(KERN_DEBUG "turning off the locking correctness validator.\n");
522 #ifdef CONFIG_LOCK_STAT
523         printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
524 #endif
525 }
526
527 unsigned long nr_stack_trace_entries;
528
529 #ifdef CONFIG_PROVE_LOCKING
530 /**
531  * struct lock_trace - single stack backtrace
532  * @hash_entry: Entry in a stack_trace_hash[] list.
533  * @hash:       jhash() of @entries.
534  * @nr_entries: Number of entries in @entries.
535  * @entries:    Actual stack backtrace.
536  */
537 struct lock_trace {
538         struct hlist_node       hash_entry;
539         u32                     hash;
540         u32                     nr_entries;
541         unsigned long           entries[] __aligned(sizeof(unsigned long));
542 };
543 #define LOCK_TRACE_SIZE_IN_LONGS                                \
544         (sizeof(struct lock_trace) / sizeof(unsigned long))
545 /*
546  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
547  */
548 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
549 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
550
551 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
552 {
553         return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
554                 memcmp(t1->entries, t2->entries,
555                        t1->nr_entries * sizeof(t1->entries[0])) == 0;
556 }
557
558 static struct lock_trace *save_trace(void)
559 {
560         struct lock_trace *trace, *t2;
561         struct hlist_head *hash_head;
562         u32 hash;
563         int max_entries;
564
565         BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
566         BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
567
568         trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
569         max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
570                 LOCK_TRACE_SIZE_IN_LONGS;
571
572         if (max_entries <= 0) {
573                 if (!debug_locks_off_graph_unlock())
574                         return NULL;
575
576                 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
577                 dump_stack();
578
579                 return NULL;
580         }
581         trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
582
583         hash = jhash(trace->entries, trace->nr_entries *
584                      sizeof(trace->entries[0]), 0);
585         trace->hash = hash;
586         hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
587         hlist_for_each_entry(t2, hash_head, hash_entry) {
588                 if (traces_identical(trace, t2))
589                         return t2;
590         }
591         nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
592         hlist_add_head(&trace->hash_entry, hash_head);
593
594         return trace;
595 }
596
597 /* Return the number of stack traces in the stack_trace[] array. */
598 u64 lockdep_stack_trace_count(void)
599 {
600         struct lock_trace *trace;
601         u64 c = 0;
602         int i;
603
604         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
605                 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
606                         c++;
607                 }
608         }
609
610         return c;
611 }
612
613 /* Return the number of stack hash chains that have at least one stack trace. */
614 u64 lockdep_stack_hash_count(void)
615 {
616         u64 c = 0;
617         int i;
618
619         for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
620                 if (!hlist_empty(&stack_trace_hash[i]))
621                         c++;
622
623         return c;
624 }
625 #endif
626
627 unsigned int nr_hardirq_chains;
628 unsigned int nr_softirq_chains;
629 unsigned int nr_process_chains;
630 unsigned int max_lockdep_depth;
631
632 #ifdef CONFIG_DEBUG_LOCKDEP
633 /*
634  * Various lockdep statistics:
635  */
636 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
637 #endif
638
639 #ifdef CONFIG_PROVE_LOCKING
640 /*
641  * Locking printouts:
642  */
643
644 #define __USAGE(__STATE)                                                \
645         [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",       \
646         [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",         \
647         [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
648         [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
649
650 static const char *usage_str[] =
651 {
652 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
653 #include "lockdep_states.h"
654 #undef LOCKDEP_STATE
655         [LOCK_USED] = "INITIAL USE",
656         [LOCK_USED_READ] = "INITIAL READ USE",
657         /* abused as string storage for verify_lock_unused() */
658         [LOCK_USAGE_STATES] = "IN-NMI",
659 };
660 #endif
661
662 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
663 {
664         return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
665 }
666
667 static inline unsigned long lock_flag(enum lock_usage_bit bit)
668 {
669         return 1UL << bit;
670 }
671
672 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
673 {
674         /*
675          * The usage character defaults to '.' (i.e., irqs disabled and not in
676          * irq context), which is the safest usage category.
677          */
678         char c = '.';
679
680         /*
681          * The order of the following usage checks matters, which will
682          * result in the outcome character as follows:
683          *
684          * - '+': irq is enabled and not in irq context
685          * - '-': in irq context and irq is disabled
686          * - '?': in irq context and irq is enabled
687          */
688         if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
689                 c = '+';
690                 if (class->usage_mask & lock_flag(bit))
691                         c = '?';
692         } else if (class->usage_mask & lock_flag(bit))
693                 c = '-';
694
695         return c;
696 }
697
698 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
699 {
700         int i = 0;
701
702 #define LOCKDEP_STATE(__STATE)                                          \
703         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);     \
704         usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
705 #include "lockdep_states.h"
706 #undef LOCKDEP_STATE
707
708         usage[i] = '\0';
709 }
710
711 static void __print_lock_name(struct lock_class *class)
712 {
713         char str[KSYM_NAME_LEN];
714         const char *name;
715
716         name = class->name;
717         if (!name) {
718                 name = __get_key_name(class->key, str);
719                 printk(KERN_CONT "%s", name);
720         } else {
721                 printk(KERN_CONT "%s", name);
722                 if (class->name_version > 1)
723                         printk(KERN_CONT "#%d", class->name_version);
724                 if (class->subclass)
725                         printk(KERN_CONT "/%d", class->subclass);
726         }
727 }
728
729 static void print_lock_name(struct lock_class *class)
730 {
731         char usage[LOCK_USAGE_CHARS];
732
733         get_usage_chars(class, usage);
734
735         printk(KERN_CONT " (");
736         __print_lock_name(class);
737         printk(KERN_CONT "){%s}-{%d:%d}", usage,
738                         class->wait_type_outer ?: class->wait_type_inner,
739                         class->wait_type_inner);
740 }
741
742 static void print_lockdep_cache(struct lockdep_map *lock)
743 {
744         const char *name;
745         char str[KSYM_NAME_LEN];
746
747         name = lock->name;
748         if (!name)
749                 name = __get_key_name(lock->key->subkeys, str);
750
751         printk(KERN_CONT "%s", name);
752 }
753
754 static void print_lock(struct held_lock *hlock)
755 {
756         /*
757          * We can be called locklessly through debug_show_all_locks() so be
758          * extra careful, the hlock might have been released and cleared.
759          *
760          * If this indeed happens, lets pretend it does not hurt to continue
761          * to print the lock unless the hlock class_idx does not point to a
762          * registered class. The rationale here is: since we don't attempt
763          * to distinguish whether we are in this situation, if it just
764          * happened we can't count on class_idx to tell either.
765          */
766         struct lock_class *lock = hlock_class(hlock);
767
768         if (!lock) {
769                 printk(KERN_CONT "<RELEASED>\n");
770                 return;
771         }
772
773         printk(KERN_CONT "%px", hlock->instance);
774         print_lock_name(lock);
775         printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
776 }
777
778 static void lockdep_print_held_locks(struct task_struct *p)
779 {
780         int i, depth = READ_ONCE(p->lockdep_depth);
781
782         if (!depth)
783                 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
784         else
785                 printk("%d lock%s held by %s/%d:\n", depth,
786                        depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
787         /*
788          * It's not reliable to print a task's held locks if it's not sleeping
789          * and it's not the current task.
790          */
791         if (p != current && task_is_running(p))
792                 return;
793         for (i = 0; i < depth; i++) {
794                 printk(" #%d: ", i);
795                 print_lock(p->held_locks + i);
796         }
797 }
798
799 static void print_kernel_ident(void)
800 {
801         printk("%s %.*s %s\n", init_utsname()->release,
802                 (int)strcspn(init_utsname()->version, " "),
803                 init_utsname()->version,
804                 print_tainted());
805 }
806
807 static int very_verbose(struct lock_class *class)
808 {
809 #if VERY_VERBOSE
810         return class_filter(class);
811 #endif
812         return 0;
813 }
814
815 /*
816  * Is this the address of a static object:
817  */
818 #ifdef __KERNEL__
819 /*
820  * Check if an address is part of freed initmem. After initmem is freed,
821  * memory can be allocated from it, and such allocations would then have
822  * addresses within the range [_stext, _end].
823  */
824 #ifndef arch_is_kernel_initmem_freed
825 static int arch_is_kernel_initmem_freed(unsigned long addr)
826 {
827         if (system_state < SYSTEM_FREEING_INITMEM)
828                 return 0;
829
830         return init_section_contains((void *)addr, 1);
831 }
832 #endif
833
834 static int static_obj(const void *obj)
835 {
836         unsigned long start = (unsigned long) &_stext,
837                       end   = (unsigned long) &_end,
838                       addr  = (unsigned long) obj;
839
840         if (arch_is_kernel_initmem_freed(addr))
841                 return 0;
842
843         /*
844          * static variable?
845          */
846         if ((addr >= start) && (addr < end))
847                 return 1;
848
849         /*
850          * in-kernel percpu var?
851          */
852         if (is_kernel_percpu_address(addr))
853                 return 1;
854
855         /*
856          * module static or percpu var?
857          */
858         return is_module_address(addr) || is_module_percpu_address(addr);
859 }
860 #endif
861
862 /*
863  * To make lock name printouts unique, we calculate a unique
864  * class->name_version generation counter. The caller must hold the graph
865  * lock.
866  */
867 static int count_matching_names(struct lock_class *new_class)
868 {
869         struct lock_class *class;
870         int count = 0;
871
872         if (!new_class->name)
873                 return 0;
874
875         list_for_each_entry(class, &all_lock_classes, lock_entry) {
876                 if (new_class->key - new_class->subclass == class->key)
877                         return class->name_version;
878                 if (class->name && !strcmp(class->name, new_class->name))
879                         count = max(count, class->name_version);
880         }
881
882         return count + 1;
883 }
884
885 /* used from NMI context -- must be lockless */
886 static noinstr struct lock_class *
887 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
888 {
889         struct lockdep_subclass_key *key;
890         struct hlist_head *hash_head;
891         struct lock_class *class;
892
893         if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
894                 instrumentation_begin();
895                 debug_locks_off();
896                 printk(KERN_ERR
897                         "BUG: looking up invalid subclass: %u\n", subclass);
898                 printk(KERN_ERR
899                         "turning off the locking correctness validator.\n");
900                 dump_stack();
901                 instrumentation_end();
902                 return NULL;
903         }
904
905         /*
906          * If it is not initialised then it has never been locked,
907          * so it won't be present in the hash table.
908          */
909         if (unlikely(!lock->key))
910                 return NULL;
911
912         /*
913          * NOTE: the class-key must be unique. For dynamic locks, a static
914          * lock_class_key variable is passed in through the mutex_init()
915          * (or spin_lock_init()) call - which acts as the key. For static
916          * locks we use the lock object itself as the key.
917          */
918         BUILD_BUG_ON(sizeof(struct lock_class_key) >
919                         sizeof(struct lockdep_map));
920
921         key = lock->key->subkeys + subclass;
922
923         hash_head = classhashentry(key);
924
925         /*
926          * We do an RCU walk of the hash, see lockdep_free_key_range().
927          */
928         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
929                 return NULL;
930
931         hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
932                 if (class->key == key) {
933                         /*
934                          * Huh! same key, different name? Did someone trample
935                          * on some memory? We're most confused.
936                          */
937                         WARN_ON_ONCE(class->name != lock->name &&
938                                      lock->key != &__lockdep_no_validate__);
939                         return class;
940                 }
941         }
942
943         return NULL;
944 }
945
946 /*
947  * Static locks do not have their class-keys yet - for them the key is
948  * the lock object itself. If the lock is in the per cpu area, the
949  * canonical address of the lock (per cpu offset removed) is used.
950  */
951 static bool assign_lock_key(struct lockdep_map *lock)
952 {
953         unsigned long can_addr, addr = (unsigned long)lock;
954
955 #ifdef __KERNEL__
956         /*
957          * lockdep_free_key_range() assumes that struct lock_class_key
958          * objects do not overlap. Since we use the address of lock
959          * objects as class key for static objects, check whether the
960          * size of lock_class_key objects does not exceed the size of
961          * the smallest lock object.
962          */
963         BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
964 #endif
965
966         if (__is_kernel_percpu_address(addr, &can_addr))
967                 lock->key = (void *)can_addr;
968         else if (__is_module_percpu_address(addr, &can_addr))
969                 lock->key = (void *)can_addr;
970         else if (static_obj(lock))
971                 lock->key = (void *)lock;
972         else {
973                 /* Debug-check: all keys must be persistent! */
974                 debug_locks_off();
975                 pr_err("INFO: trying to register non-static key.\n");
976                 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
977                 pr_err("you didn't initialize this object before use?\n");
978                 pr_err("turning off the locking correctness validator.\n");
979                 dump_stack();
980                 return false;
981         }
982
983         return true;
984 }
985
986 #ifdef CONFIG_DEBUG_LOCKDEP
987
988 /* Check whether element @e occurs in list @h */
989 static bool in_list(struct list_head *e, struct list_head *h)
990 {
991         struct list_head *f;
992
993         list_for_each(f, h) {
994                 if (e == f)
995                         return true;
996         }
997
998         return false;
999 }
1000
1001 /*
1002  * Check whether entry @e occurs in any of the locks_after or locks_before
1003  * lists.
1004  */
1005 static bool in_any_class_list(struct list_head *e)
1006 {
1007         struct lock_class *class;
1008         int i;
1009
1010         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1011                 class = &lock_classes[i];
1012                 if (in_list(e, &class->locks_after) ||
1013                     in_list(e, &class->locks_before))
1014                         return true;
1015         }
1016         return false;
1017 }
1018
1019 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1020 {
1021         struct lock_list *e;
1022
1023         list_for_each_entry(e, h, entry) {
1024                 if (e->links_to != c) {
1025                         printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1026                                c->name ? : "(?)",
1027                                (unsigned long)(e - list_entries),
1028                                e->links_to && e->links_to->name ?
1029                                e->links_to->name : "(?)",
1030                                e->class && e->class->name ? e->class->name :
1031                                "(?)");
1032                         return false;
1033                 }
1034         }
1035         return true;
1036 }
1037
1038 #ifdef CONFIG_PROVE_LOCKING
1039 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1040 #endif
1041
1042 static bool check_lock_chain_key(struct lock_chain *chain)
1043 {
1044 #ifdef CONFIG_PROVE_LOCKING
1045         u64 chain_key = INITIAL_CHAIN_KEY;
1046         int i;
1047
1048         for (i = chain->base; i < chain->base + chain->depth; i++)
1049                 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1050         /*
1051          * The 'unsigned long long' casts avoid that a compiler warning
1052          * is reported when building tools/lib/lockdep.
1053          */
1054         if (chain->chain_key != chain_key) {
1055                 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1056                        (unsigned long long)(chain - lock_chains),
1057                        (unsigned long long)chain->chain_key,
1058                        (unsigned long long)chain_key);
1059                 return false;
1060         }
1061 #endif
1062         return true;
1063 }
1064
1065 static bool in_any_zapped_class_list(struct lock_class *class)
1066 {
1067         struct pending_free *pf;
1068         int i;
1069
1070         for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1071                 if (in_list(&class->lock_entry, &pf->zapped))
1072                         return true;
1073         }
1074
1075         return false;
1076 }
1077
1078 static bool __check_data_structures(void)
1079 {
1080         struct lock_class *class;
1081         struct lock_chain *chain;
1082         struct hlist_head *head;
1083         struct lock_list *e;
1084         int i;
1085
1086         /* Check whether all classes occur in a lock list. */
1087         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1088                 class = &lock_classes[i];
1089                 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1090                     !in_list(&class->lock_entry, &free_lock_classes) &&
1091                     !in_any_zapped_class_list(class)) {
1092                         printk(KERN_INFO "class %px/%s is not in any class list\n",
1093                                class, class->name ? : "(?)");
1094                         return false;
1095                 }
1096         }
1097
1098         /* Check whether all classes have valid lock lists. */
1099         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1100                 class = &lock_classes[i];
1101                 if (!class_lock_list_valid(class, &class->locks_before))
1102                         return false;
1103                 if (!class_lock_list_valid(class, &class->locks_after))
1104                         return false;
1105         }
1106
1107         /* Check the chain_key of all lock chains. */
1108         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1109                 head = chainhash_table + i;
1110                 hlist_for_each_entry_rcu(chain, head, entry) {
1111                         if (!check_lock_chain_key(chain))
1112                                 return false;
1113                 }
1114         }
1115
1116         /*
1117          * Check whether all list entries that are in use occur in a class
1118          * lock list.
1119          */
1120         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1121                 e = list_entries + i;
1122                 if (!in_any_class_list(&e->entry)) {
1123                         printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1124                                (unsigned int)(e - list_entries),
1125                                e->class->name ? : "(?)",
1126                                e->links_to->name ? : "(?)");
1127                         return false;
1128                 }
1129         }
1130
1131         /*
1132          * Check whether all list entries that are not in use do not occur in
1133          * a class lock list.
1134          */
1135         for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1136                 e = list_entries + i;
1137                 if (in_any_class_list(&e->entry)) {
1138                         printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1139                                (unsigned int)(e - list_entries),
1140                                e->class && e->class->name ? e->class->name :
1141                                "(?)",
1142                                e->links_to && e->links_to->name ?
1143                                e->links_to->name : "(?)");
1144                         return false;
1145                 }
1146         }
1147
1148         return true;
1149 }
1150
1151 int check_consistency = 0;
1152 module_param(check_consistency, int, 0644);
1153
1154 static void check_data_structures(void)
1155 {
1156         static bool once = false;
1157
1158         if (check_consistency && !once) {
1159                 if (!__check_data_structures()) {
1160                         once = true;
1161                         WARN_ON(once);
1162                 }
1163         }
1164 }
1165
1166 #else /* CONFIG_DEBUG_LOCKDEP */
1167
1168 static inline void check_data_structures(void) { }
1169
1170 #endif /* CONFIG_DEBUG_LOCKDEP */
1171
1172 static void init_chain_block_buckets(void);
1173
1174 /*
1175  * Initialize the lock_classes[] array elements, the free_lock_classes list
1176  * and also the delayed_free structure.
1177  */
1178 static void init_data_structures_once(void)
1179 {
1180         static bool __read_mostly ds_initialized, rcu_head_initialized;
1181         int i;
1182
1183         if (likely(rcu_head_initialized))
1184                 return;
1185
1186         if (system_state >= SYSTEM_SCHEDULING) {
1187                 init_rcu_head(&delayed_free.rcu_head);
1188                 rcu_head_initialized = true;
1189         }
1190
1191         if (ds_initialized)
1192                 return;
1193
1194         ds_initialized = true;
1195
1196         INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1197         INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1198
1199         for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1200                 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1201                 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1202                 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1203         }
1204         init_chain_block_buckets();
1205 }
1206
1207 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1208 {
1209         unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1210
1211         return lock_keys_hash + hash;
1212 }
1213
1214 /* Register a dynamically allocated key. */
1215 void lockdep_register_key(struct lock_class_key *key)
1216 {
1217         struct hlist_head *hash_head;
1218         struct lock_class_key *k;
1219         unsigned long flags;
1220
1221         if (WARN_ON_ONCE(static_obj(key)))
1222                 return;
1223         hash_head = keyhashentry(key);
1224
1225         raw_local_irq_save(flags);
1226         if (!graph_lock())
1227                 goto restore_irqs;
1228         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1229                 if (WARN_ON_ONCE(k == key))
1230                         goto out_unlock;
1231         }
1232         hlist_add_head_rcu(&key->hash_entry, hash_head);
1233 out_unlock:
1234         graph_unlock();
1235 restore_irqs:
1236         raw_local_irq_restore(flags);
1237 }
1238 EXPORT_SYMBOL_GPL(lockdep_register_key);
1239
1240 /* Check whether a key has been registered as a dynamic key. */
1241 static bool is_dynamic_key(const struct lock_class_key *key)
1242 {
1243         struct hlist_head *hash_head;
1244         struct lock_class_key *k;
1245         bool found = false;
1246
1247         if (WARN_ON_ONCE(static_obj(key)))
1248                 return false;
1249
1250         /*
1251          * If lock debugging is disabled lock_keys_hash[] may contain
1252          * pointers to memory that has already been freed. Avoid triggering
1253          * a use-after-free in that case by returning early.
1254          */
1255         if (!debug_locks)
1256                 return true;
1257
1258         hash_head = keyhashentry(key);
1259
1260         rcu_read_lock();
1261         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1262                 if (k == key) {
1263                         found = true;
1264                         break;
1265                 }
1266         }
1267         rcu_read_unlock();
1268
1269         return found;
1270 }
1271
1272 /*
1273  * Register a lock's class in the hash-table, if the class is not present
1274  * yet. Otherwise we look it up. We cache the result in the lock object
1275  * itself, so actual lookup of the hash should be once per lock object.
1276  */
1277 static struct lock_class *
1278 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1279 {
1280         struct lockdep_subclass_key *key;
1281         struct hlist_head *hash_head;
1282         struct lock_class *class;
1283         int idx;
1284
1285         DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1286
1287         class = look_up_lock_class(lock, subclass);
1288         if (likely(class))
1289                 goto out_set_class_cache;
1290
1291         if (!lock->key) {
1292                 if (!assign_lock_key(lock))
1293                         return NULL;
1294         } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1295                 return NULL;
1296         }
1297
1298         key = lock->key->subkeys + subclass;
1299         hash_head = classhashentry(key);
1300
1301         if (!graph_lock()) {
1302                 return NULL;
1303         }
1304         /*
1305          * We have to do the hash-walk again, to avoid races
1306          * with another CPU:
1307          */
1308         hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1309                 if (class->key == key)
1310                         goto out_unlock_set;
1311         }
1312
1313         init_data_structures_once();
1314
1315         /* Allocate a new lock class and add it to the hash. */
1316         class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1317                                          lock_entry);
1318         if (!class) {
1319                 if (!debug_locks_off_graph_unlock()) {
1320                         return NULL;
1321                 }
1322
1323                 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1324                 dump_stack();
1325                 return NULL;
1326         }
1327         nr_lock_classes++;
1328         __set_bit(class - lock_classes, lock_classes_in_use);
1329         debug_atomic_inc(nr_unused_locks);
1330         class->key = key;
1331         class->name = lock->name;
1332         class->subclass = subclass;
1333         WARN_ON_ONCE(!list_empty(&class->locks_before));
1334         WARN_ON_ONCE(!list_empty(&class->locks_after));
1335         class->name_version = count_matching_names(class);
1336         class->wait_type_inner = lock->wait_type_inner;
1337         class->wait_type_outer = lock->wait_type_outer;
1338         class->lock_type = lock->lock_type;
1339         /*
1340          * We use RCU's safe list-add method to make
1341          * parallel walking of the hash-list safe:
1342          */
1343         hlist_add_head_rcu(&class->hash_entry, hash_head);
1344         /*
1345          * Remove the class from the free list and add it to the global list
1346          * of classes.
