Merge branch 'md-next' of https://git.kernel.org/pub/scm/linux/kernel/git/song/md...
[linux-2.6-microblaze.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39
40 #include <asm/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <linux/uaccess.h>
44
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47
48
49 static int kprobes_initialized;
50 /* kprobe_table can be accessed by
51  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
52  * Or
53  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54  */
55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
56 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
57
58 /* NOTE: change this value only with kprobe_mutex held */
59 static bool kprobes_all_disarmed;
60
61 /* This protects kprobe_table and optimizing_list */
62 static DEFINE_MUTEX(kprobe_mutex);
63 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64 static struct {
65         raw_spinlock_t lock ____cacheline_aligned_in_smp;
66 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
67
68 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
69                                         unsigned int __unused)
70 {
71         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
72 }
73
74 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
75 {
76         return &(kretprobe_table_locks[hash].lock);
77 }
78
79 /* Blacklist -- list of struct kprobe_blacklist_entry */
80 static LIST_HEAD(kprobe_blacklist);
81
82 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
83 /*
84  * kprobe->ainsn.insn points to the copy of the instruction to be
85  * single-stepped. x86_64, POWER4 and above have no-exec support and
86  * stepping on the instruction on a vmalloced/kmalloced/data page
87  * is a recipe for disaster
88  */
89 struct kprobe_insn_page {
90         struct list_head list;
91         kprobe_opcode_t *insns;         /* Page of instruction slots */
92         struct kprobe_insn_cache *cache;
93         int nused;
94         int ngarbage;
95         char slot_used[];
96 };
97
98 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
99         (offsetof(struct kprobe_insn_page, slot_used) + \
100          (sizeof(char) * (slots)))
101
102 static int slots_per_page(struct kprobe_insn_cache *c)
103 {
104         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
105 }
106
107 enum kprobe_slot_state {
108         SLOT_CLEAN = 0,
109         SLOT_DIRTY = 1,
110         SLOT_USED = 2,
111 };
112
113 void __weak *alloc_insn_page(void)
114 {
115         return module_alloc(PAGE_SIZE);
116 }
117
118 void __weak free_insn_page(void *page)
119 {
120         module_memfree(page);
121 }
122
123 struct kprobe_insn_cache kprobe_insn_slots = {
124         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
125         .alloc = alloc_insn_page,
126         .free = free_insn_page,
127         .sym = KPROBE_INSN_PAGE_SYM,
128         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
129         .insn_size = MAX_INSN_SIZE,
130         .nr_garbage = 0,
131 };
132 static int collect_garbage_slots(struct kprobe_insn_cache *c);
133
134 /**
135  * __get_insn_slot() - Find a slot on an executable page for an instruction.
136  * We allocate an executable page if there's no room on existing ones.
137  */
138 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
139 {
140         struct kprobe_insn_page *kip;
141         kprobe_opcode_t *slot = NULL;
142
143         /* Since the slot array is not protected by rcu, we need a mutex */
144         mutex_lock(&c->mutex);
145  retry:
146         rcu_read_lock();
147         list_for_each_entry_rcu(kip, &c->pages, list) {
148                 if (kip->nused < slots_per_page(c)) {
149                         int i;
150                         for (i = 0; i < slots_per_page(c); i++) {
151                                 if (kip->slot_used[i] == SLOT_CLEAN) {
152                                         kip->slot_used[i] = SLOT_USED;
153                                         kip->nused++;
154                                         slot = kip->insns + (i * c->insn_size);
155                                         rcu_read_unlock();
156                                         goto out;
157                                 }
158                         }
159                         /* kip->nused is broken. Fix it. */
160                         kip->nused = slots_per_page(c);
161                         WARN_ON(1);
162                 }
163         }
164         rcu_read_unlock();
165
166         /* If there are any garbage slots, collect it and try again. */
167         if (c->nr_garbage && collect_garbage_slots(c) == 0)
168                 goto retry;
169
170         /* All out of space.  Need to allocate a new page. */
171         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
172         if (!kip)
173                 goto out;
174
175         /*
176          * Use module_alloc so this page is within +/- 2GB of where the
177          * kernel image and loaded module images reside. This is required
178          * so x86_64 can correctly handle the %rip-relative fixups.
179          */
180         kip->insns = c->alloc();
181         if (!kip->insns) {
182                 kfree(kip);
183                 goto out;
184         }
185         INIT_LIST_HEAD(&kip->list);
186         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
187         kip->slot_used[0] = SLOT_USED;
188         kip->nused = 1;
189         kip->ngarbage = 0;
190         kip->cache = c;
191         list_add_rcu(&kip->list, &c->pages);
192         slot = kip->insns;
193
194         /* Record the perf ksymbol register event after adding the page */
195         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
196                            PAGE_SIZE, false, c->sym);
197 out:
198         mutex_unlock(&c->mutex);
199         return slot;
200 }
201
202 /* Return 1 if all garbages are collected, otherwise 0. */
203 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
204 {
205         kip->slot_used[idx] = SLOT_CLEAN;
206         kip->nused--;
207         if (kip->nused == 0) {
208                 /*
209                  * Page is no longer in use.  Free it unless
210                  * it's the last one.  We keep the last one
211                  * so as not to have to set it up again the
212                  * next time somebody inserts a probe.
213                  */
214                 if (!list_is_singular(&kip->list)) {
215                         /*
216                          * Record perf ksymbol unregister event before removing
217                          * the page.
218                          */
219                         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
220                                            (unsigned long)kip->insns, PAGE_SIZE, true,
221                                            kip->cache->sym);
222                         list_del_rcu(&kip->list);
223                         synchronize_rcu();
224                         kip->cache->free(kip->insns);
225                         kfree(kip);
226                 }
227                 return 1;
228         }
229         return 0;
230 }
231
232 static int collect_garbage_slots(struct kprobe_insn_cache *c)
233 {
234         struct kprobe_insn_page *kip, *next;
235
236         /* Ensure no-one is interrupted on the garbages */
237         synchronize_rcu();
238
239         list_for_each_entry_safe(kip, next, &c->pages, list) {
240                 int i;
241                 if (kip->ngarbage == 0)
242                         continue;
243                 kip->ngarbage = 0;      /* we will collect all garbages */
244                 for (i = 0; i < slots_per_page(c); i++) {
245                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
246                                 break;
247                 }
248         }
249         c->nr_garbage = 0;
250         return 0;
251 }
252
253 void __free_insn_slot(struct kprobe_insn_cache *c,
254                       kprobe_opcode_t *slot, int dirty)
255 {
256         struct kprobe_insn_page *kip;
257         long idx;
258
259         mutex_lock(&c->mutex);
260         rcu_read_lock();
261         list_for_each_entry_rcu(kip, &c->pages, list) {
262                 idx = ((long)slot - (long)kip->insns) /
263                         (c->insn_size * sizeof(kprobe_opcode_t));
264                 if (idx >= 0 && idx < slots_per_page(c))
265                         goto out;
266         }
267         /* Could not find this slot. */
268         WARN_ON(1);
269         kip = NULL;
270 out:
271         rcu_read_unlock();
272         /* Mark and sweep: this may sleep */
273         if (kip) {
274                 /* Check double free */
275                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
276                 if (dirty) {
277                         kip->slot_used[idx] = SLOT_DIRTY;
278                         kip->ngarbage++;
279                         if (++c->nr_garbage > slots_per_page(c))
280                                 collect_garbage_slots(c);
281                 } else {
282                         collect_one_slot(kip, idx);
283                 }
284         }
285         mutex_unlock(&c->mutex);
286 }
287
288 /*
289  * Check given address is on the page of kprobe instruction slots.
290  * This will be used for checking whether the address on a stack
291  * is on a text area or not.
292  */
293 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
294 {
295         struct kprobe_insn_page *kip;
296         bool ret = false;
297
298         rcu_read_lock();
299         list_for_each_entry_rcu(kip, &c->pages, list) {
300                 if (addr >= (unsigned long)kip->insns &&
301                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
302                         ret = true;
303                         break;
304                 }
305         }
306         rcu_read_unlock();
307
308         return ret;
309 }
310
311 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
312                              unsigned long *value, char *type, char *sym)
313 {
314         struct kprobe_insn_page *kip;
315         int ret = -ERANGE;
316
317         rcu_read_lock();
318         list_for_each_entry_rcu(kip, &c->pages, list) {
319                 if ((*symnum)--)
320                         continue;
321                 strlcpy(sym, c->sym, KSYM_NAME_LEN);
322                 *type = 't';
323                 *value = (unsigned long)kip->insns;
324                 ret = 0;
325                 break;
326         }
327         rcu_read_unlock();
328
329         return ret;
330 }
331
332 #ifdef CONFIG_OPTPROBES
333 /* For optimized_kprobe buffer */
334 struct kprobe_insn_cache kprobe_optinsn_slots = {
335         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
336         .alloc = alloc_insn_page,
337         .free = free_insn_page,
338         .sym = KPROBE_OPTINSN_PAGE_SYM,
339         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
340         /* .insn_size is initialized later */
341         .nr_garbage = 0,
342 };
343 #endif
344 #endif
345
346 /* We have preemption disabled.. so it is safe to use __ versions */
347 static inline void set_kprobe_instance(struct kprobe *kp)
348 {
349         __this_cpu_write(kprobe_instance, kp);
350 }
351
352 static inline void reset_kprobe_instance(void)
353 {
354         __this_cpu_write(kprobe_instance, NULL);
355 }
356
357 /*
358  * This routine is called either:
359  *      - under the kprobe_mutex - during kprobe_[un]register()
360  *                              OR
361  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
362  */
363 struct kprobe *get_kprobe(void *addr)
364 {
365         struct hlist_head *head;
366         struct kprobe *p;
367
368         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
369         hlist_for_each_entry_rcu(p, head, hlist,
370                                  lockdep_is_held(&kprobe_mutex)) {
371                 if (p->addr == addr)
372                         return p;
373         }
374
375         return NULL;
376 }
377 NOKPROBE_SYMBOL(get_kprobe);
378
379 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
380
381 /* Return true if the kprobe is an aggregator */
382 static inline int kprobe_aggrprobe(struct kprobe *p)
383 {
384         return p->pre_handler == aggr_pre_handler;
385 }
386
387 /* Return true(!0) if the kprobe is unused */
388 static inline int kprobe_unused(struct kprobe *p)
389 {
390         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
391                list_empty(&p->list);
392 }
393
394 /*
395  * Keep all fields in the kprobe consistent
396  */
397 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
398 {
399         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
400         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
401 }
402
403 #ifdef CONFIG_OPTPROBES
404 /* NOTE: change this value only with kprobe_mutex held */
405 static bool kprobes_allow_optimization;
406
407 /*
408  * Call all pre_handler on the list, but ignores its return value.
