Merge tag 'printk-for-5.13-fixup' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / livepatch / transition.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * transition.c - Kernel Live Patching transition functions
4  *
5  * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
6  */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/cpu.h>
11 #include <linux/stacktrace.h>
12 #include <linux/tracehook.h>
13 #include "core.h"
14 #include "patch.h"
15 #include "transition.h"
16 #include "../sched/sched.h"
17
18 #define MAX_STACK_ENTRIES  100
19 #define STACK_ERR_BUF_SIZE 128
20
21 #define SIGNALS_TIMEOUT 15
22
23 struct klp_patch *klp_transition_patch;
24
25 static int klp_target_state = KLP_UNDEFINED;
26
27 static unsigned int klp_signals_cnt;
28
29 /*
30  * This work can be performed periodically to finish patching or unpatching any
31  * "straggler" tasks which failed to transition in the first attempt.
32  */
33 static void klp_transition_work_fn(struct work_struct *work)
34 {
35         mutex_lock(&klp_mutex);
36
37         if (klp_transition_patch)
38                 klp_try_complete_transition();
39
40         mutex_unlock(&klp_mutex);
41 }
42 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
43
44 /*
45  * This function is just a stub to implement a hard force
46  * of synchronize_rcu(). This requires synchronizing
47  * tasks even in userspace and idle.
48  */
49 static void klp_sync(struct work_struct *work)
50 {
51 }
52
53 /*
54  * We allow to patch also functions where RCU is not watching,
55  * e.g. before user_exit(). We can not rely on the RCU infrastructure
56  * to do the synchronization. Instead hard force the sched synchronization.
57  *
58  * This approach allows to use RCU functions for manipulating func_stack
59  * safely.
60  */
61 static void klp_synchronize_transition(void)
62 {
63         schedule_on_each_cpu(klp_sync);
64 }
65
66 /*
67  * The transition to the target patch state is complete.  Clean up the data
68  * structures.
69  */
70 static void klp_complete_transition(void)
71 {
72         struct klp_object *obj;
73         struct klp_func *func;
74         struct task_struct *g, *task;
75         unsigned int cpu;
76
77         pr_debug("'%s': completing %s transition\n",
78                  klp_transition_patch->mod->name,
79                  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
80
81         if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
82                 klp_unpatch_replaced_patches(klp_transition_patch);
83                 klp_discard_nops(klp_transition_patch);
84         }
85
86         if (klp_target_state == KLP_UNPATCHED) {
87                 /*
88                  * All tasks have transitioned to KLP_UNPATCHED so we can now
89                  * remove the new functions from the func_stack.
90                  */
91                 klp_unpatch_objects(klp_transition_patch);
92
93                 /*
94                  * Make sure klp_ftrace_handler() can no longer see functions
95                  * from this patch on the ops->func_stack.  Otherwise, after
96                  * func->transition gets cleared, the handler may choose a
97                  * removed function.
98                  */
99                 klp_synchronize_transition();
100         }
101
102         klp_for_each_object(klp_transition_patch, obj)
103                 klp_for_each_func(obj, func)
104                         func->transition = false;
105
106         /* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
107         if (klp_target_state == KLP_PATCHED)
108                 klp_synchronize_transition();
109
110         read_lock(&tasklist_lock);
111         for_each_process_thread(g, task) {
112                 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
113                 task->patch_state = KLP_UNDEFINED;
114         }
115         read_unlock(&tasklist_lock);
116
117         for_each_possible_cpu(cpu) {
118                 task = idle_task(cpu);
119                 WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
120                 task->patch_state = KLP_UNDEFINED;
121         }
122
123         klp_for_each_object(klp_transition_patch, obj) {
124                 if (!klp_is_object_loaded(obj))
125                         continue;
126                 if (klp_target_state == KLP_PATCHED)
127                         klp_post_patch_callback(obj);
128                 else if (klp_target_state == KLP_UNPATCHED)
129                         klp_post_unpatch_callback(obj);
130         }
131
132         pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
133                   klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
134
135         klp_target_state = KLP_UNDEFINED;
136         klp_transition_patch = NULL;
137 }
138
139 /*
140  * This is called in the error path, to cancel a transition before it has
141  * started, i.e. klp_init_transition() has been called but
142  * klp_start_transition() hasn't.  If the transition *has* been started,
143  * klp_reverse_transition() should be used instead.