1347          */
1348         list_move_tail(&class->lock_entry, &all_lock_classes);
1349         idx = class - lock_classes;
1350         if (idx > max_lock_class_idx)
1351                 max_lock_class_idx = idx;
1352
1353         if (verbose(class)) {
1354                 graph_unlock();
1355
1356                 printk("\nnew class %px: %s", class->key, class->name);
1357                 if (class->name_version > 1)
1358                         printk(KERN_CONT "#%d", class->name_version);
1359                 printk(KERN_CONT "\n");
1360                 dump_stack();
1361
1362                 if (!graph_lock()) {
1363                         return NULL;
1364                 }
1365         }
1366 out_unlock_set:
1367         graph_unlock();
1368
1369 out_set_class_cache:
1370         if (!subclass || force)
1371                 lock->class_cache[0] = class;
1372         else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1373                 lock->class_cache[subclass] = class;
1374
1375         /*
1376          * Hash collision, did we smoke some? We found a class with a matching
1377          * hash but the subclass -- which is hashed in -- didn't match.
1378          */
1379         if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1380                 return NULL;
1381
1382         return class;
1383 }
1384
1385 #ifdef CONFIG_PROVE_LOCKING
1386 /*
1387  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1388  * with NULL on failure)
1389  */
1390 static struct lock_list *alloc_list_entry(void)
1391 {
1392         int idx = find_first_zero_bit(list_entries_in_use,
1393                                       ARRAY_SIZE(list_entries));
1394
1395         if (idx >= ARRAY_SIZE(list_entries)) {
1396                 if (!debug_locks_off_graph_unlock())
1397                         return NULL;
1398
1399                 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1400                 dump_stack();
1401                 return NULL;
1402         }
1403         nr_list_entries++;
1404         __set_bit(idx, list_entries_in_use);
1405         return list_entries + idx;
1406 }
1407
1408 /*
1409  * Add a new dependency to the head of the list:
1410  */
1411 static int add_lock_to_list(struct lock_class *this,
1412                             struct lock_class *links_to, struct list_head *head,
1413                             u16 distance, u8 dep,
1414                             const struct lock_trace *trace)
1415 {
1416         struct lock_list *entry;
1417         /*
1418          * Lock not present yet - get a new dependency struct and
1419          * add it to the list:
1420          */
1421         entry = alloc_list_entry();
1422         if (!entry)
1423                 return 0;
1424
1425         entry->class = this;
1426         entry->links_to = links_to;
1427         entry->dep = dep;
1428         entry->distance = distance;
1429         entry->trace = trace;
1430         /*
1431          * Both allocation and removal are done under the graph lock; but
1432          * iteration is under RCU-sched; see look_up_lock_class() and
1433          * lockdep_free_key_range().
1434          */
1435         list_add_tail_rcu(&entry->entry, head);
1436
1437         return 1;
1438 }
1439
1440 /*
1441  * For good efficiency of modular, we use power of 2
1442  */
1443 #define MAX_CIRCULAR_QUEUE_SIZE         (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1444 #define CQ_MASK                         (MAX_CIRCULAR_QUEUE_SIZE-1)
1445
1446 /*
1447  * The circular_queue and helpers are used to implement graph
1448  * breadth-first search (BFS) algorithm, by which we can determine
1449  * whether there is a path from a lock to another. In deadlock checks,
1450  * a path from the next lock to be acquired to a previous held lock
1451  * indicates that adding the <prev> -> <next> lock dependency will
1452  * produce a circle in the graph. Breadth-first search instead of
1453  * depth-first search is used in order to find the shortest (circular)
1454  * path.
1455  */
1456 struct circular_queue {
1457         struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1458         unsigned int  front, rear;
1459 };
1460
1461 static struct circular_queue lock_cq;
1462
1463 unsigned int max_bfs_queue_depth;
1464
1465 static unsigned int lockdep_dependency_gen_id;
1466
1467 static inline void __cq_init(struct circular_queue *cq)
1468 {
1469         cq->front = cq->rear = 0;
1470         lockdep_dependency_gen_id++;
1471 }
1472
1473 static inline int __cq_empty(struct circular_queue *cq)
1474 {
1475         return (cq->front == cq->rear);
1476 }
1477
1478 static inline int __cq_full(struct circular_queue *cq)
1479 {
1480         return ((cq->rear + 1) & CQ_MASK) == cq->front;
1481 }
1482
1483 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1484 {
1485         if (__cq_full(cq))
1486                 return -1;
1487
1488         cq->element[cq->rear] = elem;
1489         cq->rear = (cq->rear + 1) & CQ_MASK;
1490         return 0;
1491 }
1492
1493 /*
1494  * Dequeue an element from the circular_queue, return a lock_list if
1495  * the queue is not empty, or NULL if otherwise.
1496  */
1497 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1498 {
1499         struct lock_list * lock;
1500
1501         if (__cq_empty(cq))
1502                 return NULL;
1503
1504         lock = cq->element[cq->front];
1505         cq->front = (cq->front + 1) & CQ_MASK;
1506
1507         return lock;
1508 }
1509
1510 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1511 {
1512         return (cq->rear - cq->front) & CQ_MASK;
1513 }
1514
1515 static inline void mark_lock_accessed(struct lock_list *lock)
1516 {
1517         lock->class->dep_gen_id = lockdep_dependency_gen_id;
1518 }
1519
1520 static inline void visit_lock_entry(struct lock_list *lock,
1521                                     struct lock_list *parent)
1522 {
1523         lock->parent = parent;
1524 }
1525
1526 static inline unsigned long lock_accessed(struct lock_list *lock)
1527 {
1528         return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1529 }
1530
1531 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1532 {
1533         return child->parent;
1534 }
1535
1536 static inline int get_lock_depth(struct lock_list *child)
1537 {
1538         int depth = 0;
1539         struct lock_list *parent;
1540
1541         while ((parent = get_lock_parent(child))) {
1542                 child = parent;
1543                 depth++;
1544         }
1545         return depth;
1546 }
1547
1548 /*
1549  * Return the forward or backward dependency list.
1550  *
1551  * @lock:   the lock_list to get its class's dependency list
1552  * @offset: the offset to struct lock_class to determine whether it is
1553  *          locks_after or locks_before
1554  */
1555 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1556 {
1557         void *lock_class = lock->class;
1558
1559         return lock_class + offset;
1560 }
1561 /*
1562  * Return values of a bfs search:
1563  *
1564  * BFS_E* indicates an error
1565  * BFS_R* indicates a result (match or not)
1566  *
1567  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1568  *
1569  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1570  *
1571  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1572  *             *@target_entry.
1573  *
1574  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1575  *               _unchanged_.
1576  */
1577 enum bfs_result {
1578         BFS_EINVALIDNODE = -2,
1579         BFS_EQUEUEFULL = -1,
1580         BFS_RMATCH = 0,
1581         BFS_RNOMATCH = 1,
1582 };
1583
1584 /*
1585  * bfs_result < 0 means error
1586  */
1587 static inline bool bfs_error(enum bfs_result res)
1588 {
1589         return res < 0;
1590 }
1591
1592 /*
1593  * DEP_*_BIT in lock_list::dep
1594  *
1595  * For dependency @prev -> @next:
1596  *
1597  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1598  *       (->read == 2)
1599  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1600  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1601  *   EN: @prev is exclusive locker and @next is non-recursive locker
1602  *
1603  * Note that we define the value of DEP_*_BITs so that:
1604  *   bit0 is prev->read == 0
1605  *   bit1 is next->read != 2
1606  */
1607 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1608 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1609 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1610 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1611
1612 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1613 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1614 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1615 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1616
1617 static inline unsigned int
1618 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1619 {
1620         return (prev->read == 0) + ((next->read != 2) << 1);
1621 }
1622
1623 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1624 {
1625         return 1U << __calc_dep_bit(prev, next);
1626 }
1627
1628 /*
1629  * calculate the dep_bit for backwards edges. We care about whether @prev is
1630  * shared and whether @next is recursive.
1631  */
1632 static inline unsigned int
1633 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1634 {
1635         return (next->read != 2) + ((prev->read == 0) << 1);
1636 }
1637
1638 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1639 {
1640         return 1U << __calc_dep_bitb(prev, next);
1641 }
1642
1643 /*
1644  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1645  * search.
1646  */
1647 static inline void __bfs_init_root(struct lock_list *lock,
1648                                    struct lock_class *class)
1649 {
1650         lock->class = class;
1651         lock->parent = NULL;
1652         lock->only_xr = 0;
1653 }
1654
1655 /*
1656  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1657  * root for a BFS search.
1658  *
1659  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1660  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1661  * and -(S*)->.
1662  */
1663 static inline void bfs_init_root(struct lock_list *lock,
1664                                  struct held_lock *hlock)
1665 {
1666         __bfs_init_root(lock, hlock_class(hlock));
1667         lock->only_xr = (hlock->read == 2);
1668 }
1669
1670 /*
1671  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1672  *
1673  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1674  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1675  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1676  */
1677 static inline void bfs_init_rootb(struct lock_list *lock,
1678                                   struct held_lock *hlock)
1679 {
1680         __bfs_init_root(lock, hlock_class(hlock));
1681         lock->only_xr = (hlock->read != 0);
1682 }
1683
1684 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1685 {
1686         if (!lock || !lock->parent)
1687                 return NULL;
1688
1689         return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1690                                      &lock->entry, struct lock_list, entry);
1691 }
1692
1693 /*
1694  * Breadth-First Search to find a strong path in the dependency graph.
1695  *
1696  * @source_entry: the source of the path we are searching for.
1697  * @data: data used for the second parameter of @match function
1698  * @match: match function for the search
1699  * @target_entry: pointer to the target of a matched path
1700  * @offset: the offset to struct lock_class to determine whether it is
1701  *          locks_after or locks_before
1702  *
1703  * We may have multiple edges (considering different kinds of dependencies,
1704  * e.g. ER and SN) between two nodes in the dependency graph. But
1705  * only the strong dependency path in the graph is relevant to deadlocks. A
1706  * strong dependency path is a dependency path that doesn't have two adjacent
1707  * dependencies as -(*R)-> -(S*)->, please see:
1708  *
1709  *         Documentation/locking/lockdep-design.rst
1710  *
1711  * for more explanation of the definition of strong dependency paths
1712  *
1713  * In __bfs(), we only traverse in the strong dependency path:
1714  *
1715  *     In lock_list::only_xr, we record whether the previous dependency only
1716  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1717  *     filter out any -(S*)-> in the current dependency and after that, the
1718  *     ->only_xr is set according to whether we only have -(*R)-> left.
1719  */
1720 static enum bfs_result __bfs(struct lock_list *source_entry,
1721                              void *data,
1722                              bool (*match)(struct lock_list *entry, void *data),
1723                              bool (*skip)(struct lock_list *entry, void *data),
1724                              struct lock_list **target_entry,
1725                              int offset)
1726 {
1727         struct circular_queue *cq = &lock_cq;
1728         struct lock_list *lock = NULL;
1729         struct lock_list *entry;
1730         struct list_head *head;
1731         unsigned int cq_depth;
1732         bool first;
1733
1734         lockdep_assert_locked();
1735
1736         __cq_init(cq);
1737         __cq_enqueue(cq, source_entry);
1738
1739         while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1740                 if (!lock->class)
1741                         return BFS_EINVALIDNODE;
1742
1743                 /*
1744                  * Step 1: check whether we already finish on this one.
1745                  *
1746                  * If we have visited all the dependencies from this @lock to
1747                  * others (iow, if we have visited all lock_list entries in
1748                  * @lock->class->locks_{after,before}) we skip, otherwise go
1749                  * and visit all the dependencies in the list and mark this
1750                  * list accessed.
1751                  */
1752                 if (lock_accessed(lock))
1753                         continue;
1754                 else
1755                         mark_lock_accessed(lock);
1756
1757                 /*
1758                  * Step 2: check whether prev dependency and this form a strong
1759                  *         dependency path.
1760                  */
1761                 if (lock->parent) { /* Parent exists, check prev dependency */
1762                         u8 dep = lock->dep;
1763                         bool prev_only_xr = lock->parent->only_xr;
1764
1765                         /*
1766                          * Mask out all -(S*)-> if we only have *R in previous
1767                          * step, because -(*R)-> -(S*)-> don't make up a strong
1768                          * dependency.
1769                          */
1770                         if (prev_only_xr)
1771                                 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1772
1773                         /* If nothing left, we skip */
1774                         if (!dep)
1775                                 continue;
1776
1777                         /* If there are only -(*R)-> left, set that for the next step */
1778                         lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1779                 }
1780
1781                 /*
1782                  * Step 3: we haven't visited this and there is a strong
1783                  *         dependency path to this, so check with @match.
1784                  *         If @skip is provide and returns true, we skip this
1785                  *         lock (and any path this lock is in).
1786                  */
1787                 if (skip && skip(lock, data))
1788                         continue;
1789
1790                 if (match(lock, data)) {
1791                         *target_entry = lock;
1792                         return BFS_RMATCH;
1793                 }
1794
1795                 /*
1796                  * Step 4: if not match, expand the path by adding the
1797                  *         forward or backwards dependencies in the search
1798                  *
1799                  */
1800                 first = true;
1801                 head = get_dep_list(lock, offset);
1802                 list_for_each_entry_rcu(entry, head, entry) {
1803                         visit_lock_entry(entry, lock);
1804
1805                         /*
1806                          * Note we only enqueue the first of the list into the
1807                          * queue, because we can always find a sibling
1808                          * dependency from one (see __bfs_next()), as a result
1809                          * the space of queue is saved.
1810                          */
1811                         if (!first)
1812                                 continue;
1813
1814                         first = false;
1815
1816                         if (__cq_enqueue(cq, entry))
1817                                 return BFS_EQUEUEFULL;
1818
1819                         cq_depth = __cq_get_elem_count(cq);
1820                         if (max_bfs_queue_depth < cq_depth)
1821                                 max_bfs_queue_depth = cq_depth;
1822                 }
1823         }
1824
1825         return BFS_RNOMATCH;
1826 }
1827
1828 static inline enum bfs_result
1829 __bfs_forwards(struct lock_list *src_entry,
1830                void *data,
1831                bool (*match)(struct lock_list *entry, void *data),
1832                bool (*skip)(struct lock_list *entry, void *data),
1833                struct lock_list **target_entry)
1834 {
1835         return __bfs(src_entry, data, match, skip, target_entry,
1836                      offsetof(struct lock_class, locks_after));
1837
1838 }
1839
1840 static inline enum bfs_result
1841 __bfs_backwards(struct lock_list *src_entry,
1842                 void *data,
1843                 bool (*match)(struct lock_list *entry, void *data),
1844                bool (*skip)(struct lock_list *entry, void *data),
1845                 struct lock_list **target_entry)
1846 {
1847         return __bfs(src_entry, data, match, skip, target_entry,
1848                      offsetof(struct lock_class, locks_before));
1849
1850 }
1851
1852 static void print_lock_trace(const struct lock_trace *trace,
1853                              unsigned int spaces)
1854 {
1855         stack_trace_print(trace->entries, trace->nr_entries, spaces);
1856 }
1857
1858 /*
1859  * Print a dependency chain entry (this is only done when a deadlock
1860  * has been detected):
1861  */
1862 static noinline void
1863 print_circular_bug_entry(struct lock_list *target, int depth)
1864 {
1865         if (debug_locks_silent)
1866                 return;
1867         printk("\n-> #%u", depth);
1868         print_lock_name(target->class);
1869         printk(KERN_CONT ":\n");
1870         print_lock_trace(target->trace, 6);
1871 }
1872
1873 static void
1874 print_circular_lock_scenario(struct held_lock *src,
1875                              struct held_lock *tgt,
1876                              struct lock_list *prt)
1877 {
1878         struct lock_class *source = hlock_class(src);
1879         struct lock_class *target = hlock_class(tgt);
1880         struct lock_class *parent = prt->class;
1881
1882         /*
1883          * A direct locking problem where unsafe_class lock is taken
1884          * directly by safe_class lock, then all we need to show
1885          * is the deadlock scenario, as it is obvious that the
1886          * unsafe lock is taken under the safe lock.
1887          *
1888          * But if there is a chain instead, where the safe lock takes
1889          * an intermediate lock (middle_class) where this lock is
1890          * not the same as the safe lock, then the lock chain is
1891          * used to describe the problem. Otherwise we would need
1892          * to show a different CPU case for each link in the chain
1893          * from the safe_class lock to the unsafe_class lock.
1894          */
1895         if (parent != source) {
1896                 printk("Chain exists of:\n  ");
1897                 __print_lock_name(source);
1898                 printk(KERN_CONT " --> ");
1899                 __print_lock_name(parent);
1900                 printk(KERN_CONT " --> ");
1901                 __print_lock_name(target);
1902                 printk(KERN_CONT "\n\n");
1903         }
1904
1905         printk(" Possible unsafe locking scenario:\n\n");
1906         printk("       CPU0                    CPU1\n");
1907         printk("       ----                    ----\n");
1908         printk("  lock(");
1909         __print_lock_name(target);
1910         printk(KERN_CONT ");\n");
1911         printk("                               lock(");
1912         __print_lock_name(parent);
1913         printk(KERN_CONT ");\n");
1914         printk("                               lock(");
1915         __print_lock_name(target);
1916         printk(KERN_CONT ");\n");
1917         printk("  lock(");
1918         __print_lock_name(source);
1919         printk(KERN_CONT ");\n");
1920         printk("\n *** DEADLOCK ***\n\n");
1921 }
1922
1923 /*
1924  * When a circular dependency is detected, print the
1925  * header first:
1926  */
1927 static noinline void
1928 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1929                         struct held_lock *check_src,
1930                         struct held_lock *check_tgt)
1931 {
1932         struct task_struct *curr = current;
1933
1934         if (debug_locks_silent)
1935                 return;
1936
1937         pr_warn("\n");
1938         pr_warn("======================================================\n");
1939         pr_warn("WARNING: possible circular locking dependency detected\n");
1940         print_kernel_ident();
1941         pr_warn("------------------------------------------------------\n");
1942         pr_warn("%s/%d is trying to acquire lock:\n",
1943                 curr->comm, task_pid_nr(curr));
1944         print_lock(check_src);
1945
1946         pr_warn("\nbut task is already holding lock:\n");
1947
1948         print_lock(check_tgt);
1949         pr_warn("\nwhich lock already depends on the new lock.\n\n");
1950         pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1951
1952         print_circular_bug_entry(entry, depth);
1953 }
1954
1955 /*
1956  * We are about to add A -> B into the dependency graph, and in __bfs() a
1957  * strong dependency path A -> .. -> B is found: hlock_class equals
1958  * entry->class.
1959  *
1960  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1961  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1962  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1963  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1964  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1965  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1966  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1967  *
1968  * We need to make sure both the start and the end of A -> .. -> B is not
1969  * weaker than A -> B. For the start part, please see the comment in
1970  * check_redundant(). For the end part, we need:
1971  *
1972  * Either
1973  *
1974  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1975  *
1976  * or
1977  *
1978  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1979  *
1980  */
1981 static inline bool hlock_equal(struct lock_list *entry, void *data)
1982 {
1983         struct held_lock *hlock = (struct held_lock *)data;
1984
1985         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1986                (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1987                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1988 }
1989
1990 /*
1991  * We are about to add B -> A into the dependency graph, and in __bfs() a
1992  * strong dependency path A -> .. -> B is found: hlock_class equals
1993  * entry->class.
1994  *
1995  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1996  * dependency cycle, that means:
1997  *
1998  * Either
1999  *
2000  *     a) B -> A is -(E*)->
2001  *
2002  * or
2003  *
2004  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2005  *
2006  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2007  */
2008 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2009 {
2010         struct held_lock *hlock = (struct held_lock *)data;
2011
2012         return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2013                (hlock->read == 0 || /* B -> A is -(E*)-> */
2014                 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
2015 }
2016
2017 static noinline void print_circular_bug(struct lock_list *this,
2018                                 struct lock_list *target,
2019                                 struct held_lock *check_src,
2020                                 struct held_lock *check_tgt)
2021 {
2022         struct task_struct *curr = current;
2023         struct lock_list *parent;
2024         struct lock_list *first_parent;
2025         int depth;
2026
2027         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2028                 return;
2029
2030         this->trace = save_trace();
2031         if (!this->trace)
2032                 return;
2033
2034         depth = get_lock_depth(target);
2035
2036         print_circular_bug_header(target, depth, check_src, check_tgt);
2037
2038         parent = get_lock_parent(target);
2039         first_parent = parent;
2040
2041         while (parent) {
2042                 print_circular_bug_entry(parent, --depth);
2043                 parent = get_lock_parent(parent);
2044         }
2045
2046         printk("\nother info that might help us debug this:\n\n");
2047         print_circular_lock_scenario(check_src, check_tgt,
2048                                      first_parent);
2049
2050         lockdep_print_held_locks(curr);
2051
2052         printk("\nstack backtrace:\n");
2053         dump_stack();
2054 }
2055
2056 static noinline void print_bfs_bug(int ret)
2057 {
2058         if (!debug_locks_off_graph_unlock())
2059                 return;
2060
2061         /*
2062          * Breadth-first-search failed, graph got corrupted?
2063          */
2064         WARN(1, "lockdep bfs error:%d\n", ret);
2065 }
2066
2067 static bool noop_count(struct lock_list *entry, void *data)
2068 {
2069         (*(unsigned long *)data)++;
2070         return false;
2071 }
2072
2073 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2074 {
2075         unsigned long  count = 0;
2076         struct lock_list *target_entry;
2077
2078         __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2079
2080         return count;
2081 }
2082 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2083 {
2084         unsigned long ret, flags;
2085         struct lock_list this;
2086
2087         __bfs_init_root(&this, class);
2088
2089         raw_local_irq_save(flags);
2090         lockdep_lock();
2091         ret = __lockdep_count_forward_deps(&this);
2092         lockdep_unlock();
2093         raw_local_irq_restore(flags);
2094
2095         return ret;
2096 }
2097
2098 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2099 {
2100         unsigned long  count = 0;
2101         struct lock_list *target_entry;
2102
2103         __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2104
2105         return count;
2106 }
2107
2108 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2109 {
2110         unsigned long ret, flags;
2111         struct lock_list this;
2112
2113         __bfs_init_root(&this, class);
2114
2115         raw_local_irq_save(flags);
2116         lockdep_lock();
2117         ret = __lockdep_count_backward_deps(&this);
2118         lockdep_unlock();
2119         raw_local_irq_restore(flags);
2120
2121         return ret;
2122 }
2123
2124 /*
2125  * Check that the dependency graph starting at <src> can lead to
2126  * <target> or not.