409  * This must be called from arch-dep optimized caller.
410  */
411 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
412 {
413         struct kprobe *kp;
414
415         list_for_each_entry_rcu(kp, &p->list, list) {
416                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
417                         set_kprobe_instance(kp);
418                         kp->pre_handler(kp, regs);
419                 }
420                 reset_kprobe_instance();
421         }
422 }
423 NOKPROBE_SYMBOL(opt_pre_handler);
424
425 /* Free optimized instructions and optimized_kprobe */
426 static void free_aggr_kprobe(struct kprobe *p)
427 {
428         struct optimized_kprobe *op;
429
430         op = container_of(p, struct optimized_kprobe, kp);
431         arch_remove_optimized_kprobe(op);
432         arch_remove_kprobe(p);
433         kfree(op);
434 }
435
436 /* Return true(!0) if the kprobe is ready for optimization. */
437 static inline int kprobe_optready(struct kprobe *p)
438 {
439         struct optimized_kprobe *op;
440
441         if (kprobe_aggrprobe(p)) {
442                 op = container_of(p, struct optimized_kprobe, kp);
443                 return arch_prepared_optinsn(&op->optinsn);
444         }
445
446         return 0;
447 }
448
449 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
450 static inline int kprobe_disarmed(struct kprobe *p)
451 {
452         struct optimized_kprobe *op;
453
454         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
455         if (!kprobe_aggrprobe(p))
456                 return kprobe_disabled(p);
457
458         op = container_of(p, struct optimized_kprobe, kp);
459
460         return kprobe_disabled(p) && list_empty(&op->list);
461 }
462
463 /* Return true(!0) if the probe is queued on (un)optimizing lists */
464 static int kprobe_queued(struct kprobe *p)
465 {
466         struct optimized_kprobe *op;
467
468         if (kprobe_aggrprobe(p)) {
469                 op = container_of(p, struct optimized_kprobe, kp);
470                 if (!list_empty(&op->list))
471                         return 1;
472         }
473         return 0;
474 }
475
476 /*
477  * Return an optimized kprobe whose optimizing code replaces
478  * instructions including addr (exclude breakpoint).
479  */
480 static struct kprobe *get_optimized_kprobe(unsigned long addr)
481 {
482         int i;
483         struct kprobe *p = NULL;
484         struct optimized_kprobe *op;
485
486         /* Don't check i == 0, since that is a breakpoint case. */
487         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
488                 p = get_kprobe((void *)(addr - i));
489
490         if (p && kprobe_optready(p)) {
491                 op = container_of(p, struct optimized_kprobe, kp);
492                 if (arch_within_optimized_kprobe(op, addr))
493                         return p;
494         }
495
496         return NULL;
497 }
498
499 /* Optimization staging list, protected by kprobe_mutex */
500 static LIST_HEAD(optimizing_list);
501 static LIST_HEAD(unoptimizing_list);
502 static LIST_HEAD(freeing_list);
503
504 static void kprobe_optimizer(struct work_struct *work);
505 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
506 #define OPTIMIZE_DELAY 5
507
508 /*
509  * Optimize (replace a breakpoint with a jump) kprobes listed on
510  * optimizing_list.
511  */
512 static void do_optimize_kprobes(void)
513 {
514         lockdep_assert_held(&text_mutex);
515         /*
516          * The optimization/unoptimization refers online_cpus via
517          * stop_machine() and cpu-hotplug modifies online_cpus.
518          * And same time, text_mutex will be held in cpu-hotplug and here.
519          * This combination can cause a deadlock (cpu-hotplug try to lock
520          * text_mutex but stop_machine can not be done because online_cpus
521          * has been changed)
522          * To avoid this deadlock, caller must have locked cpu hotplug
523          * for preventing cpu-hotplug outside of text_mutex locking.
524          */
525         lockdep_assert_cpus_held();
526
527         /* Optimization never be done when disarmed */
528         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
529             list_empty(&optimizing_list))
530                 return;
531
532         arch_optimize_kprobes(&optimizing_list);
533 }
534
535 /*
536  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
537  * if need) kprobes listed on unoptimizing_list.
538  */
539 static void do_unoptimize_kprobes(void)
540 {
541         struct optimized_kprobe *op, *tmp;
542
543         lockdep_assert_held(&text_mutex);
544         /* See comment in do_optimize_kprobes() */
545         lockdep_assert_cpus_held();
546
547         /* Unoptimization must be done anytime */
548         if (list_empty(&unoptimizing_list))
549                 return;
550
551         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
552         /* Loop free_list for disarming */
553         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
554                 /* Switching from detour code to origin */
555                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
556                 /* Disarm probes if marked disabled */
557                 if (kprobe_disabled(&op->kp))
558                         arch_disarm_kprobe(&op->kp);
559                 if (kprobe_unused(&op->kp)) {
560                         /*
561                          * Remove unused probes from hash list. After waiting
562                          * for synchronization, these probes are reclaimed.
563                          * (reclaiming is done by do_free_cleaned_kprobes.)
564                          */
565                         hlist_del_rcu(&op->kp.hlist);
566                 } else
567                         list_del_init(&op->list);
568         }
569 }
570
571 /* Reclaim all kprobes on the free_list */
572 static void do_free_cleaned_kprobes(void)
573 {
574         struct optimized_kprobe *op, *tmp;
575
576         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
577                 list_del_init(&op->list);
578                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
579                         /*
580                          * This must not happen, but if there is a kprobe
581                          * still in use, keep it on kprobes hash list.
582                          */
583                         continue;
584                 }
585                 free_aggr_kprobe(&op->kp);
586         }
587 }
588
589 /* Start optimizer after OPTIMIZE_DELAY passed */
590 static void kick_kprobe_optimizer(void)
591 {
592         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
593 }
594
595 /* Kprobe jump optimizer */
596 static void kprobe_optimizer(struct work_struct *work)
597 {
598         mutex_lock(&kprobe_mutex);
599         cpus_read_lock();
600         mutex_lock(&text_mutex);
601
602         /*
603          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
604          * kprobes before waiting for quiesence period.
605          */
606         do_unoptimize_kprobes();
607
608         /*
609          * Step 2: Wait for quiesence period to ensure all potentially
610          * preempted tasks to have normally scheduled. Because optprobe
611          * may modify multiple instructions, there is a chance that Nth
612          * instruction is preempted. In that case, such tasks can return
613          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
614          * Note that on non-preemptive kernel, this is transparently converted
615          * to synchronoze_sched() to wait for all interrupts to have completed.
616          */
617         synchronize_rcu_tasks();
618
619         /* Step 3: Optimize kprobes after quiesence period */
620         do_optimize_kprobes();
621
622         /* Step 4: Free cleaned kprobes after quiesence period */
623         do_free_cleaned_kprobes();
624
625         mutex_unlock(&text_mutex);
626         cpus_read_unlock();
627
628         /* Step 5: Kick optimizer again if needed */
629         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
630                 kick_kprobe_optimizer();
631
632         mutex_unlock(&kprobe_mutex);
633 }
634
635 /* Wait for completing optimization and unoptimization */
636 void wait_for_kprobe_optimizer(void)
637 {
638         mutex_lock(&kprobe_mutex);
639
640         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
641                 mutex_unlock(&kprobe_mutex);
642
643                 /* this will also make optimizing_work execute immmediately */
644                 flush_delayed_work(&optimizing_work);
645                 /* @optimizing_work might not have been queued yet, relax */
646                 cpu_relax();
647
648                 mutex_lock(&kprobe_mutex);
649         }
650
651         mutex_unlock(&kprobe_mutex);
652 }
653
654 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
655 {
656         struct optimized_kprobe *_op;
657
658         list_for_each_entry(_op, &unoptimizing_list, list) {
659                 if (op == _op)
660                         return true;
661         }
662
663         return false;
664 }
665
666 /* Optimize kprobe if p is ready to be optimized */
667 static void optimize_kprobe(struct kprobe *p)
668 {
669         struct optimized_kprobe *op;
670
671         /* Check if the kprobe is disabled or not ready for optimization. */
672         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
673             (kprobe_disabled(p) || kprobes_all_disarmed))
674                 return;
675
676         /* kprobes with post_handler can not be optimized */
677         if (p->post_handler)
678                 return;
679
680         op = container_of(p, struct optimized_kprobe, kp);
681
682         /* Check there is no other kprobes at the optimized instructions */
683         if (arch_check_optimized_kprobe(op) < 0)
684                 return;
685
686         /* Check if it is already optimized. */
687         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
688                 if (optprobe_queued_unopt(op)) {
689                         /* This is under unoptimizing. Just dequeue the probe */
690                         list_del_init(&op->list);
691                 }
692                 return;
693         }
694         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
695
696         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
697         if (WARN_ON_ONCE(!list_empty(&op->list)))
698                 return;
699
700         list_add(&op->list, &optimizing_list);
701         kick_kprobe_optimizer();
702 }
703
704 /* Short cut to direct unoptimizing */
705 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
706 {
707         lockdep_assert_cpus_held();
708         arch_unoptimize_kprobe(op);
709         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
710 }
711
712 /* Unoptimize a kprobe if p is optimized */
713 static void unoptimize_kprobe(struct kprobe *p, bool force)
714 {
715         struct optimized_kprobe *op;
716
717         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
718                 return; /* This is not an optprobe nor optimized */
719
720         op = container_of(p, struct optimized_kprobe, kp);
721         if (!kprobe_optimized(p))
722                 return;
723
724         if (!list_empty(&op->list)) {
725                 if (optprobe_queued_unopt(op)) {
726                         /* Queued in unoptimizing queue */
727                         if (force) {
728                                 /*
729                                  * Forcibly unoptimize the kprobe here, and queue it
730                                  * in the freeing list for release afterwards.
