Merge tag 'imx-fixes-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/shawnguo...
[linux-2.6-microblaze.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38
39 #include <asm/sections.h>
40 #include <asm/cacheflush.h>
41 #include <asm/errno.h>
42 #include <linux/uaccess.h>
43
44 #define KPROBE_HASH_BITS 6
45 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
46
47
48 static int kprobes_initialized;
49 /* kprobe_table can be accessed by
50  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
51  * Or
52  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
53  */
54 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
55 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
56
57 /* NOTE: change this value only with kprobe_mutex held */
58 static bool kprobes_all_disarmed;
59
60 /* This protects kprobe_table and optimizing_list */
61 static DEFINE_MUTEX(kprobe_mutex);
62 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
63 static struct {
64         raw_spinlock_t lock ____cacheline_aligned_in_smp;
65 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
66
67 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
68                                         unsigned int __unused)
69 {
70         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
71 }
72
73 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
74 {
75         return &(kretprobe_table_locks[hash].lock);
76 }
77
78 /* Blacklist -- list of struct kprobe_blacklist_entry */
79 static LIST_HEAD(kprobe_blacklist);
80
81 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
82 /*
83  * kprobe->ainsn.insn points to the copy of the instruction to be
84  * single-stepped. x86_64, POWER4 and above have no-exec support and
85  * stepping on the instruction on a vmalloced/kmalloced/data page
86  * is a recipe for disaster
87  */
88 struct kprobe_insn_page {
89         struct list_head list;
90         kprobe_opcode_t *insns;         /* Page of instruction slots */
91         struct kprobe_insn_cache *cache;
92         int nused;
93         int ngarbage;
94         char slot_used[];
95 };
96
97 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
98         (offsetof(struct kprobe_insn_page, slot_used) + \
99          (sizeof(char) * (slots)))
100
101 static int slots_per_page(struct kprobe_insn_cache *c)
102 {
103         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
104 }
105
106 enum kprobe_slot_state {
107         SLOT_CLEAN = 0,
108         SLOT_DIRTY = 1,
109         SLOT_USED = 2,
110 };
111
112 void __weak *alloc_insn_page(void)
113 {
114         return module_alloc(PAGE_SIZE);
115 }
116
117 void __weak free_insn_page(void *page)
118 {
119         module_memfree(page);
120 }
121
122 struct kprobe_insn_cache kprobe_insn_slots = {
123         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
124         .alloc = alloc_insn_page,
125         .free = free_insn_page,
126         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
127         .insn_size = MAX_INSN_SIZE,
128         .nr_garbage = 0,
129 };
130 static int collect_garbage_slots(struct kprobe_insn_cache *c);
131
132 /**
133  * __get_insn_slot() - Find a slot on an executable page for an instruction.
134  * We allocate an executable page if there's no room on existing ones.
135  */
136 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
137 {
138         struct kprobe_insn_page *kip;
139         kprobe_opcode_t *slot = NULL;
140
141         /* Since the slot array is not protected by rcu, we need a mutex */
142         mutex_lock(&c->mutex);
143  retry:
144         rcu_read_lock();
145         list_for_each_entry_rcu(kip, &c->pages, list) {
146                 if (kip->nused < slots_per_page(c)) {
147                         int i;
148                         for (i = 0; i < slots_per_page(c); i++) {
149                                 if (kip->slot_used[i] == SLOT_CLEAN) {
150                                         kip->slot_used[i] = SLOT_USED;
151                                         kip->nused++;
152                                         slot = kip->insns + (i * c->insn_size);
153                                         rcu_read_unlock();
154                                         goto out;
155                                 }
156                         }
157                         /* kip->nused is broken. Fix it. */
158                         kip->nused = slots_per_page(c);
159                         WARN_ON(1);
160                 }
161         }
162         rcu_read_unlock();
163
164         /* If there are any garbage slots, collect it and try again. */
165         if (c->nr_garbage && collect_garbage_slots(c) == 0)
166                 goto retry;
167
168         /* All out of space.  Need to allocate a new page. */
169         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
170         if (!kip)
171                 goto out;
172
173         /*
174          * Use module_alloc so this page is within +/- 2GB of where the
175          * kernel image and loaded module images reside. This is required
176          * so x86_64 can correctly handle the %rip-relative fixups.
177          */
178         kip->insns = c->alloc();
179         if (!kip->insns) {
180                 kfree(kip);
181                 goto out;
182         }
183         INIT_LIST_HEAD(&kip->list);
184         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
185         kip->slot_used[0] = SLOT_USED;
186         kip->nused = 1;
187         kip->ngarbage = 0;
188         kip->cache = c;
189         list_add_rcu(&kip->list, &c->pages);
190         slot = kip->insns;
191 out:
192         mutex_unlock(&c->mutex);
193         return slot;
194 }
195
196 /* Return 1 if all garbages are collected, otherwise 0. */
197 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
198 {
199         kip->slot_used[idx] = SLOT_CLEAN;
200         kip->nused--;
201         if (kip->nused == 0) {
202                 /*
203                  * Page is no longer in use.  Free it unless
204                  * it's the last one.  We keep the last one
205                  * so as not to have to set it up again the
206                  * next time somebody inserts a probe.
207                  */
208                 if (!list_is_singular(&kip->list)) {
209                         list_del_rcu(&kip->list);
210                         synchronize_rcu();
211                         kip->cache->free(kip->insns);
212                         kfree(kip);
213                 }
214                 return 1;
215         }
216         return 0;
217 }
218
219 static int collect_garbage_slots(struct kprobe_insn_cache *c)
220 {
221         struct kprobe_insn_page *kip, *next;
222
223         /* Ensure no-one is interrupted on the garbages */
224         synchronize_rcu();
225
226         list_for_each_entry_safe(kip, next, &c->pages, list) {
227                 int i;
228                 if (kip->ngarbage == 0)
229                         continue;
230                 kip->ngarbage = 0;      /* we will collect all garbages */
231                 for (i = 0; i < slots_per_page(c); i++) {
232                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
233                                 break;
234                 }
235         }
236         c->nr_garbage = 0;
237         return 0;
238 }
239
240 void __free_insn_slot(struct kprobe_insn_cache *c,
241                       kprobe_opcode_t *slot, int dirty)
242 {
243         struct kprobe_insn_page *kip;
244         long idx;
245
246         mutex_lock(&c->mutex);
247         rcu_read_lock();
248         list_for_each_entry_rcu(kip, &c->pages, list) {
249                 idx = ((long)slot - (long)kip->insns) /
250                         (c->insn_size * sizeof(kprobe_opcode_t));
251                 if (idx >= 0 && idx < slots_per_page(c))
252                         goto out;
253         }
254         /* Could not find this slot. */
255         WARN_ON(1);
256         kip = NULL;
257 out:
258         rcu_read_unlock();
259         /* Mark and sweep: this may sleep */
260         if (kip) {
261                 /* Check double free */
262                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
263                 if (dirty) {
264                         kip->slot_used[idx] = SLOT_DIRTY;
265                         kip->ngarbage++;
266                         if (++c->nr_garbage > slots_per_page(c))
267                                 collect_garbage_slots(c);
268                 } else {
269                         collect_one_slot(kip, idx);
270                 }
271         }
272         mutex_unlock(&c->mutex);
273 }
274
275 /*
276  * Check given address is on the page of kprobe instruction slots.
277  * This will be used for checking whether the address on a stack
278  * is on a text area or not.
279  */
280 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
281 {
282         struct kprobe_insn_page *kip;
283         bool ret = false;
284
285         rcu_read_lock();
286         list_for_each_entry_rcu(kip, &c->pages, list) {
287                 if (addr >= (unsigned long)kip->insns &&
288                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
289                         ret = true;
290                         break;
291                 }
292         }
293         rcu_read_unlock();
294
295         return ret;
296 }
297
298 #ifdef CONFIG_OPTPROBES
299 /* For optimized_kprobe buffer */
300 struct kprobe_insn_cache kprobe_optinsn_slots = {
301         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
302         .alloc = alloc_insn_page,
303         .free = free_insn_page,
304         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
305         /* .insn_size is initialized later */
306         .nr_garbage = 0,
307 };
308 #endif
309 #endif
310
311 /* We have preemption disabled.. so it is safe to use __ versions */
312 static inline void set_kprobe_instance(struct kprobe *kp)
313 {
314         __this_cpu_write(kprobe_instance, kp);
315 }
316
317 static inline void reset_kprobe_instance(void)
318 {
319         __this_cpu_write(kprobe_instance, NULL);
320 }
321
322 /*
323  * This routine is called either:
324  *      - under the kprobe_mutex - during kprobe_[un]register()
325  *                              OR
326  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
327  */
328 struct kprobe *get_kprobe(void *addr)
329 {
330         struct hlist_head *head;
331         struct kprobe *p;
332
333         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
334         hlist_for_each_entry_rcu(p, head, hlist,
335                                  lockdep_is_held(&kprobe_mutex)) {
336                 if (p->addr == addr)
337                         return p;
338         }
339
340         return NULL;
341 }
342 NOKPROBE_SYMBOL(get_kprobe);
343
344 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
345
346 /* Return true if the kprobe is an aggregator */
347 static inline int kprobe_aggrprobe(struct kprobe *p)
348 {
349         return p->pre_handler == aggr_pre_handler;
350 }
351
352 /* Return true(!0) if the kprobe is unused */
353 static inline int kprobe_unused(struct kprobe *p)
354 {
355         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
356                list_empty(&p->list);
357 }
358
359 /*
360  * Keep all fields in the kprobe consistent
361  */
362 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
363 {
364         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
365         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
366 }
367
368 #ifdef CONFIG_OPTPROBES
369 /* NOTE: change this value only with kprobe_mutex held */
370 static bool kprobes_allow_optimization;
371
372 /*
373  * Call all pre_handler on the list, but ignores its return value.
374  * This must be called from arch-dep optimized caller.