2127  */
2128 static noinline enum bfs_result
2129 check_path(struct held_lock *target, struct lock_list *src_entry,
2130            bool (*match)(struct lock_list *entry, void *data),
2131            bool (*skip)(struct lock_list *entry, void *data),
2132            struct lock_list **target_entry)
2133 {
2134         enum bfs_result ret;
2135
2136         ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2137
2138         if (unlikely(bfs_error(ret)))
2139                 print_bfs_bug(ret);
2140
2141         return ret;
2142 }
2143
2144 /*
2145  * Prove that the dependency graph starting at <src> can not
2146  * lead to <target>. If it can, there is a circle when adding
2147  * <target> -> <src> dependency.
2148  *
2149  * Print an error and return BFS_RMATCH if it does.
2150  */
2151 static noinline enum bfs_result
2152 check_noncircular(struct held_lock *src, struct held_lock *target,
2153                   struct lock_trace **const trace)
2154 {
2155         enum bfs_result ret;
2156         struct lock_list *target_entry;
2157         struct lock_list src_entry;
2158
2159         bfs_init_root(&src_entry, src);
2160
2161         debug_atomic_inc(nr_cyclic_checks);
2162
2163         ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2164
2165         if (unlikely(ret == BFS_RMATCH)) {
2166                 if (!*trace) {
2167                         /*
2168                          * If save_trace fails here, the printing might
2169                          * trigger a WARN but because of the !nr_entries it
2170                          * should not do bad things.
2171                          */
2172                         *trace = save_trace();
2173                 }
2174
2175                 print_circular_bug(&src_entry, target_entry, src, target);
2176         }
2177
2178         return ret;
2179 }
2180
2181 #ifdef CONFIG_TRACE_IRQFLAGS
2182
2183 /*
2184  * Forwards and backwards subgraph searching, for the purposes of
2185  * proving that two subgraphs can be connected by a new dependency
2186  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2187  *
2188  * A irq safe->unsafe deadlock happens with the following conditions:
2189  *
2190  * 1) We have a strong dependency path A -> ... -> B
2191  *
2192  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2193  *    irq can create a new dependency B -> A (consider the case that a holder
2194  *    of B gets interrupted by an irq whose handler will try to acquire A).
2195  *
2196  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2197  *    strong circle:
2198  *
2199  *      For the usage bits of B:
2200  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2201  *           ENABLED_IRQ usage suffices.
2202  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2203  *           ENABLED_IRQ_*_READ usage suffices.
2204  *
2205  *      For the usage bits of A:
2206  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2207  *           USED_IN_IRQ usage suffices.
2208  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2209  *           USED_IN_IRQ_*_READ usage suffices.
2210  */
2211
2212 /*
2213  * There is a strong dependency path in the dependency graph: A -> B, and now
2214  * we need to decide which usage bit of A should be accumulated to detect
2215  * safe->unsafe bugs.
2216  *
2217  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2218  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2219  *
2220  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2221  * path, any usage of A should be considered. Otherwise, we should only
2222  * consider _READ usage.
2223  */
2224 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2225 {
2226         if (!entry->only_xr)
2227                 *(unsigned long *)mask |= entry->class->usage_mask;
2228         else /* Mask out _READ usage bits */
2229                 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2230
2231         return false;
2232 }
2233
2234 /*
2235  * There is a strong dependency path in the dependency graph: A -> B, and now
2236  * we need to decide which usage bit of B conflicts with the usage bits of A,
2237  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2238  *
2239  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2240  * path, any usage of B should be considered. Otherwise, we should only
2241  * consider _READ usage.
2242  */
2243 static inline bool usage_match(struct lock_list *entry, void *mask)
2244 {
2245         if (!entry->only_xr)
2246                 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2247         else /* Mask out _READ usage bits */
2248                 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2249 }
2250
2251 static inline bool usage_skip(struct lock_list *entry, void *mask)
2252 {
2253         /*
2254          * Skip local_lock() for irq inversion detection.
2255          *
2256          * For !RT, local_lock() is not a real lock, so it won't carry any
2257          * dependency.
2258          *
2259          * For RT, an irq inversion happens when we have lock A and B, and on
2260          * some CPU we can have:
2261          *
2262          *      lock(A);
2263          *      <interrupted>
2264          *        lock(B);
2265          *
2266          * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2267          *
2268          * Now we prove local_lock() cannot exist in that dependency. First we
2269          * have the observation for any lock chain L1 -> ... -> Ln, for any
2270          * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2271          * wait context check will complain. And since B is not a sleep lock,
2272          * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2273          * local_lock() is 3, which is greater than 2, therefore there is no
2274          * way the local_lock() exists in the dependency B -> ... -> A.
2275          *
2276          * As a result, we will skip local_lock(), when we search for irq
2277          * inversion bugs.
2278          */
2279         if (entry->class->lock_type == LD_LOCK_PERCPU) {
2280                 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2281                         return false;
2282
2283                 return true;
2284         }
2285
2286         return false;
2287 }
2288
2289 /*
2290  * Find a node in the forwards-direction dependency sub-graph starting
2291  * at @root->class that matches @bit.
2292  *
2293  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2294  * into *@target_entry.
2295  */
2296 static enum bfs_result
2297 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2298                         struct lock_list **target_entry)
2299 {
2300         enum bfs_result result;
2301
2302         debug_atomic_inc(nr_find_usage_forwards_checks);
2303
2304         result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2305
2306         return result;
2307 }
2308
2309 /*
2310  * Find a node in the backwards-direction dependency sub-graph starting
2311  * at @root->class that matches @bit.
2312  */
2313 static enum bfs_result
2314 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2315                         struct lock_list **target_entry)
2316 {
2317         enum bfs_result result;
2318
2319         debug_atomic_inc(nr_find_usage_backwards_checks);
2320
2321         result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2322
2323         return result;
2324 }
2325
2326 static void print_lock_class_header(struct lock_class *class, int depth)
2327 {
2328         int bit;
2329
2330         printk("%*s->", depth, "");
2331         print_lock_name(class);
2332 #ifdef CONFIG_DEBUG_LOCKDEP
2333         printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2334 #endif
2335         printk(KERN_CONT " {\n");
2336
2337         for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2338                 if (class->usage_mask & (1 << bit)) {
2339                         int len = depth;
2340
2341                         len += printk("%*s   %s", depth, "", usage_str[bit]);
2342                         len += printk(KERN_CONT " at:\n");
2343                         print_lock_trace(class->usage_traces[bit], len);
2344                 }
2345         }
2346         printk("%*s }\n", depth, "");
2347
2348         printk("%*s ... key      at: [<%px>] %pS\n",
2349                 depth, "", class->key, class->key);
2350 }
2351
2352 /*
2353  * Dependency path printing:
2354  *
2355  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2356  * printing out each lock in the dependency path will help on understanding how
2357  * the deadlock could happen. Here are some details about dependency path
2358  * printing:
2359  *
2360  * 1)   A lock_list can be either forwards or backwards for a lock dependency,
2361  *      for a lock dependency A -> B, there are two lock_lists:
2362  *
2363  *      a)      lock_list in the ->locks_after list of A, whose ->class is B and
2364  *              ->links_to is A. In this case, we can say the lock_list is
2365  *              "A -> B" (forwards case).
2366  *
2367  *      b)      lock_list in the ->locks_before list of B, whose ->class is A
2368  *              and ->links_to is B. In this case, we can say the lock_list is
2369  *              "B <- A" (bacwards case).
2370  *
2371  *      The ->trace of both a) and b) point to the call trace where B was
2372  *      acquired with A held.
2373  *
2374  * 2)   A "helper" lock_list is introduced during BFS, this lock_list doesn't
2375  *      represent a certain lock dependency, it only provides an initial entry
2376  *      for BFS. For example, BFS may introduce a "helper" lock_list whose
2377  *      ->class is A, as a result BFS will search all dependencies starting with
2378  *      A, e.g. A -> B or A -> C.
2379  *
2380  *      The notation of a forwards helper lock_list is like "-> A", which means
2381  *      we should search the forwards dependencies starting with "A", e.g A -> B
2382  *      or A -> C.
2383  *
2384  *      The notation of a bacwards helper lock_list is like "<- B", which means
2385  *      we should search the backwards dependencies ending with "B", e.g.
2386  *      B <- A or B <- C.
2387  */
2388
2389 /*
2390  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2391  *
2392  * We have a lock dependency path as follow:
2393  *
2394  *    @root                                                                 @leaf
2395  *      |                                                                     |
2396  *      V                                                                     V
2397  *                ->parent                                   ->parent
2398  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2399  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2400  *
2401  * , so it's natural that we start from @leaf and print every ->class and
2402  * ->trace until we reach the @root.
2403  */
2404 static void __used
2405 print_shortest_lock_dependencies(struct lock_list *leaf,
2406                                  struct lock_list *root)
2407 {
2408         struct lock_list *entry = leaf;
2409         int depth;
2410
2411         /*compute depth from generated tree by BFS*/
2412         depth = get_lock_depth(leaf);
2413
2414         do {
2415                 print_lock_class_header(entry->class, depth);
2416                 printk("%*s ... acquired at:\n", depth, "");
2417                 print_lock_trace(entry->trace, 2);
2418                 printk("\n");
2419
2420                 if (depth == 0 && (entry != root)) {
2421                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2422                         break;
2423                 }
2424
2425                 entry = get_lock_parent(entry);
2426                 depth--;
2427         } while (entry && (depth >= 0));
2428 }
2429
2430 /*
2431  * printk the shortest lock dependencies from @leaf to @root.
2432  *
2433  * We have a lock dependency path (from a backwards search) as follow:
2434  *
2435  *    @leaf                                                                 @root
2436  *      |                                                                     |
2437  *      V                                                                     V
2438  *                ->parent                                   ->parent
2439  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2440  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2441  *
2442  * , so when we iterate from @leaf to @root, we actually print the lock
2443  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2444  *
2445  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2446  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2447  * trace of L1 in the dependency path, which is alright, because most of the
2448  * time we can figure out where L1 is held from the call trace of L2.
2449  */
2450 static void __used
2451 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2452                                            struct lock_list *root)
2453 {
2454         struct lock_list *entry = leaf;
2455         const struct lock_trace *trace = NULL;
2456         int depth;
2457
2458         /*compute depth from generated tree by BFS*/
2459         depth = get_lock_depth(leaf);
2460
2461         do {
2462                 print_lock_class_header(entry->class, depth);
2463                 if (trace) {
2464                         printk("%*s ... acquired at:\n", depth, "");
2465                         print_lock_trace(trace, 2);
2466                         printk("\n");
2467                 }
2468
2469                 /*
2470                  * Record the pointer to the trace for the next lock_list
2471                  * entry, see the comments for the function.
2472                  */
2473                 trace = entry->trace;
2474
2475                 if (depth == 0 && (entry != root)) {
2476                         printk("lockdep:%s bad path found in chain graph\n", __func__);
2477                         break;
2478                 }
2479
2480                 entry = get_lock_parent(entry);
2481                 depth--;
2482         } while (entry && (depth >= 0));
2483 }
2484
2485 static void
2486 print_irq_lock_scenario(struct lock_list *safe_entry,
2487                         struct lock_list *unsafe_entry,
2488                         struct lock_class *prev_class,
2489                         struct lock_class *next_class)
2490 {
2491         struct lock_class *safe_class = safe_entry->class;
2492         struct lock_class *unsafe_class = unsafe_entry->class;
2493         struct lock_class *middle_class = prev_class;
2494
2495         if (middle_class == safe_class)
2496                 middle_class = next_class;
2497
2498         /*
2499          * A direct locking problem where unsafe_class lock is taken
2500          * directly by safe_class lock, then all we need to show
2501          * is the deadlock scenario, as it is obvious that the
2502          * unsafe lock is taken under the safe lock.
2503          *
2504          * But if there is a chain instead, where the safe lock takes
2505          * an intermediate lock (middle_class) where this lock is
2506          * not the same as the safe lock, then the lock chain is
2507          * used to describe the problem. Otherwise we would need
2508          * to show a different CPU case for each link in the chain
2509          * from the safe_class lock to the unsafe_class lock.
2510          */
2511         if (middle_class != unsafe_class) {
2512                 printk("Chain exists of:\n  ");
2513                 __print_lock_name(safe_class);
2514                 printk(KERN_CONT " --> ");
2515                 __print_lock_name(middle_class);
2516                 printk(KERN_CONT " --> ");
2517                 __print_lock_name(unsafe_class);
2518                 printk(KERN_CONT "\n\n");
2519         }
2520
2521         printk(" Possible interrupt unsafe locking scenario:\n\n");
2522         printk("       CPU0                    CPU1\n");
2523         printk("       ----                    ----\n");
2524         printk("  lock(");
2525         __print_lock_name(unsafe_class);
2526         printk(KERN_CONT ");\n");
2527         printk("                               local_irq_disable();\n");
2528         printk("                               lock(");
2529         __print_lock_name(safe_class);
2530         printk(KERN_CONT ");\n");
2531         printk("                               lock(");
2532         __print_lock_name(middle_class);
2533         printk(KERN_CONT ");\n");
2534         printk("  <Interrupt>\n");
2535         printk("    lock(");
2536         __print_lock_name(safe_class);
2537         printk(KERN_CONT ");\n");
2538         printk("\n *** DEADLOCK ***\n\n");
2539 }
2540
2541 static void
2542 print_bad_irq_dependency(struct task_struct *curr,
2543                          struct lock_list *prev_root,
2544                          struct lock_list *next_root,
2545                          struct lock_list *backwards_entry,
2546                          struct lock_list *forwards_entry,
2547                          struct held_lock *prev,
2548                          struct held_lock *next,
2549                          enum lock_usage_bit bit1,
2550                          enum lock_usage_bit bit2,
2551                          const char *irqclass)
2552 {
2553         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2554                 return;
2555
2556         pr_warn("\n");
2557         pr_warn("=====================================================\n");
2558         pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2559                 irqclass, irqclass);
2560         print_kernel_ident();
2561         pr_warn("-----------------------------------------------------\n");
2562         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2563                 curr->comm, task_pid_nr(curr),
2564                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2565                 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2566                 lockdep_hardirqs_enabled(),
2567                 curr->softirqs_enabled);
2568         print_lock(next);
2569
2570         pr_warn("\nand this task is already holding:\n");
2571         print_lock(prev);
2572         pr_warn("which would create a new lock dependency:\n");
2573         print_lock_name(hlock_class(prev));
2574         pr_cont(" ->");
2575         print_lock_name(hlock_class(next));
2576         pr_cont("\n");
2577
2578         pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2579                 irqclass);
2580         print_lock_name(backwards_entry->class);
2581         pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2582
2583         print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2584
2585         pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2586         print_lock_name(forwards_entry->class);
2587         pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2588         pr_warn("...");
2589
2590         print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2591
2592         pr_warn("\nother info that might help us debug this:\n\n");
2593         print_irq_lock_scenario(backwards_entry, forwards_entry,
2594                                 hlock_class(prev), hlock_class(next));
2595
2596         lockdep_print_held_locks(curr);
2597
2598         pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2599         print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2600
2601         pr_warn("\nthe dependencies between the lock to be acquired");
2602         pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2603         next_root->trace = save_trace();
2604         if (!next_root->trace)
2605                 return;
2606         print_shortest_lock_dependencies(forwards_entry, next_root);
2607
2608         pr_warn("\nstack backtrace:\n");
2609         dump_stack();
2610 }
2611
2612 static const char *state_names[] = {
2613 #define LOCKDEP_STATE(__STATE) \
2614         __stringify(__STATE),
2615 #include "lockdep_states.h"
2616 #undef LOCKDEP_STATE
2617 };
2618
2619 static const char *state_rnames[] = {
2620 #define LOCKDEP_STATE(__STATE) \
2621         __stringify(__STATE)"-READ",
2622 #include "lockdep_states.h"
2623 #undef LOCKDEP_STATE
2624 };
2625
2626 static inline const char *state_name(enum lock_usage_bit bit)
2627 {
2628         if (bit & LOCK_USAGE_READ_MASK)
2629                 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2630         else
2631                 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2632 }
2633
2634 /*
2635  * The bit number is encoded like:
2636  *
2637  *  bit0: 0 exclusive, 1 read lock
2638  *  bit1: 0 used in irq, 1 irq enabled
2639  *  bit2-n: state
2640  */
2641 static int exclusive_bit(int new_bit)
2642 {
2643         int state = new_bit & LOCK_USAGE_STATE_MASK;
2644         int dir = new_bit & LOCK_USAGE_DIR_MASK;
2645
2646         /*
2647          * keep state, bit flip the direction and strip read.
2648          */
2649         return state | (dir ^ LOCK_USAGE_DIR_MASK);
2650 }
2651
2652 /*
2653  * Observe that when given a bitmask where each bitnr is encoded as above, a
2654  * right shift of the mask transforms the individual bitnrs as -1 and
2655  * conversely, a left shift transforms into +1 for the individual bitnrs.
2656  *
2657  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2658  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2659  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2660  *
2661  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2662  *
2663  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2664  * all bits set) and recompose with bitnr1 flipped.
2665  */
2666 static unsigned long invert_dir_mask(unsigned long mask)
2667 {
2668         unsigned long excl = 0;
2669
2670         /* Invert dir */
2671         excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2672         excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2673
2674         return excl;
2675 }
2676
2677 /*
2678  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2679  * usage may cause deadlock too, for example:
2680  *
2681  * P1                           P2
2682  * <irq disabled>
2683  * write_lock(l1);              <irq enabled>
2684  *                              read_lock(l2);
2685  * write_lock(l2);
2686  *                              <in irq>
2687  *                              read_lock(l1);
2688  *
2689  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2690  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2691  * deadlock.
2692  *
2693  * In fact, all of the following cases may cause deadlocks:
2694  *
2695  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2696  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2697  *       LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2698  *       LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2699  *
2700  * As a result, to calculate the "exclusive mask", first we invert the
2701  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2702  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2703  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2704  */
2705 static unsigned long exclusive_mask(unsigned long mask)
2706 {
2707         unsigned long excl = invert_dir_mask(mask);
2708
2709         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2710         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2711
2712         return excl;
2713 }
2714
2715 /*
2716  * Retrieve the _possible_ original mask to which @mask is
2717  * exclusive. Ie: this is the opposite of exclusive_mask().
2718  * Note that 2 possible original bits can match an exclusive
2719  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2720  * cleared. So both are returned for each exclusive bit.
2721  */
2722 static unsigned long original_mask(unsigned long mask)
2723 {
2724         unsigned long excl = invert_dir_mask(mask);
2725
2726         /* Include read in existing usages */
2727         excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2728         excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2729
2730         return excl;
2731 }
2732
2733 /*
2734  * Find the first pair of bit match between an original
2735  * usage mask and an exclusive usage mask.
2736  */
2737 static int find_exclusive_match(unsigned long mask,
2738                                 unsigned long excl_mask,
2739                                 enum lock_usage_bit *bitp,
2740                                 enum lock_usage_bit *excl_bitp)
2741 {
2742         int bit, excl, excl_read;
2743
2744         for_each_set_bit(bit, &mask, LOCK_USED) {
2745                 /*
2746                  * exclusive_bit() strips the read bit, however,
2747                  * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2748                  * to search excl | LOCK_USAGE_READ_MASK as well.
2749                  */
2750                 excl = exclusive_bit(bit);
2751                 excl_read = excl | LOCK_USAGE_READ_MASK;
2752                 if (excl_mask & lock_flag(excl)) {
2753                         *bitp = bit;
2754                         *excl_bitp = excl;
2755                         return 0;
2756                 } else if (excl_mask & lock_flag(excl_read)) {
2757                         *bitp = bit;
2758                         *excl_bitp = excl_read;
2759                         return 0;
2760                 }
2761         }
2762         return -1;
2763 }
2764
2765 /*
2766  * Prove that the new dependency does not connect a hardirq-safe(-read)
2767  * lock with a hardirq-unsafe lock - to achieve this we search
2768  * the backwards-subgraph starting at <prev>, and the
2769  * forwards-subgraph starting at <next>:
2770  */
2771 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2772                            struct held_lock *next)
2773 {
2774         unsigned long usage_mask = 0, forward_mask, backward_mask;
2775         enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2776         struct lock_list *target_entry1;
2777         struct lock_list *target_entry;
2778         struct lock_list this, that;
2779         enum bfs_result ret;
2780
2781         /*
2782          * Step 1: gather all hard/soft IRQs usages backward in an
2783          * accumulated usage mask.
2784          */
2785         bfs_init_rootb(&this, prev);
2786
2787         ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2788         if (bfs_error(ret)) {
2789                 print_bfs_bug(ret);
2790                 return 0;
2791         }
2792
2793         usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2794         if (!usage_mask)
2795                 return 1;
2796
2797         /*
2798          * Step 2: find exclusive uses forward that match the previous
2799          * backward accumulated mask.
2800          */
2801         forward_mask = exclusive_mask(usage_mask);
2802
2803         bfs_init_root(&that, next);
2804
2805         ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2806         if (bfs_error(ret)) {
2807                 print_bfs_bug(ret);
2808                 return 0;
2809         }
2810         if (ret == BFS_RNOMATCH)
2811                 return 1;
2812
2813         /*
2814          * Step 3: we found a bad match! Now retrieve a lock from the backward
2815          * list whose usage mask matches the exclusive usage mask from the
2816          * lock found on the forward list.
2817          *
2818          * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2819          * the follow case:
2820          *
2821          * When trying to add A -> B to the graph, we find that there is a
2822          * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2823          * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2824          * invert bits of M's usage_mask, we will find another lock N that is
2825          * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2826          * cause a inversion deadlock.
2827          */
2828         backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2829
2830         ret = find_usage_backwards(&this, backward_mask, &target_entry);
2831         if (bfs_error(ret)) {
2832                 print_bfs_bug(ret);
2833                 return 0;
2834         }
2835         if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2836                 return 1;
2837
2838         /*
2839          * Step 4: narrow down to a pair of incompatible usage bits
2840          * and report it.