731                                  */
732                                 force_unoptimize_kprobe(op);
733                                 list_move(&op->list, &freeing_list);
734                         }
735                 } else {
736                         /* Dequeue from the optimizing queue */
737                         list_del_init(&op->list);
738                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
739                 }
740                 return;
741         }
742
743         /* Optimized kprobe case */
744         if (force) {
745                 /* Forcibly update the code: this is a special case */
746                 force_unoptimize_kprobe(op);
747         } else {
748                 list_add(&op->list, &unoptimizing_list);
749                 kick_kprobe_optimizer();
750         }
751 }
752
753 /* Cancel unoptimizing for reusing */
754 static int reuse_unused_kprobe(struct kprobe *ap)
755 {
756         struct optimized_kprobe *op;
757
758         /*
759          * Unused kprobe MUST be on the way of delayed unoptimizing (means
760          * there is still a relative jump) and disabled.
761          */
762         op = container_of(ap, struct optimized_kprobe, kp);
763         WARN_ON_ONCE(list_empty(&op->list));
764         /* Enable the probe again */
765         ap->flags &= ~KPROBE_FLAG_DISABLED;
766         /* Optimize it again (remove from op->list) */
767         if (!kprobe_optready(ap))
768                 return -EINVAL;
769
770         optimize_kprobe(ap);
771         return 0;
772 }
773
774 /* Remove optimized instructions */
775 static void kill_optimized_kprobe(struct kprobe *p)
776 {
777         struct optimized_kprobe *op;
778
779         op = container_of(p, struct optimized_kprobe, kp);
780         if (!list_empty(&op->list))
781                 /* Dequeue from the (un)optimization queue */
782                 list_del_init(&op->list);
783         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
784
785         if (kprobe_unused(p)) {
786                 /* Enqueue if it is unused */
787                 list_add(&op->list, &freeing_list);
788                 /*
789                  * Remove unused probes from the hash list. After waiting
790                  * for synchronization, this probe is reclaimed.
791                  * (reclaiming is done by do_free_cleaned_kprobes().)
792                  */
793                 hlist_del_rcu(&op->kp.hlist);
794         }
795
796         /* Don't touch the code, because it is already freed. */
797         arch_remove_optimized_kprobe(op);
798 }
799
800 static inline
801 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
802 {
803         if (!kprobe_ftrace(p))
804                 arch_prepare_optimized_kprobe(op, p);
805 }
806
807 /* Try to prepare optimized instructions */
808 static void prepare_optimized_kprobe(struct kprobe *p)
809 {
810         struct optimized_kprobe *op;
811
812         op = container_of(p, struct optimized_kprobe, kp);
813         __prepare_optimized_kprobe(op, p);
814 }
815
816 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
817 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
818 {
819         struct optimized_kprobe *op;
820
821         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
822         if (!op)
823                 return NULL;
824
825         INIT_LIST_HEAD(&op->list);
826         op->kp.addr = p->addr;
827         __prepare_optimized_kprobe(op, p);
828
829         return &op->kp;
830 }
831
832 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
833
834 /*
835  * Prepare an optimized_kprobe and optimize it
836  * NOTE: p must be a normal registered kprobe
837  */
838 static void try_to_optimize_kprobe(struct kprobe *p)
839 {
840         struct kprobe *ap;
841         struct optimized_kprobe *op;
842
843         /* Impossible to optimize ftrace-based kprobe */
844         if (kprobe_ftrace(p))
845                 return;
846
847         /* For preparing optimization, jump_label_text_reserved() is called */
848         cpus_read_lock();
849         jump_label_lock();
850         mutex_lock(&text_mutex);
851
852         ap = alloc_aggr_kprobe(p);
853         if (!ap)
854                 goto out;
855
856         op = container_of(ap, struct optimized_kprobe, kp);
857         if (!arch_prepared_optinsn(&op->optinsn)) {
858                 /* If failed to setup optimizing, fallback to kprobe */
859                 arch_remove_optimized_kprobe(op);
860                 kfree(op);
861                 goto out;
862         }
863
864         init_aggr_kprobe(ap, p);
865         optimize_kprobe(ap);    /* This just kicks optimizer thread */
866
867 out:
868         mutex_unlock(&text_mutex);
869         jump_label_unlock();
870         cpus_read_unlock();
871 }
872
873 #ifdef CONFIG_SYSCTL
874 static void optimize_all_kprobes(void)
875 {
876         struct hlist_head *head;
877         struct kprobe *p;
878         unsigned int i;
879
880         mutex_lock(&kprobe_mutex);
881         /* If optimization is already allowed, just return */
882         if (kprobes_allow_optimization)
883                 goto out;
884
885         cpus_read_lock();
886         kprobes_allow_optimization = true;
887         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
888                 head = &kprobe_table[i];
889                 hlist_for_each_entry(p, head, hlist)
890                         if (!kprobe_disabled(p))
891                                 optimize_kprobe(p);
892         }
893         cpus_read_unlock();
894         printk(KERN_INFO "Kprobes globally optimized\n");
895 out:
896         mutex_unlock(&kprobe_mutex);
897 }
898
899 static void unoptimize_all_kprobes(void)
900 {
901         struct hlist_head *head;
902         struct kprobe *p;
903         unsigned int i;
904
905         mutex_lock(&kprobe_mutex);
906         /* If optimization is already prohibited, just return */
907         if (!kprobes_allow_optimization) {
908                 mutex_unlock(&kprobe_mutex);
909                 return;
910         }
911
912         cpus_read_lock();
913         kprobes_allow_optimization = false;
914         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
915                 head = &kprobe_table[i];
916                 hlist_for_each_entry(p, head, hlist) {
917                         if (!kprobe_disabled(p))
918                                 unoptimize_kprobe(p, false);
919                 }
920         }
921         cpus_read_unlock();
922         mutex_unlock(&kprobe_mutex);
923
924         /* Wait for unoptimizing completion */
925         wait_for_kprobe_optimizer();
926         printk(KERN_INFO "Kprobes globally unoptimized\n");
927 }
928
929 static DEFINE_MUTEX(kprobe_sysctl_mutex);
930 int sysctl_kprobes_optimization;
931 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
932                                       void *buffer, size_t *length,
933                                       loff_t *ppos)
934 {
935         int ret;
936
937         mutex_lock(&kprobe_sysctl_mutex);
938         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
939         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
940
941         if (sysctl_kprobes_optimization)
942                 optimize_all_kprobes();
943         else
944                 unoptimize_all_kprobes();
945         mutex_unlock(&kprobe_sysctl_mutex);
946
947         return ret;
948 }
949 #endif /* CONFIG_SYSCTL */
950
951 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
952 static void __arm_kprobe(struct kprobe *p)
953 {
954         struct kprobe *_p;
955
956         /* Check collision with other optimized kprobes */
957         _p = get_optimized_kprobe((unsigned long)p->addr);
958         if (unlikely(_p))
959                 /* Fallback to unoptimized kprobe */
960                 unoptimize_kprobe(_p, true);
961
962         arch_arm_kprobe(p);
963         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
964 }
965
966 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
967 static void __disarm_kprobe(struct kprobe *p, bool reopt)
968 {
969         struct kprobe *_p;
970
971         /* Try to unoptimize */
972         unoptimize_kprobe(p, kprobes_all_disarmed);
973
974         if (!kprobe_queued(p)) {
975                 arch_disarm_kprobe(p);
976                 /* If another kprobe was blocked, optimize it. */
977                 _p = get_optimized_kprobe((unsigned long)p->addr);
978                 if (unlikely(_p) && reopt)
979                         optimize_kprobe(_p);
980         }
981         /* TODO: reoptimize others after unoptimized this probe */
982 }
983
984 #else /* !CONFIG_OPTPROBES */
985
986 #define optimize_kprobe(p)                      do {} while (0)
987 #define unoptimize_kprobe(p, f)                 do {} while (0)
988 #define kill_optimized_kprobe(p)                do {} while (0)
989 #define prepare_optimized_kprobe(p)             do {} while (0)
990 #define try_to_optimize_kprobe(p)               do {} while (0)
991 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
992 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
993 #define kprobe_disarmed(p)                      kprobe_disabled(p)
994 #define wait_for_kprobe_optimizer()             do {} while (0)
995
996 static int reuse_unused_kprobe(struct kprobe *ap)
997 {
998         /*
999          * If the optimized kprobe is NOT supported, the aggr kprobe is
1000          * released at the same time that the last aggregated kprobe is
1001          * unregistered.
1002          * Thus there should be no chance to reuse unused kprobe.
1003          */
1004         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1005         return -EINVAL;
1006 }
1007
1008 static void free_aggr_kprobe(struct kprobe *p)
1009 {
1010         arch_remove_kprobe(p);
1011         kfree(p);
1012 }
1013
1014 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1015 {
1016         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1017 }
1018 #endif /* CONFIG_OPTPROBES */
1019
1020 #ifdef CONFIG_KPROBES_ON_FTRACE
1021 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1022         .func = kprobe_ftrace_handler,
1023         .flags = FTRACE_OPS_FL_SAVE_REGS,
1024 };
1025
1026 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1027         .func = kprobe_ftrace_handler,
1028         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1029 };
1030
1031 static int kprobe_ipmodify_enabled;
1032 static int kprobe_ftrace_enabled;
1033
1034 /* Must ensure p->addr is really on ftrace */
1035 static int prepare_kprobe(struct kprobe *p)
1036 {
1037         if (!kprobe_ftrace(p))
1038                 return arch_prepare_kprobe(p);
1039
1040         return arch_prepare_kprobe_ftrace(p);
1041 }
1042
1043 /* Caller must lock kprobe_mutex */
1044 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1045                                int *cnt)
1046 {
1047         int ret = 0;
1048
1049         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1050         if (ret) {
1051                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1052                          p->addr, ret);
1053                 return ret;
1054         }
1055
1056         if (*cnt == 0) {
1057                 ret = register_ftrace_function(ops);
1058                 if (ret) {
1059                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1060                         goto err_ftrace;
1061                 }
1062         }
1063
1064         (*cnt)++;
1065         return ret;
1066
1067 err_ftrace:
1068         /*
1069          * At this point, sinec ops is not registered, we should be sefe from
1070          * registering empty filter.