375  */
376 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
377 {
378         struct kprobe *kp;
379
380         list_for_each_entry_rcu(kp, &p->list, list) {
381                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
382                         set_kprobe_instance(kp);
383                         kp->pre_handler(kp, regs);
384                 }
385                 reset_kprobe_instance();
386         }
387 }
388 NOKPROBE_SYMBOL(opt_pre_handler);
389
390 /* Free optimized instructions and optimized_kprobe */
391 static void free_aggr_kprobe(struct kprobe *p)
392 {
393         struct optimized_kprobe *op;
394
395         op = container_of(p, struct optimized_kprobe, kp);
396         arch_remove_optimized_kprobe(op);
397         arch_remove_kprobe(p);
398         kfree(op);
399 }
400
401 /* Return true(!0) if the kprobe is ready for optimization. */
402 static inline int kprobe_optready(struct kprobe *p)
403 {
404         struct optimized_kprobe *op;
405
406         if (kprobe_aggrprobe(p)) {
407                 op = container_of(p, struct optimized_kprobe, kp);
408                 return arch_prepared_optinsn(&op->optinsn);
409         }
410
411         return 0;
412 }
413
414 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
415 static inline int kprobe_disarmed(struct kprobe *p)
416 {
417         struct optimized_kprobe *op;
418
419         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
420         if (!kprobe_aggrprobe(p))
421                 return kprobe_disabled(p);
422
423         op = container_of(p, struct optimized_kprobe, kp);
424
425         return kprobe_disabled(p) && list_empty(&op->list);
426 }
427
428 /* Return true(!0) if the probe is queued on (un)optimizing lists */
429 static int kprobe_queued(struct kprobe *p)
430 {
431         struct optimized_kprobe *op;
432
433         if (kprobe_aggrprobe(p)) {
434                 op = container_of(p, struct optimized_kprobe, kp);
435                 if (!list_empty(&op->list))
436                         return 1;
437         }
438         return 0;
439 }
440
441 /*
442  * Return an optimized kprobe whose optimizing code replaces
443  * instructions including addr (exclude breakpoint).
444  */
445 static struct kprobe *get_optimized_kprobe(unsigned long addr)
446 {
447         int i;
448         struct kprobe *p = NULL;
449         struct optimized_kprobe *op;
450
451         /* Don't check i == 0, since that is a breakpoint case. */
452         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
453                 p = get_kprobe((void *)(addr - i));
454
455         if (p && kprobe_optready(p)) {
456                 op = container_of(p, struct optimized_kprobe, kp);
457                 if (arch_within_optimized_kprobe(op, addr))
458                         return p;
459         }
460
461         return NULL;
462 }
463
464 /* Optimization staging list, protected by kprobe_mutex */
465 static LIST_HEAD(optimizing_list);
466 static LIST_HEAD(unoptimizing_list);
467 static LIST_HEAD(freeing_list);
468
469 static void kprobe_optimizer(struct work_struct *work);
470 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
471 #define OPTIMIZE_DELAY 5
472
473 /*
474  * Optimize (replace a breakpoint with a jump) kprobes listed on
475  * optimizing_list.
476  */
477 static void do_optimize_kprobes(void)
478 {
479         lockdep_assert_held(&text_mutex);
480         /*
481          * The optimization/unoptimization refers online_cpus via
482          * stop_machine() and cpu-hotplug modifies online_cpus.
483          * And same time, text_mutex will be held in cpu-hotplug and here.
484          * This combination can cause a deadlock (cpu-hotplug try to lock
485          * text_mutex but stop_machine can not be done because online_cpus
486          * has been changed)
487          * To avoid this deadlock, caller must have locked cpu hotplug
488          * for preventing cpu-hotplug outside of text_mutex locking.
489          */
490         lockdep_assert_cpus_held();
491
492         /* Optimization never be done when disarmed */
493         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
494             list_empty(&optimizing_list))
495                 return;
496
497         arch_optimize_kprobes(&optimizing_list);
498 }
499
500 /*
501  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
502  * if need) kprobes listed on unoptimizing_list.
503  */
504 static void do_unoptimize_kprobes(void)
505 {
506         struct optimized_kprobe *op, *tmp;
507
508         lockdep_assert_held(&text_mutex);
509         /* See comment in do_optimize_kprobes() */
510         lockdep_assert_cpus_held();
511
512         /* Unoptimization must be done anytime */
513         if (list_empty(&unoptimizing_list))
514                 return;
515
516         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
517         /* Loop free_list for disarming */
518         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
519                 /* Switching from detour code to origin */
520                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
521                 /* Disarm probes if marked disabled */
522                 if (kprobe_disabled(&op->kp))
523                         arch_disarm_kprobe(&op->kp);
524                 if (kprobe_unused(&op->kp)) {
525                         /*
526                          * Remove unused probes from hash list. After waiting
527                          * for synchronization, these probes are reclaimed.
528                          * (reclaiming is done by do_free_cleaned_kprobes.)
529                          */
530                         hlist_del_rcu(&op->kp.hlist);
531                 } else
532                         list_del_init(&op->list);
533         }
534 }
535
536 /* Reclaim all kprobes on the free_list */
537 static void do_free_cleaned_kprobes(void)
538 {
539         struct optimized_kprobe *op, *tmp;
540
541         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
542                 list_del_init(&op->list);
543                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
544                         /*
545                          * This must not happen, but if there is a kprobe
546                          * still in use, keep it on kprobes hash list.
547                          */
548                         continue;
549                 }
550                 free_aggr_kprobe(&op->kp);
551         }
552 }
553
554 /* Start optimizer after OPTIMIZE_DELAY passed */
555 static void kick_kprobe_optimizer(void)
556 {
557         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
558 }
559
560 /* Kprobe jump optimizer */
561 static void kprobe_optimizer(struct work_struct *work)
562 {
563         mutex_lock(&kprobe_mutex);
564         cpus_read_lock();
565         mutex_lock(&text_mutex);
566         /* Lock modules while optimizing kprobes */
567         mutex_lock(&module_mutex);
568
569         /*
570          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
571          * kprobes before waiting for quiesence period.
572          */
573         do_unoptimize_kprobes();
574
575         /*
576          * Step 2: Wait for quiesence period to ensure all potentially
577          * preempted tasks to have normally scheduled. Because optprobe
578          * may modify multiple instructions, there is a chance that Nth
579          * instruction is preempted. In that case, such tasks can return
580          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
581          * Note that on non-preemptive kernel, this is transparently converted
582          * to synchronoze_sched() to wait for all interrupts to have completed.
583          */
584         synchronize_rcu_tasks();
585
586         /* Step 3: Optimize kprobes after quiesence period */
587         do_optimize_kprobes();
588
589         /* Step 4: Free cleaned kprobes after quiesence period */
590         do_free_cleaned_kprobes();
591
592         mutex_unlock(&module_mutex);
593         mutex_unlock(&text_mutex);
594         cpus_read_unlock();
595
596         /* Step 5: Kick optimizer again if needed */
597         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
598                 kick_kprobe_optimizer();
599
600         mutex_unlock(&kprobe_mutex);
601 }
602
603 /* Wait for completing optimization and unoptimization */
604 void wait_for_kprobe_optimizer(void)
605 {
606         mutex_lock(&kprobe_mutex);
607
608         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
609                 mutex_unlock(&kprobe_mutex);
610
611                 /* this will also make optimizing_work execute immmediately */
612                 flush_delayed_work(&optimizing_work);
613                 /* @optimizing_work might not have been queued yet, relax */
614                 cpu_relax();
615
616                 mutex_lock(&kprobe_mutex);
617         }
618
619         mutex_unlock(&kprobe_mutex);
620 }
621
622 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
623 {
624         struct optimized_kprobe *_op;
625
626         list_for_each_entry(_op, &unoptimizing_list, list) {
627                 if (op == _op)
628                         return true;
629         }
630
631         return false;
632 }
633
634 /* Optimize kprobe if p is ready to be optimized */
635 static void optimize_kprobe(struct kprobe *p)
636 {
637         struct optimized_kprobe *op;
638
639         /* Check if the kprobe is disabled or not ready for optimization. */
640         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
641             (kprobe_disabled(p) || kprobes_all_disarmed))
642                 return;
643
644         /* kprobes with post_handler can not be optimized */
645         if (p->post_handler)
646                 return;
647
648         op = container_of(p, struct optimized_kprobe, kp);
649
650         /* Check there is no other kprobes at the optimized instructions */
651         if (arch_check_optimized_kprobe(op) < 0)
652                 return;
653
654         /* Check if it is already optimized. */
655         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
656                 if (optprobe_queued_unopt(op)) {
657                         /* This is under unoptimizing. Just dequeue the probe */
658                         list_del_init(&op->list);
659                 }
660                 return;
661         }
662         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
663
664         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
665         if (WARN_ON_ONCE(!list_empty(&op->list)))
666                 return;
667
668         list_add(&op->list, &optimizing_list);
669         kick_kprobe_optimizer();
670 }
671
672 /* Short cut to direct unoptimizing */
673 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
674 {
675         lockdep_assert_cpus_held();
676         arch_unoptimize_kprobe(op);
677         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
678 }
679
680 /* Unoptimize a kprobe if p is optimized */
681 static void unoptimize_kprobe(struct kprobe *p, bool force)
682 {
683         struct optimized_kprobe *op;
684
685         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
686                 return; /* This is not an optprobe nor optimized */
687
688         op = container_of(p, struct optimized_kprobe, kp);
689         if (!kprobe_optimized(p))
690                 return;
691
692         if (!list_empty(&op->list)) {
693                 if (optprobe_queued_unopt(op)) {
694                         /* Queued in unoptimizing queue */
695                         if (force) {
696                                 /*
697                                  * Forcibly unoptimize the kprobe here, and queue it
698                                  * in the freeing list for release afterwards.
699                                  */
700                                 force_unoptimize_kprobe(op);
701                                 list_move(&op->list, &freeing_list);
702                         }
703                 } else {
704                         /* Dequeue from the optimizing queue */
705                         list_del_init(&op->list);
706                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
707                 }
708                 return;
709         }
710
711         /* Optimized kprobe case */
712         if (force) {
713                 /* Forcibly update the code: this is a special case */
714                 force_unoptimize_kprobe(op);
715         } else {
716                 list_add(&op->list, &unoptimizing_list);
717                 kick_kprobe_optimizer();
718         }
719 }
720
721 /* Cancel unoptimizing for reusing */
722 static int reuse_unused_kprobe(struct kprobe *ap)
723 {
724         struct optimized_kprobe *op;
725
726         /*
727          * Unused kprobe MUST be on the way of delayed unoptimizing (means
728          * there is still a relative jump) and disabled.