2841          */
2842         ret = find_exclusive_match(target_entry->class->usage_mask,
2843                                    target_entry1->class->usage_mask,
2844                                    &backward_bit, &forward_bit);
2845         if (DEBUG_LOCKS_WARN_ON(ret == -1))
2846                 return 1;
2847
2848         print_bad_irq_dependency(curr, &this, &that,
2849                                  target_entry, target_entry1,
2850                                  prev, next,
2851                                  backward_bit, forward_bit,
2852                                  state_name(backward_bit));
2853
2854         return 0;
2855 }
2856
2857 #else
2858
2859 static inline int check_irq_usage(struct task_struct *curr,
2860                                   struct held_lock *prev, struct held_lock *next)
2861 {
2862         return 1;
2863 }
2864
2865 static inline bool usage_skip(struct lock_list *entry, void *mask)
2866 {
2867         return false;
2868 }
2869
2870 #endif /* CONFIG_TRACE_IRQFLAGS */
2871
2872 #ifdef CONFIG_LOCKDEP_SMALL
2873 /*
2874  * Check that the dependency graph starting at <src> can lead to
2875  * <target> or not. If it can, <src> -> <target> dependency is already
2876  * in the graph.
2877  *
2878  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2879  * any error appears in the bfs search.
2880  */
2881 static noinline enum bfs_result
2882 check_redundant(struct held_lock *src, struct held_lock *target)
2883 {
2884         enum bfs_result ret;
2885         struct lock_list *target_entry;
2886         struct lock_list src_entry;
2887
2888         bfs_init_root(&src_entry, src);
2889         /*
2890          * Special setup for check_redundant().
2891          *
2892          * To report redundant, we need to find a strong dependency path that
2893          * is equal to or stronger than <src> -> <target>. So if <src> is E,
2894          * we need to let __bfs() only search for a path starting at a -(E*)->,
2895          * we achieve this by setting the initial node's ->only_xr to true in
2896          * that case. And if <prev> is S, we set initial ->only_xr to false
2897          * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2898          */
2899         src_entry.only_xr = src->read == 0;
2900
2901         debug_atomic_inc(nr_redundant_checks);
2902
2903         /*
2904          * Note: we skip local_lock() for redundant check, because as the
2905          * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2906          * the same.
2907          */
2908         ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2909
2910         if (ret == BFS_RMATCH)
2911                 debug_atomic_inc(nr_redundant);
2912
2913         return ret;
2914 }
2915
2916 #else
2917
2918 static inline enum bfs_result
2919 check_redundant(struct held_lock *src, struct held_lock *target)
2920 {
2921         return BFS_RNOMATCH;
2922 }
2923
2924 #endif
2925
2926 static void inc_chains(int irq_context)
2927 {
2928         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2929                 nr_hardirq_chains++;
2930         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2931                 nr_softirq_chains++;
2932         else
2933                 nr_process_chains++;
2934 }
2935
2936 static void dec_chains(int irq_context)
2937 {
2938         if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2939                 nr_hardirq_chains--;
2940         else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2941                 nr_softirq_chains--;
2942         else
2943                 nr_process_chains--;
2944 }
2945
2946 static void
2947 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2948 {
2949         struct lock_class *next = hlock_class(nxt);
2950         struct lock_class *prev = hlock_class(prv);
2951
2952         printk(" Possible unsafe locking scenario:\n\n");
2953         printk("       CPU0\n");
2954         printk("       ----\n");
2955         printk("  lock(");
2956         __print_lock_name(prev);
2957         printk(KERN_CONT ");\n");
2958         printk("  lock(");
2959         __print_lock_name(next);
2960         printk(KERN_CONT ");\n");
2961         printk("\n *** DEADLOCK ***\n\n");
2962         printk(" May be due to missing lock nesting notation\n\n");
2963 }
2964
2965 static void
2966 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2967                    struct held_lock *next)
2968 {
2969         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2970                 return;
2971
2972         pr_warn("\n");
2973         pr_warn("============================================\n");
2974         pr_warn("WARNING: possible recursive locking detected\n");
2975         print_kernel_ident();
2976         pr_warn("--------------------------------------------\n");
2977         pr_warn("%s/%d is trying to acquire lock:\n",
2978                 curr->comm, task_pid_nr(curr));
2979         print_lock(next);
2980         pr_warn("\nbut task is already holding lock:\n");
2981         print_lock(prev);
2982
2983         pr_warn("\nother info that might help us debug this:\n");
2984         print_deadlock_scenario(next, prev);
2985         lockdep_print_held_locks(curr);
2986
2987         pr_warn("\nstack backtrace:\n");
2988         dump_stack();
2989 }
2990
2991 /*
2992  * Check whether we are holding such a class already.
2993  *
2994  * (Note that this has to be done separately, because the graph cannot
2995  * detect such classes of deadlocks.)
2996  *
2997  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2998  * lock class is held but nest_lock is also held, i.e. we rely on the
2999  * nest_lock to avoid the deadlock.
3000  */
3001 static int
3002 check_deadlock(struct task_struct *curr, struct held_lock *next)
3003 {
3004         struct held_lock *prev;
3005         struct held_lock *nest = NULL;
3006         int i;
3007
3008         for (i = 0; i < curr->lockdep_depth; i++) {
3009                 prev = curr->held_locks + i;
3010
3011                 if (prev->instance == next->nest_lock)
3012                         nest = prev;
3013
3014                 if (hlock_class(prev) != hlock_class(next))
3015                         continue;
3016
3017                 /*
3018                  * Allow read-after-read recursion of the same
3019                  * lock class (i.e. read_lock(lock)+read_lock(lock)):
3020                  */
3021                 if ((next->read == 2) && prev->read)
3022                         continue;
3023
3024                 /*
3025                  * We're holding the nest_lock, which serializes this lock's
3026                  * nesting behaviour.
3027                  */
3028                 if (nest)
3029                         return 2;
3030
3031                 print_deadlock_bug(curr, prev, next);
3032                 return 0;
3033         }
3034         return 1;
3035 }
3036
3037 /*
3038  * There was a chain-cache miss, and we are about to add a new dependency
3039  * to a previous lock. We validate the following rules:
3040  *
3041  *  - would the adding of the <prev> -> <next> dependency create a
3042  *    circular dependency in the graph? [== circular deadlock]
3043  *
3044  *  - does the new prev->next dependency connect any hardirq-safe lock
3045  *    (in the full backwards-subgraph starting at <prev>) with any
3046  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3047  *    <next>)? [== illegal lock inversion with hardirq contexts]
3048  *
3049  *  - does the new prev->next dependency connect any softirq-safe lock
3050  *    (in the full backwards-subgraph starting at <prev>) with any
3051  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3052  *    <next>)? [== illegal lock inversion with softirq contexts]
3053  *
3054  * any of these scenarios could lead to a deadlock.
3055  *
3056  * Then if all the validations pass, we add the forwards and backwards
3057  * dependency.
3058  */
3059 static int
3060 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3061                struct held_lock *next, u16 distance,
3062                struct lock_trace **const trace)
3063 {
3064         struct lock_list *entry;
3065         enum bfs_result ret;
3066
3067         if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3068                 /*
3069                  * The warning statements below may trigger a use-after-free
3070                  * of the class name. It is better to trigger a use-after free
3071                  * and to have the class name most of the time instead of not
3072                  * having the class name available.
3073                  */
3074                 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3075                           "Detected use-after-free of lock class %px/%s\n",
3076                           hlock_class(prev),
3077                           hlock_class(prev)->name);
3078                 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3079                           "Detected use-after-free of lock class %px/%s\n",
3080                           hlock_class(next),
3081                           hlock_class(next)->name);
3082                 return 2;
3083         }
3084
3085         /*
3086          * Prove that the new <prev> -> <next> dependency would not
3087          * create a circular dependency in the graph. (We do this by
3088          * a breadth-first search into the graph starting at <next>,
3089          * and check whether we can reach <prev>.)
3090          *
3091          * The search is limited by the size of the circular queue (i.e.,
3092          * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3093          * in the graph whose neighbours are to be checked.
3094          */
3095         ret = check_noncircular(next, prev, trace);
3096         if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3097                 return 0;
3098
3099         if (!check_irq_usage(curr, prev, next))
3100                 return 0;
3101
3102         /*
3103          * Is the <prev> -> <next> dependency already present?
3104          *
3105          * (this may occur even though this is a new chain: consider
3106          *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3107          *  chains - the second one will be new, but L1 already has
3108          *  L2 added to its dependency list, due to the first chain.)
3109          */
3110         list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3111                 if (entry->class == hlock_class(next)) {
3112                         if (distance == 1)
3113                                 entry->distance = 1;
3114                         entry->dep |= calc_dep(prev, next);
3115
3116                         /*
3117                          * Also, update the reverse dependency in @next's
3118                          * ->locks_before list.
3119                          *
3120                          *  Here we reuse @entry as the cursor, which is fine
3121                          *  because we won't go to the next iteration of the
3122                          *  outer loop:
3123                          *
3124                          *  For normal cases, we return in the inner loop.
3125                          *
3126                          *  If we fail to return, we have inconsistency, i.e.
3127                          *  <prev>::locks_after contains <next> while
3128                          *  <next>::locks_before doesn't contain <prev>. In
3129                          *  that case, we return after the inner and indicate
3130                          *  something is wrong.
3131                          */
3132                         list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3133                                 if (entry->class == hlock_class(prev)) {
3134                                         if (distance == 1)
3135                                                 entry->distance = 1;
3136                                         entry->dep |= calc_depb(prev, next);
3137                                         return 1;
3138                                 }
3139                         }
3140
3141                         /* <prev> is not found in <next>::locks_before */
3142                         return 0;
3143                 }
3144         }
3145
3146         /*
3147          * Is the <prev> -> <next> link redundant?
3148          */
3149         ret = check_redundant(prev, next);
3150         if (bfs_error(ret))
3151                 return 0;
3152         else if (ret == BFS_RMATCH)
3153                 return 2;
3154
3155         if (!*trace) {
3156                 *trace = save_trace();
3157                 if (!*trace)
3158                         return 0;
3159         }
3160
3161         /*
3162          * Ok, all validations passed, add the new lock
3163          * to the previous lock's dependency list:
3164          */
3165         ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3166                                &hlock_class(prev)->locks_after, distance,
3167                                calc_dep(prev, next), *trace);
3168
3169         if (!ret)
3170                 return 0;
3171
3172         ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3173                                &hlock_class(next)->locks_before, distance,
3174                                calc_depb(prev, next), *trace);
3175         if (!ret)
3176                 return 0;
3177
3178         return 2;
3179 }
3180
3181 /*
3182  * Add the dependency to all directly-previous locks that are 'relevant'.
3183  * The ones that are relevant are (in increasing distance from curr):
3184  * all consecutive trylock entries and the final non-trylock entry - or
3185  * the end of this context's lock-chain - whichever comes first.
3186  */
3187 static int
3188 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3189 {
3190         struct lock_trace *trace = NULL;
3191         int depth = curr->lockdep_depth;
3192         struct held_lock *hlock;
3193
3194         /*
3195          * Debugging checks.
3196          *
3197          * Depth must not be zero for a non-head lock:
3198          */
3199         if (!depth)
3200                 goto out_bug;
3201         /*
3202          * At least two relevant locks must exist for this
3203          * to be a head:
3204          */
3205         if (curr->held_locks[depth].irq_context !=
3206                         curr->held_locks[depth-1].irq_context)
3207                 goto out_bug;
3208
3209         for (;;) {
3210                 u16 distance = curr->lockdep_depth - depth + 1;
3211                 hlock = curr->held_locks + depth - 1;
3212
3213                 if (hlock->check) {
3214                         int ret = check_prev_add(curr, hlock, next, distance, &trace);
3215                         if (!ret)
3216                                 return 0;
3217
3218                         /*
3219                          * Stop after the first non-trylock entry,
3220                          * as non-trylock entries have added their
3221                          * own direct dependencies already, so this
3222                          * lock is connected to them indirectly:
3223                          */
3224                         if (!hlock->trylock)
3225                                 break;
3226                 }
3227
3228                 depth--;
3229                 /*
3230                  * End of lock-stack?
3231                  */
3232                 if (!depth)
3233                         break;
3234                 /*
3235                  * Stop the search if we cross into another context:
3236                  */
3237                 if (curr->held_locks[depth].irq_context !=
3238                                 curr->held_locks[depth-1].irq_context)
3239                         break;
3240         }
3241         return 1;
3242 out_bug:
3243         if (!debug_locks_off_graph_unlock())
3244                 return 0;
3245
3246         /*
3247          * Clearly we all shouldn't be here, but since we made it we
3248          * can reliable say we messed up our state. See the above two
3249          * gotos for reasons why we could possibly end up here.
3250          */
3251         WARN_ON(1);
3252
3253         return 0;
3254 }
3255
3256 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3257 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3258 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3259 unsigned long nr_zapped_lock_chains;
3260 unsigned int nr_free_chain_hlocks;      /* Free chain_hlocks in buckets */
3261 unsigned int nr_lost_chain_hlocks;      /* Lost chain_hlocks */
3262 unsigned int nr_large_chain_blocks;     /* size > MAX_CHAIN_BUCKETS */
3263
3264 /*
3265  * The first 2 chain_hlocks entries in the chain block in the bucket
3266  * list contains the following meta data:
3267  *
3268  *   entry[0]:
3269  *     Bit    15 - always set to 1 (it is not a class index)
3270  *     Bits 0-14 - upper 15 bits of the next block index
3271  *   entry[1]    - lower 16 bits of next block index
3272  *
3273  * A next block index of all 1 bits means it is the end of the list.
3274  *
3275  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3276  * the chain block size:
3277  *
3278  *   entry[2] - upper 16 bits of the chain block size
3279  *   entry[3] - lower 16 bits of the chain block size
3280  */
3281 #define MAX_CHAIN_BUCKETS       16
3282 #define CHAIN_BLK_FLAG          (1U << 15)
3283 #define CHAIN_BLK_LIST_END      0xFFFFU
3284
3285 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3286
3287 static inline int size_to_bucket(int size)
3288 {
3289         if (size > MAX_CHAIN_BUCKETS)
3290                 return 0;
3291
3292         return size - 1;
3293 }
3294
3295 /*
3296  * Iterate all the chain blocks in a bucket.
3297  */
3298 #define for_each_chain_block(bucket, prev, curr)                \
3299         for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3300              (curr) >= 0;                                       \
3301              (prev) = (curr), (curr) = chain_block_next(curr))
3302
3303 /*
3304  * next block or -1
3305  */
3306 static inline int chain_block_next(int offset)
3307 {
3308         int next = chain_hlocks[offset];
3309
3310         WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3311
3312         if (next == CHAIN_BLK_LIST_END)
3313                 return -1;
3314
3315         next &= ~CHAIN_BLK_FLAG;
3316         next <<= 16;
3317         next |= chain_hlocks[offset + 1];
3318
3319         return next;
3320 }
3321
3322 /*
3323  * bucket-0 only
3324  */
3325 static inline int chain_block_size(int offset)
3326 {
3327         return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3328 }
3329
3330 static inline void init_chain_block(int offset, int next, int bucket, int size)
3331 {
3332         chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3333         chain_hlocks[offset + 1] = (u16)next;
3334
3335         if (size && !bucket) {
3336                 chain_hlocks[offset + 2] = size >> 16;
3337                 chain_hlocks[offset + 3] = (u16)size;
3338         }
3339 }
3340
3341 static inline void add_chain_block(int offset, int size)
3342 {
3343         int bucket = size_to_bucket(size);
3344         int next = chain_block_buckets[bucket];
3345         int prev, curr;
3346
3347         if (unlikely(size < 2)) {
3348                 /*
3349                  * We can't store single entries on the freelist. Leak them.
3350                  *
3351                  * One possible way out would be to uniquely mark them, other
3352                  * than with CHAIN_BLK_FLAG, such that we can recover them when
3353                  * the block before it is re-added.
3354                  */
3355                 if (size)
3356                         nr_lost_chain_hlocks++;
3357                 return;
3358         }
3359
3360         nr_free_chain_hlocks += size;
3361         if (!bucket) {
3362                 nr_large_chain_blocks++;
3363
3364                 /*
3365                  * Variable sized, sort large to small.
3366                  */
3367                 for_each_chain_block(0, prev, curr) {
3368                         if (size >= chain_block_size(curr))
3369                                 break;
3370                 }
3371                 init_chain_block(offset, curr, 0, size);
3372                 if (prev < 0)
3373                         chain_block_buckets[0] = offset;
3374                 else
3375                         init_chain_block(prev, offset, 0, 0);
3376                 return;
3377         }
3378         /*
3379          * Fixed size, add to head.
3380          */
3381         init_chain_block(offset, next, bucket, size);
3382         chain_block_buckets[bucket] = offset;
3383 }
3384
3385 /*
3386  * Only the first block in the list can be deleted.
3387  *
3388  * For the variable size bucket[0], the first block (the largest one) is
3389  * returned, broken up and put back into the pool. So if a chain block of
3390  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3391  * queued up after the primordial chain block and never be used until the
3392  * hlock entries in the primordial chain block is almost used up. That
3393  * causes fragmentation and reduce allocation efficiency. That can be
3394  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3395  */
3396 static inline void del_chain_block(int bucket, int size, int next)
3397 {
3398         nr_free_chain_hlocks -= size;
3399         chain_block_buckets[bucket] = next;
3400
3401         if (!bucket)
3402                 nr_large_chain_blocks--;
3403 }
3404
3405 static void init_chain_block_buckets(void)
3406 {
3407         int i;
3408
3409         for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3410                 chain_block_buckets[i] = -1;
3411
3412         add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3413 }
3414
3415 /*
3416  * Return offset of a chain block of the right size or -1 if not found.
3417  *
3418  * Fairly simple worst-fit allocator with the addition of a number of size
3419  * specific free lists.
3420  */
3421 static int alloc_chain_hlocks(int req)
3422 {
3423         int bucket, curr, size;
3424
3425         /*
3426          * We rely on the MSB to act as an escape bit to denote freelist
3427          * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3428          */
3429         BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3430
3431         init_data_structures_once();
3432
3433         if (nr_free_chain_hlocks < req)
3434                 return -1;
3435
3436         /*
3437          * We require a minimum of 2 (u16) entries to encode a freelist
3438          * 'pointer'.
3439          */
3440         req = max(req, 2);
3441         bucket = size_to_bucket(req);
3442         curr = chain_block_buckets[bucket];
3443
3444         if (bucket) {
3445                 if (curr >= 0) {
3446                         del_chain_block(bucket, req, chain_block_next(curr));
3447                         return curr;
3448                 }
3449                 /* Try bucket 0 */
3450                 curr = chain_block_buckets[0];
3451         }
3452
3453         /*
3454          * The variable sized freelist is sorted by size; the first entry is
3455          * the largest. Use it if it fits.
3456          */
3457         if (curr >= 0) {
3458                 size = chain_block_size(curr);
3459                 if (likely(size >= req)) {
3460                         del_chain_block(0, size, chain_block_next(curr));
3461                         add_chain_block(curr + req, size - req);
3462                         return curr;
3463                 }
3464         }
3465
3466         /*
3467          * Last resort, split a block in a larger sized bucket.
3468          */
3469         for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3470                 bucket = size_to_bucket(size);
3471                 curr = chain_block_buckets[bucket];
3472                 if (curr < 0)
3473                         continue;
3474
3475                 del_chain_block(bucket, size, chain_block_next(curr));
3476                 add_chain_block(curr + req, size - req);
3477                 return curr;
3478         }
3479
3480         return -1;
3481 }
3482
3483 static inline void free_chain_hlocks(int base, int size)
3484 {
3485         add_chain_block(base, max(size, 2));
3486 }
3487
3488 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3489 {
3490         u16 chain_hlock = chain_hlocks[chain->base + i];
3491         unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3492
3493         return lock_classes + class_idx;
3494 }
3495
3496 /*
3497  * Returns the index of the first held_lock of the current chain
3498  */
3499 static inline int get_first_held_lock(struct task_struct *curr,
3500                                         struct held_lock *hlock)
3501 {
3502         int i;
3503         struct held_lock *hlock_curr;
3504
3505         for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3506                 hlock_curr = curr->held_locks + i;
3507                 if (hlock_curr->irq_context != hlock->irq_context)
3508                         break;
3509
3510         }
3511
3512         return ++i;
3513 }
3514
3515 #ifdef CONFIG_DEBUG_LOCKDEP
3516 /*
3517  * Returns the next chain_key iteration
3518  */
3519 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3520 {
3521         u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3522
3523         printk(" hlock_id:%d -> chain_key:%016Lx",
3524                 (unsigned int)hlock_id,
3525                 (unsigned long long)new_chain_key);
3526         return new_chain_key;
3527 }
3528
3529 static void
3530 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3531 {
3532         struct held_lock *hlock;
3533         u64 chain_key = INITIAL_CHAIN_KEY;
3534         int depth = curr->lockdep_depth;
3535         int i = get_first_held_lock(curr, hlock_next);
3536
3537         printk("depth: %u (irq_context %u)\n", depth - i + 1,
3538                 hlock_next->irq_context);
3539         for (; i < depth; i++) {
3540                 hlock = curr->held_locks + i;
3541                 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3542
3543                 print_lock(hlock);
3544         }
3545
3546         print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3547         print_lock(hlock_next);
3548 }
3549
3550 static void print_chain_keys_chain(struct lock_chain *chain)
3551 {
3552         int i;
3553         u64 chain_key = INITIAL_CHAIN_KEY;
3554         u16 hlock_id;
3555
3556         printk("depth: %u\n", chain->depth);
3557         for (i = 0; i < chain->depth; i++) {
3558                 hlock_id = chain_hlocks[chain->base + i];
3559                 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3560
3561                 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3562                 printk("\n");
3563         }
3564 }
3565
3566 static void print_collision(struct task_struct *curr,
3567                         struct held_lock *hlock_next,
3568                         struct lock_chain *chain)
3569 {
3570         pr_warn("\n");
3571         pr_warn("============================\n");
3572         pr_warn("WARNING: chain_key collision\n");
3573         print_kernel_ident();
3574         pr_warn("----------------------------\n");
3575         pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3576         pr_warn("Hash chain already cached but the contents don't match!\n");
3577
3578         pr_warn("Held locks:");
3579         print_chain_keys_held_locks(curr, hlock_next);
3580
3581         pr_warn("Locks in cached chain:");
3582         print_chain_keys_chain(chain);
3583
3584         pr_warn("\nstack backtrace:\n");
3585         dump_stack();
3586 }
3587 #endif
3588
3589 /*
3590  * Checks whether the chain and the current held locks are consistent
3591  * in depth and also in content. If they are not it most likely means
3592  * that there was a collision during the calculation of the chain_key.