1071          */
1072         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1073         return ret;
1074 }
1075
1076 static int arm_kprobe_ftrace(struct kprobe *p)
1077 {
1078         bool ipmodify = (p->post_handler != NULL);
1079
1080         return __arm_kprobe_ftrace(p,
1081                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1082                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1083 }
1084
1085 /* Caller must lock kprobe_mutex */
1086 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1087                                   int *cnt)
1088 {
1089         int ret = 0;
1090
1091         if (*cnt == 1) {
1092                 ret = unregister_ftrace_function(ops);
1093                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1094                         return ret;
1095         }
1096
1097         (*cnt)--;
1098
1099         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1100         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1101                   p->addr, ret);
1102         return ret;
1103 }
1104
1105 static int disarm_kprobe_ftrace(struct kprobe *p)
1106 {
1107         bool ipmodify = (p->post_handler != NULL);
1108
1109         return __disarm_kprobe_ftrace(p,
1110                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1111                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1112 }
1113 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1114 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1115 #define arm_kprobe_ftrace(p)    (-ENODEV)
1116 #define disarm_kprobe_ftrace(p) (-ENODEV)
1117 #endif
1118
1119 /* Arm a kprobe with text_mutex */
1120 static int arm_kprobe(struct kprobe *kp)
1121 {
1122         if (unlikely(kprobe_ftrace(kp)))
1123                 return arm_kprobe_ftrace(kp);
1124
1125         cpus_read_lock();
1126         mutex_lock(&text_mutex);
1127         __arm_kprobe(kp);
1128         mutex_unlock(&text_mutex);
1129         cpus_read_unlock();
1130
1131         return 0;
1132 }
1133
1134 /* Disarm a kprobe with text_mutex */
1135 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1136 {
1137         if (unlikely(kprobe_ftrace(kp)))
1138                 return disarm_kprobe_ftrace(kp);
1139
1140         cpus_read_lock();
1141         mutex_lock(&text_mutex);
1142         __disarm_kprobe(kp, reopt);
1143         mutex_unlock(&text_mutex);
1144         cpus_read_unlock();
1145
1146         return 0;
1147 }
1148
1149 /*
1150  * Aggregate handlers for multiple kprobes support - these handlers
1151  * take care of invoking the individual kprobe handlers on p->list
1152  */
1153 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1154 {
1155         struct kprobe *kp;
1156
1157         list_for_each_entry_rcu(kp, &p->list, list) {
1158                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1159                         set_kprobe_instance(kp);
1160                         if (kp->pre_handler(kp, regs))
1161                                 return 1;
1162                 }
1163                 reset_kprobe_instance();
1164         }
1165         return 0;
1166 }
1167 NOKPROBE_SYMBOL(aggr_pre_handler);
1168
1169 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1170                               unsigned long flags)
1171 {
1172         struct kprobe *kp;
1173
1174         list_for_each_entry_rcu(kp, &p->list, list) {
1175                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1176                         set_kprobe_instance(kp);
1177                         kp->post_handler(kp, regs, flags);
1178                         reset_kprobe_instance();
1179                 }
1180         }
1181 }
1182 NOKPROBE_SYMBOL(aggr_post_handler);
1183
1184 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1185                               int trapnr)
1186 {
1187         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1188
1189         /*
1190          * if we faulted "during" the execution of a user specified
1191          * probe handler, invoke just that probe's fault handler
1192          */
1193         if (cur && cur->fault_handler) {
1194                 if (cur->fault_handler(cur, regs, trapnr))
1195                         return 1;
1196         }
1197         return 0;
1198 }
1199 NOKPROBE_SYMBOL(aggr_fault_handler);
1200
1201 /* Walks the list and increments nmissed count for multiprobe case */
1202 void kprobes_inc_nmissed_count(struct kprobe *p)
1203 {
1204         struct kprobe *kp;
1205         if (!kprobe_aggrprobe(p)) {
1206                 p->nmissed++;
1207         } else {
1208                 list_for_each_entry_rcu(kp, &p->list, list)
1209                         kp->nmissed++;
1210         }
1211         return;
1212 }
1213 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1214
1215 void recycle_rp_inst(struct kretprobe_instance *ri,
1216                      struct hlist_head *head)
1217 {
1218         struct kretprobe *rp = ri->rp;
1219
1220         /* remove rp inst off the rprobe_inst_table */
1221         hlist_del(&ri->hlist);
1222         INIT_HLIST_NODE(&ri->hlist);
1223         if (likely(rp)) {
1224                 raw_spin_lock(&rp->lock);
1225                 hlist_add_head(&ri->hlist, &rp->free_instances);
1226                 raw_spin_unlock(&rp->lock);
1227         } else
1228                 /* Unregistering */
1229                 hlist_add_head(&ri->hlist, head);
1230 }
1231 NOKPROBE_SYMBOL(recycle_rp_inst);
1232
1233 void kretprobe_hash_lock(struct task_struct *tsk,
1234                          struct hlist_head **head, unsigned long *flags)
1235 __acquires(hlist_lock)
1236 {
1237         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1238         raw_spinlock_t *hlist_lock;
1239
1240         *head = &kretprobe_inst_table[hash];
1241         hlist_lock = kretprobe_table_lock_ptr(hash);
1242         raw_spin_lock_irqsave(hlist_lock, *flags);
1243 }
1244 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1245
1246 static void kretprobe_table_lock(unsigned long hash,
1247                                  unsigned long *flags)
1248 __acquires(hlist_lock)
1249 {
1250         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1251         raw_spin_lock_irqsave(hlist_lock, *flags);
1252 }
1253 NOKPROBE_SYMBOL(kretprobe_table_lock);
1254
1255 void kretprobe_hash_unlock(struct task_struct *tsk,
1256                            unsigned long *flags)
1257 __releases(hlist_lock)
1258 {
1259         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1260         raw_spinlock_t *hlist_lock;
1261
1262         hlist_lock = kretprobe_table_lock_ptr(hash);
1263         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1264 }
1265 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1266
1267 static void kretprobe_table_unlock(unsigned long hash,
1268                                    unsigned long *flags)
1269 __releases(hlist_lock)
1270 {
1271         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1272         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1273 }
1274 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1275
1276 struct kprobe kprobe_busy = {
1277         .addr = (void *) get_kprobe,
1278 };
1279
1280 void kprobe_busy_begin(void)
1281 {
1282         struct kprobe_ctlblk *kcb;
1283
1284         preempt_disable();
1285         __this_cpu_write(current_kprobe, &kprobe_busy);
1286         kcb = get_kprobe_ctlblk();
1287         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1288 }
1289
1290 void kprobe_busy_end(void)
1291 {
1292         __this_cpu_write(current_kprobe, NULL);
1293         preempt_enable();
1294 }
1295
1296 /*
1297  * This function is called from finish_task_switch when task tk becomes dead,
1298  * so that we can recycle any function-return probe instances associated
1299  * with this task. These left over instances represent probed functions
1300  * that have been called but will never return.
1301  */
1302 void kprobe_flush_task(struct task_struct *tk)
1303 {
1304         struct kretprobe_instance *ri;
1305         struct hlist_head *head, empty_rp;
1306         struct hlist_node *tmp;
1307         unsigned long hash, flags = 0;
1308
1309         if (unlikely(!kprobes_initialized))
1310                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1311                 return;
1312
1313         kprobe_busy_begin();
1314
1315         INIT_HLIST_HEAD(&empty_rp);
1316         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1317         head = &kretprobe_inst_table[hash];
1318         kretprobe_table_lock(hash, &flags);
1319         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1320                 if (ri->task == tk)
1321                         recycle_rp_inst(ri, &empty_rp);
1322         }
1323         kretprobe_table_unlock(hash, &flags);
1324         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1325                 hlist_del(&ri->hlist);
1326                 kfree(ri);
1327         }
1328
1329         kprobe_busy_end();
1330 }
1331 NOKPROBE_SYMBOL(kprobe_flush_task);
1332
1333 static inline void free_rp_inst(struct kretprobe *rp)
1334 {
1335         struct kretprobe_instance *ri;
1336         struct hlist_node *next;
1337
1338         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1339                 hlist_del(&ri->hlist);
1340                 kfree(ri);
1341         }
1342 }
1343
1344 static void cleanup_rp_inst(struct kretprobe *rp)
1345 {
1346         unsigned long flags, hash;
1347         struct kretprobe_instance *ri;
1348         struct hlist_node *next;
1349         struct hlist_head *head;
1350
1351         /* No race here */
1352         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1353                 kretprobe_table_lock(hash, &flags);
1354                 head = &kretprobe_inst_table[hash];
1355                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1356                         if (ri->rp == rp)
1357                                 ri->rp = NULL;
1358                 }
1359                 kretprobe_table_unlock(hash, &flags);
1360         }
1361         free_rp_inst(rp);
1362 }
1363 NOKPROBE_SYMBOL(cleanup_rp_inst);
1364
1365 /* Add the new probe to ap->list */
1366 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1367 {
1368         if (p->post_handler)
1369                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1370
1371         list_add_rcu(&p->list, &ap->list);
1372         if (p->post_handler && !ap->post_handler)
1373                 ap->post_handler = aggr_post_handler;
1374
1375         return 0;
1376 }
1377
1378 /*
1379  * Fill in the required fields of the "manager kprobe". Replace the
1380  * earlier kprobe in the hlist with the manager kprobe
1381  */
1382 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1383 {
1384         /* Copy p's insn slot to ap */
1385         copy_kprobe(p, ap);
1386         flush_insn_slot(ap);
1387         ap->addr = p->addr;
1388         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1389         ap->pre_handler = aggr_pre_handler;
1390         ap->fault_handler = aggr_fault_handler;
1391         /* We don't care the kprobe which has gone. */
1392         if (p->post_handler && !kprobe_gone(p))
1393                 ap->post_handler = aggr_post_handler;
1394
1395         INIT_LIST_HEAD(&ap->list);
1396         INIT_HLIST_NODE(&ap->hlist);
1397
1398         list_add_rcu(&p->list, &ap->list);
1399         hlist_replace_rcu(&p->hlist, &ap->hlist);
1400 }
1401
1402 /*
1403  * This is the second or subsequent kprobe at the address - handle
1404  * the intricacies
1405  */
1406 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1407 {
1408         int ret = 0;
1409         struct kprobe *ap = orig_p;
1410
1411         cpus_read_lock();
1412
1413         /* For preparing optimization, jump_label_text_reserved() is called */
1414         jump_label_lock();
1415         mutex_lock(&text_mutex);
1416
1417         if (!kprobe_aggrprobe(orig_p)) {
1418                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1419                 ap = alloc_aggr_kprobe(orig_p);
1420                 if (!ap) {
1421                         ret = -ENOMEM;
1422                         goto out;
1423                 }
1424                 init_aggr_kprobe(ap, orig_p);
1425         } else if (kprobe_unused(ap)) {
1426                 /* This probe is going to die. Rescue it */
1427                 ret = reuse_unused_kprobe(ap);
1428                 if (ret)
1429                         goto out;
1430         }
1431
1432         if (kprobe_gone(ap)) {
1433                 /*
1434                  * Attempting to insert new probe at the same location that
1435                  * had a probe in the module vaddr area which already
1436                  * freed. So, the instruction slot has already been
1437                  * released. We need a new slot for the new probe.