729          */
730         op = container_of(ap, struct optimized_kprobe, kp);
731         WARN_ON_ONCE(list_empty(&op->list));
732         /* Enable the probe again */
733         ap->flags &= ~KPROBE_FLAG_DISABLED;
734         /* Optimize it again (remove from op->list) */
735         if (!kprobe_optready(ap))
736                 return -EINVAL;
737
738         optimize_kprobe(ap);
739         return 0;
740 }
741
742 /* Remove optimized instructions */
743 static void kill_optimized_kprobe(struct kprobe *p)
744 {
745         struct optimized_kprobe *op;
746
747         op = container_of(p, struct optimized_kprobe, kp);
748         if (!list_empty(&op->list))
749                 /* Dequeue from the (un)optimization queue */
750                 list_del_init(&op->list);
751         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
752
753         if (kprobe_unused(p)) {
754                 /* Enqueue if it is unused */
755                 list_add(&op->list, &freeing_list);
756                 /*
757                  * Remove unused probes from the hash list. After waiting
758                  * for synchronization, this probe is reclaimed.
759                  * (reclaiming is done by do_free_cleaned_kprobes().)
760                  */
761                 hlist_del_rcu(&op->kp.hlist);
762         }
763
764         /* Don't touch the code, because it is already freed. */
765         arch_remove_optimized_kprobe(op);
766 }
767
768 static inline
769 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
770 {
771         if (!kprobe_ftrace(p))
772                 arch_prepare_optimized_kprobe(op, p);
773 }
774
775 /* Try to prepare optimized instructions */
776 static void prepare_optimized_kprobe(struct kprobe *p)
777 {
778         struct optimized_kprobe *op;
779
780         op = container_of(p, struct optimized_kprobe, kp);
781         __prepare_optimized_kprobe(op, p);
782 }
783
784 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
785 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
786 {
787         struct optimized_kprobe *op;
788
789         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
790         if (!op)
791                 return NULL;
792
793         INIT_LIST_HEAD(&op->list);
794         op->kp.addr = p->addr;
795         __prepare_optimized_kprobe(op, p);
796
797         return &op->kp;
798 }
799
800 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
801
802 /*
803  * Prepare an optimized_kprobe and optimize it
804  * NOTE: p must be a normal registered kprobe
805  */
806 static void try_to_optimize_kprobe(struct kprobe *p)
807 {
808         struct kprobe *ap;
809         struct optimized_kprobe *op;
810
811         /* Impossible to optimize ftrace-based kprobe */
812         if (kprobe_ftrace(p))
813                 return;
814
815         /* For preparing optimization, jump_label_text_reserved() is called */
816         cpus_read_lock();
817         jump_label_lock();
818         mutex_lock(&text_mutex);
819
820         ap = alloc_aggr_kprobe(p);
821         if (!ap)
822                 goto out;
823
824         op = container_of(ap, struct optimized_kprobe, kp);
825         if (!arch_prepared_optinsn(&op->optinsn)) {
826                 /* If failed to setup optimizing, fallback to kprobe */
827                 arch_remove_optimized_kprobe(op);
828                 kfree(op);
829                 goto out;
830         }
831
832         init_aggr_kprobe(ap, p);
833         optimize_kprobe(ap);    /* This just kicks optimizer thread */
834
835 out:
836         mutex_unlock(&text_mutex);
837         jump_label_unlock();
838         cpus_read_unlock();
839 }
840
841 #ifdef CONFIG_SYSCTL
842 static void optimize_all_kprobes(void)
843 {
844         struct hlist_head *head;
845         struct kprobe *p;
846         unsigned int i;
847
848         mutex_lock(&kprobe_mutex);
849         /* If optimization is already allowed, just return */
850         if (kprobes_allow_optimization)
851                 goto out;
852
853         cpus_read_lock();
854         kprobes_allow_optimization = true;
855         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
856                 head = &kprobe_table[i];
857                 hlist_for_each_entry(p, head, hlist)
858                         if (!kprobe_disabled(p))
859                                 optimize_kprobe(p);
860         }
861         cpus_read_unlock();
862         printk(KERN_INFO "Kprobes globally optimized\n");
863 out:
864         mutex_unlock(&kprobe_mutex);
865 }
866
867 static void unoptimize_all_kprobes(void)
868 {
869         struct hlist_head *head;
870         struct kprobe *p;
871         unsigned int i;
872
873         mutex_lock(&kprobe_mutex);
874         /* If optimization is already prohibited, just return */
875         if (!kprobes_allow_optimization) {
876                 mutex_unlock(&kprobe_mutex);
877                 return;
878         }
879
880         cpus_read_lock();
881         kprobes_allow_optimization = false;
882         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
883                 head = &kprobe_table[i];
884                 hlist_for_each_entry(p, head, hlist) {
885                         if (!kprobe_disabled(p))
886                                 unoptimize_kprobe(p, false);
887                 }
888         }
889         cpus_read_unlock();
890         mutex_unlock(&kprobe_mutex);
891
892         /* Wait for unoptimizing completion */
893         wait_for_kprobe_optimizer();
894         printk(KERN_INFO "Kprobes globally unoptimized\n");
895 }
896
897 static DEFINE_MUTEX(kprobe_sysctl_mutex);
898 int sysctl_kprobes_optimization;
899 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
900                                       void *buffer, size_t *length,
901                                       loff_t *ppos)
902 {
903         int ret;
904
905         mutex_lock(&kprobe_sysctl_mutex);
906         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
907         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
908
909         if (sysctl_kprobes_optimization)
910                 optimize_all_kprobes();
911         else
912                 unoptimize_all_kprobes();
913         mutex_unlock(&kprobe_sysctl_mutex);
914
915         return ret;
916 }
917 #endif /* CONFIG_SYSCTL */
918
919 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
920 static void __arm_kprobe(struct kprobe *p)
921 {
922         struct kprobe *_p;
923
924         /* Check collision with other optimized kprobes */
925         _p = get_optimized_kprobe((unsigned long)p->addr);
926         if (unlikely(_p))
927                 /* Fallback to unoptimized kprobe */
928                 unoptimize_kprobe(_p, true);
929
930         arch_arm_kprobe(p);
931         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
932 }
933
934 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
935 static void __disarm_kprobe(struct kprobe *p, bool reopt)
936 {
937         struct kprobe *_p;
938
939         /* Try to unoptimize */
940         unoptimize_kprobe(p, kprobes_all_disarmed);
941
942         if (!kprobe_queued(p)) {
943                 arch_disarm_kprobe(p);
944                 /* If another kprobe was blocked, optimize it. */
945                 _p = get_optimized_kprobe((unsigned long)p->addr);
946                 if (unlikely(_p) && reopt)
947                         optimize_kprobe(_p);
948         }
949         /* TODO: reoptimize others after unoptimized this probe */
950 }
951
952 #else /* !CONFIG_OPTPROBES */
953
954 #define optimize_kprobe(p)                      do {} while (0)
955 #define unoptimize_kprobe(p, f)                 do {} while (0)
956 #define kill_optimized_kprobe(p)                do {} while (0)
957 #define prepare_optimized_kprobe(p)             do {} while (0)
958 #define try_to_optimize_kprobe(p)               do {} while (0)
959 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
960 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
961 #define kprobe_disarmed(p)                      kprobe_disabled(p)
962 #define wait_for_kprobe_optimizer()             do {} while (0)
963
964 static int reuse_unused_kprobe(struct kprobe *ap)
965 {
966         /*
967          * If the optimized kprobe is NOT supported, the aggr kprobe is
968          * released at the same time that the last aggregated kprobe is
969          * unregistered.
970          * Thus there should be no chance to reuse unused kprobe.
971          */
972         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
973         return -EINVAL;
974 }
975
976 static void free_aggr_kprobe(struct kprobe *p)
977 {
978         arch_remove_kprobe(p);
979         kfree(p);
980 }
981
982 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
983 {
984         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
985 }
986 #endif /* CONFIG_OPTPROBES */
987
988 #ifdef CONFIG_KPROBES_ON_FTRACE
989 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
990         .func = kprobe_ftrace_handler,
991         .flags = FTRACE_OPS_FL_SAVE_REGS,
992 };
993
994 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
995         .func = kprobe_ftrace_handler,
996         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
997 };
998
999 static int kprobe_ipmodify_enabled;
1000 static int kprobe_ftrace_enabled;
1001
1002 /* Must ensure p->addr is really on ftrace */
1003 static int prepare_kprobe(struct kprobe *p)
1004 {
1005         if (!kprobe_ftrace(p))
1006                 return arch_prepare_kprobe(p);
1007
1008         return arch_prepare_kprobe_ftrace(p);
1009 }
1010
1011 /* Caller must lock kprobe_mutex */
1012 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1013                                int *cnt)
1014 {
1015         int ret = 0;
1016
1017         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1018         if (ret) {
1019                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1020                          p->addr, ret);
1021                 return ret;
1022         }
1023
1024         if (*cnt == 0) {
1025                 ret = register_ftrace_function(ops);
1026                 if (ret) {
1027                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1028                         goto err_ftrace;
1029                 }
1030         }
1031
1032         (*cnt)++;
1033         return ret;
1034
1035 err_ftrace:
1036         /*
1037          * At this point, sinec ops is not registered, we should be sefe from
1038          * registering empty filter.