144  */
145 void klp_cancel_transition(void)
146 {
147         if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
148                 return;
149
150         pr_debug("'%s': canceling patching transition, going to unpatch\n",
151                  klp_transition_patch->mod->name);
152
153         klp_target_state = KLP_UNPATCHED;
154         klp_complete_transition();
155 }
156
157 /*
158  * Switch the patched state of the task to the set of functions in the target
159  * patch state.
160  *
161  * NOTE: If task is not 'current', the caller must ensure the task is inactive.
162  * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
163  */
164 void klp_update_patch_state(struct task_struct *task)
165 {
166         /*
167          * A variant of synchronize_rcu() is used to allow patching functions
168          * where RCU is not watching, see klp_synchronize_transition().
169          */
170         preempt_disable_notrace();
171
172         /*
173          * This test_and_clear_tsk_thread_flag() call also serves as a read
174          * barrier (smp_rmb) for two cases:
175          *
176          * 1) Enforce the order of the TIF_PATCH_PENDING read and the
177          *    klp_target_state read.  The corresponding write barrier is in
178          *    klp_init_transition().
179          *
180          * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
181          *    of func->transition, if klp_ftrace_handler() is called later on
182          *    the same CPU.  See __klp_disable_patch().
183          */
184         if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
185                 task->patch_state = READ_ONCE(klp_target_state);
186
187         preempt_enable_notrace();
188 }
189
190 /*
191  * Determine whether the given stack trace includes any references to a
192  * to-be-patched or to-be-unpatched function.
193  */
194 static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
195                                 unsigned int nr_entries)
196 {
197         unsigned long func_addr, func_size, address;
198         struct klp_ops *ops;
199         int i;
200
201         for (i = 0; i < nr_entries; i++) {
202                 address = entries[i];
203
204                 if (klp_target_state == KLP_UNPATCHED) {
205                          /*
206                           * Check for the to-be-unpatched function
207                           * (the func itself).
208                           */
209                         func_addr = (unsigned long)func->new_func;
210                         func_size = func->new_size;
211                 } else {
212                         /*
213                          * Check for the to-be-patched function
214                          * (the previous func).
215                          */
216                         ops = klp_find_ops(func->old_func);
217
218                         if (list_is_singular(&ops->func_stack)) {
219                                 /* original function */
220                                 func_addr = (unsigned long)func->old_func;
221                                 func_size = func->old_size;
222                         } else {
223                                 /* previously patched function */
224                                 struct klp_func *prev;
225
226                                 prev = list_next_entry(func, stack_node);
227                                 func_addr = (unsigned long)prev->new_func;
228                                 func_size = prev->new_size;
229                         }
230                 }
231
232                 if (address >= func_addr && address < func_addr + func_size)
233                         return -EAGAIN;
234         }
235
236         return 0;
237 }
238
239 /*
240  * Determine whether it's safe to transition the task to the target patch state
241  * by looking for any to-be-patched or to-be-unpatched functions on its stack.
242  */
243 static int klp_check_stack(struct task_struct *task, char *err_buf)
244 {
245         static unsigned long entries[MAX_STACK_ENTRIES];
246         struct klp_object *obj;
247         struct klp_func *func;
248         int ret, nr_entries;
249
250         ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries));
251         if (ret < 0) {
252                 snprintf(err_buf, STACK_ERR_BUF_SIZE,
253                          "%s: %s:%d has an unreliable stack\n",
254                          __func__, task->comm, task->pid);
255                 return ret;
256         }
257         nr_entries = ret;
258
259         klp_for_each_object(klp_transition_patch, obj) {
260                 if (!obj->patched)
261                         continue;
262                 klp_for_each_func(obj, func) {
263                         ret = klp_check_stack_func(func, entries, nr_entries);
264                         if (ret) {
265                                 snprintf(err_buf, STACK_ERR_BUF_SIZE,
266                                          "%s: %s:%d is sleeping on function %s\n",
267                                          __func__, task->comm, task->pid,
268                                          func->old_name);
269                                 return ret;
270                         }
271                 }
272         }
273
274         return 0;
275 }
276
277 /*
278  * Try to safely switch a task to the target patch state.  If it's currently
279  * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
280  * if the stack is unreliable, return false.