1438                  */
1439                 ret = arch_prepare_kprobe(ap);
1440                 if (ret)
1441                         /*
1442                          * Even if fail to allocate new slot, don't need to
1443                          * free aggr_probe. It will be used next time, or
1444                          * freed by unregister_kprobe.
1445                          */
1446                         goto out;
1447
1448                 /* Prepare optimized instructions if possible. */
1449                 prepare_optimized_kprobe(ap);
1450
1451                 /*
1452                  * Clear gone flag to prevent allocating new slot again, and
1453                  * set disabled flag because it is not armed yet.
1454                  */
1455                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1456                             | KPROBE_FLAG_DISABLED;
1457         }
1458
1459         /* Copy ap's insn slot to p */
1460         copy_kprobe(ap, p);
1461         ret = add_new_kprobe(ap, p);
1462
1463 out:
1464         mutex_unlock(&text_mutex);
1465         jump_label_unlock();
1466         cpus_read_unlock();
1467
1468         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1469                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1470                 if (!kprobes_all_disarmed) {
1471                         /* Arm the breakpoint again. */
1472                         ret = arm_kprobe(ap);
1473                         if (ret) {
1474                                 ap->flags |= KPROBE_FLAG_DISABLED;
1475                                 list_del_rcu(&p->list);
1476                                 synchronize_rcu();
1477                         }
1478                 }
1479         }
1480         return ret;
1481 }
1482
1483 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1484 {
1485         /* The __kprobes marked functions and entry code must not be probed */
1486         return addr >= (unsigned long)__kprobes_text_start &&
1487                addr < (unsigned long)__kprobes_text_end;
1488 }
1489
1490 static bool __within_kprobe_blacklist(unsigned long addr)
1491 {
1492         struct kprobe_blacklist_entry *ent;
1493
1494         if (arch_within_kprobe_blacklist(addr))
1495                 return true;
1496         /*
1497          * If there exists a kprobe_blacklist, verify and
1498          * fail any probe registration in the prohibited area
1499          */
1500         list_for_each_entry(ent, &kprobe_blacklist, list) {
1501                 if (addr >= ent->start_addr && addr < ent->end_addr)
1502                         return true;
1503         }
1504         return false;
1505 }
1506
1507 bool within_kprobe_blacklist(unsigned long addr)
1508 {
1509         char symname[KSYM_NAME_LEN], *p;
1510
1511         if (__within_kprobe_blacklist(addr))
1512                 return true;
1513
1514         /* Check if the address is on a suffixed-symbol */
1515         if (!lookup_symbol_name(addr, symname)) {
1516                 p = strchr(symname, '.');
1517                 if (!p)
1518                         return false;
1519                 *p = '\0';
1520                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1521                 if (addr)
1522                         return __within_kprobe_blacklist(addr);
1523         }
1524         return false;
1525 }
1526
1527 /*
1528  * If we have a symbol_name argument, look it up and add the offset field
1529  * to it. This way, we can specify a relative address to a symbol.
1530  * This returns encoded errors if it fails to look up symbol or invalid
1531  * combination of parameters.
1532  */
1533 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1534                         const char *symbol_name, unsigned int offset)
1535 {
1536         if ((symbol_name && addr) || (!symbol_name && !addr))
1537                 goto invalid;
1538
1539         if (symbol_name) {
1540                 addr = kprobe_lookup_name(symbol_name, offset);
1541                 if (!addr)
1542                         return ERR_PTR(-ENOENT);
1543         }
1544
1545         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1546         if (addr)
1547                 return addr;
1548
1549 invalid:
1550         return ERR_PTR(-EINVAL);
1551 }
1552
1553 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1554 {
1555         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1556 }
1557
1558 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1559 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1560 {
1561         struct kprobe *ap, *list_p;
1562
1563         lockdep_assert_held(&kprobe_mutex);
1564
1565         ap = get_kprobe(p->addr);
1566         if (unlikely(!ap))
1567                 return NULL;
1568
1569         if (p != ap) {
1570                 list_for_each_entry(list_p, &ap->list, list)
1571                         if (list_p == p)
1572                         /* kprobe p is a valid probe */
1573                                 goto valid;
1574                 return NULL;
1575         }
1576 valid:
1577         return ap;
1578 }
1579
1580 /* Return error if the kprobe is being re-registered */
1581 static inline int check_kprobe_rereg(struct kprobe *p)
1582 {
1583         int ret = 0;
1584
1585         mutex_lock(&kprobe_mutex);
1586         if (__get_valid_kprobe(p))
1587                 ret = -EINVAL;
1588         mutex_unlock(&kprobe_mutex);
1589
1590         return ret;
1591 }
1592
1593 int __weak arch_check_ftrace_location(struct kprobe *p)
1594 {
1595         unsigned long ftrace_addr;
1596
1597         ftrace_addr = ftrace_location((unsigned long)p->addr);
1598         if (ftrace_addr) {
1599 #ifdef CONFIG_KPROBES_ON_FTRACE
1600                 /* Given address is not on the instruction boundary */
1601                 if ((unsigned long)p->addr != ftrace_addr)
1602                         return -EILSEQ;
1603                 p->flags |= KPROBE_FLAG_FTRACE;
1604 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1605                 return -EINVAL;
1606 #endif
1607         }
1608         return 0;
1609 }
1610
1611 static int check_kprobe_address_safe(struct kprobe *p,
1612                                      struct module **probed_mod)
1613 {
1614         int ret;
1615
1616         ret = arch_check_ftrace_location(p);
1617         if (ret)
1618                 return ret;
1619         jump_label_lock();
1620         preempt_disable();
1621
1622         /* Ensure it is not in reserved area nor out of text */
1623         if (!kernel_text_address((unsigned long) p->addr) ||
1624             within_kprobe_blacklist((unsigned long) p->addr) ||
1625             jump_label_text_reserved(p->addr, p->addr) ||
1626             find_bug((unsigned long)p->addr)) {
1627                 ret = -EINVAL;
1628                 goto out;
1629         }
1630
1631         /* Check if are we probing a module */
1632         *probed_mod = __module_text_address((unsigned long) p->addr);
1633         if (*probed_mod) {
1634                 /*
1635                  * We must hold a refcount of the probed module while updating
1636                  * its code to prohibit unexpected unloading.
1637                  */
1638                 if (unlikely(!try_module_get(*probed_mod))) {
1639                         ret = -ENOENT;
1640                         goto out;
1641                 }
1642
1643                 /*
1644                  * If the module freed .init.text, we couldn't insert
1645                  * kprobes in there.
1646                  */
1647                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1648                     (*probed_mod)->state != MODULE_STATE_COMING) {
1649                         module_put(*probed_mod);
1650                         *probed_mod = NULL;
1651                         ret = -ENOENT;
1652                 }
1653         }
1654 out:
1655         preempt_enable();
1656         jump_label_unlock();
1657
1658         return ret;
1659 }
1660
1661 int register_kprobe(struct kprobe *p)
1662 {
1663         int ret;
1664         struct kprobe *old_p;
1665         struct module *probed_mod;
1666         kprobe_opcode_t *addr;
1667
1668         /* Adjust probe address from symbol */
1669         addr = kprobe_addr(p);
1670         if (IS_ERR(addr))
1671                 return PTR_ERR(addr);
1672         p->addr = addr;
1673
1674         ret = check_kprobe_rereg(p);
1675         if (ret)
1676                 return ret;
1677
1678         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1679         p->flags &= KPROBE_FLAG_DISABLED;
1680         p->nmissed = 0;
1681         INIT_LIST_HEAD(&p->list);
1682
1683         ret = check_kprobe_address_safe(p, &probed_mod);
1684         if (ret)
1685                 return ret;
1686
1687         mutex_lock(&kprobe_mutex);
1688
1689         old_p = get_kprobe(p->addr);
1690         if (old_p) {
1691                 /* Since this may unoptimize old_p, locking text_mutex. */
1692                 ret = register_aggr_kprobe(old_p, p);
1693                 goto out;
1694         }
1695
1696         cpus_read_lock();
1697         /* Prevent text modification */
1698         mutex_lock(&text_mutex);
1699         ret = prepare_kprobe(p);
1700         mutex_unlock(&text_mutex);
1701         cpus_read_unlock();
1702         if (ret)
1703                 goto out;
1704
1705         INIT_HLIST_NODE(&p->hlist);
1706         hlist_add_head_rcu(&p->hlist,
1707                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1708
1709         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1710                 ret = arm_kprobe(p);
1711                 if (ret) {
1712                         hlist_del_rcu(&p->hlist);
1713                         synchronize_rcu();
1714                         goto out;
1715                 }
1716         }
1717
1718         /* Try to optimize kprobe */
1719         try_to_optimize_kprobe(p);
1720 out:
1721         mutex_unlock(&kprobe_mutex);
1722
1723         if (probed_mod)
1724                 module_put(probed_mod);
1725
1726         return ret;
1727 }
1728 EXPORT_SYMBOL_GPL(register_kprobe);
1729
1730 /* Check if all probes on the aggrprobe are disabled */
1731 static int aggr_kprobe_disabled(struct kprobe *ap)
1732 {
1733         struct kprobe *kp;
1734
1735         lockdep_assert_held(&kprobe_mutex);
1736
1737         list_for_each_entry(kp, &ap->list, list)
1738                 if (!kprobe_disabled(kp))
1739                         /*
1740                          * There is an active probe on the list.
1741                          * We can't disable this ap.
1742                          */
1743                         return 0;
1744
1745         return 1;
1746 }
1747
1748 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1749 static struct kprobe *__disable_kprobe(struct kprobe *p)
1750 {
1751         struct kprobe *orig_p;
1752         int ret;
1753
1754         /* Get an original kprobe for return */
1755         orig_p = __get_valid_kprobe(p);
1756         if (unlikely(orig_p == NULL))
1757                 return ERR_PTR(-EINVAL);
1758
1759         if (!kprobe_disabled(p)) {
1760                 /* Disable probe if it is a child probe */
1761                 if (p != orig_p)
1762                         p->flags |= KPROBE_FLAG_DISABLED;
1763
1764                 /* Try to disarm and disable this/parent probe */
1765                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1766                         /*
1767                          * If kprobes_all_disarmed is set, orig_p
1768                          * should have already been disarmed, so
1769                          * skip unneed disarming process.