1039          */
1040         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1041         return ret;
1042 }
1043
1044 static int arm_kprobe_ftrace(struct kprobe *p)
1045 {
1046         bool ipmodify = (p->post_handler != NULL);
1047
1048         return __arm_kprobe_ftrace(p,
1049                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1050                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1051 }
1052
1053 /* Caller must lock kprobe_mutex */
1054 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1055                                   int *cnt)
1056 {
1057         int ret = 0;
1058
1059         if (*cnt == 1) {
1060                 ret = unregister_ftrace_function(ops);
1061                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1062                         return ret;
1063         }
1064
1065         (*cnt)--;
1066
1067         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1068         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1069                   p->addr, ret);
1070         return ret;
1071 }
1072
1073 static int disarm_kprobe_ftrace(struct kprobe *p)
1074 {
1075         bool ipmodify = (p->post_handler != NULL);
1076
1077         return __disarm_kprobe_ftrace(p,
1078                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1079                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1080 }
1081 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1082 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1083 #define arm_kprobe_ftrace(p)    (-ENODEV)
1084 #define disarm_kprobe_ftrace(p) (-ENODEV)
1085 #endif
1086
1087 /* Arm a kprobe with text_mutex */
1088 static int arm_kprobe(struct kprobe *kp)
1089 {
1090         if (unlikely(kprobe_ftrace(kp)))
1091                 return arm_kprobe_ftrace(kp);
1092
1093         cpus_read_lock();
1094         mutex_lock(&text_mutex);
1095         __arm_kprobe(kp);
1096         mutex_unlock(&text_mutex);
1097         cpus_read_unlock();
1098
1099         return 0;
1100 }
1101
1102 /* Disarm a kprobe with text_mutex */
1103 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1104 {
1105         if (unlikely(kprobe_ftrace(kp)))
1106                 return disarm_kprobe_ftrace(kp);
1107
1108         cpus_read_lock();
1109         mutex_lock(&text_mutex);
1110         __disarm_kprobe(kp, reopt);
1111         mutex_unlock(&text_mutex);
1112         cpus_read_unlock();
1113
1114         return 0;
1115 }
1116
1117 /*
1118  * Aggregate handlers for multiple kprobes support - these handlers
1119  * take care of invoking the individual kprobe handlers on p->list
1120  */
1121 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1122 {
1123         struct kprobe *kp;
1124
1125         list_for_each_entry_rcu(kp, &p->list, list) {
1126                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1127                         set_kprobe_instance(kp);
1128                         if (kp->pre_handler(kp, regs))
1129                                 return 1;
1130                 }
1131                 reset_kprobe_instance();
1132         }
1133         return 0;
1134 }
1135 NOKPROBE_SYMBOL(aggr_pre_handler);
1136
1137 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1138                               unsigned long flags)
1139 {
1140         struct kprobe *kp;
1141
1142         list_for_each_entry_rcu(kp, &p->list, list) {
1143                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1144                         set_kprobe_instance(kp);
1145                         kp->post_handler(kp, regs, flags);
1146                         reset_kprobe_instance();
1147                 }
1148         }
1149 }
1150 NOKPROBE_SYMBOL(aggr_post_handler);
1151
1152 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1153                               int trapnr)
1154 {
1155         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1156
1157         /*
1158          * if we faulted "during" the execution of a user specified
1159          * probe handler, invoke just that probe's fault handler
1160          */
1161         if (cur && cur->fault_handler) {
1162                 if (cur->fault_handler(cur, regs, trapnr))
1163                         return 1;
1164         }
1165         return 0;
1166 }
1167 NOKPROBE_SYMBOL(aggr_fault_handler);
1168
1169 /* Walks the list and increments nmissed count for multiprobe case */
1170 void kprobes_inc_nmissed_count(struct kprobe *p)
1171 {
1172         struct kprobe *kp;
1173         if (!kprobe_aggrprobe(p)) {
1174                 p->nmissed++;
1175         } else {
1176                 list_for_each_entry_rcu(kp, &p->list, list)
1177                         kp->nmissed++;
1178         }
1179         return;
1180 }
1181 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1182
1183 void recycle_rp_inst(struct kretprobe_instance *ri,
1184                      struct hlist_head *head)
1185 {
1186         struct kretprobe *rp = ri->rp;
1187
1188         /* remove rp inst off the rprobe_inst_table */
1189         hlist_del(&ri->hlist);
1190         INIT_HLIST_NODE(&ri->hlist);
1191         if (likely(rp)) {
1192                 raw_spin_lock(&rp->lock);
1193                 hlist_add_head(&ri->hlist, &rp->free_instances);
1194                 raw_spin_unlock(&rp->lock);
1195         } else
1196                 /* Unregistering */
1197                 hlist_add_head(&ri->hlist, head);
1198 }
1199 NOKPROBE_SYMBOL(recycle_rp_inst);
1200
1201 void kretprobe_hash_lock(struct task_struct *tsk,
1202                          struct hlist_head **head, unsigned long *flags)
1203 __acquires(hlist_lock)
1204 {
1205         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1206         raw_spinlock_t *hlist_lock;
1207
1208         *head = &kretprobe_inst_table[hash];
1209         hlist_lock = kretprobe_table_lock_ptr(hash);
1210         raw_spin_lock_irqsave(hlist_lock, *flags);
1211 }
1212 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1213
1214 static void kretprobe_table_lock(unsigned long hash,
1215                                  unsigned long *flags)
1216 __acquires(hlist_lock)
1217 {
1218         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1219         raw_spin_lock_irqsave(hlist_lock, *flags);
1220 }
1221 NOKPROBE_SYMBOL(kretprobe_table_lock);
1222
1223 void kretprobe_hash_unlock(struct task_struct *tsk,
1224                            unsigned long *flags)
1225 __releases(hlist_lock)
1226 {
1227         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1228         raw_spinlock_t *hlist_lock;
1229
1230         hlist_lock = kretprobe_table_lock_ptr(hash);
1231         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1232 }
1233 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1234
1235 static void kretprobe_table_unlock(unsigned long hash,
1236                                    unsigned long *flags)
1237 __releases(hlist_lock)
1238 {
1239         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1240         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1241 }
1242 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1243
1244 struct kprobe kprobe_busy = {
1245         .addr = (void *) get_kprobe,
1246 };
1247
1248 void kprobe_busy_begin(void)
1249 {
1250         struct kprobe_ctlblk *kcb;
1251
1252         preempt_disable();
1253         __this_cpu_write(current_kprobe, &kprobe_busy);
1254         kcb = get_kprobe_ctlblk();
1255         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1256 }
1257
1258 void kprobe_busy_end(void)
1259 {
1260         __this_cpu_write(current_kprobe, NULL);
1261         preempt_enable();
1262 }
1263
1264 /*
1265  * This function is called from finish_task_switch when task tk becomes dead,
1266  * so that we can recycle any function-return probe instances associated
1267  * with this task. These left over instances represent probed functions
1268  * that have been called but will never return.
1269  */
1270 void kprobe_flush_task(struct task_struct *tk)
1271 {
1272         struct kretprobe_instance *ri;
1273         struct hlist_head *head, empty_rp;
1274         struct hlist_node *tmp;
1275         unsigned long hash, flags = 0;
1276
1277         if (unlikely(!kprobes_initialized))
1278                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1279                 return;
1280
1281         kprobe_busy_begin();
1282
1283         INIT_HLIST_HEAD(&empty_rp);
1284         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1285         head = &kretprobe_inst_table[hash];
1286         kretprobe_table_lock(hash, &flags);
1287         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1288                 if (ri->task == tk)
1289                         recycle_rp_inst(ri, &empty_rp);
1290         }
1291         kretprobe_table_unlock(hash, &flags);
1292         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1293                 hlist_del(&ri->hlist);
1294                 kfree(ri);
1295         }
1296
1297         kprobe_busy_end();
1298 }
1299 NOKPROBE_SYMBOL(kprobe_flush_task);
1300
1301 static inline void free_rp_inst(struct kretprobe *rp)
1302 {
1303         struct kretprobe_instance *ri;
1304         struct hlist_node *next;
1305
1306         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1307                 hlist_del(&ri->hlist);
1308                 kfree(ri);
1309         }
1310 }
1311
1312 static void cleanup_rp_inst(struct kretprobe *rp)
1313 {
1314         unsigned long flags, hash;
1315         struct kretprobe_instance *ri;
1316         struct hlist_node *next;
1317         struct hlist_head *head;
1318
1319         /* No race here */
1320         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1321                 kretprobe_table_lock(hash, &flags);
1322                 head = &kretprobe_inst_table[hash];
1323                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1324                         if (ri->rp == rp)
1325                                 ri->rp = NULL;
1326                 }
1327                 kretprobe_table_unlock(hash, &flags);
1328         }
1329         free_rp_inst(rp);
1330 }
1331 NOKPROBE_SYMBOL(cleanup_rp_inst);
1332
1333 /* Add the new probe to ap->list */
1334 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1335 {
1336         if (p->post_handler)
1337                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1338
1339         list_add_rcu(&p->list, &ap->list);
1340         if (p->post_handler && !ap->post_handler)
1341                 ap->post_handler = aggr_post_handler;
1342
1343         return 0;
1344 }
1345
1346 /*
1347  * Fill in the required fields of the "manager kprobe". Replace the
1348  * earlier kprobe in the hlist with the manager kprobe
1349  */
1350 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1351 {
1352         /* Copy p's insn slot to ap */
1353         copy_kprobe(p, ap);
1354         flush_insn_slot(ap);
1355         ap->addr = p->addr;
1356         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1357         ap->pre_handler = aggr_pre_handler;
1358         ap->fault_handler = aggr_fault_handler;
1359         /* We don't care the kprobe which has gone. */
1360         if (p->post_handler && !kprobe_gone(p))
1361                 ap->post_handler = aggr_post_handler;
1362
1363         INIT_LIST_HEAD(&ap->list);
1364         INIT_HLIST_NODE(&ap->hlist);
1365
1366         list_add_rcu(&p->list, &ap->list);
1367         hlist_replace_rcu(&p->hlist, &ap->hlist);
1368 }
1369
1370 /*
1371  * This is the second or subsequent kprobe at the address - handle
1372  * the intricacies
1373  */
1374 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1375 {
1376         int ret = 0;
1377         struct kprobe *ap = orig_p;
1378
1379         cpus_read_lock();
1380
1381         /* For preparing optimization, jump_label_text_reserved() is called */
1382         jump_label_lock();
1383         mutex_lock(&text_mutex);
1384
1385         if (!kprobe_aggrprobe(orig_p)) {
1386                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1387                 ap = alloc_aggr_kprobe(orig_p);
1388                 if (!ap) {
1389                         ret = -ENOMEM;
1390                         goto out;
1391                 }
1392                 init_aggr_kprobe(ap, orig_p);
1393         } else if (kprobe_unused(ap)) {
1394                 /* This probe is going to die. Rescue it */
1395                 ret = reuse_unused_kprobe(ap);
1396                 if (ret)
1397                         goto out;
1398         }
1399
1400         if (kprobe_gone(ap)) {
1401                 /*
1402                  * Attempting to insert new probe at the same location that
1403                  * had a probe in the module vaddr area which already
1404                  * freed. So, the instruction slot has already been
1405                  * released. We need a new slot for the new probe.