3593  * Returns: 0 not passed, 1 passed
3594  */
3595 static int check_no_collision(struct task_struct *curr,
3596                         struct held_lock *hlock,
3597                         struct lock_chain *chain)
3598 {
3599 #ifdef CONFIG_DEBUG_LOCKDEP
3600         int i, j, id;
3601
3602         i = get_first_held_lock(curr, hlock);
3603
3604         if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3605                 print_collision(curr, hlock, chain);
3606                 return 0;
3607         }
3608
3609         for (j = 0; j < chain->depth - 1; j++, i++) {
3610                 id = hlock_id(&curr->held_locks[i]);
3611
3612                 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3613                         print_collision(curr, hlock, chain);
3614                         return 0;
3615                 }
3616         }
3617 #endif
3618         return 1;
3619 }
3620
3621 /*
3622  * Given an index that is >= -1, return the index of the next lock chain.
3623  * Return -2 if there is no next lock chain.
3624  */
3625 long lockdep_next_lockchain(long i)
3626 {
3627         i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3628         return i < ARRAY_SIZE(lock_chains) ? i : -2;
3629 }
3630
3631 unsigned long lock_chain_count(void)
3632 {
3633         return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3634 }
3635
3636 /* Must be called with the graph lock held. */
3637 static struct lock_chain *alloc_lock_chain(void)
3638 {
3639         int idx = find_first_zero_bit(lock_chains_in_use,
3640                                       ARRAY_SIZE(lock_chains));
3641
3642         if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3643                 return NULL;
3644         __set_bit(idx, lock_chains_in_use);
3645         return lock_chains + idx;
3646 }
3647
3648 /*
3649  * Adds a dependency chain into chain hashtable. And must be called with
3650  * graph_lock held.
3651  *
3652  * Return 0 if fail, and graph_lock is released.
3653  * Return 1 if succeed, with graph_lock held.
3654  */
3655 static inline int add_chain_cache(struct task_struct *curr,
3656                                   struct held_lock *hlock,
3657                                   u64 chain_key)
3658 {
3659         struct hlist_head *hash_head = chainhashentry(chain_key);
3660         struct lock_chain *chain;
3661         int i, j;
3662
3663         /*
3664          * The caller must hold the graph lock, ensure we've got IRQs
3665          * disabled to make this an IRQ-safe lock.. for recursion reasons
3666          * lockdep won't complain about its own locking errors.
3667          */
3668         if (lockdep_assert_locked())
3669                 return 0;
3670
3671         chain = alloc_lock_chain();
3672         if (!chain) {
3673                 if (!debug_locks_off_graph_unlock())
3674                         return 0;
3675
3676                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3677                 dump_stack();
3678                 return 0;
3679         }
3680         chain->chain_key = chain_key;
3681         chain->irq_context = hlock->irq_context;
3682         i = get_first_held_lock(curr, hlock);
3683         chain->depth = curr->lockdep_depth + 1 - i;
3684
3685         BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3686         BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3687         BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3688
3689         j = alloc_chain_hlocks(chain->depth);
3690         if (j < 0) {
3691                 if (!debug_locks_off_graph_unlock())
3692                         return 0;
3693
3694                 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3695                 dump_stack();
3696                 return 0;
3697         }
3698
3699         chain->base = j;
3700         for (j = 0; j < chain->depth - 1; j++, i++) {
3701                 int lock_id = hlock_id(curr->held_locks + i);
3702
3703                 chain_hlocks[chain->base + j] = lock_id;
3704         }
3705         chain_hlocks[chain->base + j] = hlock_id(hlock);
3706         hlist_add_head_rcu(&chain->entry, hash_head);
3707         debug_atomic_inc(chain_lookup_misses);
3708         inc_chains(chain->irq_context);
3709
3710         return 1;
3711 }
3712
3713 /*
3714  * Look up a dependency chain. Must be called with either the graph lock or
3715  * the RCU read lock held.
3716  */
3717 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3718 {
3719         struct hlist_head *hash_head = chainhashentry(chain_key);
3720         struct lock_chain *chain;
3721
3722         hlist_for_each_entry_rcu(chain, hash_head, entry) {
3723                 if (READ_ONCE(chain->chain_key) == chain_key) {
3724                         debug_atomic_inc(chain_lookup_hits);
3725                         return chain;
3726                 }
3727         }
3728         return NULL;
3729 }
3730
3731 /*
3732  * If the key is not present yet in dependency chain cache then
3733  * add it and return 1 - in this case the new dependency chain is
3734  * validated. If the key is already hashed, return 0.
3735  * (On return with 1 graph_lock is held.)
3736  */
3737 static inline int lookup_chain_cache_add(struct task_struct *curr,
3738                                          struct held_lock *hlock,
3739                                          u64 chain_key)
3740 {
3741         struct lock_class *class = hlock_class(hlock);
3742         struct lock_chain *chain = lookup_chain_cache(chain_key);
3743
3744         if (chain) {
3745 cache_hit:
3746                 if (!check_no_collision(curr, hlock, chain))
3747                         return 0;
3748
3749                 if (very_verbose(class)) {
3750                         printk("\nhash chain already cached, key: "
3751                                         "%016Lx tail class: [%px] %s\n",
3752                                         (unsigned long long)chain_key,
3753                                         class->key, class->name);
3754                 }
3755
3756                 return 0;
3757         }
3758
3759         if (very_verbose(class)) {
3760                 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3761                         (unsigned long long)chain_key, class->key, class->name);
3762         }
3763
3764         if (!graph_lock())
3765                 return 0;
3766
3767         /*
3768          * We have to walk the chain again locked - to avoid duplicates:
3769          */
3770         chain = lookup_chain_cache(chain_key);
3771         if (chain) {
3772                 graph_unlock();
3773                 goto cache_hit;
3774         }
3775
3776         if (!add_chain_cache(curr, hlock, chain_key))
3777                 return 0;
3778
3779         return 1;
3780 }
3781
3782 static int validate_chain(struct task_struct *curr,
3783                           struct held_lock *hlock,
3784                           int chain_head, u64 chain_key)
3785 {
3786         /*
3787          * Trylock needs to maintain the stack of held locks, but it
3788          * does not add new dependencies, because trylock can be done
3789          * in any order.
3790          *
3791          * We look up the chain_key and do the O(N^2) check and update of
3792          * the dependencies only if this is a new dependency chain.
3793          * (If lookup_chain_cache_add() return with 1 it acquires
3794          * graph_lock for us)
3795          */
3796         if (!hlock->trylock && hlock->check &&
3797             lookup_chain_cache_add(curr, hlock, chain_key)) {
3798                 /*
3799                  * Check whether last held lock:
3800                  *
3801                  * - is irq-safe, if this lock is irq-unsafe
3802                  * - is softirq-safe, if this lock is hardirq-unsafe
3803                  *
3804                  * And check whether the new lock's dependency graph
3805                  * could lead back to the previous lock:
3806                  *
3807                  * - within the current held-lock stack
3808                  * - across our accumulated lock dependency records
3809                  *
3810                  * any of these scenarios could lead to a deadlock.
3811                  */
3812                 /*
3813                  * The simple case: does the current hold the same lock
3814                  * already?
3815                  */
3816                 int ret = check_deadlock(curr, hlock);
3817
3818                 if (!ret)
3819                         return 0;
3820                 /*
3821                  * Add dependency only if this lock is not the head
3822                  * of the chain, and if the new lock introduces no more
3823                  * lock dependency (because we already hold a lock with the
3824                  * same lock class) nor deadlock (because the nest_lock
3825                  * serializes nesting locks), see the comments for
3826                  * check_deadlock().
3827                  */
3828                 if (!chain_head && ret != 2) {
3829                         if (!check_prevs_add(curr, hlock))
3830                                 return 0;
3831                 }
3832
3833                 graph_unlock();
3834         } else {
3835                 /* after lookup_chain_cache_add(): */
3836                 if (unlikely(!debug_locks))
3837                         return 0;
3838         }
3839
3840         return 1;
3841 }
3842 #else
3843 static inline int validate_chain(struct task_struct *curr,
3844                                  struct held_lock *hlock,
3845                                  int chain_head, u64 chain_key)
3846 {
3847         return 1;
3848 }
3849
3850 static void init_chain_block_buckets(void)      { }
3851 #endif /* CONFIG_PROVE_LOCKING */
3852
3853 /*
3854  * We are building curr_chain_key incrementally, so double-check
3855  * it from scratch, to make sure that it's done correctly:
3856  */
3857 static void check_chain_key(struct task_struct *curr)
3858 {
3859 #ifdef CONFIG_DEBUG_LOCKDEP
3860         struct held_lock *hlock, *prev_hlock = NULL;
3861         unsigned int i;
3862         u64 chain_key = INITIAL_CHAIN_KEY;
3863
3864         for (i = 0; i < curr->lockdep_depth; i++) {
3865                 hlock = curr->held_locks + i;
3866                 if (chain_key != hlock->prev_chain_key) {
3867                         debug_locks_off();
3868                         /*
3869                          * We got mighty confused, our chain keys don't match
3870                          * with what we expect, someone trample on our task state?
3871                          */
3872                         WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3873                                 curr->lockdep_depth, i,
3874                                 (unsigned long long)chain_key,
3875                                 (unsigned long long)hlock->prev_chain_key);
3876                         return;
3877                 }
3878
3879                 /*
3880                  * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3881                  * it registered lock class index?
3882                  */
3883                 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3884                         return;
3885
3886                 if (prev_hlock && (prev_hlock->irq_context !=
3887                                                         hlock->irq_context))
3888                         chain_key = INITIAL_CHAIN_KEY;
3889                 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3890                 prev_hlock = hlock;
3891         }
3892         if (chain_key != curr->curr_chain_key) {
3893                 debug_locks_off();
3894                 /*
3895                  * More smoking hash instead of calculating it, damn see these
3896                  * numbers float.. I bet that a pink elephant stepped on my memory.
3897                  */
3898                 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3899                         curr->lockdep_depth, i,
3900                         (unsigned long long)chain_key,
3901                         (unsigned long long)curr->curr_chain_key);
3902         }
3903 #endif
3904 }
3905
3906 #ifdef CONFIG_PROVE_LOCKING
3907 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3908                      enum lock_usage_bit new_bit);
3909
3910 static void print_usage_bug_scenario(struct held_lock *lock)
3911 {
3912         struct lock_class *class = hlock_class(lock);
3913
3914         printk(" Possible unsafe locking scenario:\n\n");
3915         printk("       CPU0\n");
3916         printk("       ----\n");
3917         printk("  lock(");
3918         __print_lock_name(class);
3919         printk(KERN_CONT ");\n");
3920         printk("  <Interrupt>\n");
3921         printk("    lock(");
3922         __print_lock_name(class);
3923         printk(KERN_CONT ");\n");
3924         printk("\n *** DEADLOCK ***\n\n");
3925 }
3926
3927 static void
3928 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3929                 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3930 {
3931         if (!debug_locks_off() || debug_locks_silent)
3932                 return;
3933
3934         pr_warn("\n");
3935         pr_warn("================================\n");
3936         pr_warn("WARNING: inconsistent lock state\n");
3937         print_kernel_ident();
3938         pr_warn("--------------------------------\n");
3939
3940         pr_warn("inconsistent {%s} -> {%s} usage.\n",
3941                 usage_str[prev_bit], usage_str[new_bit]);
3942
3943         pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3944                 curr->comm, task_pid_nr(curr),
3945                 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3946                 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3947                 lockdep_hardirqs_enabled(),
3948                 lockdep_softirqs_enabled(curr));
3949         print_lock(this);
3950
3951         pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3952         print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3953
3954         print_irqtrace_events(curr);
3955         pr_warn("\nother info that might help us debug this:\n");
3956         print_usage_bug_scenario(this);
3957
3958         lockdep_print_held_locks(curr);
3959
3960         pr_warn("\nstack backtrace:\n");
3961         dump_stack();
3962 }
3963
3964 /*
3965  * Print out an error if an invalid bit is set:
3966  */
3967 static inline int
3968 valid_state(struct task_struct *curr, struct held_lock *this,
3969             enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3970 {
3971         if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3972                 graph_unlock();
3973                 print_usage_bug(curr, this, bad_bit, new_bit);
3974                 return 0;
3975         }
3976         return 1;
3977 }
3978
3979
3980 /*
3981  * print irq inversion bug:
3982  */
3983 static void
3984 print_irq_inversion_bug(struct task_struct *curr,
3985                         struct lock_list *root, struct lock_list *other,
3986                         struct held_lock *this, int forwards,
3987                         const char *irqclass)
3988 {
3989         struct lock_list *entry = other;
3990         struct lock_list *middle = NULL;
3991         int depth;
3992
3993         if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3994                 return;
3995
3996         pr_warn("\n");
3997         pr_warn("========================================================\n");
3998         pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3999         print_kernel_ident();
4000         pr_warn("--------------------------------------------------------\n");
4001         pr_warn("%s/%d just changed the state of lock:\n",
4002                 curr->comm, task_pid_nr(curr));
4003         print_lock(this);
4004         if (forwards)
4005                 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4006         else
4007                 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4008         print_lock_name(other->class);
4009         pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4010
4011         pr_warn("\nother info that might help us debug this:\n");
4012
4013         /* Find a middle lock (if one exists) */
4014         depth = get_lock_depth(other);
4015         do {
4016                 if (depth == 0 && (entry != root)) {
4017                         pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4018                         break;
4019                 }
4020                 middle = entry;
4021                 entry = get_lock_parent(entry);
4022                 depth--;
4023         } while (entry && entry != root && (depth >= 0));
4024         if (forwards)
4025                 print_irq_lock_scenario(root, other,
4026                         middle ? middle->class : root->class, other->class);
4027         else
4028                 print_irq_lock_scenario(other, root,
4029                         middle ? middle->class : other->class, root->class);
4030
4031         lockdep_print_held_locks(curr);
4032
4033         pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4034         root->trace = save_trace();
4035         if (!root->trace)
4036                 return;
4037         print_shortest_lock_dependencies(other, root);
4038
4039         pr_warn("\nstack backtrace:\n");
4040         dump_stack();
4041 }
4042
4043 /*
4044  * Prove that in the forwards-direction subgraph starting at <this>
4045  * there is no lock matching <mask>:
4046  */
4047 static int
4048 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4049                      enum lock_usage_bit bit)
4050 {
4051         enum bfs_result ret;
4052         struct lock_list root;
4053         struct lock_list *target_entry;
4054         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4055         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4056
4057         bfs_init_root(&root, this);
4058         ret = find_usage_forwards(&root, usage_mask, &target_entry);
4059         if (bfs_error(ret)) {
4060                 print_bfs_bug(ret);
4061                 return 0;
4062         }
4063         if (ret == BFS_RNOMATCH)
4064                 return 1;
4065
4066         /* Check whether write or read usage is the match */
4067         if (target_entry->class->usage_mask & lock_flag(bit)) {
4068                 print_irq_inversion_bug(curr, &root, target_entry,
4069                                         this, 1, state_name(bit));
4070         } else {
4071                 print_irq_inversion_bug(curr, &root, target_entry,
4072                                         this, 1, state_name(read_bit));
4073         }
4074
4075         return 0;
4076 }
4077
4078 /*
4079  * Prove that in the backwards-direction subgraph starting at <this>
4080  * there is no lock matching <mask>:
4081  */
4082 static int
4083 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4084                       enum lock_usage_bit bit)
4085 {
4086         enum bfs_result ret;
4087         struct lock_list root;
4088         struct lock_list *target_entry;
4089         enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4090         unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4091
4092         bfs_init_rootb(&root, this);
4093         ret = find_usage_backwards(&root, usage_mask, &target_entry);
4094         if (bfs_error(ret)) {
4095                 print_bfs_bug(ret);
4096                 return 0;
4097         }
4098         if (ret == BFS_RNOMATCH)
4099                 return 1;
4100
4101         /* Check whether write or read usage is the match */
4102         if (target_entry->class->usage_mask & lock_flag(bit)) {
4103                 print_irq_inversion_bug(curr, &root, target_entry,
4104                                         this, 0, state_name(bit));
4105         } else {
4106                 print_irq_inversion_bug(curr, &root, target_entry,
4107                                         this, 0, state_name(read_bit));
4108         }
4109
4110         return 0;
4111 }
4112
4113 void print_irqtrace_events(struct task_struct *curr)
4114 {
4115         const struct irqtrace_events *trace = &curr->irqtrace;
4116
4117         printk("irq event stamp: %u\n", trace->irq_events);
4118         printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4119                 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4120                 (void *)trace->hardirq_enable_ip);
4121         printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4122                 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4123                 (void *)trace->hardirq_disable_ip);
4124         printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4125                 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4126                 (void *)trace->softirq_enable_ip);
4127         printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4128                 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4129                 (void *)trace->softirq_disable_ip);
4130 }
4131
4132 static int HARDIRQ_verbose(struct lock_class *class)
4133 {
4134 #if HARDIRQ_VERBOSE
4135         return class_filter(class);
4136 #endif
4137         return 0;
4138 }
4139
4140 static int SOFTIRQ_verbose(struct lock_class *class)
4141 {
4142 #if SOFTIRQ_VERBOSE
4143         return class_filter(class);
4144 #endif
4145         return 0;
4146 }
4147
4148 static int (*state_verbose_f[])(struct lock_class *class) = {
4149 #define LOCKDEP_STATE(__STATE) \
4150         __STATE##_verbose,
4151 #include "lockdep_states.h"
4152 #undef LOCKDEP_STATE
4153 };
4154
4155 static inline int state_verbose(enum lock_usage_bit bit,
4156                                 struct lock_class *class)
4157 {
4158         return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4159 }
4160
4161 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4162                              enum lock_usage_bit bit, const char *name);
4163
4164 static int
4165 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4166                 enum lock_usage_bit new_bit)
4167 {
4168         int excl_bit = exclusive_bit(new_bit);
4169         int read = new_bit & LOCK_USAGE_READ_MASK;
4170         int dir = new_bit & LOCK_USAGE_DIR_MASK;
4171
4172         /*
4173          * Validate that this particular lock does not have conflicting
4174          * usage states.
4175          */
4176         if (!valid_state(curr, this, new_bit, excl_bit))
4177                 return 0;
4178
4179         /*
4180          * Check for read in write conflicts
4181          */
4182         if (!read && !valid_state(curr, this, new_bit,
4183                                   excl_bit + LOCK_USAGE_READ_MASK))
4184                 return 0;
4185
4186
4187         /*
4188          * Validate that the lock dependencies don't have conflicting usage
4189          * states.
4190          */
4191         if (dir) {
4192                 /*
4193                  * mark ENABLED has to look backwards -- to ensure no dependee
4194                  * has USED_IN state, which, again, would allow  recursion deadlocks.
4195                  */
4196                 if (!check_usage_backwards(curr, this, excl_bit))
4197                         return 0;
4198         } else {
4199                 /*
4200                  * mark USED_IN has to look forwards -- to ensure no dependency
4201                  * has ENABLED state, which would allow recursion deadlocks.
4202                  */
4203                 if (!check_usage_forwards(curr, this, excl_bit))
4204                         return 0;
4205         }
4206
4207         if (state_verbose(new_bit, hlock_class(this)))
4208                 return 2;
4209
4210         return 1;
4211 }
4212
4213 /*
4214  * Mark all held locks with a usage bit:
4215  */
4216 static int
4217 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4218 {
4219         struct held_lock *hlock;
4220         int i;
4221
4222         for (i = 0; i < curr->lockdep_depth; i++) {
4223                 enum lock_usage_bit hlock_bit = base_bit;
4224                 hlock = curr->held_locks + i;
4225
4226                 if (hlock->read)
4227                         hlock_bit += LOCK_USAGE_READ_MASK;
4228
4229                 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4230
4231                 if (!hlock->check)
4232                         continue;
4233
4234                 if (!mark_lock(curr, hlock, hlock_bit))
4235                         return 0;
4236         }
4237
4238         return 1;
4239 }
4240
4241 /*
4242  * Hardirqs will be enabled:
4243  */
4244 static void __trace_hardirqs_on_caller(void)
4245 {
4246         struct task_struct *curr = current;
4247
4248         /*
4249          * We are going to turn hardirqs on, so set the
4250          * usage bit for all held locks:
4251          */
4252         if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4253                 return;
4254         /*
4255          * If we have softirqs enabled, then set the usage
4256          * bit for all held locks. (disabled hardirqs prevented
4257          * this bit from being set before)
4258          */
4259         if (curr->softirqs_enabled)
4260                 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4261 }
4262
4263 /**
4264  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4265  *
4266  * Invoked before a possible transition to RCU idle from exit to user or
4267  * guest mode. This ensures that all RCU operations are done before RCU
4268  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4269  * invoked to set the final state.
4270  */
4271 void lockdep_hardirqs_on_prepare(void)
4272 {
4273         if (unlikely(!debug_locks))
4274                 return;
4275
4276         /*
4277          * NMIs do not (and cannot) track lock dependencies, nothing to do.
4278          */
4279         if (unlikely(in_nmi()))
4280                 return;
4281
4282         if (unlikely(this_cpu_read(lockdep_recursion)))
4283                 return;
4284
4285         if (unlikely(lockdep_hardirqs_enabled())) {
4286                 /*
4287                  * Neither irq nor preemption are disabled here
4288                  * so this is racy by nature but losing one hit
4289                  * in a stat is not a big deal.
4290                  */
4291                 __debug_atomic_inc(redundant_hardirqs_on);
4292                 return;
4293         }
4294
4295         /*
4296          * We're enabling irqs and according to our state above irqs weren't
4297          * already enabled, yet we find the hardware thinks they are in fact
4298          * enabled.. someone messed up their IRQ state tracing.
4299          */
4300         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4301                 return;
4302
4303         /*
4304          * See the fine text that goes along with this variable definition.
4305          */
4306         if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4307                 return;
4308
4309         /*
4310          * Can't allow enabling interrupts while in an interrupt handler,
4311          * that's general bad form and such. Recursion, limited stack etc..
4312          */
4313         if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4314                 return;
4315
4316         current->hardirq_chain_key = current->curr_chain_key;
4317
4318         lockdep_recursion_inc();
4319         __trace_hardirqs_on_caller();
4320         lockdep_recursion_finish();
4321 }
4322 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4323
4324 void noinstr lockdep_hardirqs_on(unsigned long ip)
4325 {
4326         struct irqtrace_events *trace = &current->irqtrace;
4327
4328         if (unlikely(!debug_locks))
4329                 return;
4330
4331         /*
4332          * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4333          * tracking state and hardware state are out of sync.
4334          *
4335          * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4336          * and not rely on hardware state like normal interrupts.