1770                          */
1771                         if (!kprobes_all_disarmed) {
1772                                 ret = disarm_kprobe(orig_p, true);
1773                                 if (ret) {
1774                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1775                                         return ERR_PTR(ret);
1776                                 }
1777                         }
1778                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1779                 }
1780         }
1781
1782         return orig_p;
1783 }
1784
1785 /*
1786  * Unregister a kprobe without a scheduler synchronization.
1787  */
1788 static int __unregister_kprobe_top(struct kprobe *p)
1789 {
1790         struct kprobe *ap, *list_p;
1791
1792         /* Disable kprobe. This will disarm it if needed. */
1793         ap = __disable_kprobe(p);
1794         if (IS_ERR(ap))
1795                 return PTR_ERR(ap);
1796
1797         if (ap == p)
1798                 /*
1799                  * This probe is an independent(and non-optimized) kprobe
1800                  * (not an aggrprobe). Remove from the hash list.
1801                  */
1802                 goto disarmed;
1803
1804         /* Following process expects this probe is an aggrprobe */
1805         WARN_ON(!kprobe_aggrprobe(ap));
1806
1807         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1808                 /*
1809                  * !disarmed could be happen if the probe is under delayed
1810                  * unoptimizing.
1811                  */
1812                 goto disarmed;
1813         else {
1814                 /* If disabling probe has special handlers, update aggrprobe */
1815                 if (p->post_handler && !kprobe_gone(p)) {
1816                         list_for_each_entry(list_p, &ap->list, list) {
1817                                 if ((list_p != p) && (list_p->post_handler))
1818                                         goto noclean;
1819                         }
1820                         ap->post_handler = NULL;
1821                 }
1822 noclean:
1823                 /*
1824                  * Remove from the aggrprobe: this path will do nothing in
1825                  * __unregister_kprobe_bottom().
1826                  */
1827                 list_del_rcu(&p->list);
1828                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1829                         /*
1830                          * Try to optimize this probe again, because post
1831                          * handler may have been changed.
1832                          */
1833                         optimize_kprobe(ap);
1834         }
1835         return 0;
1836
1837 disarmed:
1838         hlist_del_rcu(&ap->hlist);
1839         return 0;
1840 }
1841
1842 static void __unregister_kprobe_bottom(struct kprobe *p)
1843 {
1844         struct kprobe *ap;
1845
1846         if (list_empty(&p->list))
1847                 /* This is an independent kprobe */
1848                 arch_remove_kprobe(p);
1849         else if (list_is_singular(&p->list)) {
1850                 /* This is the last child of an aggrprobe */
1851                 ap = list_entry(p->list.next, struct kprobe, list);
1852                 list_del(&p->list);
1853                 free_aggr_kprobe(ap);
1854         }
1855         /* Otherwise, do nothing. */
1856 }
1857
1858 int register_kprobes(struct kprobe **kps, int num)
1859 {
1860         int i, ret = 0;
1861
1862         if (num <= 0)
1863                 return -EINVAL;
1864         for (i = 0; i < num; i++) {
1865                 ret = register_kprobe(kps[i]);
1866                 if (ret < 0) {
1867                         if (i > 0)
1868                                 unregister_kprobes(kps, i);
1869                         break;
1870                 }
1871         }
1872         return ret;
1873 }
1874 EXPORT_SYMBOL_GPL(register_kprobes);
1875
1876 void unregister_kprobe(struct kprobe *p)
1877 {
1878         unregister_kprobes(&p, 1);
1879 }
1880 EXPORT_SYMBOL_GPL(unregister_kprobe);
1881
1882 void unregister_kprobes(struct kprobe **kps, int num)
1883 {
1884         int i;
1885
1886         if (num <= 0)
1887                 return;
1888         mutex_lock(&kprobe_mutex);
1889         for (i = 0; i < num; i++)
1890                 if (__unregister_kprobe_top(kps[i]) < 0)
1891                         kps[i]->addr = NULL;
1892         mutex_unlock(&kprobe_mutex);
1893
1894         synchronize_rcu();
1895         for (i = 0; i < num; i++)
1896                 if (kps[i]->addr)
1897                         __unregister_kprobe_bottom(kps[i]);
1898 }
1899 EXPORT_SYMBOL_GPL(unregister_kprobes);
1900
1901 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1902                                         unsigned long val, void *data)
1903 {
1904         return NOTIFY_DONE;
1905 }
1906 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1907
1908 static struct notifier_block kprobe_exceptions_nb = {
1909         .notifier_call = kprobe_exceptions_notify,
1910         .priority = 0x7fffffff /* we need to be notified first */
1911 };
1912
1913 unsigned long __weak arch_deref_entry_point(void *entry)
1914 {
1915         return (unsigned long)entry;
1916 }
1917
1918 #ifdef CONFIG_KRETPROBES
1919 /*
1920  * This kprobe pre_handler is registered with every kretprobe. When probe
1921  * hits it will set up the return probe.
1922  */
1923 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1924 {
1925         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1926         unsigned long hash, flags = 0;
1927         struct kretprobe_instance *ri;
1928
1929         /*
1930          * To avoid deadlocks, prohibit return probing in NMI contexts,
1931          * just skip the probe and increase the (inexact) 'nmissed'
1932          * statistical counter, so that the user is informed that
1933          * something happened:
1934          */
1935         if (unlikely(in_nmi())) {
1936                 rp->nmissed++;
1937                 return 0;
1938         }
1939
1940         /* TODO: consider to only swap the RA after the last pre_handler fired */
1941         hash = hash_ptr(current, KPROBE_HASH_BITS);
1942         raw_spin_lock_irqsave(&rp->lock, flags);
1943         if (!hlist_empty(&rp->free_instances)) {
1944                 ri = hlist_entry(rp->free_instances.first,
1945                                 struct kretprobe_instance, hlist);
1946                 hlist_del(&ri->hlist);
1947                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1948
1949                 ri->rp = rp;
1950                 ri->task = current;
1951
1952                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1953                         raw_spin_lock_irqsave(&rp->lock, flags);
1954                         hlist_add_head(&ri->hlist, &rp->free_instances);
1955                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1956                         return 0;
1957                 }
1958
1959                 arch_prepare_kretprobe(ri, regs);
1960
1961                 /* XXX(hch): why is there no hlist_move_head? */
1962                 INIT_HLIST_NODE(&ri->hlist);
1963                 kretprobe_table_lock(hash, &flags);
1964                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1965                 kretprobe_table_unlock(hash, &flags);
1966         } else {
1967                 rp->nmissed++;
1968                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1969         }
1970         return 0;
1971 }
1972 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1973
1974 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1975 {
1976         return !offset;
1977 }
1978
1979 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1980 {
1981         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1982
1983         if (IS_ERR(kp_addr))
1984                 return false;
1985
1986         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1987                                                 !arch_kprobe_on_func_entry(offset))
1988                 return false;
1989
1990         return true;
1991 }
1992
1993 int register_kretprobe(struct kretprobe *rp)
1994 {
1995         int ret = 0;
1996         struct kretprobe_instance *inst;
1997         int i;
1998         void *addr;
1999
2000         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
2001                 return -EINVAL;
2002
2003         if (kretprobe_blacklist_size) {
2004                 addr = kprobe_addr(&rp->kp);
2005                 if (IS_ERR(addr))
2006                         return PTR_ERR(addr);
2007
2008                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2009                         if (kretprobe_blacklist[i].addr == addr)
2010                                 return -EINVAL;
2011                 }
2012         }
2013
2014         rp->kp.pre_handler = pre_handler_kretprobe;
2015         rp->kp.post_handler = NULL;
2016         rp->kp.fault_handler = NULL;
2017
2018         /* Pre-allocate memory for max kretprobe instances */
2019         if (rp->maxactive <= 0) {
2020 #ifdef CONFIG_PREEMPTION
2021                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2022 #else
2023                 rp->maxactive = num_possible_cpus();
2024 #endif
2025         }
2026         raw_spin_lock_init(&rp->lock);
2027         INIT_HLIST_HEAD(&rp->free_instances);
2028         for (i = 0; i < rp->maxactive; i++) {
2029                 inst = kmalloc(sizeof(struct kretprobe_instance) +
2030                                rp->data_size, GFP_KERNEL);
2031                 if (inst == NULL) {
2032                         free_rp_inst(rp);
2033                         return -ENOMEM;
2034                 }
2035                 INIT_HLIST_NODE(&inst->hlist);
2036                 hlist_add_head(&inst->hlist, &rp->free_instances);
2037         }
2038
2039         rp->nmissed = 0;
2040         /* Establish function entry probe point */
2041         ret = register_kprobe(&rp->kp);
2042         if (ret != 0)
2043                 free_rp_inst(rp);
2044         return ret;
2045 }
2046 EXPORT_SYMBOL_GPL(register_kretprobe);
2047
2048 int register_kretprobes(struct kretprobe **rps, int num)
2049 {
2050         int ret = 0, i;
2051
2052         if (num <= 0)
2053                 return -EINVAL;
2054         for (i = 0; i < num; i++) {
2055                 ret = register_kretprobe(rps[i]);
2056                 if (ret < 0) {
2057                         if (i > 0)
2058                                 unregister_kretprobes(rps, i);
2059                         break;
2060                 }
2061         }
2062         return ret;
2063 }
2064 EXPORT_SYMBOL_GPL(register_kretprobes);
2065
2066 void unregister_kretprobe(struct kretprobe *rp)
2067 {
2068         unregister_kretprobes(&rp, 1);
2069 }
2070 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2071
2072 void unregister_kretprobes(struct kretprobe **rps, int num)
2073 {
2074         int i;
2075
2076         if (num <= 0)
2077                 return;
2078         mutex_lock(&kprobe_mutex);
2079         for (i = 0; i < num; i++)
2080                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2081                         rps[i]->kp.addr = NULL;
2082         mutex_unlock(&kprobe_mutex);
2083
2084         synchronize_rcu();
2085         for (i = 0; i < num; i++) {
2086                 if (rps[i]->kp.addr) {
2087                         __unregister_kprobe_bottom(&rps[i]->kp);
2088                         cleanup_rp_inst(rps[i]);
2089                 }
2090         }
2091 }
2092 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2093
2094 #else /* CONFIG_KRETPROBES */
2095 int register_kretprobe(struct kretprobe *rp)
2096 {
2097         return -ENOSYS;
2098 }
2099 EXPORT_SYMBOL_GPL(register_kretprobe);
2100
2101 int register_kretprobes(struct kretprobe **rps, int num)
2102 {
2103         return -ENOSYS;
2104 }
2105 EXPORT_SYMBOL_GPL(register_kretprobes);
2106
2107 void unregister_kretprobe(struct kretprobe *rp)
2108 {
2109 }
2110 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2111
2112 void unregister_kretprobes(struct kretprobe **rps, int num)
2113 {
2114 }
2115 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2116
2117 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2118 {
2119         return 0;
2120 }
2121 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2122
2123 #endif /* CONFIG_KRETPROBES */
2124
2125 /* Set the kprobe gone and remove its instruction buffer. */
2126 static void kill_kprobe(struct kprobe *p)
2127 {
2128         struct kprobe *kp;
2129
2130         lockdep_assert_held(&kprobe_mutex);
2131
2132         p->flags |= KPROBE_FLAG_GONE;
2133         if (kprobe_aggrprobe(p)) {
2134                 /*
2135                  * If this is an aggr_kprobe, we have to list all the
2136                  * chained probes and mark them GONE.