281  */
282 static bool klp_try_switch_task(struct task_struct *task)
283 {
284         static char err_buf[STACK_ERR_BUF_SIZE];
285         struct rq *rq;
286         struct rq_flags flags;
287         int ret;
288         bool success = false;
289
290         err_buf[0] = '\0';
291
292         /* check if this task has already switched over */
293         if (task->patch_state == klp_target_state)
294                 return true;
295
296         /*
297          * For arches which don't have reliable stack traces, we have to rely
298          * on other methods (e.g., switching tasks at kernel exit).
299          */
300         if (!klp_have_reliable_stack())
301                 return false;
302
303         /*
304          * Now try to check the stack for any to-be-patched or to-be-unpatched
305          * functions.  If all goes well, switch the task to the target patch
306          * state.
307          */
308         rq = task_rq_lock(task, &flags);
309
310         if (task_running(rq, task) && task != current) {
311                 snprintf(err_buf, STACK_ERR_BUF_SIZE,
312                          "%s: %s:%d is running\n", __func__, task->comm,
313                          task->pid);
314                 goto done;
315         }
316
317         ret = klp_check_stack(task, err_buf);
318         if (ret)
319                 goto done;
320
321         success = true;
322
323         clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
324         task->patch_state = klp_target_state;
325
326 done:
327         task_rq_unlock(rq, task, &flags);
328
329         /*
330          * Due to console deadlock issues, pr_debug() can't be used while
331          * holding the task rq lock.  Instead we have to use a temporary buffer
332          * and print the debug message after releasing the lock.
333          */
334         if (err_buf[0] != '\0')
335                 pr_debug("%s", err_buf);
336
337         return success;
338 }
339
340 /*
341  * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
342  * Kthreads with TIF_PATCH_PENDING set are woken up.
343  */
344 static void klp_send_signals(void)
345 {
346         struct task_struct *g, *task;
347
348         if (klp_signals_cnt == SIGNALS_TIMEOUT)
349                 pr_notice("signaling remaining tasks\n");
350
351         read_lock(&tasklist_lock);
352         for_each_process_thread(g, task) {
353                 if (!klp_patch_pending(task))
354                         continue;
355
356                 /*
357                  * There is a small race here. We could see TIF_PATCH_PENDING
358                  * set and decide to wake up a kthread or send a fake signal.
359                  * Meanwhile the task could migrate itself and the action
360                  * would be meaningless. It is not serious though.
361                  */
362                 if (task->flags & PF_KTHREAD) {
363                         /*
364                          * Wake up a kthread which sleeps interruptedly and
365                          * still has not been migrated.
366                          */
367                         wake_up_state(task, TASK_INTERRUPTIBLE);
368                 } else {
369                         /*
370                          * Send fake signal to all non-kthread tasks which are
371                          * still not migrated.
372                          */
373                         set_notify_signal(task);
374                 }
375         }
376         read_unlock(&tasklist_lock);
377 }
378
379 /*
380  * Try to switch all remaining tasks to the target patch state by walking the
381  * stacks of sleeping tasks and looking for any to-be-patched or
382  * to-be-unpatched functions.  If such functions are found, the task can't be
383  * switched yet.
384  *
385  * If any tasks are still stuck in the initial patch state, schedule a retry.