4337          */
4338         if (unlikely(in_nmi())) {
4339                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4340                         return;
4341
4342                 /*
4343                  * Skip:
4344                  *  - recursion check, because NMI can hit lockdep;
4345                  *  - hardware state check, because above;
4346                  *  - chain_key check, see lockdep_hardirqs_on_prepare().
4347                  */
4348                 goto skip_checks;
4349         }
4350
4351         if (unlikely(this_cpu_read(lockdep_recursion)))
4352                 return;
4353
4354         if (lockdep_hardirqs_enabled()) {
4355                 /*
4356                  * Neither irq nor preemption are disabled here
4357                  * so this is racy by nature but losing one hit
4358                  * in a stat is not a big deal.
4359                  */
4360                 __debug_atomic_inc(redundant_hardirqs_on);
4361                 return;
4362         }
4363
4364         /*
4365          * We're enabling irqs and according to our state above irqs weren't
4366          * already enabled, yet we find the hardware thinks they are in fact
4367          * enabled.. someone messed up their IRQ state tracing.
4368          */
4369         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4370                 return;
4371
4372         /*
4373          * Ensure the lock stack remained unchanged between
4374          * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4375          */
4376         DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4377                             current->curr_chain_key);
4378
4379 skip_checks:
4380         /* we'll do an OFF -> ON transition: */
4381         __this_cpu_write(hardirqs_enabled, 1);
4382         trace->hardirq_enable_ip = ip;
4383         trace->hardirq_enable_event = ++trace->irq_events;
4384         debug_atomic_inc(hardirqs_on_events);
4385 }
4386 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4387
4388 /*
4389  * Hardirqs were disabled:
4390  */
4391 void noinstr lockdep_hardirqs_off(unsigned long ip)
4392 {
4393         if (unlikely(!debug_locks))
4394                 return;
4395
4396         /*
4397          * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4398          * they will restore the software state. This ensures the software
4399          * state is consistent inside NMIs as well.
4400          */
4401         if (in_nmi()) {
4402                 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4403                         return;
4404         } else if (__this_cpu_read(lockdep_recursion))
4405                 return;
4406
4407         /*
4408          * So we're supposed to get called after you mask local IRQs, but for
4409          * some reason the hardware doesn't quite think you did a proper job.
4410          */
4411         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4412                 return;
4413
4414         if (lockdep_hardirqs_enabled()) {
4415                 struct irqtrace_events *trace = &current->irqtrace;
4416
4417                 /*
4418                  * We have done an ON -> OFF transition:
4419                  */
4420                 __this_cpu_write(hardirqs_enabled, 0);
4421                 trace->hardirq_disable_ip = ip;
4422                 trace->hardirq_disable_event = ++trace->irq_events;
4423                 debug_atomic_inc(hardirqs_off_events);
4424         } else {
4425                 debug_atomic_inc(redundant_hardirqs_off);
4426         }
4427 }
4428 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4429
4430 /*
4431  * Softirqs will be enabled:
4432  */
4433 void lockdep_softirqs_on(unsigned long ip)
4434 {
4435         struct irqtrace_events *trace = &current->irqtrace;
4436
4437         if (unlikely(!lockdep_enabled()))
4438                 return;
4439
4440         /*
4441          * We fancy IRQs being disabled here, see softirq.c, avoids
4442          * funny state and nesting things.
4443          */
4444         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4445                 return;
4446
4447         if (current->softirqs_enabled) {
4448                 debug_atomic_inc(redundant_softirqs_on);
4449                 return;
4450         }
4451
4452         lockdep_recursion_inc();
4453         /*
4454          * We'll do an OFF -> ON transition:
4455          */
4456         current->softirqs_enabled = 1;
4457         trace->softirq_enable_ip = ip;
4458         trace->softirq_enable_event = ++trace->irq_events;
4459         debug_atomic_inc(softirqs_on_events);
4460         /*
4461          * We are going to turn softirqs on, so set the
4462          * usage bit for all held locks, if hardirqs are
4463          * enabled too:
4464          */
4465         if (lockdep_hardirqs_enabled())
4466                 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4467         lockdep_recursion_finish();
4468 }
4469
4470 /*
4471  * Softirqs were disabled:
4472  */
4473 void lockdep_softirqs_off(unsigned long ip)
4474 {
4475         if (unlikely(!lockdep_enabled()))
4476                 return;
4477
4478         /*
4479          * We fancy IRQs being disabled here, see softirq.c
4480          */
4481         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4482                 return;
4483
4484         if (current->softirqs_enabled) {
4485                 struct irqtrace_events *trace = &current->irqtrace;
4486
4487                 /*
4488                  * We have done an ON -> OFF transition:
4489                  */
4490                 current->softirqs_enabled = 0;
4491                 trace->softirq_disable_ip = ip;
4492                 trace->softirq_disable_event = ++trace->irq_events;
4493                 debug_atomic_inc(softirqs_off_events);
4494                 /*
4495                  * Whoops, we wanted softirqs off, so why aren't they?
4496                  */
4497                 DEBUG_LOCKS_WARN_ON(!softirq_count());
4498         } else
4499                 debug_atomic_inc(redundant_softirqs_off);
4500 }
4501
4502 static int
4503 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4504 {
4505         if (!check)
4506                 goto lock_used;
4507
4508         /*
4509          * If non-trylock use in a hardirq or softirq context, then
4510          * mark the lock as used in these contexts:
4511          */
4512         if (!hlock->trylock) {
4513                 if (hlock->read) {
4514                         if (lockdep_hardirq_context())
4515                                 if (!mark_lock(curr, hlock,
4516                                                 LOCK_USED_IN_HARDIRQ_READ))
4517                                         return 0;
4518                         if (curr->softirq_context)
4519                                 if (!mark_lock(curr, hlock,
4520                                                 LOCK_USED_IN_SOFTIRQ_READ))
4521                                         return 0;
4522                 } else {
4523                         if (lockdep_hardirq_context())
4524                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4525                                         return 0;
4526                         if (curr->softirq_context)
4527                                 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4528                                         return 0;
4529                 }
4530         }
4531         if (!hlock->hardirqs_off) {
4532                 if (hlock->read) {
4533                         if (!mark_lock(curr, hlock,
4534                                         LOCK_ENABLED_HARDIRQ_READ))
4535                                 return 0;
4536                         if (curr->softirqs_enabled)
4537                                 if (!mark_lock(curr, hlock,
4538                                                 LOCK_ENABLED_SOFTIRQ_READ))
4539                                         return 0;
4540                 } else {
4541                         if (!mark_lock(curr, hlock,
4542                                         LOCK_ENABLED_HARDIRQ))
4543                                 return 0;
4544                         if (curr->softirqs_enabled)
4545                                 if (!mark_lock(curr, hlock,
4546                                                 LOCK_ENABLED_SOFTIRQ))
4547                                         return 0;
4548                 }
4549         }
4550
4551 lock_used:
4552         /* mark it as used: */
4553         if (!mark_lock(curr, hlock, LOCK_USED))
4554                 return 0;
4555
4556         return 1;
4557 }
4558
4559 static inline unsigned int task_irq_context(struct task_struct *task)
4560 {
4561         return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4562                LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4563 }
4564
4565 static int separate_irq_context(struct task_struct *curr,
4566                 struct held_lock *hlock)
4567 {
4568         unsigned int depth = curr->lockdep_depth;
4569
4570         /*
4571          * Keep track of points where we cross into an interrupt context:
4572          */
4573         if (depth) {
4574                 struct held_lock *prev_hlock;
4575
4576                 prev_hlock = curr->held_locks + depth-1;
4577                 /*
4578                  * If we cross into another context, reset the
4579                  * hash key (this also prevents the checking and the
4580                  * adding of the dependency to 'prev'):
4581                  */
4582                 if (prev_hlock->irq_context != hlock->irq_context)
4583                         return 1;
4584         }
4585         return 0;
4586 }
4587
4588 /*
4589  * Mark a lock with a usage bit, and validate the state transition:
4590  */
4591 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4592                              enum lock_usage_bit new_bit)
4593 {
4594         unsigned int new_mask, ret = 1;
4595
4596         if (new_bit >= LOCK_USAGE_STATES) {
4597                 DEBUG_LOCKS_WARN_ON(1);
4598                 return 0;
4599         }
4600
4601         if (new_bit == LOCK_USED && this->read)
4602                 new_bit = LOCK_USED_READ;
4603
4604         new_mask = 1 << new_bit;
4605
4606         /*
4607          * If already set then do not dirty the cacheline,
4608          * nor do any checks:
4609          */
4610         if (likely(hlock_class(this)->usage_mask & new_mask))
4611                 return 1;
4612
4613         if (!graph_lock())
4614                 return 0;
4615         /*
4616          * Make sure we didn't race:
4617          */
4618         if (unlikely(hlock_class(this)->usage_mask & new_mask))
4619                 goto unlock;
4620
4621         if (!hlock_class(this)->usage_mask)
4622                 debug_atomic_dec(nr_unused_locks);
4623
4624         hlock_class(this)->usage_mask |= new_mask;
4625
4626         if (new_bit < LOCK_TRACE_STATES) {
4627                 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4628                         return 0;
4629         }
4630
4631         if (new_bit < LOCK_USED) {
4632                 ret = mark_lock_irq(curr, this, new_bit);
4633                 if (!ret)
4634                         return 0;
4635         }
4636
4637 unlock:
4638         graph_unlock();
4639
4640         /*
4641          * We must printk outside of the graph_lock:
4642          */
4643         if (ret == 2) {
4644                 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4645                 print_lock(this);
4646                 print_irqtrace_events(curr);
4647                 dump_stack();
4648         }
4649
4650         return ret;
4651 }
4652
4653 static inline short task_wait_context(struct task_struct *curr)
4654 {
4655         /*
4656          * Set appropriate wait type for the context; for IRQs we have to take
4657          * into account force_irqthread as that is implied by PREEMPT_RT.
4658          */
4659         if (lockdep_hardirq_context()) {
4660                 /*
4661                  * Check if force_irqthreads will run us threaded.
4662                  */
4663                 if (curr->hardirq_threaded || curr->irq_config)
4664                         return LD_WAIT_CONFIG;
4665
4666                 return LD_WAIT_SPIN;
4667         } else if (curr->softirq_context) {
4668                 /*
4669                  * Softirqs are always threaded.
4670                  */
4671                 return LD_WAIT_CONFIG;
4672         }
4673
4674         return LD_WAIT_MAX;
4675 }
4676
4677 static int
4678 print_lock_invalid_wait_context(struct task_struct *curr,
4679                                 struct held_lock *hlock)
4680 {
4681         short curr_inner;
4682
4683         if (!debug_locks_off())
4684                 return 0;
4685         if (debug_locks_silent)
4686                 return 0;
4687
4688         pr_warn("\n");
4689         pr_warn("=============================\n");
4690         pr_warn("[ BUG: Invalid wait context ]\n");
4691         print_kernel_ident();
4692         pr_warn("-----------------------------\n");
4693
4694         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4695         print_lock(hlock);
4696
4697         pr_warn("other info that might help us debug this:\n");
4698
4699         curr_inner = task_wait_context(curr);
4700         pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4701
4702         lockdep_print_held_locks(curr);
4703
4704         pr_warn("stack backtrace:\n");
4705         dump_stack();
4706
4707         return 0;
4708 }
4709
4710 /*
4711  * Verify the wait_type context.
4712  *
4713  * This check validates we take locks in the right wait-type order; that is it
4714  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4715  * acquire spinlocks inside raw_spinlocks and the sort.
4716  *
4717  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4718  * can be taken from (pretty much) any context but also has constraints.
4719  * However when taken in a stricter environment the RCU lock does not loosen
4720  * the constraints.
4721  *
4722  * Therefore we must look for the strictest environment in the lock stack and
4723  * compare that to the lock we're trying to acquire.
4724  */
4725 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4726 {
4727         u8 next_inner = hlock_class(next)->wait_type_inner;
4728         u8 next_outer = hlock_class(next)->wait_type_outer;
4729         u8 curr_inner;
4730         int depth;
4731
4732         if (!next_inner || next->trylock)
4733                 return 0;
4734
4735         if (!next_outer)
4736                 next_outer = next_inner;
4737
4738         /*
4739          * Find start of current irq_context..
4740          */
4741         for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4742                 struct held_lock *prev = curr->held_locks + depth;
4743                 if (prev->irq_context != next->irq_context)
4744                         break;
4745         }
4746         depth++;
4747
4748         curr_inner = task_wait_context(curr);
4749
4750         for (; depth < curr->lockdep_depth; depth++) {
4751                 struct held_lock *prev = curr->held_locks + depth;
4752                 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4753
4754                 if (prev_inner) {
4755                         /*
4756                          * We can have a bigger inner than a previous one
4757                          * when outer is smaller than inner, as with RCU.
4758                          *
4759                          * Also due to trylocks.
4760                          */
4761                         curr_inner = min(curr_inner, prev_inner);
4762                 }
4763         }
4764
4765         if (next_outer > curr_inner)
4766                 return print_lock_invalid_wait_context(curr, next);
4767
4768         return 0;
4769 }
4770
4771 #else /* CONFIG_PROVE_LOCKING */
4772
4773 static inline int
4774 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4775 {
4776         return 1;
4777 }
4778
4779 static inline unsigned int task_irq_context(struct task_struct *task)
4780 {
4781         return 0;
4782 }
4783
4784 static inline int separate_irq_context(struct task_struct *curr,
4785                 struct held_lock *hlock)
4786 {
4787         return 0;
4788 }
4789
4790 static inline int check_wait_context(struct task_struct *curr,
4791                                      struct held_lock *next)
4792 {
4793         return 0;
4794 }
4795
4796 #endif /* CONFIG_PROVE_LOCKING */
4797
4798 /*
4799  * Initialize a lock instance's lock-class mapping info:
4800  */
4801 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4802                             struct lock_class_key *key, int subclass,
4803                             u8 inner, u8 outer, u8 lock_type)
4804 {
4805         int i;
4806
4807         for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4808                 lock->class_cache[i] = NULL;
4809
4810 #ifdef CONFIG_LOCK_STAT
4811         lock->cpu = raw_smp_processor_id();
4812 #endif
4813
4814         /*
4815          * Can't be having no nameless bastards around this place!
4816          */
4817         if (DEBUG_LOCKS_WARN_ON(!name)) {
4818                 lock->name = "NULL";
4819                 return;
4820         }
4821
4822         lock->name = name;
4823
4824         lock->wait_type_outer = outer;
4825         lock->wait_type_inner = inner;
4826         lock->lock_type = lock_type;
4827
4828         /*
4829          * No key, no joy, we need to hash something.
4830          */
4831         if (DEBUG_LOCKS_WARN_ON(!key))
4832                 return;
4833         /*
4834          * Sanity check, the lock-class key must either have been allocated
4835          * statically or must have been registered as a dynamic key.
4836          */
4837         if (!static_obj(key) && !is_dynamic_key(key)) {
4838                 if (debug_locks)
4839                         printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4840                 DEBUG_LOCKS_WARN_ON(1);
4841                 return;
4842         }
4843         lock->key = key;
4844
4845         if (unlikely(!debug_locks))
4846                 return;
4847
4848         if (subclass) {
4849                 unsigned long flags;
4850
4851                 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4852                         return;
4853
4854                 raw_local_irq_save(flags);
4855                 lockdep_recursion_inc();
4856                 register_lock_class(lock, subclass, 1);
4857                 lockdep_recursion_finish();
4858                 raw_local_irq_restore(flags);
4859         }
4860 }
4861 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4862
4863 struct lock_class_key __lockdep_no_validate__;
4864 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4865
4866 static void
4867 print_lock_nested_lock_not_held(struct task_struct *curr,
4868                                 struct held_lock *hlock)
4869 {
4870         if (!debug_locks_off())
4871                 return;
4872         if (debug_locks_silent)
4873                 return;
4874
4875         pr_warn("\n");
4876         pr_warn("==================================\n");
4877         pr_warn("WARNING: Nested lock was not taken\n");
4878         print_kernel_ident();
4879         pr_warn("----------------------------------\n");
4880
4881         pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4882         print_lock(hlock);
4883
4884         pr_warn("\nbut this task is not holding:\n");
4885         pr_warn("%s\n", hlock->nest_lock->name);
4886
4887         pr_warn("\nstack backtrace:\n");
4888         dump_stack();
4889
4890         pr_warn("\nother info that might help us debug this:\n");
4891         lockdep_print_held_locks(curr);
4892
4893         pr_warn("\nstack backtrace:\n");
4894         dump_stack();
4895 }
4896
4897 static int __lock_is_held(const struct lockdep_map *lock, int read);
4898
4899 /*
4900  * This gets called for every mutex_lock*()/spin_lock*() operation.
4901  * We maintain the dependency maps and validate the locking attempt:
4902  *
4903  * The callers must make sure that IRQs are disabled before calling it,
4904  * otherwise we could get an interrupt which would want to take locks,
4905  * which would end up in lockdep again.
4906  */
4907 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4908                           int trylock, int read, int check, int hardirqs_off,
4909                           struct lockdep_map *nest_lock, unsigned long ip,
4910                           int references, int pin_count)
4911 {
4912         struct task_struct *curr = current;
4913         struct lock_class *class = NULL;
4914         struct held_lock *hlock;
4915         unsigned int depth;
4916         int chain_head = 0;
4917         int class_idx;
4918         u64 chain_key;
4919
4920         if (unlikely(!debug_locks))
4921                 return 0;
4922
4923         if (!prove_locking || lock->key == &__lockdep_no_validate__)
4924                 check = 0;
4925
4926         if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4927                 class = lock->class_cache[subclass];
4928         /*
4929          * Not cached?
4930          */
4931         if (unlikely(!class)) {
4932                 class = register_lock_class(lock, subclass, 0);
4933                 if (!class)
4934                         return 0;
4935         }
4936
4937         debug_class_ops_inc(class);
4938
4939         if (very_verbose(class)) {
4940                 printk("\nacquire class [%px] %s", class->key, class->name);
4941                 if (class->name_version > 1)
4942                         printk(KERN_CONT "#%d", class->name_version);
4943                 printk(KERN_CONT "\n");
4944                 dump_stack();
4945         }
4946
4947         /*
4948          * Add the lock to the list of currently held locks.
4949          * (we dont increase the depth just yet, up until the
4950          * dependency checks are done)
4951          */
4952         depth = curr->lockdep_depth;
4953         /*
4954          * Ran out of static storage for our per-task lock stack again have we?
4955          */
4956         if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4957                 return 0;
4958
4959         class_idx = class - lock_classes;
4960
4961         if (depth) { /* we're holding locks */
4962                 hlock = curr->held_locks + depth - 1;
4963                 if (hlock->class_idx == class_idx && nest_lock) {
4964                         if (!references)
4965                                 references++;
4966
4967                         if (!hlock->references)
4968                                 hlock->references++;
4969
4970                         hlock->references += references;
4971
4972                         /* Overflow */
4973                         if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4974                                 return 0;
4975
4976                         return 2;
4977                 }
4978         }
4979
4980         hlock = curr->held_locks + depth;
4981         /*
4982          * Plain impossible, we just registered it and checked it weren't no
4983          * NULL like.. I bet this mushroom I ate was good!
4984          */
4985         if (DEBUG_LOCKS_WARN_ON(!class))
4986                 return 0;
4987         hlock->class_idx = class_idx;
4988         hlock->acquire_ip = ip;
4989         hlock->instance = lock;
4990         hlock->nest_lock = nest_lock;
4991         hlock->irq_context = task_irq_context(curr);
4992         hlock->trylock = trylock;
4993         hlock->read = read;
4994         hlock->check = check;
4995         hlock->hardirqs_off = !!hardirqs_off;
4996         hlock->references = references;
4997 #ifdef CONFIG_LOCK_STAT
4998         hlock->waittime_stamp = 0;
4999         hlock->holdtime_stamp = lockstat_clock();
5000 #endif
5001         hlock->pin_count = pin_count;
5002
5003         if (check_wait_context(curr, hlock))
5004                 return 0;
5005
5006         /* Initialize the lock usage bit */
5007         if (!mark_usage(curr, hlock, check))
5008                 return 0;
5009
5010         /*
5011          * Calculate the chain hash: it's the combined hash of all the
5012          * lock keys along the dependency chain. We save the hash value
5013          * at every step so that we can get the current hash easily
5014          * after unlock. The chain hash is then used to cache dependency
5015          * results.
5016          *
5017          * The 'key ID' is what is the most compact key value to drive
5018          * the hash, not class->key.
5019          */
5020         /*
5021          * Whoops, we did it again.. class_idx is invalid.
5022          */
5023         if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5024                 return 0;
5025
5026         chain_key = curr->curr_chain_key;
5027         if (!depth) {
5028                 /*
5029                  * How can we have a chain hash when we ain't got no keys?!
5030                  */
5031                 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5032                         return 0;
5033                 chain_head = 1;
5034         }
5035
5036         hlock->prev_chain_key = chain_key;
5037         if (separate_irq_context(curr, hlock)) {
5038                 chain_key = INITIAL_CHAIN_KEY;
5039                 chain_head = 1;
5040         }
5041         chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5042
5043         if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5044                 print_lock_nested_lock_not_held(curr, hlock);
5045                 return 0;
5046         }
5047
5048         if (!debug_locks_silent) {
5049                 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5050                 WARN_ON_ONCE(!hlock_class(hlock)->key);
5051         }
5052
5053         if (!validate_chain(curr, hlock, chain_head, chain_key))
5054                 return 0;
5055
5056         curr->curr_chain_key = chain_key;
5057         curr->lockdep_depth++;
5058         check_chain_key(curr);
5059 #ifdef CONFIG_DEBUG_LOCKDEP
5060         if (unlikely(!debug_locks))
5061                 return 0;
5062 #endif
5063         if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5064                 debug_locks_off();
5065                 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5066                 printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5067                        curr->lockdep_depth, MAX_LOCK_DEPTH);
5068
5069                 lockdep_print_held_locks(current);
5070                 debug_show_all_locks();
5071                 dump_stack();
5072
5073                 return 0;
5074         }
5075
5076         if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5077                 max_lockdep_depth = curr->lockdep_depth;
5078
5079         return 1;
5080 }
5081
5082 static void print_unlock_imbalance_bug(struct task_struct *curr,
5083                                        struct lockdep_map *lock,
5084                                        unsigned long ip)
5085 {
5086         if (!debug_locks_off())
5087                 return;
5088         if (debug_locks_silent)
5089                 return;
5090
5091         pr_warn("\n");
5092         pr_warn("=====================================\n");
5093         pr_warn("WARNING: bad unlock balance detected!\n");
5094         print_kernel_ident();
5095         pr_warn("-------------------------------------\n");
5096         pr_warn("%s/%d is trying to release lock (",
5097                 curr->comm, task_pid_nr(curr));
5098         print_lockdep_cache(lock);
5099         pr_cont(") at:\n");
5100         print_ip_sym(KERN_WARNING, ip);
5101         pr_warn("but there are no more locks to release!\n");
5102         pr_warn("\nother info that might help us debug this:\n");
5103         lockdep_print_held_locks(curr);
5104
5105         pr_warn("\nstack backtrace:\n");
5106         dump_stack();
5107 }
5108
5109 static noinstr int match_held_lock(const struct held_lock *hlock,
5110                                    const struct lockdep_map *lock)
5111 {
5112         if (hlock->instance == lock)
5113                 return 1;
5114
5115         if (hlock->references) {
5116                 const struct lock_class *class = lock->class_cache[0];
5117
5118                 if (!class)
5119                         class = look_up_lock_class(lock, 0);
5120
5121                 /*
5122                  * If look_up_lock_class() failed to find a class, we're trying
5123                  * to test if we hold a lock that has never yet been acquired.