2137                  */
2138                 list_for_each_entry(kp, &p->list, list)
2139                         kp->flags |= KPROBE_FLAG_GONE;
2140                 p->post_handler = NULL;
2141                 kill_optimized_kprobe(p);
2142         }
2143         /*
2144          * Here, we can remove insn_slot safely, because no thread calls
2145          * the original probed function (which will be freed soon) any more.
2146          */
2147         arch_remove_kprobe(p);
2148 }
2149
2150 /* Disable one kprobe */
2151 int disable_kprobe(struct kprobe *kp)
2152 {
2153         int ret = 0;
2154         struct kprobe *p;
2155
2156         mutex_lock(&kprobe_mutex);
2157
2158         /* Disable this kprobe */
2159         p = __disable_kprobe(kp);
2160         if (IS_ERR(p))
2161                 ret = PTR_ERR(p);
2162
2163         mutex_unlock(&kprobe_mutex);
2164         return ret;
2165 }
2166 EXPORT_SYMBOL_GPL(disable_kprobe);
2167
2168 /* Enable one kprobe */
2169 int enable_kprobe(struct kprobe *kp)
2170 {
2171         int ret = 0;
2172         struct kprobe *p;
2173
2174         mutex_lock(&kprobe_mutex);
2175
2176         /* Check whether specified probe is valid. */
2177         p = __get_valid_kprobe(kp);
2178         if (unlikely(p == NULL)) {
2179                 ret = -EINVAL;
2180                 goto out;
2181         }
2182
2183         if (kprobe_gone(kp)) {
2184                 /* This kprobe has gone, we couldn't enable it. */
2185                 ret = -EINVAL;
2186                 goto out;
2187         }
2188
2189         if (p != kp)
2190                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2191
2192         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2193                 p->flags &= ~KPROBE_FLAG_DISABLED;
2194                 ret = arm_kprobe(p);
2195                 if (ret)
2196                         p->flags |= KPROBE_FLAG_DISABLED;
2197         }
2198 out:
2199         mutex_unlock(&kprobe_mutex);
2200         return ret;
2201 }
2202 EXPORT_SYMBOL_GPL(enable_kprobe);
2203
2204 /* Caller must NOT call this in usual path. This is only for critical case */
2205 void dump_kprobe(struct kprobe *kp)
2206 {
2207         pr_err("Dumping kprobe:\n");
2208         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2209                kp->symbol_name, kp->offset, kp->addr);
2210 }
2211 NOKPROBE_SYMBOL(dump_kprobe);
2212
2213 int kprobe_add_ksym_blacklist(unsigned long entry)
2214 {
2215         struct kprobe_blacklist_entry *ent;
2216         unsigned long offset = 0, size = 0;
2217
2218         if (!kernel_text_address(entry) ||
2219             !kallsyms_lookup_size_offset(entry, &size, &offset))
2220                 return -EINVAL;
2221
2222         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2223         if (!ent)
2224                 return -ENOMEM;
2225         ent->start_addr = entry;
2226         ent->end_addr = entry + size;
2227         INIT_LIST_HEAD(&ent->list);
2228         list_add_tail(&ent->list, &kprobe_blacklist);
2229
2230         return (int)size;
2231 }
2232
2233 /* Add all symbols in given area into kprobe blacklist */
2234 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2235 {
2236         unsigned long entry;
2237         int ret = 0;
2238
2239         for (entry = start; entry < end; entry += ret) {
2240                 ret = kprobe_add_ksym_blacklist(entry);
2241                 if (ret < 0)
2242                         return ret;
2243                 if (ret == 0)   /* In case of alias symbol */
2244                         ret = 1;
2245         }
2246         return 0;
2247 }
2248
2249 /* Remove all symbols in given area from kprobe blacklist */
2250 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2251 {
2252         struct kprobe_blacklist_entry *ent, *n;
2253
2254         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2255                 if (ent->start_addr < start || ent->start_addr >= end)
2256                         continue;
2257                 list_del(&ent->list);
2258                 kfree(ent);
2259         }
2260 }
2261
2262 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2263 {
2264         kprobe_remove_area_blacklist(entry, entry + 1);
2265 }
2266
2267 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2268                                    char *type, char *sym)
2269 {
2270         return -ERANGE;
2271 }
2272
2273 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2274                        char *sym)
2275 {
2276 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2277         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2278                 return 0;
2279 #ifdef CONFIG_OPTPROBES
2280         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2281                 return 0;
2282 #endif
2283 #endif
2284         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2285                 return 0;
2286         return -ERANGE;
2287 }
2288
2289 int __init __weak arch_populate_kprobe_blacklist(void)
2290 {
2291         return 0;
2292 }
2293
2294 /*
2295  * Lookup and populate the kprobe_blacklist.
2296  *
2297  * Unlike the kretprobe blacklist, we'll need to determine
2298  * the range of addresses that belong to the said functions,
2299  * since a kprobe need not necessarily be at the beginning
2300  * of a function.
2301  */
2302 static int __init populate_kprobe_blacklist(unsigned long *start,
2303                                              unsigned long *end)
2304 {
2305         unsigned long entry;
2306         unsigned long *iter;
2307         int ret;
2308
2309         for (iter = start; iter < end; iter++) {
2310                 entry = arch_deref_entry_point((void *)*iter);
2311                 ret = kprobe_add_ksym_blacklist(entry);
2312                 if (ret == -EINVAL)
2313                         continue;
2314                 if (ret < 0)
2315                         return ret;
2316         }
2317
2318         /* Symbols in __kprobes_text are blacklisted */
2319         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2320                                         (unsigned long)__kprobes_text_end);
2321         if (ret)
2322                 return ret;
2323
2324         /* Symbols in noinstr section are blacklisted */
2325         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2326                                         (unsigned long)__noinstr_text_end);
2327
2328         return ret ? : arch_populate_kprobe_blacklist();
2329 }
2330
2331 static void add_module_kprobe_blacklist(struct module *mod)
2332 {
2333         unsigned long start, end;
2334         int i;
2335
2336         if (mod->kprobe_blacklist) {
2337                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2338                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2339         }
2340
2341         start = (unsigned long)mod->kprobes_text_start;
2342         if (start) {
2343                 end = start + mod->kprobes_text_size;
2344                 kprobe_add_area_blacklist(start, end);
2345         }
2346
2347         start = (unsigned long)mod->noinstr_text_start;
2348         if (start) {
2349                 end = start + mod->noinstr_text_size;
2350                 kprobe_add_area_blacklist(start, end);
2351         }
2352 }
2353
2354 static void remove_module_kprobe_blacklist(struct module *mod)
2355 {
2356         unsigned long start, end;
2357         int i;
2358
2359         if (mod->kprobe_blacklist) {
2360                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2361                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2362         }
2363
2364         start = (unsigned long)mod->kprobes_text_start;
2365         if (start) {
2366                 end = start + mod->kprobes_text_size;
2367                 kprobe_remove_area_blacklist(start, end);
2368         }
2369
2370         start = (unsigned long)mod->noinstr_text_start;
2371         if (start) {
2372                 end = start + mod->noinstr_text_size;
2373                 kprobe_remove_area_blacklist(start, end);
2374         }
2375 }
2376
2377 /* Module notifier call back, checking kprobes on the module */
2378 static int kprobes_module_callback(struct notifier_block *nb,
2379                                    unsigned long val, void *data)
2380 {
2381         struct module *mod = data;
2382         struct hlist_head *head;
2383         struct kprobe *p;
2384         unsigned int i;
2385         int checkcore = (val == MODULE_STATE_GOING);
2386
2387         if (val == MODULE_STATE_COMING) {
2388                 mutex_lock(&kprobe_mutex);
2389                 add_module_kprobe_blacklist(mod);
2390                 mutex_unlock(&kprobe_mutex);
2391         }
2392         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2393                 return NOTIFY_DONE;
2394
2395         /*
2396          * When MODULE_STATE_GOING was notified, both of module .text and
2397          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2398          * notified, only .init.text section would be freed. We need to
2399          * disable kprobes which have been inserted in the sections.
2400          */
2401         mutex_lock(&kprobe_mutex);
2402         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2403                 head = &kprobe_table[i];
2404                 hlist_for_each_entry(p, head, hlist)
2405                         if (within_module_init((unsigned long)p->addr, mod) ||
2406                             (checkcore &&
2407                              within_module_core((unsigned long)p->addr, mod))) {
2408                                 /*
2409                                  * The vaddr this probe is installed will soon
2410                                  * be vfreed buy not synced to disk. Hence,
2411                                  * disarming the breakpoint isn't needed.
2412                                  *
2413                                  * Note, this will also move any optimized probes
2414                                  * that are pending to be removed from their
2415                                  * corresponding lists to the freeing_list and
2416                                  * will not be touched by the delayed
2417                                  * kprobe_optimizer work handler.