386  */
387 void klp_try_complete_transition(void)
388 {
389         unsigned int cpu;
390         struct task_struct *g, *task;
391         struct klp_patch *patch;
392         bool complete = true;
393
394         WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
395
396         /*
397          * Try to switch the tasks to the target patch state by walking their
398          * stacks and looking for any to-be-patched or to-be-unpatched
399          * functions.  If such functions are found on a stack, or if the stack
400          * is deemed unreliable, the task can't be switched yet.
401          *
402          * Usually this will transition most (or all) of the tasks on a system
403          * unless the patch includes changes to a very common function.
404          */
405         read_lock(&tasklist_lock);
406         for_each_process_thread(g, task)
407                 if (!klp_try_switch_task(task))
408                         complete = false;
409         read_unlock(&tasklist_lock);
410
411         /*
412          * Ditto for the idle "swapper" tasks.
413          */
414         get_online_cpus();
415         for_each_possible_cpu(cpu) {
416                 task = idle_task(cpu);
417                 if (cpu_online(cpu)) {
418                         if (!klp_try_switch_task(task))
419                                 complete = false;
420                 } else if (task->patch_state != klp_target_state) {
421                         /* offline idle tasks can be switched immediately */
422                         clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
423                         task->patch_state = klp_target_state;
424                 }
425         }
426         put_online_cpus();
427
428         if (!complete) {
429                 if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
430                         klp_send_signals();
431                 klp_signals_cnt++;
432
433                 /*
434                  * Some tasks weren't able to be switched over.  Try again
435                  * later and/or wait for other methods like kernel exit
436                  * switching.
437                  */
438                 schedule_delayed_work(&klp_transition_work,
439                                       round_jiffies_relative(HZ));
440                 return;
441         }
442
443         /* we're done, now cleanup the data structures */
444         patch = klp_transition_patch;
445         klp_complete_transition();
446
447         /*
448          * It would make more sense to free the unused patches in
449          * klp_complete_transition() but it is called also
450          * from klp_cancel_transition().
451          */
452         if (!patch->enabled)
453                 klp_free_patch_async(patch);
454         else if (patch->replace)
455                 klp_free_replaced_patches_async(patch);
456 }
457
458 /*
459  * Start the transition to the specified target patch state so tasks can begin
460  * switching to it.
461  */
462 void klp_start_transition(void)
463 {
464         struct task_struct *g, *task;
465         unsigned int cpu;
466
467         WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
468
469         pr_notice("'%s': starting %s transition\n",
470                   klp_transition_patch->mod->name,
471                   klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
472
473         /*
474          * Mark all normal tasks as needing a patch state update.  They'll
475          * switch either in klp_try_complete_transition() or as they exit the
476          * kernel.
477          */
478         read_lock(&tasklist_lock);
479         for_each_process_thread(g, task)
480                 if (task->patch_state != klp_target_state)
481                         set_tsk_thread_flag(task, TIF_PATCH_PENDING);
482         read_unlock(&tasklist_lock);
483
484         /*
485          * Mark all idle tasks as needing a patch state update.  They'll switch
486          * either in klp_try_complete_transition() or at the idle loop switch
487          * point.
488          */
489         for_each_possible_cpu(cpu) {
490                 task = idle_task(cpu);
491                 if (task->patch_state != klp_target_state)
492                         set_tsk_thread_flag(task, TIF_PATCH_PENDING);
493         }
494
495         klp_signals_cnt = 0;
496 }
497
498 /*
499  * Initialize the global target patch state and all tasks to the initial patch
500  * state, and initialize all function transition states to true in preparation
501  * for patching or unpatching.
502  */
503 void klp_init_transition(struct klp_patch *patch, int state)
504 {
505         struct task_struct *g, *task;
506         unsigned int cpu;
507         struct klp_object *obj;
508         struct klp_func *func;
509         int initial_state = !state;
510
511         WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
512
513         klp_transition_patch = patch;
514
515         /*
516          * Set the global target patch state which tasks will switch to.  This
517          * has no effect until the TIF_PATCH_PENDING flags get set later.