5124                  * Clearly if the lock hasn't been acquired _ever_, we're not
5125                  * holding it either, so report failure.
5126                  */
5127                 if (!class)
5128                         return 0;
5129
5130                 /*
5131                  * References, but not a lock we're actually ref-counting?
5132                  * State got messed up, follow the sites that change ->references
5133                  * and try to make sense of it.
5134                  */
5135                 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5136                         return 0;
5137
5138                 if (hlock->class_idx == class - lock_classes)
5139                         return 1;
5140         }
5141
5142         return 0;
5143 }
5144
5145 /* @depth must not be zero */
5146 static struct held_lock *find_held_lock(struct task_struct *curr,
5147                                         struct lockdep_map *lock,
5148                                         unsigned int depth, int *idx)
5149 {
5150         struct held_lock *ret, *hlock, *prev_hlock;
5151         int i;
5152
5153         i = depth - 1;
5154         hlock = curr->held_locks + i;
5155         ret = hlock;
5156         if (match_held_lock(hlock, lock))
5157                 goto out;
5158
5159         ret = NULL;
5160         for (i--, prev_hlock = hlock--;
5161              i >= 0;
5162              i--, prev_hlock = hlock--) {
5163                 /*
5164                  * We must not cross into another context:
5165                  */
5166                 if (prev_hlock->irq_context != hlock->irq_context) {
5167                         ret = NULL;
5168                         break;
5169                 }
5170                 if (match_held_lock(hlock, lock)) {
5171                         ret = hlock;
5172                         break;
5173                 }
5174         }
5175
5176 out:
5177         *idx = i;
5178         return ret;
5179 }
5180
5181 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5182                                 int idx, unsigned int *merged)
5183 {
5184         struct held_lock *hlock;
5185         int first_idx = idx;
5186
5187         if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5188                 return 0;
5189
5190         for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5191                 switch (__lock_acquire(hlock->instance,
5192                                     hlock_class(hlock)->subclass,
5193                                     hlock->trylock,
5194                                     hlock->read, hlock->check,
5195                                     hlock->hardirqs_off,
5196                                     hlock->nest_lock, hlock->acquire_ip,
5197                                     hlock->references, hlock->pin_count)) {
5198                 case 0:
5199                         return 1;
5200                 case 1:
5201                         break;
5202                 case 2:
5203                         *merged += (idx == first_idx);
5204                         break;
5205                 default:
5206                         WARN_ON(1);
5207                         return 0;
5208                 }
5209         }
5210         return 0;
5211 }
5212
5213 static int
5214 __lock_set_class(struct lockdep_map *lock, const char *name,
5215                  struct lock_class_key *key, unsigned int subclass,
5216                  unsigned long ip)
5217 {
5218         struct task_struct *curr = current;
5219         unsigned int depth, merged = 0;
5220         struct held_lock *hlock;
5221         struct lock_class *class;
5222         int i;
5223
5224         if (unlikely(!debug_locks))
5225                 return 0;
5226
5227         depth = curr->lockdep_depth;
5228         /*
5229          * This function is about (re)setting the class of a held lock,
5230          * yet we're not actually holding any locks. Naughty user!
5231          */
5232         if (DEBUG_LOCKS_WARN_ON(!depth))
5233                 return 0;
5234
5235         hlock = find_held_lock(curr, lock, depth, &i);
5236         if (!hlock) {
5237                 print_unlock_imbalance_bug(curr, lock, ip);
5238                 return 0;
5239         }
5240
5241         lockdep_init_map_waits(lock, name, key, 0,
5242                                lock->wait_type_inner,
5243                                lock->wait_type_outer);
5244         class = register_lock_class(lock, subclass, 0);
5245         hlock->class_idx = class - lock_classes;
5246
5247         curr->lockdep_depth = i;
5248         curr->curr_chain_key = hlock->prev_chain_key;
5249
5250         if (reacquire_held_locks(curr, depth, i, &merged))
5251                 return 0;
5252
5253         /*
5254          * I took it apart and put it back together again, except now I have
5255          * these 'spare' parts.. where shall I put them.
5256          */
5257         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5258                 return 0;
5259         return 1;
5260 }
5261
5262 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5263 {
5264         struct task_struct *curr = current;
5265         unsigned int depth, merged = 0;
5266         struct held_lock *hlock;
5267         int i;
5268
5269         if (unlikely(!debug_locks))
5270                 return 0;
5271
5272         depth = curr->lockdep_depth;
5273         /*
5274          * This function is about (re)setting the class of a held lock,
5275          * yet we're not actually holding any locks. Naughty user!
5276          */
5277         if (DEBUG_LOCKS_WARN_ON(!depth))
5278                 return 0;
5279
5280         hlock = find_held_lock(curr, lock, depth, &i);
5281         if (!hlock) {
5282                 print_unlock_imbalance_bug(curr, lock, ip);
5283                 return 0;
5284         }
5285
5286         curr->lockdep_depth = i;
5287         curr->curr_chain_key = hlock->prev_chain_key;
5288
5289         WARN(hlock->read, "downgrading a read lock");
5290         hlock->read = 1;
5291         hlock->acquire_ip = ip;
5292
5293         if (reacquire_held_locks(curr, depth, i, &merged))
5294                 return 0;
5295
5296         /* Merging can't happen with unchanged classes.. */
5297         if (DEBUG_LOCKS_WARN_ON(merged))
5298                 return 0;
5299
5300         /*
5301          * I took it apart and put it back together again, except now I have
5302          * these 'spare' parts.. where shall I put them.
5303          */
5304         if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5305                 return 0;
5306
5307         return 1;
5308 }
5309
5310 /*
5311  * Remove the lock from the list of currently held locks - this gets
5312  * called on mutex_unlock()/spin_unlock*() (or on a failed
5313  * mutex_lock_interruptible()).
5314  */
5315 static int
5316 __lock_release(struct lockdep_map *lock, unsigned long ip)
5317 {
5318         struct task_struct *curr = current;
5319         unsigned int depth, merged = 1;
5320         struct held_lock *hlock;
5321         int i;
5322
5323         if (unlikely(!debug_locks))
5324                 return 0;
5325
5326         depth = curr->lockdep_depth;
5327         /*
5328          * So we're all set to release this lock.. wait what lock? We don't
5329          * own any locks, you've been drinking again?
5330          */
5331         if (depth <= 0) {
5332                 print_unlock_imbalance_bug(curr, lock, ip);
5333                 return 0;
5334         }
5335
5336         /*
5337          * Check whether the lock exists in the current stack
5338          * of held locks:
5339          */
5340         hlock = find_held_lock(curr, lock, depth, &i);
5341         if (!hlock) {
5342                 print_unlock_imbalance_bug(curr, lock, ip);
5343                 return 0;
5344         }
5345
5346         if (hlock->instance == lock)
5347                 lock_release_holdtime(hlock);
5348
5349         WARN(hlock->pin_count, "releasing a pinned lock\n");
5350
5351         if (hlock->references) {
5352                 hlock->references--;
5353                 if (hlock->references) {
5354                         /*
5355                          * We had, and after removing one, still have
5356                          * references, the current lock stack is still
5357                          * valid. We're done!
5358                          */
5359                         return 1;
5360                 }
5361         }
5362
5363         /*
5364          * We have the right lock to unlock, 'hlock' points to it.
5365          * Now we remove it from the stack, and add back the other
5366          * entries (if any), recalculating the hash along the way:
5367          */
5368
5369         curr->lockdep_depth = i;
5370         curr->curr_chain_key = hlock->prev_chain_key;
5371
5372         /*
5373          * The most likely case is when the unlock is on the innermost
5374          * lock. In this case, we are done!
5375          */
5376         if (i == depth-1)
5377                 return 1;
5378
5379         if (reacquire_held_locks(curr, depth, i + 1, &merged))
5380                 return 0;
5381
5382         /*
5383          * We had N bottles of beer on the wall, we drank one, but now
5384          * there's not N-1 bottles of beer left on the wall...
5385          * Pouring two of the bottles together is acceptable.
5386          */
5387         DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5388
5389         /*
5390          * Since reacquire_held_locks() would have called check_chain_key()
5391          * indirectly via __lock_acquire(), we don't need to do it again
5392          * on return.
5393          */
5394         return 0;
5395 }
5396
5397 static __always_inline
5398 int __lock_is_held(const struct lockdep_map *lock, int read)
5399 {
5400         struct task_struct *curr = current;
5401         int i;
5402
5403         for (i = 0; i < curr->lockdep_depth; i++) {
5404                 struct held_lock *hlock = curr->held_locks + i;
5405
5406                 if (match_held_lock(hlock, lock)) {
5407                         if (read == -1 || !!hlock->read == read)
5408                                 return LOCK_STATE_HELD;
5409
5410                         return LOCK_STATE_NOT_HELD;
5411                 }
5412         }
5413
5414         return LOCK_STATE_NOT_HELD;
5415 }
5416
5417 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5418 {
5419         struct pin_cookie cookie = NIL_COOKIE;
5420         struct task_struct *curr = current;
5421         int i;
5422
5423         if (unlikely(!debug_locks))
5424                 return cookie;
5425
5426         for (i = 0; i < curr->lockdep_depth; i++) {
5427                 struct held_lock *hlock = curr->held_locks + i;
5428
5429                 if (match_held_lock(hlock, lock)) {
5430                         /*
5431                          * Grab 16bits of randomness; this is sufficient to not
5432                          * be guessable and still allows some pin nesting in
5433                          * our u32 pin_count.
5434                          */
5435                         cookie.val = 1 + (sched_clock() & 0xffff);
5436                         hlock->pin_count += cookie.val;
5437                         return cookie;
5438                 }
5439         }
5440
5441         WARN(1, "pinning an unheld lock\n");
5442         return cookie;
5443 }
5444
5445 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5446 {
5447         struct task_struct *curr = current;
5448         int i;
5449
5450         if (unlikely(!debug_locks))
5451                 return;
5452
5453         for (i = 0; i < curr->lockdep_depth; i++) {
5454                 struct held_lock *hlock = curr->held_locks + i;
5455
5456                 if (match_held_lock(hlock, lock)) {
5457                         hlock->pin_count += cookie.val;
5458                         return;
5459                 }
5460         }
5461
5462         WARN(1, "pinning an unheld lock\n");
5463 }
5464
5465 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5466 {
5467         struct task_struct *curr = current;
5468         int i;
5469
5470         if (unlikely(!debug_locks))
5471                 return;
5472
5473         for (i = 0; i < curr->lockdep_depth; i++) {
5474                 struct held_lock *hlock = curr->held_locks + i;
5475
5476                 if (match_held_lock(hlock, lock)) {
5477                         if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5478                                 return;
5479
5480                         hlock->pin_count -= cookie.val;
5481
5482                         if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5483                                 hlock->pin_count = 0;
5484
5485                         return;
5486                 }
5487         }
5488
5489         WARN(1, "unpinning an unheld lock\n");
5490 }
5491
5492 /*
5493  * Check whether we follow the irq-flags state precisely:
5494  */
5495 static noinstr void check_flags(unsigned long flags)
5496 {
5497 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5498         if (!debug_locks)
5499                 return;
5500
5501         /* Get the warning out..  */
5502         instrumentation_begin();
5503
5504         if (irqs_disabled_flags(flags)) {
5505                 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5506                         printk("possible reason: unannotated irqs-off.\n");
5507                 }
5508         } else {
5509                 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5510                         printk("possible reason: unannotated irqs-on.\n");
5511                 }
5512         }
5513
5514 #ifndef CONFIG_PREEMPT_RT
5515         /*
5516          * We dont accurately track softirq state in e.g.
5517          * hardirq contexts (such as on 4KSTACKS), so only
5518          * check if not in hardirq contexts:
5519          */
5520         if (!hardirq_count()) {
5521                 if (softirq_count()) {
5522                         /* like the above, but with softirqs */
5523                         DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5524                 } else {
5525                         /* lick the above, does it taste good? */
5526                         DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5527                 }
5528         }
5529 #endif
5530
5531         if (!debug_locks)
5532                 print_irqtrace_events(current);
5533
5534         instrumentation_end();
5535 #endif
5536 }
5537
5538 void lock_set_class(struct lockdep_map *lock, const char *name,
5539                     struct lock_class_key *key, unsigned int subclass,
5540                     unsigned long ip)
5541 {
5542         unsigned long flags;
5543
5544         if (unlikely(!lockdep_enabled()))
5545                 return;
5546
5547         raw_local_irq_save(flags);
5548         lockdep_recursion_inc();
5549         check_flags(flags);
5550         if (__lock_set_class(lock, name, key, subclass, ip))
5551                 check_chain_key(current);
5552         lockdep_recursion_finish();
5553         raw_local_irq_restore(flags);
5554 }
5555 EXPORT_SYMBOL_GPL(lock_set_class);
5556
5557 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5558 {
5559         unsigned long flags;
5560
5561         if (unlikely(!lockdep_enabled()))
5562                 return;
5563
5564         raw_local_irq_save(flags);
5565         lockdep_recursion_inc();
5566         check_flags(flags);
5567         if (__lock_downgrade(lock, ip))
5568                 check_chain_key(current);
5569         lockdep_recursion_finish();
5570         raw_local_irq_restore(flags);
5571 }
5572 EXPORT_SYMBOL_GPL(lock_downgrade);
5573
5574 /* NMI context !!! */
5575 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5576 {
5577 #ifdef CONFIG_PROVE_LOCKING
5578         struct lock_class *class = look_up_lock_class(lock, subclass);
5579         unsigned long mask = LOCKF_USED;
5580
5581         /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5582         if (!class)
5583                 return;
5584
5585         /*
5586          * READ locks only conflict with USED, such that if we only ever use
5587          * READ locks, there is no deadlock possible -- RCU.
5588          */
5589         if (!hlock->read)
5590                 mask |= LOCKF_USED_READ;
5591
5592         if (!(class->usage_mask & mask))
5593                 return;
5594
5595         hlock->class_idx = class - lock_classes;
5596
5597         print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5598 #endif
5599 }
5600
5601 static bool lockdep_nmi(void)
5602 {
5603         if (raw_cpu_read(lockdep_recursion))
5604                 return false;
5605
5606         if (!in_nmi())
5607                 return false;
5608
5609         return true;
5610 }
5611
5612 /*
5613  * read_lock() is recursive if:
5614  * 1. We force lockdep think this way in selftests or
5615  * 2. The implementation is not queued read/write lock or
5616  * 3. The locker is at an in_interrupt() context.
5617  */
5618 bool read_lock_is_recursive(void)
5619 {
5620         return force_read_lock_recursive ||
5621                !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5622                in_interrupt();
5623 }
5624 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5625
5626 /*
5627  * We are not always called with irqs disabled - do that here,
5628  * and also avoid lockdep recursion:
5629  */
5630 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5631                           int trylock, int read, int check,
5632                           struct lockdep_map *nest_lock, unsigned long ip)
5633 {
5634         unsigned long flags;
5635
5636         trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5637
5638         if (!debug_locks)
5639                 return;
5640
5641         if (unlikely(!lockdep_enabled())) {
5642                 /* XXX allow trylock from NMI ?!? */
5643                 if (lockdep_nmi() && !trylock) {
5644                         struct held_lock hlock;
5645
5646                         hlock.acquire_ip = ip;
5647                         hlock.instance = lock;
5648                         hlock.nest_lock = nest_lock;
5649                         hlock.irq_context = 2; // XXX
5650                         hlock.trylock = trylock;
5651                         hlock.read = read;
5652                         hlock.check = check;
5653                         hlock.hardirqs_off = true;
5654                         hlock.references = 0;
5655
5656                         verify_lock_unused(lock, &hlock, subclass);
5657                 }
5658                 return;
5659         }
5660
5661         raw_local_irq_save(flags);
5662         check_flags(flags);
5663
5664         lockdep_recursion_inc();
5665         __lock_acquire(lock, subclass, trylock, read, check,
5666                        irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5667         lockdep_recursion_finish();
5668         raw_local_irq_restore(flags);
5669 }
5670 EXPORT_SYMBOL_GPL(lock_acquire);
5671
5672 void lock_release(struct lockdep_map *lock, unsigned long ip)
5673 {
5674         unsigned long flags;
5675
5676         trace_lock_release(lock, ip);
5677
5678         if (unlikely(!lockdep_enabled()))
5679                 return;
5680
5681         raw_local_irq_save(flags);
5682         check_flags(flags);
5683
5684         lockdep_recursion_inc();
5685         if (__lock_release(lock, ip))
5686                 check_chain_key(current);
5687         lockdep_recursion_finish();
5688         raw_local_irq_restore(flags);
5689 }
5690 EXPORT_SYMBOL_GPL(lock_release);
5691
5692 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5693 {
5694         unsigned long flags;
5695         int ret = LOCK_STATE_NOT_HELD;
5696
5697         /*
5698          * Avoid false negative lockdep_assert_held() and
5699          * lockdep_assert_not_held().
5700          */
5701         if (unlikely(!lockdep_enabled()))
5702                 return LOCK_STATE_UNKNOWN;
5703
5704         raw_local_irq_save(flags);
5705         check_flags(flags);
5706
5707         lockdep_recursion_inc();
5708         ret = __lock_is_held(lock, read);
5709         lockdep_recursion_finish();
5710         raw_local_irq_restore(flags);
5711
5712         return ret;
5713 }
5714 EXPORT_SYMBOL_GPL(lock_is_held_type);
5715 NOKPROBE_SYMBOL(lock_is_held_type);
5716
5717 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5718 {
5719         struct pin_cookie cookie = NIL_COOKIE;
5720         unsigned long flags;
5721
5722         if (unlikely(!lockdep_enabled()))
5723                 return cookie;
5724
5725         raw_local_irq_save(flags);
5726         check_flags(flags);
5727
5728         lockdep_recursion_inc();
5729         cookie = __lock_pin_lock(lock);
5730         lockdep_recursion_finish();
5731         raw_local_irq_restore(flags);
5732
5733         return cookie;
5734 }
5735 EXPORT_SYMBOL_GPL(lock_pin_lock);
5736
5737 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5738 {
5739         unsigned long flags;
5740
5741         if (unlikely(!lockdep_enabled()))
5742                 return;
5743
5744         raw_local_irq_save(flags);
5745         check_flags(flags);
5746
5747         lockdep_recursion_inc();
5748         __lock_repin_lock(lock, cookie);
5749         lockdep_recursion_finish();
5750         raw_local_irq_restore(flags);
5751 }
5752 EXPORT_SYMBOL_GPL(lock_repin_lock);
5753
5754 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5755 {
5756         unsigned long flags;
5757
5758         if (unlikely(!lockdep_enabled()))
5759                 return;
5760
5761         raw_local_irq_save(flags);
5762         check_flags(flags);
5763
5764         lockdep_recursion_inc();
5765         __lock_unpin_lock(lock, cookie);
5766         lockdep_recursion_finish();
5767         raw_local_irq_restore(flags);
5768 }
5769 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5770
5771 #ifdef CONFIG_LOCK_STAT
5772 static void print_lock_contention_bug(struct task_struct *curr,
5773                                       struct lockdep_map *lock,
5774                                       unsigned long ip)
5775 {
5776         if (!debug_locks_off())
5777                 return;
5778         if (debug_locks_silent)
5779                 return;
5780
5781         pr_warn("\n");
5782         pr_warn("=================================\n");
5783         pr_warn("WARNING: bad contention detected!\n");
5784         print_kernel_ident();
5785         pr_warn("---------------------------------\n");
5786         pr_warn("%s/%d is trying to contend lock (",
5787                 curr->comm, task_pid_nr(curr));
5788         print_lockdep_cache(lock);
5789         pr_cont(") at:\n");
5790         print_ip_sym(KERN_WARNING, ip);
5791         pr_warn("but there are no locks held!\n");
5792         pr_warn("\nother info that might help us debug this:\n");
5793         lockdep_print_held_locks(curr);
5794
5795         pr_warn("\nstack backtrace:\n");
5796         dump_stack();
5797 }
5798
5799 static void
5800 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5801 {
5802         struct task_struct *curr = current;
5803         struct held_lock *hlock;
5804         struct lock_class_stats *stats;
5805         unsigned int depth;
5806         int i, contention_point, contending_point;
5807
5808         depth = curr->lockdep_depth;
5809         /*
5810          * Whee, we contended on this lock, except it seems we're not
5811          * actually trying to acquire anything much at all..
5812          */
5813         if (DEBUG_LOCKS_WARN_ON(!depth))
5814                 return;
5815
5816         hlock = find_held_lock(curr, lock, depth, &i);
5817         if (!hlock) {
5818                 print_lock_contention_bug(curr, lock, ip);
5819                 return;
5820         }
5821
5822         if (hlock->instance != lock)
5823                 return;
5824
5825         hlock->waittime_stamp = lockstat_clock();
5826
5827         contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5828         contending_point = lock_point(hlock_class(hlock)->contending_point,
5829                                       lock->ip);
5830
5831         stats = get_lock_stats(hlock_class(hlock));
5832         if (contention_point < LOCKSTAT_POINTS)
5833                 stats->contention_point[contention_point]++;
5834         if (contending_point < LOCKSTAT_POINTS)
5835                 stats->contending_point[contending_point]++;
5836         if (lock->cpu != smp_processor_id())
5837                 stats->bounces[bounce_contended + !!hlock->read]++;
5838 }
5839
5840 static void
5841 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5842 {
5843         struct task_struct *curr = current;
5844         struct held_lock *hlock;
5845         struct lock_class_stats *stats;
5846         unsigned int depth;
5847         u64 now, waittime = 0;
5848         int i, cpu;
5849
5850         depth = curr->lockdep_depth;
5851         /*
5852          * Yay, we acquired ownership of this lock we didn't try to
5853          * acquire, how the heck did that happen?