1406                  */
1407                 ret = arch_prepare_kprobe(ap);
1408                 if (ret)
1409                         /*
1410                          * Even if fail to allocate new slot, don't need to
1411                          * free aggr_probe. It will be used next time, or
1412                          * freed by unregister_kprobe.
1413                          */
1414                         goto out;
1415
1416                 /* Prepare optimized instructions if possible. */
1417                 prepare_optimized_kprobe(ap);
1418
1419                 /*
1420                  * Clear gone flag to prevent allocating new slot again, and
1421                  * set disabled flag because it is not armed yet.
1422                  */
1423                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1424                             | KPROBE_FLAG_DISABLED;
1425         }
1426
1427         /* Copy ap's insn slot to p */
1428         copy_kprobe(ap, p);
1429         ret = add_new_kprobe(ap, p);
1430
1431 out:
1432         mutex_unlock(&text_mutex);
1433         jump_label_unlock();
1434         cpus_read_unlock();
1435
1436         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1437                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1438                 if (!kprobes_all_disarmed) {
1439                         /* Arm the breakpoint again. */
1440                         ret = arm_kprobe(ap);
1441                         if (ret) {
1442                                 ap->flags |= KPROBE_FLAG_DISABLED;
1443                                 list_del_rcu(&p->list);
1444                                 synchronize_rcu();
1445                         }
1446                 }
1447         }
1448         return ret;
1449 }
1450
1451 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1452 {
1453         /* The __kprobes marked functions and entry code must not be probed */
1454         return addr >= (unsigned long)__kprobes_text_start &&
1455                addr < (unsigned long)__kprobes_text_end;
1456 }
1457
1458 static bool __within_kprobe_blacklist(unsigned long addr)
1459 {
1460         struct kprobe_blacklist_entry *ent;
1461
1462         if (arch_within_kprobe_blacklist(addr))
1463                 return true;
1464         /*
1465          * If there exists a kprobe_blacklist, verify and
1466          * fail any probe registration in the prohibited area
1467          */
1468         list_for_each_entry(ent, &kprobe_blacklist, list) {
1469                 if (addr >= ent->start_addr && addr < ent->end_addr)
1470                         return true;
1471         }
1472         return false;
1473 }
1474
1475 bool within_kprobe_blacklist(unsigned long addr)
1476 {
1477         char symname[KSYM_NAME_LEN], *p;
1478
1479         if (__within_kprobe_blacklist(addr))
1480                 return true;
1481
1482         /* Check if the address is on a suffixed-symbol */
1483         if (!lookup_symbol_name(addr, symname)) {
1484                 p = strchr(symname, '.');
1485                 if (!p)
1486                         return false;
1487                 *p = '\0';
1488                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1489                 if (addr)
1490                         return __within_kprobe_blacklist(addr);
1491         }
1492         return false;
1493 }
1494
1495 /*
1496  * If we have a symbol_name argument, look it up and add the offset field
1497  * to it. This way, we can specify a relative address to a symbol.
1498  * This returns encoded errors if it fails to look up symbol or invalid
1499  * combination of parameters.
1500  */
1501 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1502                         const char *symbol_name, unsigned int offset)
1503 {
1504         if ((symbol_name && addr) || (!symbol_name && !addr))
1505                 goto invalid;
1506
1507         if (symbol_name) {
1508                 addr = kprobe_lookup_name(symbol_name, offset);
1509                 if (!addr)
1510                         return ERR_PTR(-ENOENT);
1511         }
1512
1513         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1514         if (addr)
1515                 return addr;
1516
1517 invalid:
1518         return ERR_PTR(-EINVAL);
1519 }
1520
1521 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1522 {
1523         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1524 }
1525
1526 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1527 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1528 {
1529         struct kprobe *ap, *list_p;
1530
1531         lockdep_assert_held(&kprobe_mutex);
1532
1533         ap = get_kprobe(p->addr);
1534         if (unlikely(!ap))
1535                 return NULL;
1536
1537         if (p != ap) {
1538                 list_for_each_entry(list_p, &ap->list, list)
1539                         if (list_p == p)
1540                         /* kprobe p is a valid probe */
1541                                 goto valid;
1542                 return NULL;
1543         }
1544 valid:
1545         return ap;
1546 }
1547
1548 /* Return error if the kprobe is being re-registered */
1549 static inline int check_kprobe_rereg(struct kprobe *p)
1550 {
1551         int ret = 0;
1552
1553         mutex_lock(&kprobe_mutex);
1554         if (__get_valid_kprobe(p))
1555                 ret = -EINVAL;
1556         mutex_unlock(&kprobe_mutex);
1557
1558         return ret;
1559 }
1560
1561 int __weak arch_check_ftrace_location(struct kprobe *p)
1562 {
1563         unsigned long ftrace_addr;
1564
1565         ftrace_addr = ftrace_location((unsigned long)p->addr);
1566         if (ftrace_addr) {
1567 #ifdef CONFIG_KPROBES_ON_FTRACE
1568                 /* Given address is not on the instruction boundary */
1569                 if ((unsigned long)p->addr != ftrace_addr)
1570                         return -EILSEQ;
1571                 p->flags |= KPROBE_FLAG_FTRACE;
1572 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1573                 return -EINVAL;
1574 #endif
1575         }
1576         return 0;
1577 }
1578
1579 static int check_kprobe_address_safe(struct kprobe *p,
1580                                      struct module **probed_mod)
1581 {
1582         int ret;
1583
1584         ret = arch_check_ftrace_location(p);
1585         if (ret)
1586                 return ret;
1587         jump_label_lock();
1588         preempt_disable();
1589
1590         /* Ensure it is not in reserved area nor out of text */
1591         if (!kernel_text_address((unsigned long) p->addr) ||
1592             within_kprobe_blacklist((unsigned long) p->addr) ||
1593             jump_label_text_reserved(p->addr, p->addr) ||
1594             find_bug((unsigned long)p->addr)) {
1595                 ret = -EINVAL;
1596                 goto out;
1597         }
1598
1599         /* Check if are we probing a module */
1600         *probed_mod = __module_text_address((unsigned long) p->addr);
1601         if (*probed_mod) {
1602                 /*
1603                  * We must hold a refcount of the probed module while updating
1604                  * its code to prohibit unexpected unloading.
1605                  */
1606                 if (unlikely(!try_module_get(*probed_mod))) {
1607                         ret = -ENOENT;
1608                         goto out;
1609                 }
1610
1611                 /*
1612                  * If the module freed .init.text, we couldn't insert
1613                  * kprobes in there.
1614                  */
1615                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1616                     (*probed_mod)->state != MODULE_STATE_COMING) {
1617                         module_put(*probed_mod);
1618                         *probed_mod = NULL;
1619                         ret = -ENOENT;
1620                 }
1621         }
1622 out:
1623         preempt_enable();
1624         jump_label_unlock();
1625
1626         return ret;
1627 }
1628
1629 int register_kprobe(struct kprobe *p)
1630 {
1631         int ret;
1632         struct kprobe *old_p;
1633         struct module *probed_mod;
1634         kprobe_opcode_t *addr;
1635
1636         /* Adjust probe address from symbol */
1637         addr = kprobe_addr(p);
1638         if (IS_ERR(addr))
1639                 return PTR_ERR(addr);
1640         p->addr = addr;
1641
1642         ret = check_kprobe_rereg(p);
1643         if (ret)
1644                 return ret;
1645
1646         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1647         p->flags &= KPROBE_FLAG_DISABLED;
1648         p->nmissed = 0;
1649         INIT_LIST_HEAD(&p->list);
1650
1651         ret = check_kprobe_address_safe(p, &probed_mod);
1652         if (ret)
1653                 return ret;
1654
1655         mutex_lock(&kprobe_mutex);
1656
1657         old_p = get_kprobe(p->addr);
1658         if (old_p) {
1659                 /* Since this may unoptimize old_p, locking text_mutex. */
1660                 ret = register_aggr_kprobe(old_p, p);
1661                 goto out;
1662         }
1663
1664         cpus_read_lock();
1665         /* Prevent text modification */
1666         mutex_lock(&text_mutex);
1667         ret = prepare_kprobe(p);
1668         mutex_unlock(&text_mutex);
1669         cpus_read_unlock();
1670         if (ret)
1671                 goto out;
1672
1673         INIT_HLIST_NODE(&p->hlist);
1674         hlist_add_head_rcu(&p->hlist,
1675                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1676
1677         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1678                 ret = arm_kprobe(p);
1679                 if (ret) {
1680                         hlist_del_rcu(&p->hlist);
1681                         synchronize_rcu();
1682                         goto out;
1683                 }
1684         }
1685
1686         /* Try to optimize kprobe */
1687         try_to_optimize_kprobe(p);
1688 out:
1689         mutex_unlock(&kprobe_mutex);
1690
1691         if (probed_mod)
1692                 module_put(probed_mod);
1693
1694         return ret;
1695 }
1696 EXPORT_SYMBOL_GPL(register_kprobe);
1697
1698 /* Check if all probes on the aggrprobe are disabled */
1699 static int aggr_kprobe_disabled(struct kprobe *ap)
1700 {
1701         struct kprobe *kp;
1702
1703         lockdep_assert_held(&kprobe_mutex);
1704
1705         list_for_each_entry(kp, &ap->list, list)
1706                 if (!kprobe_disabled(kp))
1707                         /*
1708                          * There is an active probe on the list.
1709                          * We can't disable this ap.
1710                          */
1711                         return 0;
1712
1713         return 1;
1714 }
1715
1716 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1717 static struct kprobe *__disable_kprobe(struct kprobe *p)
1718 {
1719         struct kprobe *orig_p;
1720         int ret;
1721
1722         /* Get an original kprobe for return */
1723         orig_p = __get_valid_kprobe(p);
1724         if (unlikely(orig_p == NULL))
1725                 return ERR_PTR(-EINVAL);
1726
1727         if (!kprobe_disabled(p)) {
1728                 /* Disable probe if it is a child probe */
1729                 if (p != orig_p)
1730                         p->flags |= KPROBE_FLAG_DISABLED;
1731
1732                 /* Try to disarm and disable this/parent probe */
1733                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1734                         /*
1735                          * If kprobes_all_disarmed is set, orig_p
1736                          * should have already been disarmed, so
1737                          * skip unneed disarming process.