2418                                  */
2419                                 kill_kprobe(p);
2420                         }
2421         }
2422         if (val == MODULE_STATE_GOING)
2423                 remove_module_kprobe_blacklist(mod);
2424         mutex_unlock(&kprobe_mutex);
2425         return NOTIFY_DONE;
2426 }
2427
2428 static struct notifier_block kprobe_module_nb = {
2429         .notifier_call = kprobes_module_callback,
2430         .priority = 0
2431 };
2432
2433 /* Markers of _kprobe_blacklist section */
2434 extern unsigned long __start_kprobe_blacklist[];
2435 extern unsigned long __stop_kprobe_blacklist[];
2436
2437 static int __init init_kprobes(void)
2438 {
2439         int i, err = 0;
2440
2441         /* FIXME allocate the probe table, currently defined statically */
2442         /* initialize all list heads */
2443         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2444                 INIT_HLIST_HEAD(&kprobe_table[i]);
2445                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2446                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2447         }
2448
2449         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2450                                         __stop_kprobe_blacklist);
2451         if (err) {
2452                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2453                 pr_err("Please take care of using kprobes.\n");
2454         }
2455
2456         if (kretprobe_blacklist_size) {
2457                 /* lookup the function address from its name */
2458                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2459                         kretprobe_blacklist[i].addr =
2460                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2461                         if (!kretprobe_blacklist[i].addr)
2462                                 printk("kretprobe: lookup failed: %s\n",
2463                                        kretprobe_blacklist[i].name);
2464                 }
2465         }
2466
2467 #if defined(CONFIG_OPTPROBES)
2468 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2469         /* Init kprobe_optinsn_slots */
2470         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2471 #endif
2472         /* By default, kprobes can be optimized */
2473         kprobes_allow_optimization = true;
2474 #endif
2475
2476         /* By default, kprobes are armed */
2477         kprobes_all_disarmed = false;
2478
2479         err = arch_init_kprobes();
2480         if (!err)
2481                 err = register_die_notifier(&kprobe_exceptions_nb);
2482         if (!err)
2483                 err = register_module_notifier(&kprobe_module_nb);
2484
2485         kprobes_initialized = (err == 0);
2486
2487         if (!err)
2488                 init_test_probes();
2489         return err;
2490 }
2491 subsys_initcall(init_kprobes);
2492
2493 #ifdef CONFIG_DEBUG_FS
2494 static void report_probe(struct seq_file *pi, struct kprobe *p,
2495                 const char *sym, int offset, char *modname, struct kprobe *pp)
2496 {
2497         char *kprobe_type;
2498         void *addr = p->addr;
2499
2500         if (p->pre_handler == pre_handler_kretprobe)
2501                 kprobe_type = "r";
2502         else
2503                 kprobe_type = "k";
2504
2505         if (!kallsyms_show_value(pi->file->f_cred))
2506                 addr = NULL;
2507
2508         if (sym)
2509                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2510                         addr, kprobe_type, sym, offset,
2511                         (modname ? modname : " "));
2512         else    /* try to use %pS */
2513                 seq_printf(pi, "%px  %s  %pS ",
2514                         addr, kprobe_type, p->addr);
2515
2516         if (!pp)
2517                 pp = p;
2518         seq_printf(pi, "%s%s%s%s\n",
2519                 (kprobe_gone(p) ? "[GONE]" : ""),
2520                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2521                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2522                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2523 }
2524
2525 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2526 {
2527         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2528 }
2529
2530 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2531 {
2532         (*pos)++;
2533         if (*pos >= KPROBE_TABLE_SIZE)
2534                 return NULL;
2535         return pos;
2536 }
2537
2538 static void kprobe_seq_stop(struct seq_file *f, void *v)
2539 {
2540         /* Nothing to do */
2541 }
2542
2543 static int show_kprobe_addr(struct seq_file *pi, void *v)
2544 {
2545         struct hlist_head *head;
2546         struct kprobe *p, *kp;
2547         const char *sym = NULL;
2548         unsigned int i = *(loff_t *) v;
2549         unsigned long offset = 0;
2550         char *modname, namebuf[KSYM_NAME_LEN];
2551
2552         head = &kprobe_table[i];
2553         preempt_disable();
2554         hlist_for_each_entry_rcu(p, head, hlist) {
2555                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2556                                         &offset, &modname, namebuf);
2557                 if (kprobe_aggrprobe(p)) {
2558                         list_for_each_entry_rcu(kp, &p->list, list)
2559                                 report_probe(pi, kp, sym, offset, modname, p);
2560                 } else
2561                         report_probe(pi, p, sym, offset, modname, NULL);
2562         }
2563         preempt_enable();
2564         return 0;
2565 }
2566
2567 static const struct seq_operations kprobes_sops = {
2568         .start = kprobe_seq_start,
2569         .next  = kprobe_seq_next,
2570         .stop  = kprobe_seq_stop,
2571         .show  = show_kprobe_addr
2572 };
2573
2574 DEFINE_SEQ_ATTRIBUTE(kprobes);
2575
2576 /* kprobes/blacklist -- shows which functions can not be probed */
2577 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2578 {
2579         mutex_lock(&kprobe_mutex);
2580         return seq_list_start(&kprobe_blacklist, *pos);
2581 }
2582
2583 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2584 {
2585         return seq_list_next(v, &kprobe_blacklist, pos);
2586 }
2587
2588 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2589 {
2590         struct kprobe_blacklist_entry *ent =
2591                 list_entry(v, struct kprobe_blacklist_entry, list);
2592
2593         /*
2594          * If /proc/kallsyms is not showing kernel address, we won't
2595          * show them here either.
2596          */
2597         if (!kallsyms_show_value(m->file->f_cred))
2598                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2599                            (void *)ent->start_addr);
2600         else
2601                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2602                            (void *)ent->end_addr, (void *)ent->start_addr);
2603         return 0;
2604 }
2605
2606 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2607 {
2608         mutex_unlock(&kprobe_mutex);
2609 }
2610
2611 static const struct seq_operations kprobe_blacklist_sops = {
2612         .start = kprobe_blacklist_seq_start,
2613         .next  = kprobe_blacklist_seq_next,
2614         .stop  = kprobe_blacklist_seq_stop,
2615         .show  = kprobe_blacklist_seq_show,
2616 };
2617 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2618
2619 static int arm_all_kprobes(void)
2620 {
2621         struct hlist_head *head;
2622         struct kprobe *p;
2623         unsigned int i, total = 0, errors = 0;
2624         int err, ret = 0;
2625
2626         mutex_lock(&kprobe_mutex);
2627
2628         /* If kprobes are armed, just return */
2629         if (!kprobes_all_disarmed)
2630                 goto already_enabled;
2631
2632         /*
2633          * optimize_kprobe() called by arm_kprobe() checks
2634          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2635          * arm_kprobe.
2636          */
2637         kprobes_all_disarmed = false;
2638         /* Arming kprobes doesn't optimize kprobe itself */
2639         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2640                 head = &kprobe_table[i];
2641                 /* Arm all kprobes on a best-effort basis */
2642                 hlist_for_each_entry(p, head, hlist) {
2643                         if (!kprobe_disabled(p)) {
2644                                 err = arm_kprobe(p);
2645                                 if (err)  {
2646                                         errors++;
2647                                         ret = err;
2648                                 }
2649                                 total++;
2650                         }
2651                 }
2652         }
2653
2654         if (errors)
2655                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2656                         errors, total);
2657         else
2658                 pr_info("Kprobes globally enabled\n");
2659
2660 already_enabled:
2661         mutex_unlock(&kprobe_mutex);
2662         return ret;
2663 }
2664
2665 static int disarm_all_kprobes(void)
2666 {
2667         struct hlist_head *head;
2668         struct kprobe *p;
2669         unsigned int i, total = 0, errors = 0;
2670         int err, ret = 0;
2671
2672         mutex_lock(&kprobe_mutex);
2673
2674         /* If kprobes are already disarmed, just return */
2675         if (kprobes_all_disarmed) {
2676                 mutex_unlock(&kprobe_mutex);
2677                 return 0;
2678         }
2679
2680         kprobes_all_disarmed = true;
2681
2682         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2683                 head = &kprobe_table[i];
2684                 /* Disarm all kprobes on a best-effort basis */
2685                 hlist_for_each_entry(p, head, hlist) {
2686                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2687                                 err = disarm_kprobe(p, false);
2688                                 if (err) {
2689                                         errors++;
2690                                         ret = err;
2691                                 }
2692                                 total++;
2693                         }
2694                 }
2695         }
2696
2697         if (errors)
2698                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2699                         errors, total);
2700         else
2701                 pr_info("Kprobes globally disabled\n");
2702
2703         mutex_unlock(&kprobe_mutex);
2704
2705         /* Wait for disarming all kprobes by optimizer */
2706         wait_for_kprobe_optimizer();
2707
2708         return ret;
2709 }
2710
2711 /*
2712  * XXX: The debugfs bool file interface doesn't allow for callbacks
2713  * when the bool state is switched. We can reuse that facility when
2714  * available
2715  */
2716 static ssize_t read_enabled_file_bool(struct file *file,
2717                char __user *user_buf, size_t count, loff_t *ppos)
2718 {
2719         char buf[3];
2720
2721         if (!kprobes_all_disarmed)
2722                 buf[0] = '1';
2723         else
2724                 buf[0] = '0';
2725         buf[1] = '\n';
2726         buf[2] = 0x00;
2727         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2728 }
2729
2730 static ssize_t write_enabled_file_bool(struct file *file,
2731                const char __user *user_buf, size_t count, loff_t *ppos)
2732 {
2733         char buf[32];
2734         size_t buf_size;
2735         int ret = 0;
2736
2737         buf_size = min(count, (sizeof(buf)-1));
2738         if (copy_from_user(buf, user_buf, buf_size))
2739                 return -EFAULT;
2740
2741         buf[buf_size] = '\0';
2742         switch (buf[0]) {
2743         case 'y':
2744         case 'Y':
2745         case '1':
2746                 ret = arm_all_kprobes();
2747                 break;
2748         case 'n':
2749         case 'N':
2750         case '0':
2751                 ret = disarm_all_kprobes();
2752                 break;
2753         default:
2754                 return -EINVAL;
2755         }
2756
2757         if (ret)
2758                 return ret;
2759
2760         return count;
2761 }
2762
2763 static const struct file_operations fops_kp = {
2764         .read =         read_enabled_file_bool,
2765         .write =        write_enabled_file_bool,
2766         .llseek =       default_llseek,
2767 };
2768
2769 static int __init debugfs_kprobe_init(void)
2770 {
2771         struct dentry *dir;
2772         unsigned int value = 1;
2773
2774         dir = debugfs_create_dir("kprobes", NULL);
2775
2776         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2777
2778         debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2779
2780         debugfs_create_file("blacklist", 0400, dir, NULL,
2781                             &kprobe_blacklist_fops);
2782
2783         return 0;
2784 }
2785
2786 late_initcall(debugfs_kprobe_init);
2787 #endif /* CONFIG_DEBUG_FS */