518          */
519         klp_target_state = state;
520
521         pr_debug("'%s': initializing %s transition\n", patch->mod->name,
522                  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
523
524         /*
525          * Initialize all tasks to the initial patch state to prepare them for
526          * switching to the target state.
527          */
528         read_lock(&tasklist_lock);
529         for_each_process_thread(g, task) {
530                 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
531                 task->patch_state = initial_state;
532         }
533         read_unlock(&tasklist_lock);
534
535         /*
536          * Ditto for the idle "swapper" tasks.
537          */
538         for_each_possible_cpu(cpu) {
539                 task = idle_task(cpu);
540                 WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
541                 task->patch_state = initial_state;
542         }
543
544         /*
545          * Enforce the order of the task->patch_state initializations and the
546          * func->transition updates to ensure that klp_ftrace_handler() doesn't
547          * see a func in transition with a task->patch_state of KLP_UNDEFINED.
548          *
549          * Also enforce the order of the klp_target_state write and future
550          * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't
551          * set a task->patch_state to KLP_UNDEFINED.
552          */
553         smp_wmb();
554
555         /*
556          * Set the func transition states so klp_ftrace_handler() will know to
557          * switch to the transition logic.
558          *
559          * When patching, the funcs aren't yet in the func_stack and will be
560          * made visible to the ftrace handler shortly by the calls to
561          * klp_patch_object().
562          *
563          * When unpatching, the funcs are already in the func_stack and so are
564          * already visible to the ftrace handler.
565          */
566         klp_for_each_object(patch, obj)
567                 klp_for_each_func(obj, func)
568                         func->transition = true;
569 }
570
571 /*
572  * This function can be called in the middle of an existing transition to
573  * reverse the direction of the target patch state.  This can be done to
574  * effectively cancel an existing enable or disable operation if there are any
575  * tasks which are stuck in the initial patch state.
576  */
577 void klp_reverse_transition(void)
578 {
579         unsigned int cpu;
580         struct task_struct *g, *task;
581
582         pr_debug("'%s': reversing transition from %s\n",
583                  klp_transition_patch->mod->name,
584                  klp_target_state == KLP_PATCHED ? "patching to unpatching" :
585                                                    "unpatching to patching");
586
587         klp_transition_patch->enabled = !klp_transition_patch->enabled;
588
589         klp_target_state = !klp_target_state;
590
591         /*
592          * Clear all TIF_PATCH_PENDING flags to prevent races caused by
593          * klp_update_patch_state() running in parallel with
594          * klp_start_transition().
595          */
596         read_lock(&tasklist_lock);
597         for_each_process_thread(g, task)
598                 clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
599         read_unlock(&tasklist_lock);
600
601         for_each_possible_cpu(cpu)
602                 clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
603
604         /* Let any remaining calls to klp_update_patch_state() complete */
605         klp_synchronize_transition();
606
607         klp_start_transition();
608 }
609
610 /* Called from copy_process() during fork */
611 void klp_copy_process(struct task_struct *child)
612 {
613         child->patch_state = current->patch_state;
614
615         /* TIF_PATCH_PENDING gets copied in setup_thread_stack() */
616 }
617
618 /*
619  * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
620  * existing transition to finish.
621  *
622  * NOTE: klp_update_patch_state(task) requires the task to be inactive or
623  * 'current'. This is not the case here and the consistency model could be
624  * broken. Administrator, who is the only one to execute the
625  * klp_force_transitions(), has to be aware of this.
626  */
627 void klp_force_transition(void)
628 {
629         struct klp_patch *patch;
630         struct task_struct *g, *task;
631         unsigned int cpu;
632
633         pr_warn("forcing remaining tasks to the patched state\n");
634
635         read_lock(&tasklist_lock);
636         for_each_process_thread(g, task)
637                 klp_update_patch_state(task);
638         read_unlock(&tasklist_lock);
639
640         for_each_possible_cpu(cpu)
641                 klp_update_patch_state(idle_task(cpu));
642
643         klp_for_each_patch(patch)
644                 patch->forced = true;
645 }