5854          */
5855         if (DEBUG_LOCKS_WARN_ON(!depth))
5856                 return;
5857
5858         hlock = find_held_lock(curr, lock, depth, &i);
5859         if (!hlock) {
5860                 print_lock_contention_bug(curr, lock, _RET_IP_);
5861                 return;
5862         }
5863
5864         if (hlock->instance != lock)
5865                 return;
5866
5867         cpu = smp_processor_id();
5868         if (hlock->waittime_stamp) {
5869                 now = lockstat_clock();
5870                 waittime = now - hlock->waittime_stamp;
5871                 hlock->holdtime_stamp = now;
5872         }
5873
5874         stats = get_lock_stats(hlock_class(hlock));
5875         if (waittime) {
5876                 if (hlock->read)
5877                         lock_time_inc(&stats->read_waittime, waittime);
5878                 else
5879                         lock_time_inc(&stats->write_waittime, waittime);
5880         }
5881         if (lock->cpu != cpu)
5882                 stats->bounces[bounce_acquired + !!hlock->read]++;
5883
5884         lock->cpu = cpu;
5885         lock->ip = ip;
5886 }
5887
5888 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5889 {
5890         unsigned long flags;
5891
5892         trace_lock_contended(lock, ip);
5893
5894         if (unlikely(!lock_stat || !lockdep_enabled()))
5895                 return;
5896
5897         raw_local_irq_save(flags);
5898         check_flags(flags);
5899         lockdep_recursion_inc();
5900         __lock_contended(lock, ip);
5901         lockdep_recursion_finish();
5902         raw_local_irq_restore(flags);
5903 }
5904 EXPORT_SYMBOL_GPL(lock_contended);
5905
5906 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5907 {
5908         unsigned long flags;
5909
5910         trace_lock_acquired(lock, ip);
5911
5912         if (unlikely(!lock_stat || !lockdep_enabled()))
5913                 return;
5914
5915         raw_local_irq_save(flags);
5916         check_flags(flags);
5917         lockdep_recursion_inc();
5918         __lock_acquired(lock, ip);
5919         lockdep_recursion_finish();
5920         raw_local_irq_restore(flags);
5921 }
5922 EXPORT_SYMBOL_GPL(lock_acquired);
5923 #endif
5924
5925 /*
5926  * Used by the testsuite, sanitize the validator state
5927  * after a simulated failure:
5928  */
5929
5930 void lockdep_reset(void)
5931 {
5932         unsigned long flags;
5933         int i;
5934
5935         raw_local_irq_save(flags);
5936         lockdep_init_task(current);
5937         memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5938         nr_hardirq_chains = 0;
5939         nr_softirq_chains = 0;
5940         nr_process_chains = 0;
5941         debug_locks = 1;
5942         for (i = 0; i < CHAINHASH_SIZE; i++)
5943                 INIT_HLIST_HEAD(chainhash_table + i);
5944         raw_local_irq_restore(flags);
5945 }
5946
5947 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5948 static void remove_class_from_lock_chain(struct pending_free *pf,
5949                                          struct lock_chain *chain,
5950                                          struct lock_class *class)
5951 {
5952 #ifdef CONFIG_PROVE_LOCKING
5953         int i;
5954
5955         for (i = chain->base; i < chain->base + chain->depth; i++) {
5956                 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5957                         continue;
5958                 /*
5959                  * Each lock class occurs at most once in a lock chain so once
5960                  * we found a match we can break out of this loop.
5961                  */
5962                 goto free_lock_chain;
5963         }
5964         /* Since the chain has not been modified, return. */
5965         return;
5966
5967 free_lock_chain:
5968         free_chain_hlocks(chain->base, chain->depth);
5969         /* Overwrite the chain key for concurrent RCU readers. */
5970         WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5971         dec_chains(chain->irq_context);
5972
5973         /*
5974          * Note: calling hlist_del_rcu() from inside a
5975          * hlist_for_each_entry_rcu() loop is safe.
5976          */
5977         hlist_del_rcu(&chain->entry);
5978         __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5979         nr_zapped_lock_chains++;
5980 #endif
5981 }
5982
5983 /* Must be called with the graph lock held. */
5984 static void remove_class_from_lock_chains(struct pending_free *pf,
5985                                           struct lock_class *class)
5986 {
5987         struct lock_chain *chain;
5988         struct hlist_head *head;
5989         int i;
5990
5991         for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5992                 head = chainhash_table + i;
5993                 hlist_for_each_entry_rcu(chain, head, entry) {
5994                         remove_class_from_lock_chain(pf, chain, class);
5995                 }
5996         }
5997 }
5998
5999 /*
6000  * Remove all references to a lock class. The caller must hold the graph lock.
6001  */
6002 static void zap_class(struct pending_free *pf, struct lock_class *class)
6003 {
6004         struct lock_list *entry;
6005         int i;
6006
6007         WARN_ON_ONCE(!class->key);
6008
6009         /*
6010          * Remove all dependencies this lock is
6011          * involved in:
6012          */
6013         for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6014                 entry = list_entries + i;
6015                 if (entry->class != class && entry->links_to != class)
6016                         continue;
6017                 __clear_bit(i, list_entries_in_use);
6018                 nr_list_entries--;
6019                 list_del_rcu(&entry->entry);
6020         }
6021         if (list_empty(&class->locks_after) &&
6022             list_empty(&class->locks_before)) {
6023                 list_move_tail(&class->lock_entry, &pf->zapped);
6024                 hlist_del_rcu(&class->hash_entry);
6025                 WRITE_ONCE(class->key, NULL);
6026                 WRITE_ONCE(class->name, NULL);
6027                 nr_lock_classes--;
6028                 __clear_bit(class - lock_classes, lock_classes_in_use);
6029                 if (class - lock_classes == max_lock_class_idx)
6030                         max_lock_class_idx--;
6031         } else {
6032                 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6033                           class->name);
6034         }
6035
6036         remove_class_from_lock_chains(pf, class);
6037         nr_zapped_classes++;
6038 }
6039
6040 static void reinit_class(struct lock_class *class)
6041 {
6042         WARN_ON_ONCE(!class->lock_entry.next);
6043         WARN_ON_ONCE(!list_empty(&class->locks_after));
6044         WARN_ON_ONCE(!list_empty(&class->locks_before));
6045         memset_startat(class, 0, key);
6046         WARN_ON_ONCE(!class->lock_entry.next);
6047         WARN_ON_ONCE(!list_empty(&class->locks_after));
6048         WARN_ON_ONCE(!list_empty(&class->locks_before));
6049 }
6050
6051 static inline int within(const void *addr, void *start, unsigned long size)
6052 {
6053         return addr >= start && addr < start + size;
6054 }
6055
6056 static bool inside_selftest(void)
6057 {
6058         return current == lockdep_selftest_task_struct;
6059 }
6060
6061 /* The caller must hold the graph lock. */
6062 static struct pending_free *get_pending_free(void)
6063 {
6064         return delayed_free.pf + delayed_free.index;
6065 }
6066
6067 static void free_zapped_rcu(struct rcu_head *cb);
6068
6069 /*
6070  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6071  * the graph lock held.
6072  */
6073 static void call_rcu_zapped(struct pending_free *pf)
6074 {
6075         WARN_ON_ONCE(inside_selftest());
6076
6077         if (list_empty(&pf->zapped))
6078                 return;
6079
6080         if (delayed_free.scheduled)
6081                 return;
6082
6083         delayed_free.scheduled = true;
6084
6085         WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6086         delayed_free.index ^= 1;
6087
6088         call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6089 }
6090
6091 /* The caller must hold the graph lock. May be called from RCU context. */
6092 static void __free_zapped_classes(struct pending_free *pf)
6093 {
6094         struct lock_class *class;
6095
6096         check_data_structures();
6097
6098         list_for_each_entry(class, &pf->zapped, lock_entry)
6099                 reinit_class(class);
6100
6101         list_splice_init(&pf->zapped, &free_lock_classes);
6102
6103 #ifdef CONFIG_PROVE_LOCKING
6104         bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6105                       pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6106         bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6107 #endif
6108 }
6109
6110 static void free_zapped_rcu(struct rcu_head *ch)
6111 {
6112         struct pending_free *pf;
6113         unsigned long flags;
6114
6115         if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6116                 return;
6117
6118         raw_local_irq_save(flags);
6119         lockdep_lock();
6120
6121         /* closed head */
6122         pf = delayed_free.pf + (delayed_free.index ^ 1);
6123         __free_zapped_classes(pf);
6124         delayed_free.scheduled = false;
6125
6126         /*
6127          * If there's anything on the open list, close and start a new callback.
6128          */
6129         call_rcu_zapped(delayed_free.pf + delayed_free.index);
6130
6131         lockdep_unlock();
6132         raw_local_irq_restore(flags);
6133 }
6134
6135 /*
6136  * Remove all lock classes from the class hash table and from the
6137  * all_lock_classes list whose key or name is in the address range [start,
6138  * start + size). Move these lock classes to the zapped_classes list. Must
6139  * be called with the graph lock held.
6140  */
6141 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6142                                      unsigned long size)
6143 {
6144         struct lock_class *class;
6145         struct hlist_head *head;
6146         int i;
6147
6148         /* Unhash all classes that were created by a module. */
6149         for (i = 0; i < CLASSHASH_SIZE; i++) {
6150                 head = classhash_table + i;
6151                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6152                         if (!within(class->key, start, size) &&
6153                             !within(class->name, start, size))
6154                                 continue;
6155                         zap_class(pf, class);
6156                 }
6157         }
6158 }
6159
6160 /*
6161  * Used in module.c to remove lock classes from memory that is going to be
6162  * freed; and possibly re-used by other modules.
6163  *
6164  * We will have had one synchronize_rcu() before getting here, so we're
6165  * guaranteed nobody will look up these exact classes -- they're properly dead
6166  * but still allocated.
6167  */
6168 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6169 {
6170         struct pending_free *pf;
6171         unsigned long flags;
6172
6173         init_data_structures_once();
6174
6175         raw_local_irq_save(flags);
6176         lockdep_lock();
6177         pf = get_pending_free();
6178         __lockdep_free_key_range(pf, start, size);
6179         call_rcu_zapped(pf);
6180         lockdep_unlock();
6181         raw_local_irq_restore(flags);
6182
6183         /*
6184          * Wait for any possible iterators from look_up_lock_class() to pass
6185          * before continuing to free the memory they refer to.
6186          */
6187         synchronize_rcu();
6188 }
6189
6190 /*
6191  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6192  * Ignores debug_locks. Must only be used by the lockdep selftests.
6193  */
6194 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6195 {
6196         struct pending_free *pf = delayed_free.pf;
6197         unsigned long flags;
6198
6199         init_data_structures_once();
6200
6201         raw_local_irq_save(flags);
6202         lockdep_lock();
6203         __lockdep_free_key_range(pf, start, size);
6204         __free_zapped_classes(pf);
6205         lockdep_unlock();
6206         raw_local_irq_restore(flags);
6207 }
6208
6209 void lockdep_free_key_range(void *start, unsigned long size)
6210 {
6211         init_data_structures_once();
6212
6213         if (inside_selftest())
6214                 lockdep_free_key_range_imm(start, size);
6215         else
6216                 lockdep_free_key_range_reg(start, size);
6217 }
6218
6219 /*
6220  * Check whether any element of the @lock->class_cache[] array refers to a
6221  * registered lock class. The caller must hold either the graph lock or the
6222  * RCU read lock.
6223  */
6224 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6225 {
6226         struct lock_class *class;
6227         struct hlist_head *head;
6228         int i, j;
6229
6230         for (i = 0; i < CLASSHASH_SIZE; i++) {
6231                 head = classhash_table + i;
6232                 hlist_for_each_entry_rcu(class, head, hash_entry) {
6233                         for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6234                                 if (lock->class_cache[j] == class)
6235                                         return true;
6236                 }
6237         }
6238         return false;
6239 }
6240
6241 /* The caller must hold the graph lock. Does not sleep. */
6242 static void __lockdep_reset_lock(struct pending_free *pf,
6243                                  struct lockdep_map *lock)
6244 {
6245         struct lock_class *class;
6246         int j;
6247
6248         /*
6249          * Remove all classes this lock might have:
6250          */
6251         for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6252                 /*
6253                  * If the class exists we look it up and zap it:
6254                  */
6255                 class = look_up_lock_class(lock, j);
6256                 if (class)
6257                         zap_class(pf, class);
6258         }
6259         /*
6260          * Debug check: in the end all mapped classes should
6261          * be gone.
6262          */
6263         if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6264                 debug_locks_off();
6265 }
6266
6267 /*
6268  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6269  * released data structures from RCU context.
6270  */
6271 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6272 {
6273         struct pending_free *pf;
6274         unsigned long flags;
6275         int locked;
6276
6277         raw_local_irq_save(flags);
6278         locked = graph_lock();
6279         if (!locked)
6280                 goto out_irq;
6281
6282         pf = get_pending_free();
6283         __lockdep_reset_lock(pf, lock);
6284         call_rcu_zapped(pf);
6285
6286         graph_unlock();
6287 out_irq:
6288         raw_local_irq_restore(flags);
6289 }
6290
6291 /*
6292  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6293  * lockdep selftests.
6294  */
6295 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6296 {
6297         struct pending_free *pf = delayed_free.pf;
6298         unsigned long flags;
6299
6300         raw_local_irq_save(flags);
6301         lockdep_lock();
6302         __lockdep_reset_lock(pf, lock);
6303         __free_zapped_classes(pf);
6304         lockdep_unlock();
6305         raw_local_irq_restore(flags);
6306 }
6307
6308 void lockdep_reset_lock(struct lockdep_map *lock)
6309 {
6310         init_data_structures_once();
6311
6312         if (inside_selftest())
6313                 lockdep_reset_lock_imm(lock);
6314         else
6315                 lockdep_reset_lock_reg(lock);
6316 }
6317
6318 /*
6319  * Unregister a dynamically allocated key.
6320  *
6321  * Unlike lockdep_register_key(), a search is always done to find a matching
6322  * key irrespective of debug_locks to avoid potential invalid access to freed
6323  * memory in lock_class entry.
6324  */
6325 void lockdep_unregister_key(struct lock_class_key *key)
6326 {
6327         struct hlist_head *hash_head = keyhashentry(key);
6328         struct lock_class_key *k;
6329         struct pending_free *pf;
6330         unsigned long flags;
6331         bool found = false;
6332
6333         might_sleep();
6334
6335         if (WARN_ON_ONCE(static_obj(key)))
6336                 return;
6337
6338         raw_local_irq_save(flags);
6339         lockdep_lock();
6340
6341         hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6342                 if (k == key) {
6343                         hlist_del_rcu(&k->hash_entry);
6344                         found = true;
6345                         break;
6346                 }
6347         }
6348         WARN_ON_ONCE(!found && debug_locks);
6349         if (found) {
6350                 pf = get_pending_free();
6351                 __lockdep_free_key_range(pf, key, 1);
6352                 call_rcu_zapped(pf);
6353         }
6354         lockdep_unlock();
6355         raw_local_irq_restore(flags);
6356
6357         /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6358         synchronize_rcu();
6359 }
6360 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6361
6362 void __init lockdep_init(void)
6363 {
6364         printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6365
6366         printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6367         printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6368         printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6369         printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6370         printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6371         printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6372         printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6373
6374         printk(" memory used by lock dependency info: %zu kB\n",
6375                (sizeof(lock_classes) +
6376                 sizeof(lock_classes_in_use) +
6377                 sizeof(classhash_table) +
6378                 sizeof(list_entries) +
6379                 sizeof(list_entries_in_use) +
6380                 sizeof(chainhash_table) +
6381                 sizeof(delayed_free)
6382 #ifdef CONFIG_PROVE_LOCKING
6383                 + sizeof(lock_cq)
6384                 + sizeof(lock_chains)
6385                 + sizeof(lock_chains_in_use)
6386                 + sizeof(chain_hlocks)
6387 #endif
6388                 ) / 1024
6389                 );
6390
6391 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6392         printk(" memory used for stack traces: %zu kB\n",
6393                (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6394                );
6395 #endif
6396
6397         printk(" per task-struct memory footprint: %zu bytes\n",
6398                sizeof(((struct task_struct *)NULL)->held_locks));
6399 }
6400
6401 static void
6402 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6403                      const void *mem_to, struct held_lock *hlock)
6404 {
6405         if (!debug_locks_off())
6406                 return;
6407         if (debug_locks_silent)
6408                 return;
6409
6410         pr_warn("\n");
6411         pr_warn("=========================\n");
6412         pr_warn("WARNING: held lock freed!\n");
6413         print_kernel_ident();
6414         pr_warn("-------------------------\n");
6415         pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6416                 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6417         print_lock(hlock);
6418         lockdep_print_held_locks(curr);
6419
6420         pr_warn("\nstack backtrace:\n");
6421         dump_stack();
6422 }
6423
6424 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6425                                 const void* lock_from, unsigned long lock_len)
6426 {
6427         return lock_from + lock_len <= mem_from ||
6428                 mem_from + mem_len <= lock_from;
6429 }
6430
6431 /*
6432  * Called when kernel memory is freed (or unmapped), or if a lock
6433  * is destroyed or reinitialized - this code checks whether there is
6434  * any held lock in the memory range of <from> to <to>:
6435  */
6436 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6437 {
6438         struct task_struct *curr = current;
6439         struct held_lock *hlock;
6440         unsigned long flags;
6441         int i;
6442
6443         if (unlikely(!debug_locks))
6444                 return;
6445
6446         raw_local_irq_save(flags);
6447         for (i = 0; i < curr->lockdep_depth; i++) {
6448                 hlock = curr->held_locks + i;
6449
6450                 if (not_in_range(mem_from, mem_len, hlock->instance,
6451                                         sizeof(*hlock->instance)))
6452                         continue;
6453
6454                 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6455                 break;
6456         }
6457         raw_local_irq_restore(flags);
6458 }
6459 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6460
6461 static void print_held_locks_bug(void)
6462 {
6463         if (!debug_locks_off())
6464                 return;
6465         if (debug_locks_silent)
6466                 return;
6467
6468         pr_warn("\n");
6469         pr_warn("====================================\n");
6470         pr_warn("WARNING: %s/%d still has locks held!\n",
6471                current->comm, task_pid_nr(current));
6472         print_kernel_ident();
6473         pr_warn("------------------------------------\n");
6474         lockdep_print_held_locks(current);
6475         pr_warn("\nstack backtrace:\n");
6476         dump_stack();
6477 }
6478
6479 void debug_check_no_locks_held(void)
6480 {
6481         if (unlikely(current->lockdep_depth > 0))
6482                 print_held_locks_bug();
6483 }
6484 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6485
6486 #ifdef __KERNEL__
6487 void debug_show_all_locks(void)
6488 {
6489         struct task_struct *g, *p;
6490
6491         if (unlikely(!debug_locks)) {
6492                 pr_warn("INFO: lockdep is turned off.\n");
6493                 return;
6494         }
6495         pr_warn("\nShowing all locks held in the system:\n");
6496
6497         rcu_read_lock();
6498         for_each_process_thread(g, p) {
6499                 if (!p->lockdep_depth)
6500                         continue;
6501                 lockdep_print_held_locks(p);
6502                 touch_nmi_watchdog();
6503                 touch_all_softlockup_watchdogs();
6504         }
6505         rcu_read_unlock();
6506
6507         pr_warn("\n");
6508         pr_warn("=============================================\n\n");
6509 }
6510 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6511 #endif
6512
6513 /*
6514  * Careful: only use this function if you are sure that
6515  * the task cannot run in parallel!
6516  */
6517 void debug_show_held_locks(struct task_struct *task)
6518 {
6519         if (unlikely(!debug_locks)) {
6520                 printk("INFO: lockdep is turned off.\n");
6521                 return;
6522         }
6523         lockdep_print_held_locks(task);
6524 }
6525 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6526
6527 asmlinkage __visible void lockdep_sys_exit(void)
6528 {
6529         struct task_struct *curr = current;
6530
6531         if (unlikely(curr->lockdep_depth)) {
6532                 if (!debug_locks_off())
6533                         return;
6534                 pr_warn("\n");
6535                 pr_warn("================================================\n");
6536                 pr_warn("WARNING: lock held when returning to user space!\n");
6537                 print_kernel_ident();
6538                 pr_warn("------------------------------------------------\n");
6539                 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6540                                 curr->comm, curr->pid);
6541                 lockdep_print_held_locks(curr);
6542         }
6543
6544         /*
6545          * The lock history for each syscall should be independent. So wipe the
6546          * slate clean on return to userspace.
6547          */
6548         lockdep_invariant_state(false);
6549 }
6550
6551 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6552 {
6553         struct task_struct *curr = current;
6554         int dl = READ_ONCE(debug_locks);
6555
6556         /* Note: the following can be executed concurrently, so be careful. */
6557         pr_warn("\n");
6558         pr_warn("=============================\n");
6559         pr_warn("WARNING: suspicious RCU usage\n");
6560         print_kernel_ident();
6561         pr_warn("-----------------------------\n");
6562         pr_warn("%s:%d %s!\n", file, line, s);
6563         pr_warn("\nother info that might help us debug this:\n\n");
6564         pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6565                !rcu_lockdep_current_cpu_online()
6566                         ? "RCU used illegally from offline CPU!\n"
6567                         : "",
6568                rcu_scheduler_active, dl,
6569                dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6570
6571         /*
6572          * If a CPU is in the RCU-free window in idle (ie: in the section
6573          * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6574          * considers that CPU to be in an "extended quiescent state",
6575          * which means that RCU will be completely ignoring that CPU.
6576          * Therefore, rcu_read_lock() and friends have absolutely no
6577          * effect on a CPU running in that state. In other words, even if
6578          * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6579          * delete data structures out from under it.  RCU really has no
6580          * choice here: we need to keep an RCU-free window in idle where
6581          * the CPU may possibly enter into low power mode. This way we can
6582          * notice an extended quiescent state to other CPUs that started a grace
6583          * period. Otherwise we would delay any grace period as long as we run
6584          * in the idle task.
6585          *
6586          * So complain bitterly if someone does call rcu_read_lock(),
6587          * rcu_read_lock_bh() and so on from extended quiescent states.
6588          */
6589         if (!rcu_is_watching())
6590                 pr_warn("RCU used illegally from extended quiescent state!\n");
6591
6592         lockdep_print_held_locks(curr);
6593         pr_warn("\nstack backtrace:\n");
6594         dump_stack();
6595 }
6596 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);