1738                          */
1739                         if (!kprobes_all_disarmed) {
1740                                 ret = disarm_kprobe(orig_p, true);
1741                                 if (ret) {
1742                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1743                                         return ERR_PTR(ret);
1744                                 }
1745                         }
1746                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1747                 }
1748         }
1749
1750         return orig_p;
1751 }
1752
1753 /*
1754  * Unregister a kprobe without a scheduler synchronization.
1755  */
1756 static int __unregister_kprobe_top(struct kprobe *p)
1757 {
1758         struct kprobe *ap, *list_p;
1759
1760         /* Disable kprobe. This will disarm it if needed. */
1761         ap = __disable_kprobe(p);
1762         if (IS_ERR(ap))
1763                 return PTR_ERR(ap);
1764
1765         if (ap == p)
1766                 /*
1767                  * This probe is an independent(and non-optimized) kprobe
1768                  * (not an aggrprobe). Remove from the hash list.
1769                  */
1770                 goto disarmed;
1771
1772         /* Following process expects this probe is an aggrprobe */
1773         WARN_ON(!kprobe_aggrprobe(ap));
1774
1775         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1776                 /*
1777                  * !disarmed could be happen if the probe is under delayed
1778                  * unoptimizing.
1779                  */
1780                 goto disarmed;
1781         else {
1782                 /* If disabling probe has special handlers, update aggrprobe */
1783                 if (p->post_handler && !kprobe_gone(p)) {
1784                         list_for_each_entry(list_p, &ap->list, list) {
1785                                 if ((list_p != p) && (list_p->post_handler))
1786                                         goto noclean;
1787                         }
1788                         ap->post_handler = NULL;
1789                 }
1790 noclean:
1791                 /*
1792                  * Remove from the aggrprobe: this path will do nothing in
1793                  * __unregister_kprobe_bottom().
1794                  */
1795                 list_del_rcu(&p->list);
1796                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1797                         /*
1798                          * Try to optimize this probe again, because post
1799                          * handler may have been changed.
1800                          */
1801                         optimize_kprobe(ap);
1802         }
1803         return 0;
1804
1805 disarmed:
1806         hlist_del_rcu(&ap->hlist);
1807         return 0;
1808 }
1809
1810 static void __unregister_kprobe_bottom(struct kprobe *p)
1811 {
1812         struct kprobe *ap;
1813
1814         if (list_empty(&p->list))
1815                 /* This is an independent kprobe */
1816                 arch_remove_kprobe(p);
1817         else if (list_is_singular(&p->list)) {
1818                 /* This is the last child of an aggrprobe */
1819                 ap = list_entry(p->list.next, struct kprobe, list);
1820                 list_del(&p->list);
1821                 free_aggr_kprobe(ap);
1822         }
1823         /* Otherwise, do nothing. */
1824 }
1825
1826 int register_kprobes(struct kprobe **kps, int num)
1827 {
1828         int i, ret = 0;
1829
1830         if (num <= 0)
1831                 return -EINVAL;
1832         for (i = 0; i < num; i++) {
1833                 ret = register_kprobe(kps[i]);
1834                 if (ret < 0) {
1835                         if (i > 0)
1836                                 unregister_kprobes(kps, i);
1837                         break;
1838                 }
1839         }
1840         return ret;
1841 }
1842 EXPORT_SYMBOL_GPL(register_kprobes);
1843
1844 void unregister_kprobe(struct kprobe *p)
1845 {
1846         unregister_kprobes(&p, 1);
1847 }
1848 EXPORT_SYMBOL_GPL(unregister_kprobe);
1849
1850 void unregister_kprobes(struct kprobe **kps, int num)
1851 {
1852         int i;
1853
1854         if (num <= 0)
1855                 return;
1856         mutex_lock(&kprobe_mutex);
1857         for (i = 0; i < num; i++)
1858                 if (__unregister_kprobe_top(kps[i]) < 0)
1859                         kps[i]->addr = NULL;
1860         mutex_unlock(&kprobe_mutex);
1861
1862         synchronize_rcu();
1863         for (i = 0; i < num; i++)
1864                 if (kps[i]->addr)
1865                         __unregister_kprobe_bottom(kps[i]);
1866 }
1867 EXPORT_SYMBOL_GPL(unregister_kprobes);
1868
1869 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1870                                         unsigned long val, void *data)
1871 {
1872         return NOTIFY_DONE;
1873 }
1874 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1875
1876 static struct notifier_block kprobe_exceptions_nb = {
1877         .notifier_call = kprobe_exceptions_notify,
1878         .priority = 0x7fffffff /* we need to be notified first */
1879 };
1880
1881 unsigned long __weak arch_deref_entry_point(void *entry)
1882 {
1883         return (unsigned long)entry;
1884 }
1885
1886 #ifdef CONFIG_KRETPROBES
1887 /*
1888  * This kprobe pre_handler is registered with every kretprobe. When probe
1889  * hits it will set up the return probe.
1890  */
1891 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1892 {
1893         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1894         unsigned long hash, flags = 0;
1895         struct kretprobe_instance *ri;
1896
1897         /*
1898          * To avoid deadlocks, prohibit return probing in NMI contexts,
1899          * just skip the probe and increase the (inexact) 'nmissed'
1900          * statistical counter, so that the user is informed that
1901          * something happened:
1902          */
1903         if (unlikely(in_nmi())) {
1904                 rp->nmissed++;
1905                 return 0;
1906         }
1907
1908         /* TODO: consider to only swap the RA after the last pre_handler fired */
1909         hash = hash_ptr(current, KPROBE_HASH_BITS);
1910         raw_spin_lock_irqsave(&rp->lock, flags);
1911         if (!hlist_empty(&rp->free_instances)) {
1912                 ri = hlist_entry(rp->free_instances.first,
1913                                 struct kretprobe_instance, hlist);
1914                 hlist_del(&ri->hlist);
1915                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1916
1917                 ri->rp = rp;
1918                 ri->task = current;
1919
1920                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1921                         raw_spin_lock_irqsave(&rp->lock, flags);
1922                         hlist_add_head(&ri->hlist, &rp->free_instances);
1923                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1924                         return 0;
1925                 }
1926
1927                 arch_prepare_kretprobe(ri, regs);
1928
1929                 /* XXX(hch): why is there no hlist_move_head? */
1930                 INIT_HLIST_NODE(&ri->hlist);
1931                 kretprobe_table_lock(hash, &flags);
1932                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1933                 kretprobe_table_unlock(hash, &flags);
1934         } else {
1935                 rp->nmissed++;
1936                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1937         }
1938         return 0;
1939 }
1940 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1941
1942 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1943 {
1944         return !offset;
1945 }
1946
1947 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1948 {
1949         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1950
1951         if (IS_ERR(kp_addr))
1952                 return false;
1953
1954         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1955                                                 !arch_kprobe_on_func_entry(offset))
1956                 return false;
1957
1958         return true;
1959 }
1960
1961 int register_kretprobe(struct kretprobe *rp)
1962 {
1963         int ret = 0;
1964         struct kretprobe_instance *inst;
1965         int i;
1966         void *addr;
1967
1968         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1969                 return -EINVAL;
1970
1971         if (kretprobe_blacklist_size) {
1972                 addr = kprobe_addr(&rp->kp);
1973                 if (IS_ERR(addr))
1974                         return PTR_ERR(addr);
1975
1976                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977                         if (kretprobe_blacklist[i].addr == addr)
1978                                 return -EINVAL;
1979                 }
1980         }
1981
1982         rp->kp.pre_handler = pre_handler_kretprobe;
1983         rp->kp.post_handler = NULL;
1984         rp->kp.fault_handler = NULL;
1985
1986         /* Pre-allocate memory for max kretprobe instances */
1987         if (rp->maxactive <= 0) {
1988 #ifdef CONFIG_PREEMPTION
1989                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1990 #else
1991                 rp->maxactive = num_possible_cpus();
1992 #endif
1993         }
1994         raw_spin_lock_init(&rp->lock);
1995         INIT_HLIST_HEAD(&rp->free_instances);
1996         for (i = 0; i < rp->maxactive; i++) {
1997                 inst = kmalloc(sizeof(struct kretprobe_instance) +
1998                                rp->data_size, GFP_KERNEL);
1999                 if (inst == NULL) {
2000                         free_rp_inst(rp);
2001                         return -ENOMEM;
2002                 }
2003                 INIT_HLIST_NODE(&inst->hlist);
2004                 hlist_add_head(&inst->hlist, &rp->free_instances);
2005         }
2006
2007         rp->nmissed = 0;
2008         /* Establish function entry probe point */
2009         ret = register_kprobe(&rp->kp);
2010         if (ret != 0)
2011                 free_rp_inst(rp);
2012         return ret;
2013 }
2014 EXPORT_SYMBOL_GPL(register_kretprobe);
2015
2016 int register_kretprobes(struct kretprobe **rps, int num)
2017 {
2018         int ret = 0, i;
2019
2020         if (num <= 0)
2021                 return -EINVAL;
2022         for (i = 0; i < num; i++) {
2023                 ret = register_kretprobe(rps[i]);
2024                 if (ret < 0) {
2025                         if (i > 0)
2026                                 unregister_kretprobes(rps, i);
2027                         break;
2028                 }
2029         }
2030         return ret;
2031 }
2032 EXPORT_SYMBOL_GPL(register_kretprobes);
2033
2034 void unregister_kretprobe(struct kretprobe *rp)
2035 {
2036         unregister_kretprobes(&rp, 1);
2037 }
2038 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2039
2040 void unregister_kretprobes(struct kretprobe **rps, int num)
2041 {
2042         int i;
2043
2044         if (num <= 0)
2045                 return;
2046         mutex_lock(&kprobe_mutex);
2047         for (i = 0; i < num; i++)
2048                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2049                         rps[i]->kp.addr = NULL;
2050         mutex_unlock(&kprobe_mutex);
2051
2052         synchronize_rcu();
2053         for (i = 0; i < num; i++) {
2054                 if (rps[i]->kp.addr) {
2055                         __unregister_kprobe_bottom(&rps[i]->kp);
2056                         cleanup_rp_inst(rps[i]);
2057                 }
2058         }
2059 }
2060 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2061
2062 #else /* CONFIG_KRETPROBES */
2063 int register_kretprobe(struct kretprobe *rp)
2064 {
2065         return -ENOSYS;
2066 }
2067 EXPORT_SYMBOL_GPL(register_kretprobe);
2068
2069 int register_kretprobes(struct kretprobe **rps, int num)
2070 {
2071         return -ENOSYS;
2072 }
2073 EXPORT_SYMBOL_GPL(register_kretprobes);
2074
2075 void unregister_kretprobe(struct kretprobe *rp)
2076 {
2077 }
2078 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2079
2080 void unregister_kretprobes(struct kretprobe **rps, int num)
2081 {
2082 }
2083 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2084
2085 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2086 {
2087         return 0;
2088 }
2089 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2090
2091 #endif /* CONFIG_KRETPROBES */
2092
2093 /* Set the kprobe gone and remove its instruction buffer. */
2094 static void kill_kprobe(struct kprobe *p)
2095 {
2096         struct kprobe *kp;
2097
2098         lockdep_assert_held(&kprobe_mutex);
2099
2100         p->flags |= KPROBE_FLAG_GONE;
2101         if (kprobe_aggrprobe(p)) {
2102                 /*
2103                  * If this is an aggr_kprobe, we have to list all the
2104                  * chained probes and mark them GONE.
2105                  */
2106                 list_for_each_entry(kp, &p->list, list)
2107                         kp->flags |= KPROBE_FLAG_GONE;
2108                 p->post_handler = NULL;
2109                 kill_optimized_kprobe(p);
2110         }
2111         /*
2112          * Here, we can remove insn_slot safely, because no thread calls
2113          * the original probed function (which will be freed soon) any more.
2114          */
2115         arch_remove_kprobe(p);
2116 }
2117
2118 /* Disable one kprobe */
2119 int disable_kprobe(struct kprobe *kp)
2120 {
2121         int ret = 0;
2122         struct kprobe *p;
2123
2124         mutex_lock(&kprobe_mutex);
2125
2126         /* Disable this kprobe */
2127         p = __disable_kprobe(kp);
2128         if (IS_ERR(p))
2129                 ret = PTR_ERR(p);
2130
2131         mutex_unlock(&kprobe_mutex);
2132         return ret;
2133 }
2134 EXPORT_SYMBOL_GPL(disable_kprobe);
2135
2136 /* Enable one kprobe */
2137 int enable_kprobe(struct kprobe *kp)
2138 {
2139         int ret = 0;
2140         struct kprobe *p;
2141
2142         mutex_lock(&kprobe_mutex);
2143
2144         /* Check whether specified probe is valid. */
2145         p = __get_valid_kprobe(kp);
2146         if (unlikely(p == NULL)) {
2147                 ret = -EINVAL;
2148                 goto out;
2149         }
2150
2151         if (kprobe_gone(kp)) {
2152                 /* This kprobe has gone, we couldn't enable it. */
2153                 ret = -EINVAL;
2154                 goto out;
2155         }
2156
2157         if (p != kp)
2158                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2159
2160         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2161                 p->flags &= ~KPROBE_FLAG_DISABLED;
2162                 ret = arm_kprobe(p);
2163                 if (ret)
2164                         p->flags |= KPROBE_FLAG_DISABLED;
2165         }
2166 out:
2167         mutex_unlock(&kprobe_mutex);
2168         return ret;
2169 }
2170 EXPORT_SYMBOL_GPL(enable_kprobe);
2171
2172 /* Caller must NOT call this in usual path. This is only for critical case */
2173 void dump_kprobe(struct kprobe *kp)
2174 {
2175         pr_err("Dumping kprobe:\n");
2176         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2177                kp->symbol_name, kp->offset, kp->addr);
2178 }
2179 NOKPROBE_SYMBOL(dump_kprobe);
2180
2181 int kprobe_add_ksym_blacklist(unsigned long entry)
2182 {
2183         struct kprobe_blacklist_entry *ent;
2184         unsigned long offset = 0, size = 0;
2185
2186         if (!kernel_text_address(entry) ||
2187             !kallsyms_lookup_size_offset(entry, &size, &offset))
2188                 return -EINVAL;
2189
2190         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2191         if (!ent)
2192                 return -ENOMEM;
2193         ent->start_addr = entry;
2194         ent->end_addr = entry + size;
2195         INIT_LIST_HEAD(&ent->list);
2196         list_add_tail(&ent->list, &kprobe_blacklist);
2197
2198         return (int)size;
2199 }
2200
2201 /* Add all symbols in given area into kprobe blacklist */
2202 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2203 {
2204         unsigned long entry;
2205         int ret = 0;
2206
2207         for (entry = start; entry < end; entry += ret) {
2208                 ret = kprobe_add_ksym_blacklist(entry);
2209                 if (ret < 0)
2210                         return ret;
2211                 if (ret == 0)   /* In case of alias symbol */
2212                         ret = 1;
2213         }
2214         return 0;
2215 }
2216
2217 /* Remove all symbols in given area from kprobe blacklist */
2218 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2219 {
2220         struct kprobe_blacklist_entry *ent, *n;
2221
2222         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2223                 if (ent->start_addr < start || ent->start_addr >= end)
2224                         continue;
2225                 list_del(&ent->list);
2226                 kfree(ent);
2227         }
2228 }
2229
2230 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2231 {
2232         kprobe_remove_area_blacklist(entry, entry + 1);
2233 }
2234
2235 int __init __weak arch_populate_kprobe_blacklist(void)
2236 {
2237         return 0;
2238 }
2239
2240 /*
2241  * Lookup and populate the kprobe_blacklist.
2242  *
2243  * Unlike the kretprobe blacklist, we'll need to determine
2244  * the range of addresses that belong to the said functions,
2245  * since a kprobe need not necessarily be at the beginning
2246  * of a function.
2247  */
2248 static int __init populate_kprobe_blacklist(unsigned long *start,
2249                                              unsigned long *end)
2250 {
2251         unsigned long entry;
2252         unsigned long *iter;
2253         int ret;
2254
2255         for (iter = start; iter < end; iter++) {
2256                 entry = arch_deref_entry_point((void *)*iter);
2257                 ret = kprobe_add_ksym_blacklist(entry);
2258                 if (ret == -EINVAL)
2259                         continue;
2260                 if (ret < 0)
2261                         return ret;
2262         }
2263
2264         /* Symbols in __kprobes_text are blacklisted */
2265         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2266                                         (unsigned long)__kprobes_text_end);
2267         if (ret)
2268                 return ret;
2269
2270         /* Symbols in noinstr section are blacklisted */
2271         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2272                                         (unsigned long)__noinstr_text_end);
2273
2274         return ret ? : arch_populate_kprobe_blacklist();
2275 }
2276
2277 static void add_module_kprobe_blacklist(struct module *mod)
2278 {
2279         unsigned long start, end;
2280         int i;
2281
2282         if (mod->kprobe_blacklist) {
2283                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2284                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2285         }
2286
2287         start = (unsigned long)mod->kprobes_text_start;
2288         if (start) {
2289                 end = start + mod->kprobes_text_size;
2290                 kprobe_add_area_blacklist(start, end);
2291         }
2292
2293         start = (unsigned long)mod->noinstr_text_start;
2294         if (start) {
2295                 end = start + mod->noinstr_text_size;
2296                 kprobe_add_area_blacklist(start, end);
2297         }
2298 }
2299
2300 static void remove_module_kprobe_blacklist(struct module *mod)
2301 {
2302         unsigned long start, end;
2303         int i;
2304
2305         if (mod->kprobe_blacklist) {
2306                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2307                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2308         }
2309
2310         start = (unsigned long)mod->kprobes_text_start;
2311         if (start) {
2312                 end = start + mod->kprobes_text_size;
2313                 kprobe_remove_area_blacklist(start, end);
2314         }
2315
2316         start = (unsigned long)mod->noinstr_text_start;
2317         if (start) {
2318                 end = start + mod->noinstr_text_size;
2319                 kprobe_remove_area_blacklist(start, end);
2320         }
2321 }
2322
2323 /* Module notifier call back, checking kprobes on the module */
2324 static int kprobes_module_callback(struct notifier_block *nb,
2325                                    unsigned long val, void *data)
2326 {
2327         struct module *mod = data;
2328         struct hlist_head *head;
2329         struct kprobe *p;
2330         unsigned int i;
2331         int checkcore = (val == MODULE_STATE_GOING);
2332
2333         if (val == MODULE_STATE_COMING) {
2334                 mutex_lock(&kprobe_mutex);
2335                 add_module_kprobe_blacklist(mod);
2336                 mutex_unlock(&kprobe_mutex);
2337         }
2338         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2339                 return NOTIFY_DONE;
2340
2341         /*
2342          * When MODULE_STATE_GOING was notified, both of module .text and
2343          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2344          * notified, only .init.text section would be freed. We need to
2345          * disable kprobes which have been inserted in the sections.
2346          */
2347         mutex_lock(&kprobe_mutex);
2348         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2349                 head = &kprobe_table[i];
2350                 hlist_for_each_entry(p, head, hlist)
2351                         if (within_module_init((unsigned long)p->addr, mod) ||
2352                             (checkcore &&
2353                              within_module_core((unsigned long)p->addr, mod))) {
2354                                 /*
2355                                  * The vaddr this probe is installed will soon
2356                                  * be vfreed buy not synced to disk. Hence,
2357                                  * disarming the breakpoint isn't needed.
2358                                  *
2359                                  * Note, this will also move any optimized probes
2360                                  * that are pending to be removed from their
2361                                  * corresponding lists to the freeing_list and
2362                                  * will not be touched by the delayed
2363                                  * kprobe_optimizer work handler.
2364                                  */
2365                                 kill_kprobe(p);
2366                         }
2367         }
2368         if (val == MODULE_STATE_GOING)
2369                 remove_module_kprobe_blacklist(mod);
2370         mutex_unlock(&kprobe_mutex);
2371         return NOTIFY_DONE;
2372 }
2373
2374 static struct notifier_block kprobe_module_nb = {
2375         .notifier_call = kprobes_module_callback,
2376         .priority = 0
2377 };
2378
2379 /* Markers of _kprobe_blacklist section */
2380 extern unsigned long __start_kprobe_blacklist[];
2381 extern unsigned long __stop_kprobe_blacklist[];
2382
2383 static int __init init_kprobes(void)
2384 {
2385         int i, err = 0;
2386
2387         /* FIXME allocate the probe table, currently defined statically */
2388         /* initialize all list heads */
2389         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2390                 INIT_HLIST_HEAD(&kprobe_table[i]);
2391                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2392                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2393         }
2394
2395         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2396                                         __stop_kprobe_blacklist);
2397         if (err) {
2398                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2399                 pr_err("Please take care of using kprobes.\n");
2400         }
2401
2402         if (kretprobe_blacklist_size) {
2403                 /* lookup the function address from its name */
2404                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2405                         kretprobe_blacklist[i].addr =
2406                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2407                         if (!kretprobe_blacklist[i].addr)
2408                                 printk("kretprobe: lookup failed: %s\n",
2409                                        kretprobe_blacklist[i].name);
2410                 }
2411         }
2412
2413 #if defined(CONFIG_OPTPROBES)
2414 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2415         /* Init kprobe_optinsn_slots */
2416         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2417 #endif
2418         /* By default, kprobes can be optimized */
2419         kprobes_allow_optimization = true;
2420 #endif
2421
2422         /* By default, kprobes are armed */
2423         kprobes_all_disarmed = false;
2424
2425         err = arch_init_kprobes();
2426         if (!err)
2427                 err = register_die_notifier(&kprobe_exceptions_nb);
2428         if (!err)
2429                 err = register_module_notifier(&kprobe_module_nb);
2430
2431         kprobes_initialized = (err == 0);
2432
2433         if (!err)
2434                 init_test_probes();
2435         return err;
2436 }
2437 subsys_initcall(init_kprobes);
2438
2439 #ifdef CONFIG_DEBUG_FS
2440 static void report_probe(struct seq_file *pi, struct kprobe *p,
2441                 const char *sym, int offset, char *modname, struct kprobe *pp)
2442 {
2443         char *kprobe_type;
2444         void *addr = p->addr;
2445
2446         if (p->pre_handler == pre_handler_kretprobe)
2447                 kprobe_type = "r";
2448         else
2449                 kprobe_type = "k";
2450
2451         if (!kallsyms_show_value())
2452                 addr = NULL;
2453
2454         if (sym)
2455                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2456                         addr, kprobe_type, sym, offset,
2457                         (modname ? modname : " "));
2458         else    /* try to use %pS */
2459                 seq_printf(pi, "%px  %s  %pS ",
2460                         addr, kprobe_type, p->addr);
2461
2462         if (!pp)
2463                 pp = p;
2464         seq_printf(pi, "%s%s%s%s\n",
2465                 (kprobe_gone(p) ? "[GONE]" : ""),
2466                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2467                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2468                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2469 }
2470
2471 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2472 {
2473         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2474 }
2475
2476 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2477 {
2478         (*pos)++;
2479         if (*pos >= KPROBE_TABLE_SIZE)
2480                 return NULL;
2481         return pos;
2482 }
2483
2484 static void kprobe_seq_stop(struct seq_file *f, void *v)
2485 {
2486         /* Nothing to do */
2487 }
2488
2489 static int show_kprobe_addr(struct seq_file *pi, void *v)
2490 {
2491         struct hlist_head *head;
2492         struct kprobe *p, *kp;
2493         const char *sym = NULL;
2494         unsigned int i = *(loff_t *) v;
2495         unsigned long offset = 0;
2496         char *modname, namebuf[KSYM_NAME_LEN];
2497
2498         head = &kprobe_table[i];
2499         preempt_disable();
2500         hlist_for_each_entry_rcu(p, head, hlist) {
2501                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2502                                         &offset, &modname, namebuf);
2503                 if (kprobe_aggrprobe(p)) {
2504                         list_for_each_entry_rcu(kp, &p->list, list)
2505                                 report_probe(pi, kp, sym, offset, modname, p);
2506                 } else
2507                         report_probe(pi, p, sym, offset, modname, NULL);
2508         }
2509         preempt_enable();
2510         return 0;
2511 }
2512
2513 static const struct seq_operations kprobes_sops = {
2514         .start = kprobe_seq_start,
2515         .next  = kprobe_seq_next,
2516         .stop  = kprobe_seq_stop,
2517         .show  = show_kprobe_addr
2518 };
2519
2520 DEFINE_SEQ_ATTRIBUTE(kprobes);
2521
2522 /* kprobes/blacklist -- shows which functions can not be probed */
2523 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2524 {
2525         mutex_lock(&kprobe_mutex);
2526         return seq_list_start(&kprobe_blacklist, *pos);
2527 }
2528
2529 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2530 {
2531         return seq_list_next(v, &kprobe_blacklist, pos);
2532 }
2533
2534 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2535 {
2536         struct kprobe_blacklist_entry *ent =
2537                 list_entry(v, struct kprobe_blacklist_entry, list);
2538
2539         /*
2540          * If /proc/kallsyms is not showing kernel address, we won't
2541          * show them here either.
2542          */
2543         if (!kallsyms_show_value())
2544                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2545                            (void *)ent->start_addr);
2546         else
2547                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2548                            (void *)ent->end_addr, (void *)ent->start_addr);
2549         return 0;
2550 }
2551
2552 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2553 {
2554         mutex_unlock(&kprobe_mutex);
2555 }
2556
2557 static const struct seq_operations kprobe_blacklist_sops = {
2558         .start = kprobe_blacklist_seq_start,
2559         .next  = kprobe_blacklist_seq_next,
2560         .stop  = kprobe_blacklist_seq_stop,
2561         .show  = kprobe_blacklist_seq_show,
2562 };
2563 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2564
2565 static int arm_all_kprobes(void)
2566 {
2567         struct hlist_head *head;
2568         struct kprobe *p;
2569         unsigned int i, total = 0, errors = 0;
2570         int err, ret = 0;
2571
2572         mutex_lock(&kprobe_mutex);
2573
2574         /* If kprobes are armed, just return */
2575         if (!kprobes_all_disarmed)
2576                 goto already_enabled;
2577
2578         /*
2579          * optimize_kprobe() called by arm_kprobe() checks
2580          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2581          * arm_kprobe.
2582          */
2583         kprobes_all_disarmed = false;
2584         /* Arming kprobes doesn't optimize kprobe itself */
2585         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2586                 head = &kprobe_table[i];
2587                 /* Arm all kprobes on a best-effort basis */
2588                 hlist_for_each_entry(p, head, hlist) {
2589                         if (!kprobe_disabled(p)) {
2590                                 err = arm_kprobe(p);
2591                                 if (err)  {
2592                                         errors++;
2593                                         ret = err;
2594                                 }
2595                                 total++;
2596                         }
2597                 }
2598         }
2599
2600         if (errors)
2601                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2602                         errors, total);
2603         else
2604                 pr_info("Kprobes globally enabled\n");
2605
2606 already_enabled:
2607         mutex_unlock(&kprobe_mutex);
2608         return ret;
2609 }
2610
2611 static int disarm_all_kprobes(void)
2612 {
2613         struct hlist_head *head;
2614         struct kprobe *p;
2615         unsigned int i, total = 0, errors = 0;
2616         int err, ret = 0;
2617
2618         mutex_lock(&kprobe_mutex);
2619
2620         /* If kprobes are already disarmed, just return */
2621         if (kprobes_all_disarmed) {
2622                 mutex_unlock(&kprobe_mutex);
2623                 return 0;
2624         }
2625
2626         kprobes_all_disarmed = true;
2627
2628         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2629                 head = &kprobe_table[i];
2630                 /* Disarm all kprobes on a best-effort basis */
2631                 hlist_for_each_entry(p, head, hlist) {
2632                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2633                                 err = disarm_kprobe(p, false);
2634                                 if (err) {
2635                                         errors++;
2636                                         ret = err;
2637                                 }
2638                                 total++;
2639                         }
2640                 }
2641         }
2642
2643         if (errors)
2644                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2645                         errors, total);
2646         else
2647                 pr_info("Kprobes globally disabled\n");
2648
2649         mutex_unlock(&kprobe_mutex);
2650
2651         /* Wait for disarming all kprobes by optimizer */
2652         wait_for_kprobe_optimizer();
2653
2654         return ret;
2655 }
2656
2657 /*
2658  * XXX: The debugfs bool file interface doesn't allow for callbacks
2659  * when the bool state is switched. We can reuse that facility when
2660  * available
2661  */
2662 static ssize_t read_enabled_file_bool(struct file *file,
2663                char __user *user_buf, size_t count, loff_t *ppos)
2664 {
2665         char buf[3];
2666
2667         if (!kprobes_all_disarmed)
2668                 buf[0] = '1';
2669         else
2670                 buf[0] = '0';
2671         buf[1] = '\n';
2672         buf[2] = 0x00;
2673         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2674 }
2675
2676 static ssize_t write_enabled_file_bool(struct file *file,
2677                const char __user *user_buf, size_t count, loff_t *ppos)
2678 {
2679         char buf[32];
2680         size_t buf_size;
2681         int ret = 0;
2682
2683         buf_size = min(count, (sizeof(buf)-1));
2684         if (copy_from_user(buf, user_buf, buf_size))
2685                 return -EFAULT;
2686
2687         buf[buf_size] = '\0';
2688         switch (buf[0]) {
2689         case 'y':
2690         case 'Y':
2691         case '1':
2692                 ret = arm_all_kprobes();
2693                 break;
2694         case 'n':
2695         case 'N':
2696         case '0':
2697                 ret = disarm_all_kprobes();
2698                 break;
2699         default:
2700                 return -EINVAL;
2701         }
2702
2703         if (ret)
2704                 return ret;
2705
2706         return count;
2707 }
2708
2709 static const struct file_operations fops_kp = {
2710         .read =         read_enabled_file_bool,
2711         .write =        write_enabled_file_bool,
2712         .llseek =       default_llseek,
2713 };
2714
2715 static int __init debugfs_kprobe_init(void)
2716 {
2717         struct dentry *dir;
2718         unsigned int value = 1;
2719
2720         dir = debugfs_create_dir("kprobes", NULL);
2721
2722         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2723
2724         debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2725
2726         debugfs_create_file("blacklist", 0400, dir, NULL,
2727                             &kprobe_blacklist_fops);
2728
2729         return 0;
2730 }
2731
2732 late_initcall(debugfs_kprobe_init);
2733 #endif /* CONFIG_DEBUG_FS */